1
|
Liu Z, Yu Z, Li X, Cheng Q, Li R. Two Sugarcane Expansin Protein-Coding Genes Contribute to Stomatal Aperture Associated with Structural Resistance to Sugarcane Smut. J Fungi (Basel) 2024; 10:631. [PMID: 39330391 PMCID: PMC11433316 DOI: 10.3390/jof10090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Sporisorium scitamineum is a biotrophic fungus responsible for inducing sugarcane smut disease that results in significant reductions in sugarcane yield. Resistance mechanisms against sugarcane smut can be categorized into structural, biochemical, and physiological resistance. However, structural resistance has been relatively understudied. This study found that sugarcane variety ZZ9 displayed structural resistance compared to variety GT42 when subjected to different inoculation methods for assessing resistance to smut disease. Furthermore, the stomatal aperture and density of smut-susceptible varieties (ROC22 and GT42) were significantly higher than those of smut-resistant varieties (ZZ1, ZZ6, and ZZ9). Notably, S. scitamineum was found to be capable of entering sugarcane through the stomata on buds. According to the RNA sequencing of the buds of GT42 and ZZ9, seven Expansin protein-encoding genes were identified, of which six were significantly upregulated in GT42. The two genes c111037.graph_c0 and c113583.graph_c0, belonging to the α-Expansin and β-Expansin families, respectively, were functionally characterized, revealing their role in increasing the stomatal aperture. Therefore, these two sugarcane Expansin protein-coding genes contribute to the stomatal aperture, implying their potential roles in structural resistance to sugarcane smut. Our findings deepen the understanding of the role of the stomata in structural resistance to sugarcane smut and highlight their potential in sugarcane breeding for disease resistance.
Collapse
Affiliation(s)
- Zongling Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Zhuoxin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiufang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Qin Cheng
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Raveau R, Ilbert C, Héloir MC, Palavioux K, Pébarthé-Courrouilh A, Marzari T, Durand S, Valls-Fonayet J, Cluzet S, Adrian M, Fermaud M. Broad-Spectrum Efficacy and Modes of Action of Two Bacillus Strains against Grapevine Black Rot and Downy Mildew. J Fungi (Basel) 2024; 10:471. [PMID: 39057356 PMCID: PMC11278100 DOI: 10.3390/jof10070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Black rot (Guignardia bidwellii) and downy mildew (Plasmopara viticola) are two major grapevine diseases against which the development of efficient biocontrol solutions is required in a context of sustainable viticulture. This study aimed at evaluating and comparing the efficacy and modes of action of bacterial culture supernatants from Bacillus velezensis Buz14 and B. ginsengihumi S38. Both biocontrol agents (BCA) were previously demonstrated as highly effective against Botrytis cinerea in grapevines. In semi-controlled conditions, both supernatants provided significant protection against black rot and downy mildew. They exhibited antibiosis against the pathogens by significantly decreasing G. bidwellii mycelial growth, but also the release and motility of P. viticola zoospores. They also significantly induced grapevine defences, as stilbene production. The LB medium, used for the bacterial cultures, also showed partial effects against both pathogens and induced plant defences. This is discussed in terms of choice of experimental controls when studying the biological activity of BCA supernatants. Thus, we identified two bacterial culture supernatants as new potential biocontrol products exhibiting multi-spectrum antagonist activity against different grapevine key pathogens and having a dual mode of action.
Collapse
Affiliation(s)
- Robin Raveau
- National Research Institute for Agriculture, Food and the Environment (INRAE), Institute of Vine and Wine Sciences (ISVV), UMR Santé Agroécologie du VignoblE (SAVE), 71 Avenue E. Bourlaux, CS 20032, 33882 Villenave d’Ornon, France
| | - Chloé Ilbert
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Karine Palavioux
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Anthony Pébarthé-Courrouilh
- Univ. Bordeaux, Bordeaux INP, National Research Institute for Agriculture, Food and the Environment (INRAE), OENO, UMR 1366, Institute of Vine and Wine Sciences (ISVV), 33140 Villenave d’Ornon, France
| | - Tania Marzari
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Solène Durand
- National Research Institute for Agriculture, Food and the Environment (INRAE), Institute of Vine and Wine Sciences (ISVV), UMR Santé Agroécologie du VignoblE (SAVE), 71 Avenue E. Bourlaux, CS 20032, 33882 Villenave d’Ornon, France
| | - Josep Valls-Fonayet
- Univ. Bordeaux, Bordeaux INP, National Research Institute for Agriculture, Food and the Environment (INRAE), OENO, UMR 1366, Institute of Vine and Wine Sciences (ISVV), 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, 33140 Villenave d’Ornon, France
| | - Stéphanie Cluzet
- Univ. Bordeaux, Bordeaux INP, National Research Institute for Agriculture, Food and the Environment (INRAE), OENO, UMR 1366, Institute of Vine and Wine Sciences (ISVV), 33140 Villenave d’Ornon, France
| | - Marielle Adrian
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Marc Fermaud
- National Research Institute for Agriculture, Food and the Environment (INRAE), Institute of Vine and Wine Sciences (ISVV), UMR Santé Agroécologie du VignoblE (SAVE), 71 Avenue E. Bourlaux, CS 20032, 33882 Villenave d’Ornon, France
| |
Collapse
|
3
|
Taibi O, Salotti I, Rossi V. Plant Resistance Inducers Affect Multiple Epidemiological Components of Plasmopara viticola on Grapevine Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:2938. [PMID: 37631150 PMCID: PMC10459891 DOI: 10.3390/plants12162938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Plant resistance inducers (PRIs) harbor promising potential for use in downy mildew (DM) control in viticulture. Here, the effects of six commercial PRIs on some epidemiological components of Plasmopara viticola (Pv) on grapevine leaves were studied over 3 years. Disease severity, mycelial colonization of leaf tissue, sporulation severity, production of sporangia on affected leaves, and per unit of DM lesion were evaluated by inoculating the leaves of PRI-treated plants at 1, 3, 6, 12, and 19 days after treatment (DAT). Laminarin, potassium phosphonate (PHO), and fosetyl-aluminium (FOS) were the most effective in reducing disease severity as well as the Pv DNA concentration of DM lesions on leaves treated and inoculated at 1 and 3 DAT; PHO and FOS also showed long-lasting effects on leaves established after treatment (inoculations at 6 to 19 DAT). PRIs also prevented the sporulation of Pv on lesions; all the PRI-treated leaves produced fewer sporangia than the nontreated control, especially in PHO-, FOS-, and cerevisane-treated leaves (>75% reduction). These results illustrate the broader and longer effect of PRIs on DM epidemics. The findings open up new perspectives for using PRIs in a defense program based on single, timely, and preventative field interventions.
Collapse
Affiliation(s)
| | | | - Vittorio Rossi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (O.T.); (I.S.)
| |
Collapse
|
4
|
Aitouguinane M, El Alaoui-Talibi Z, Rchid H, Fendri I, Abdelkafi S, El-Hadj MDO, Boual Z, Le Cerf D, Rihouey C, Gardarin C, Dubessay P, Michaud P, Pierre G, Delattre C, El Modafar C. Elicitor Activity of Low-Molecular-Weight Alginates Obtained by Oxidative Degradation of Alginates Extracted from Sargassum muticum and Cystoseira myriophylloides. Mar Drugs 2023; 21:301. [PMID: 37233495 PMCID: PMC10222107 DOI: 10.3390/md21050301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.
Collapse
Affiliation(s)
- Meriem Aitouguinane
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Zainab El Alaoui-Talibi
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| | - Halima Rchid
- Laboratoire de Biotechnologies et Valorisation des Ressources Végétales, Faculté des Sciences, Université Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Mohamed Didi Ould El-Hadj
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Zakaria Boual
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Didier Le Cerf
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christophe Rihouey
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christine Gardarin
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Pascal Dubessay
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, F-75005 Paris, France
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| |
Collapse
|
5
|
Koledenkova K, Esmaeel Q, Jacquard C, Nowak J, Clément C, Ait Barka E. Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Front Microbiol 2022; 13:889472. [PMID: 35633680 PMCID: PMC9130769 DOI: 10.3389/fmicb.2022.889472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni) causing grapevine downy mildew is one of the most damaging pathogens to viticulture worldwide. Since its recognition in the middle of nineteenth century, this disease has spread from America to Europe and then to all grapevine-growing countries, leading to significant economic losses due to the lack of efficient disease control. In 1885 copper was found to suppress many pathogens, and is still the most effective way to control downy mildews. During the twentieth century, contact and penetrating single-site fungicides have been developed for use against plant pathogens including downy mildews, but wide application has led to the appearance of pathogenic strains resistant to these treatments. Additionally, due to the negative environmental impact of chemical pesticides, the European Union restricted their use, triggering a rush to develop alternative tools such as resistant cultivars breeding, creation of new active ingredients, search for natural products and biocontrol agents that can be applied alone or in combination to kill the pathogen or mitigate its effect. This review summarizes data about the history, distribution, epidemiology, taxonomy, morphology, reproduction and infection mechanisms, symptoms, host-pathogen interactions, host resistance and control of the P. viticola, with a focus on sustainable methods, especially the use of biocontrol agents.
Collapse
Affiliation(s)
- Kseniia Koledenkova
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Jerzy Nowak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Saunders Hall, Blacksburg, VA, United States
| | - Christophe Clément
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
6
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
7
|
Figueiredo L, Santos RB, Figueiredo A. The grapevine aspartic protease gene family: characterization and expression modulation in response to Plasmopara viticola. JOURNAL OF PLANT RESEARCH 2022; 135:501-515. [PMID: 35426578 DOI: 10.1007/s10265-022-01390-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Grapevine aspartic proteases gene family is characterized and five VviAPs appear to be involved in grapevine defense against downy mildew. Grapevine (Vitis vinifera L.) is one of the most important crops worldwide. However, it is highly susceptible to the downy mildew disease caused by Plasmopara viticola (Berk. & Curt.) Berl. & De Toni. To minimize the use of fungicides used to control P. viticola, it is essential to gain a deeper comprehension on this pathosystem and proteases have gained particular interest in the past decade. Proteases were shown to actively participate in plant-pathogen interactions, not only in the processes that lead to plant cell death, stress responses and protein processing/degradation but also as components of the recognition and signalling pathways. The aim of this study was to identify and characterize the aspartic proteases (APs) involvement in grapevine defense against P. viticola. A genome-wide search and bioinformatics characterization of the V. vinifera AP gene family was conducted and a total of 81 APs proteins, coded by 65 genes, were found. VviAPs proteins can be divided into three categories, similar to those previously described for other plants. Twelve APs coding genes were selected, and expression analysis was conducted at several time-points after inoculation in both compatible and incompatible interactions. Five grapevine APs may be involved in grapevine tolerance against P. viticola. Our findings provide an overall understanding of the VviAPs gene family and establish better groundwork to further describe the roles of VviAPs in defense against P. viticola.
Collapse
Affiliation(s)
- Laura Figueiredo
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rita B Santos
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Andreia Figueiredo
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
8
|
VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine. Molecules 2021; 26:molecules26144258. [PMID: 34299533 PMCID: PMC8306312 DOI: 10.3390/molecules26144258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Grapevine is susceptible to fungal diseases generally controlled by numerous chemical fungicides. Elicitors of plant defence are a way of reducing the use of these chemicals, but still provide inconsistent efficiency. Easy-to-analyse markers of grapevine responses to elicitors are needed to determine the best conditions for their efficiency and position them in protection strategies. We previously reported that the elicitor sulphated laminarin induced the emission of volatile organic compounds (VOCs) by grapevine leaves. The present study was conducted to characterise and compare VOC emissions in response to other elicitors. Bastid® was first used to test the conditions of VOC collection and analysis. Using SBSE-GC-MS, we detected several VOCs, including the sesquiterpene α-farnesene, in a time-dependent manner. This was correlated with the induction of farnesene synthase gene expression, in parallel with stilbene synthesis (another defence response), and associated to resistance against downy mildew. The other elicitors (Redeli®, Romeo®, Bion®, chitosan, and an oligogalacturonide) induced VOC emission, but with qualitative and quantitative differences. VOC emission thus constitutes a response of grapevine to elicitors of various chemical structures. Therefore, VOC analysis is relevant for studying the impact of environmental factors on grapevine defence responses and optimising the performance of elicitors in vineyards.
Collapse
|
9
|
Responses to Drought Stress Modulate the Susceptibility to Plasmopara viticola in Vitis vinifera Self-Rooted Cuttings. PLANTS 2021; 10:plants10020273. [PMID: 33573332 PMCID: PMC7912678 DOI: 10.3390/plants10020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Climate change will increase the occurrence of plants being simultaneously subjected to drought and pathogen stress. Drought can alter the way in which plants respond to pathogens. This research addresses how grapevine responds to the concurrent challenge of drought stress and Plasmopara viticola, the causal agent of downy mildew, and how one stress affects the other. Self-rooted cuttings of the drought-tolerant grapevine cultivar Xynisteri and the drought-sensitive cultivar Chardonnay were exposed to full or deficit irrigation (40% of full irrigation) and artificially inoculated with P. viticola in vitro or in planta. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under full irrigation, Xynisteri was more susceptible to P. viticola than the drought-sensitive cultivar Chardonnay. Drought stress increased the susceptibility of grapevine leaves inoculated in vitro, but both cultivars showed resistance against P. viticola when inoculated in planta. Abscisic acid, rather than jasmonic acid and salicylic acid, seemed to play a prominent role in this resistance. The irrigation-dependent susceptibility observed in this study indicates that the practices used to mitigate the effects of climate change may have a profound impact on plant pathogens.
Collapse
|
10
|
Wang Y, Cao X, Han Y, Han X, Wang Z, Xue T, Ye Q, Zhang L, Duan X, Wang H, Li H. Kaolin Particle Film Protects Grapevine cv. Cabernet Sauvignon Against Downy Mildew by Forming Particle Film at the Leaf Surface, Directly Acting on Sporangia and Inducing the Defense of the Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:796545. [PMID: 35082814 PMCID: PMC8784833 DOI: 10.3389/fpls.2021.796545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/17/2021] [Indexed: 05/03/2023]
Abstract
Downy mildew is a major threat to viticulture, leading to severe yield loss. The use of traditional copper-based fungicides is effective, but has adverse effects on the environment and human health, making it urgent to develop an environmentally friendly disease management program. Multi-functional kaolin particle film (KPF) is promising as an effective and safer treatment strategy, since this material lacks chemically active ingredients. In this study, ability of Kaolin particle film (KPF) pretreatment to protect grapevine leaves from Plasmopara viticola was tested and the mode of action of KPF was analyzed. KPF application reduced the disease severity and the development of intercellular hyphae. Additionally, there was reduced accumulation of H2O2 and malondialdehyde (MDA) with pretreatment. The observation of ultrastructure on the leaf surface showed KPF deposition and stomatal obstruction, indicating that KPF protected plants against disease by preventing the adhesion of pathogens to the leaf surface and blocking invasion through the stomata. KPF pretreatment also activated host defense responses, as evidenced by increased activities of anti-oxidative enzymes [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] and defense-related enzymes [phenylalanine ammonia-lyase (PAL), chitinases, and β-1,3-glucanases], increased phytohormone signals [abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA)] and the up-regulation of defense genes related to plant defense. Overall, these results demonstrate that KPF treatment counters grapevine downy mildew by protecting leaves and enhancing plant defense responses.
Collapse
Affiliation(s)
- Ying Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Xiao Cao
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Xing Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhilei Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Tingting Xue
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Qiuhong Ye
- College of Enology, Northwest A&F University, Yangling, China
| | - Liang Zhang
- College of Enology, Northwest A&F University, Yangling, China
| | - Xinyao Duan
- College of Enology, Northwest A&F University, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- *Correspondence: Hua Wang,
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Hua Li,
| |
Collapse
|
11
|
Kabashnikova L, Abramchik L, Domanskaya I, Savchenko G, Shpileuski S. β-1,3-glucan effect on the photosynthetic apparatus and oxidative stress parameters of tomato leaves under fusarium wilt. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:988-997. [PMID: 32579879 DOI: 10.1071/fp19338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The effect of β-1,3-glucan on the photosynthetic apparatus and oxidative stress parameters of tomato (Lycopersicon esculentum Mill., cv. Tamara) leaves under fusarium wilt caused artificially by the fungal pathogen Fusarium oxysporum sp. was studied in 2-month-old tomato plants. Infection of tomato plants with a pathogen causes activation of lipid peroxidation (LPO) processes in leaves and significant changes in the photosynthetic apparatus, which is reflected in a decrease in the chlorophyll (Chl) a and Chl a/Chl b ratio and carotenoid content, disturbances in the absorption and utilisation of light energy in PSII. Pretreatment of plants with β-1,3-glucan contributes to the stabilisation of LPO and normalises the level of a photosynthetic pigments and a course of photochemical processes in the chloroplasts of infected leaves, which indicates the protective activity of a drug.
Collapse
Affiliation(s)
- Liudmila Kabashnikova
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus; and Corresponding author.
| | - Larisa Abramchik
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| | - Irina Domanskaya
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| | - Galina Savchenko
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| | - Sviatoslav Shpileuski
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| |
Collapse
|
12
|
Nogueira Júnior AF, Tränkner M, Ribeiro RV, von Tiedemann A, Amorim L. Photosynthetic Cost Associated With Induced Defense to Plasmopara viticola in Grapevine. FRONTIERS IN PLANT SCIENCE 2020; 11:235. [PMID: 32265949 PMCID: PMC7098430 DOI: 10.3389/fpls.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/14/2020] [Indexed: 05/10/2023]
Abstract
Downy mildew caused by Plasmopara viticola is one of the most destructive diseases of Vitis vinifera worldwide. Grapevine breeding programs have introgressed P. viticola-resistant traits into cultivated V. vinifera genotypes and launched interspecific hybrids with resistance against downy mildew. In general, pathogen infection affects primary metabolism, reduces plant growth and development and modifies the secondary metabolism toward defense responses, which are costly in terms of carbon production and utilization. The objective of this work was to evaluate the photosynthesis impairment by inducible defenses at the leaf level in V. vinifera cultivars resistant to P. viticola. Photosynthetic limitations imposed by P. viticola in susceptible and resistant grapevine cultivars were evaluated. Histochemical localization of hydrogen peroxide and superoxide and the activity of ascorbate peroxidase were assessed. Measurements of leaf gas exchange, chlorophyll fluorescence and the response of leaf CO2 assimilation to increasing air CO2 concentrations were taken, and photosynthetic limitations determined in cultivars Solaris (resistant) and Riesling (susceptible). The net photosynthetic rates were reduced (-25%) in inoculated Solaris plants even before the appearance of cell death-like hypersensitive reactions ("HR"). One day after "HR" visualization, the net photosynthetic rate of Solaris was reduced by 57% compared with healthy plants. A similar pattern was noticed in resistant Cabernet Blanc and Phoenix plants. While the susceptible cultivars did not show any variation in leaf gas exchange before the appearance of visual symptoms, drastic reductions in net photosynthetic rate and stomatal conductance were found in diseased plants 12 days after inoculation. Decreases in the maximum Rubisco carboxylation rate and photochemical impairment were noticed in Riesling after inoculation with P. viticola, which were not found in Solaris. Damage to the photochemical reactions of photosynthesis was likely associated with the oxidative burst found in resistant cultivars within the first 24 h after inoculation. Both chlorophyll degradation and stomatal closure were also noticed in the incompatible interaction. Taken together, our data clearly revealed that the defense response against P. viticola causes a photosynthetic cost to grapevines, which is not reversible even 12 days after the pathogen infection.
Collapse
Affiliation(s)
| | - Merle Tränkner
- Department of Crop Sciences, Institute of Applied Plant Nutrition, University of Göttingen, Göttingen, Germany
- Merle Tränkner, merle.traenkner@ agr.uni-goettingen.de
| | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andreas von Tiedemann
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, University of Göttingen, Göttingen, Germany
| | - Lilian Amorim
- Department of Plant Pathology, ESALQ, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Lilian Amorim,
| |
Collapse
|
13
|
Rienth M, Crovadore J, Ghaffari S, Lefort F. Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis Vinifera) and primes plant immunity mechanisms. PLoS One 2019; 14:e0222854. [PMID: 31560730 PMCID: PMC6764689 DOI: 10.1371/journal.pone.0222854] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/09/2019] [Indexed: 12/30/2022] Open
Abstract
The reduction of synthetic fungicides in agriculture is necessary to guarantee a sustainable production that protects the environment and consumers' health. Downy mildew caused by the oomycete Plasmopara viticola is the major pathogen in viticulture worldwide and responsible for up to 60% of pesticide treatments. Alternatives to reduce fungicides are thus utterly needed to ensure sustainable vineyard-ecosystems, consumer health and public acceptance. Essential oils (EOs) are amongst the most promising natural plant protection alternatives and have shown their antibacterial, antiviral and antifungal properties on several agricultural crops. However, the efficiency of EOs highly depends on timing, application method and the molecular interactions between the host, the pathogen and EO. Despite proven EO efficiency, the underlying processes are still not understood and remain a black box. The objectives of the present study were: a) to evaluate whether a continuous fumigation of a particular EO can control downy mildew in order to circumvent the drawbacks of direct application, b) to decipher molecular mechanisms that could be triggered in the host and the pathogen by EO application and c) to try to differentiate whether essential oils directly repress the oomycete or act as plant resistance primers. To achieve this a custom-made climatic chamber was constructed that enabled a continuous fumigation of potted vines with different EOs during long-term experiments. The grapevine (Vitis vinifera) cv Chasselas was chosen in reason of its high susceptibility to Plasmopara viticola. Grapevine cuttings were infected with P. viticola and subsequently exposed to continuous fumigation of different EOs at different concentrations, during 2 application time spans (24 hours and 10 days). Experiments were stopped when infection symptoms were clearly observed on the leaves of the control plants. Plant physiology (photosynthesis and growth rate parameters) were recorded and leaves were sampled at different time points for subsequent RNA extraction and transcriptomics analysis. Strikingly, the Oregano vulgare EO vapour treatment during 24h post-infection proved to be sufficient to reduce downy mildew development by 95%. Total RNA was extracted from leaves of 24h and 10d treatments and used for whole transcriptome shotgun sequencing (RNA-seq). Sequenced reads were then mapped onto the V. vinifera and P. viticola genomes. Less than 1% of reads could be mapped onto the P. viticola genome from treated samples, whereas up to 30% reads from the controls mapped onto the P. viticola genome, thereby confirming the visual observation of P. viticola absence in the treated plants. On average, 80% of reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated genes. Transcriptomic data clearly showed that the treatment triggered the plant's innate immune system with genes involved in salicylic, jasmonic acid and ethylene synthesis and signaling, activating Pathogenesis-Related-proteins as well as phytoalexin synthesis. These results elucidate EO-host-pathogen interactions for the first time and indicate that the antifungal efficiency of EO is mainly due to the triggering of resistance pathways inside the host plants. This is of major importance for the production and research on biopesticides, plant stimulation products and for resistance-breeding strategies.
Collapse
Affiliation(s)
- Markus Rienth
- Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Julien Crovadore
- Plants and Pathogens Group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, Jussy, Geneva, Switzerland
| | - Sana Ghaffari
- Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - François Lefort
- Plants and Pathogens Group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, Jussy, Geneva, Switzerland
| |
Collapse
|
14
|
Johnson JM, Ludwig A, Furch ACU, Mithöfer A, Scholz S, Reichelt M, Oelmüller R. The Beneficial Root-Colonizing Fungus Mortierella hyalina Promotes the Aerial Growth of Arabidopsis and Activates Calcium-Dependent Responses That Restrict Alternaria brassicae-Induced Disease Development in Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:351-363. [PMID: 30252617 DOI: 10.1094/mpmi-05-18-0115-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The endophytic fungus Mortierella hyalina colonizes the roots of Arabidopsis thaliana and stimulates growth and biomass production of the aerial parts but not of roots. An exudate fraction from the fungus induces rapid and transient cytoplasmic Ca2+elevation in the roots. The Ca2+ response does not require the well-characterized (co)receptors BAK1, CERK1, and FLS2 for pathogen-associated molecular patterns, and the Ca2+ channels GLR-2.4, GLR-2.5, and GLR-3.3 or the vacuolar TWO PORE CHANNEL1, which might be involved in cytoplasmic Ca2+ elevation. We isolated an ethyl-methane-sulfonate-induced Arabidopsis mutant that is impaired in this Ca2+ response. The roots of the mutant are impaired in M. hyalina-mediated suppression of immune responses after Alternaria brassicae infection, i.e., jasmonate accumulation, generation of reactive oxygen species, as well as the activation of jasmonate-related defense genes. Furthermore, they are more colonized by M. hyalina than wild-type roots. We propose that the mutant gene product is involved in a Ca2+-dependent signaling pathway activated by M. hyalina to suppress immune responses in Arabidopsis roots.
Collapse
Affiliation(s)
- Joy Michal Johnson
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Anatoli Ludwig
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Alexandra C U Furch
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Axel Mithöfer
- 2 Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology
- 3 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology
| | - Sandra Scholz
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| | - Michael Reichelt
- 4 Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ralf Oelmüller
- 1 Matthias-Schleiden-Institute for Bioinformatics, Genetics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
15
|
Krzyzaniak Y, Negrel J, Lemaitre-Guillier C, Clément G, Mouille G, Klinguer A, Trouvelot S, Héloir MC, Adrian M. Combined enzymatic and metabolic analysis of grapevine cell responses to elicitors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:141-148. [PMID: 29241147 DOI: 10.1016/j.plaphy.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 05/23/2023]
Abstract
Elicitors trigger plant defense responses, including phytoalexin production and cell-wall reinforcement. Primary metabolism plays an important role in these responses as it fuels the associated energetic costs and provides precursors for the synthesis of the numerous secondary metabolites involved in defenses against pathogens. In this context, we aimed to determine whether oligosaccharidic elicitors differing in their capacity to activate defense-associated secondary metabolism in grapevine would differently impact primary metabolism. To answer this question, cell suspensions were treated with two elicitors: an oligogalacturonide, and the β-glucan laminarin. Enzymatic activity assays together with targeted (HPLC) and global (GC-MS) analyses of metabolites were next performed to compare their impact on plant primary or secondary metabolism. The results showed that the oligogalacturonide, which induced the highest level of the phytoalexin resveratrol and the highest activity of stilbene synthase, also induced the highest activity of shikimate hydroxycinnamoyltransferase, a key enzyme involved in the synthesis of lignin. The oligogalacturonide-induced defenses had a significant impact on primary metabolism 24 h following elicitor treatment, with a reduced abundance of pyruvate and 2-oxoglutarate, together with an increase of a set of metabolites including carbohydrates and amino acids. Interestingly, an accumulation of galacturonate and gentiobiose was observed in the oligogalacturonide- and laminarin-treated cells, respectively, suggesting that both elicitors are rapidly hydrolyzed in grapevine cell suspension cultures.
Collapse
Affiliation(s)
- Yuko Krzyzaniak
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Jonathan Negrel
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | | | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| | - Agnès Klinguer
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Sophie Trouvelot
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Marie-Claire Héloir
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Marielle Adrian
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| |
Collapse
|
16
|
Wang C, Wu J, Zhang Y, Lu J. Muscadinia rotundifolia 'Noble' defense response to Plasmopara viticola inoculation by inducing phytohormone-mediated stilbene accumulation. PROTOPLASMA 2018; 255:95-107. [PMID: 28653245 DOI: 10.1007/s00709-017-1118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Downy mildew (DM), one of the most devastating grape diseases worldwide, is caused by the biotrophic oomycete Plasmopara viticola (Pv). In general, grapevine responds to Pv infection with the accumulation of phytoalexins as part of the innate immune system, and diverse phytoalexins are induced on grapevines with different DM-resistance levels in response to Pv invasion. However, the regulation of phytoalexin biosynthesis during grapevine against Pv is still unclear. Herein, we detected stilbenes by UPLC-ESI-MS/MS and found that resveratrol was accumulated to higher level and earlier in the DM-immune Muscadinia rotundifolia 'Noble' than that in the DM-susceptible Vitis vinifera 'Thompson Seedless' after Pv inoculation. Additionally, a considerable amount of pterostilbene and ε-viniferin was found in 'Noble', while a little was detected in 'Thompson Seedless'. Resveratrol was glycosylated into piceid both in 'Noble' and 'Thompson Seedless' after Pv inoculation. The qPCR analysis of gene expression indicated that the resveratrol-synthesis gene (STS) was induced by Pv inoculation earlier in 'Noble' than that in 'Thompson Seedless', while the pterostilbene-synthesis gene (ROMT) was induced in 'Noble' but not in 'Thompson Seedless' at all. The piceid-synthesis gene (GT) was generally up-regulated in both cultivars. Sequence analysis of STS, ROMT, and GT promoters revealed that they contained cis-regulatory elements responsive to phytohormones and pathogens. Following Pv inoculation, the level of SA, MeJA, and ABA was found to be consistently higher in 'Noble' than those in 'Thompson Seedless'. The results of exogenous hormone elicitation further demonstrated that the accumulation of stilbenes was regulated by phytohormones. The earlier and higher accumulation of phytohormones and consequent induction of stilbene synthesis may play an important role in grapevine defense against downy mildew disease.
Collapse
Affiliation(s)
- Chaoxia Wang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiao Wu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China.
- Center for Viticulture and Enology, School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, 200024, People's Republic of China.
| |
Collapse
|
17
|
Scartazza A, Picciarelli P, Mariotti L, Curadi M, Barsanti L, Gualtieri P. The role of Euglena gracilis paramylon in modulating xylem hormone levels, photosynthesis and water-use efficiency in Solanum lycopersicum L. PHYSIOLOGIA PLANTARUM 2017; 161:486-501. [PMID: 28767129 DOI: 10.1111/ppl.12611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
β-1,3-glucans such as paramylon act as elicitors in plants, modifying the hormonal levels and the physiological responses. Plant hormones affect all phases of the plant life cycle and their responses to environmental stresses, both biotic and abiotic. The aim of this study was to investigate the effects of a root treatment with Euglena gracilis paramylon on xylem hormonal levels, photosynthetic performance and dehydration stress in tomato (Solanum lycopersicum). Paramylon granules were processed to obtain the linear fibrous structures capable to interact with tomato cell membrane. Modulation of hormone levels (abscisic acid, jasmonic acid and salicylic acid) and related physiological responses such as CO2 assimilation rate, stomatal and mesophyll conductance, intercellular CO2 concentration, transpiration rate, water-use efficiency, quantum yield of photosystem II and leaf water potential were investigated. The results indicate a clear dose-dependent effect of paramylon on the hormonal content of xylem sap, photosynthetic performance and dehydration tolerance. Paramylon has the capability to enhance plant defense capacity against abiotic stress, such as drought, by modulating the conductance to CO2 diffusion from air to the carboxylation sites and improving the water-use efficiency.
Collapse
Affiliation(s)
- Andrea Scartazza
- Istituto di Biologia Agroambientale e Forestale, CNR, 00016, Monterotondo Scalo, Roma, Italy
| | - Piero Picciarelli
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | - Lorenzo Mariotti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | - Maurizio Curadi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | | | | |
Collapse
|
18
|
Santaniello A, Scartazza A, Gresta F, Loreti E, Biasone A, Di Tommaso D, Piaggesi A, Perata P. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:1362. [PMID: 28824691 PMCID: PMC5541053 DOI: 10.3389/fpls.2017.01362] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/21/2017] [Indexed: 05/05/2023]
Abstract
Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE), under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE) and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance.
Collapse
Affiliation(s)
| | - Andrea Scartazza
- Institute of Agroenvironmental and Forest Biology, Consiglio Nazionale delle RicercheRome, Italy
| | - Francesco Gresta
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle RicerchePisa, Italy
| | | | | | | | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| |
Collapse
|
19
|
Lemaître-Guillier C, Hovasse A, Schaeffer-Reiss C, Recorbet G, Poinssot B, Trouvelot S, Daire X, Adrian M, Héloir MC. Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew. J Proteomics 2017; 156:113-125. [PMID: 28153682 DOI: 10.1016/j.jprot.2017.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 01/07/2023]
Abstract
Elicitors are known to trigger plant defenses in response to biotic stress, but do not systematically lead to effective resistance to pathogens. The reasons explaining such differences remain misunderstood. Therefore, elicitation and induced resistance (IR) were investigated through the comparison of two modified β-1,3 glucans applied on grapevine (Vitis vinifera) leaves before and after inoculation with Plasmopara viticola, the causal agent of downy mildew. The sulfated (PS3) and the shortened (H13) forms of laminarin are both known to elicit defense responses whereas only PS3 induces resistance against downy mildew. The analysis of the 2-DE gel electrophoresis revealed that PS3 and H13 induced distinct proteomic profiles after treatment and pathogen inoculation. Our results point out that the PS3-induced resistance is associated with the activation of the primary metabolism especially on amino acids and carbohydrates pathways. In addition, few proteins, such as the 12-oxophytodienoate reductase (OPR-like) related to the OPDA pathway, and an Arsenite-resistance protein (Serrate-like protein) could be considered as useful markers of induced resistance. SIGNIFICANCE One strategy to reduce the application of fungicides is the use of elicitors which induce plant defense responses. Nonetheless, the elicitors do not systematically lead to resistance against pathogens. The lack of correlation between plant defense activation and induced resistance (IR) requires the investigation of what makes the specificity of elicitor-IR. In this study, the two β-glucans elicitors, sulfated (PS3) and short (H13) laminarins, were used in the grapevine/Plasmopara viticola interaction since only the first one leads to resistance against downy mildew. To disclose IR specificity, proteomic approach has been employed to compare the two treatments before and after P. viticola inoculation. The analysis of the 2-DE revealed that PS3 and H13 induced distinct proteomic profiles after treatment and pathogen inoculation. Significant increase of the number of proteins regulated by PS3, relative to both H13 and time-points, is correlated with the resistance process establishment. Our results point that the PS3-induced resistance requires the activation of the primary metabolism especially on amino acids and carbohydrates pathways. In addition, few proteins, such as the 12-oxophytodienoate reductase (OPR-like) related to the OPDA pathway, and an Arsenite-resistance protein (Serrate-like protein) could constitute useful markers of PS3 induced resistance.
Collapse
Affiliation(s)
- Christelle Lemaître-Guillier
- Agroécologie, AgroSup Dijon, INRA, CNRS ERL 6003, Université Bourgogne Franche-Comté, UMR1347, 17 rue de Sully, F-21000 Dijon, France.
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique, Université Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, Université Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, INRA, CNRS ERL 6003, Université Bourgogne Franche-Comté, UMR1347, 17 rue de Sully, F-21000 Dijon, France
| | - Benoît Poinssot
- Agroécologie, AgroSup Dijon, INRA, CNRS ERL 6003, Université Bourgogne Franche-Comté, UMR1347, 17 rue de Sully, F-21000 Dijon, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, INRA, CNRS ERL 6003, Université Bourgogne Franche-Comté, UMR1347, 17 rue de Sully, F-21000 Dijon, France
| | - Xavier Daire
- Agroécologie, AgroSup Dijon, INRA, CNRS ERL 6003, Université Bourgogne Franche-Comté, UMR1347, 17 rue de Sully, F-21000 Dijon, France
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon, INRA, CNRS ERL 6003, Université Bourgogne Franche-Comté, UMR1347, 17 rue de Sully, F-21000 Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon, INRA, CNRS ERL 6003, Université Bourgogne Franche-Comté, UMR1347, 17 rue de Sully, F-21000 Dijon, France
| |
Collapse
|
20
|
Adrian M, Lucio M, Roullier-Gall C, Héloir MC, Trouvelot S, Daire X, Kanawati B, Lemaître-Guillier C, Poinssot B, Gougeon R, Schmitt-Kopplin P. Metabolic Fingerprint of PS3-Induced Resistance of Grapevine Leaves against Plasmopara viticola Revealed Differences in Elicitor-Triggered Defenses. FRONTIERS IN PLANT SCIENCE 2017; 8:101. [PMID: 28261225 PMCID: PMC5306141 DOI: 10.3389/fpls.2017.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/18/2017] [Indexed: 05/05/2023]
Abstract
Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare the specific metabolic fingerprint induced by each elicitor and to characterize the associated metabolic pathways. Moreover, erythritol phosphate was identified as a putative marker of elicitor-IR.
Collapse
Affiliation(s)
- Marielle Adrian
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
- *Correspondence: Marielle Adrian,
| | - Marianna Lucio
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Chloé Roullier-Gall
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Xavier Daire
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Basem Kanawati
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | | | - Benoît Poinssot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-ComtéDijon, France
| | - Régis Gougeon
- UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules GuyotDijon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität MünchenFreising-Weihenstephan, Germany
| |
Collapse
|
21
|
Larskaya IA, Gorshkova TA. Plant oligosaccharides - outsiders among elicitors? BIOCHEMISTRY (MOSCOW) 2016; 80:881-900. [PMID: 26542002 DOI: 10.1134/s0006297915070081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review substantiates the need to study the plant oligoglycome. The available information on oligosaccharins - physiologically active fragments of plant cell wall polysaccharides - is summarized. The diversity of such compounds in chemical composition, origin, and proved biological activity is highlighted. At the same time, plant oligosaccharides can be considered as outsiders among elicitors of various natures in research intensity of recent decades. This review discusses the reasons for such attitude towards these regulators, which are largely connected with difficulties in isolation and identification. Together with that, approaches are suggested whose potentials can be used to study oligosaccharins. The topics of oligosaccharide metabolism in plants, including the ways of formation, transport, and inactivation are presented, together with data on biological activity and interaction with plant hormones. The current viewpoints on the mode of oligosaccharin action - perception, signal transduction, and possible "targets" - are considered. The potential uses of such compounds in medicine, food industry, agriculture, and biotechnology are discussed.
Collapse
Affiliation(s)
- I A Larskaya
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111, Russia.
| | | |
Collapse
|
22
|
Romanazzi G, Mancini V, Feliziani E, Servili A, Endeshaw S, Neri D. Impact of Alternative Fungicides on Grape Downy Mildew Control and Vine Growth and Development. PLANT DISEASE 2016; 100:739-748. [PMID: 30688627 DOI: 10.1094/pdis-05-15-0564-re] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Grapevine downy mildew (GDM) is one of the most serious diseases of grapevines. With limitations in the use of copper-based products imposed for organic agriculture by the European Union, research for alternatives is encouraged. The aim of this research was to follow a 2-year trial to evaluate the control of GDM using some alternative compounds, and to determine their effects on shoot growth, plant photosynthesis, and grape quality and quantity. Under low disease pressure, Bordeaux mixture, copper hydroxide, laminarin combined with low copper, and 0.5 and 0.8% chitosan had the lowest GDM incidence, reduced on leaves by 96, 95, 75, 56, and 81%, respectively, compared with the untreated control in the last survey. With high disease pressure, Bordeaux mixture, laminarin combined with Saccharomyces extracts, and 0.5 and 0.8% chitosan had the lowest GDM incidence, reduced on grape by 86, 37, 66, and 75%, respectively, compared with the untreated control in the survey of mid-July. Chitosan at 0.8% lowered net photosynthesis, due to reduced stomatal conductance, leaf area, and dry weight, with no negative effects observed on the quantity of the grape berries and the quality parameters of their juice. Among the alternatives to copper, chitosan provided the best GDM protection and reduced the vigor of the vegetation, inducing physiological changes without negative effects on grape production.
Collapse
Affiliation(s)
- Gianfranco Romanazzi
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Valeria Mancini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Erica Feliziani
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Andrea Servili
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Solomon Endeshaw
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Davide Neri
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
23
|
Cappelletti M, Perazzolli M, Antonielli L, Nesler A, Torboli E, Bianchedi PL, Pindo M, Puopolo G, Pertot I. Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine. FRONTIERS IN PLANT SCIENCE 2016; 7:1053. [PMID: 27486468 PMCID: PMC4949236 DOI: 10.3389/fpls.2016.01053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/05/2016] [Indexed: 05/20/2023]
Abstract
Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Department of Agricultural and Environmental Sciences, University of UdineUdine, Italy
| | - Michele Perazzolli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- *Correspondence: Michele Perazzolli
| | - Livio Antonielli
- Bioresources Unit, Department of Health and Environment, Austrian Institute of TechnologyTulln and der Donau, Austria
| | - Andrea Nesler
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Esmeralda Torboli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Pier L. Bianchedi
- Technology Transfer Center, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Massimo Pindo
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Gerardo Puopolo
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Ilaria Pertot
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| |
Collapse
|
24
|
Ye W, Murata Y. Microbe Associated Molecular Pattern Signaling in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:583. [PMID: 27200056 PMCID: PMC4855242 DOI: 10.3389/fpls.2016.00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/15/2016] [Indexed: 05/04/2023]
Abstract
Stomata, formed by pairs of guard cells in the epidermis of terrestrial plants, regulate gas exchange, thus playing a critical role in plant growth and stress responses. As natural openings, stomata are exploited by microbes as an entry route. Recent studies reveal that plants close stomata upon guard cell perception of molecular signatures from microbes, microbe associated molecular patterns (MAMPs), to prevent microbe invasion. The perception of MAMPs induces signal transduction including recruitment of second messengers, such as Ca(2+) and H2O2, phosphorylation events, and change of transporter activity, leading to stomatal movement. In the present review, we summarize recent findings in signaling underlying MAMP-induced stomatal movement by comparing with other signalings.
Collapse
|
25
|
Guillier C, Gamm M, Lucchi G, Truntzer C, Pecqueur D, Ducoroy P, Adrian M, Héloir MC. Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew-Infected Grapevine Leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1227-1236. [PMID: 26106900 DOI: 10.1094/mpmi-05-15-0115-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days postinoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola-infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography coupled to stomatal response and proteomic analysis allowed the identification of both plant and pathogen proteins in the active fraction obtained from IAF. Further in silico analysis and discriminant filtrations based on the comparison between predictions and experimental indications lead to the identification of two Vitis vinifera proteins as candidates for the observed stomatal deregulation.
Collapse
Affiliation(s)
- Christelle Guillier
- 1 CNRS, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Magdalena Gamm
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Géraldine Lucchi
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Caroline Truntzer
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Delphine Pecqueur
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Patrick Ducoroy
- 3 Clinical Innovation Proteomic Platform - CLIPP, 15 Boulevard Maréchal de Lattre de Tassigny, BP37013, F-21070 Dijon cedex, France
| | - Marielle Adrian
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| | - Marie-Claire Héloir
- 2 Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21000 Dijon, France
| |
Collapse
|
26
|
Wang X, McCallum BD, Fetch T, Bakkeren G, Saville BJ. Sr36- and Sr5-Mediated Resistance Response to Puccinia graminis f. sp. tritici Is Associated with Callose Deposition in Wheat Guard Cells. PHYTOPATHOLOGY 2015; 105:728-737. [PMID: 26056723 DOI: 10.1094/phyto-08-14-0213-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Race-specific resistance of wheat to Puccinia graminis f. sp. tritici is primarily posthaustorial and often involves the induction of a hypersensitive response (HR). The aim of this study was to investigate host defense responses induced in interactions between P. graminis f. sp. tritici races and wheat lines carrying different race-specific stem rust resistance (Sr) genes. In incompatible interactions between wheat lines carrying Sr36 in three genetic backgrounds (LMPG, Prelude, or W2691) and avirulent P. graminis f. sp. tritici races MCCFC or RCCDM, callose accumulated within 24 h in wheat guard cells contacted by a P. graminis f. sp. tritici appressorium, and P. graminis f. sp. tritici ingress was inhibited following appressorium formation. Accordingly, the expression of transcripts encoding a callose synthase increased in the incompatible interaction between LMPG-Sr36 and avirulent P. graminis f. sp. tritici race MCCFC. Furthermore, the inhibition of callose synthesis through the infiltration of 2-deoxy-D-glucose (DDG) increased the ability of P. graminis f. sp. tritici race MCCFC to infect LMPG-Sr36. A similar induction of callose deposition in wheat guard cells was also observed within 24 h after inoculation (hai) with avirulent P. graminis f. sp. tritici race HKCJC on LMPG-Sr5 plants. In contrast, this defense response was not induced in incompatible interactions involving Sr6, Sr24, or Sr30. Instead, the induction of an HR and cellular lignification were noted. The manifestation of the HR and cellular lignification was induced earlier (24 hai) and was more extensive in the resistance response mediated by Sr6 compared with those mediated by Sr24 or Sr30. These results indicate that the resistance mediated by Sr36 is similar to that mediated by Sr5 but different from those triggered by Sr6, Sr24, or Sr30. Resistance responses mediated by Sr5 and Sr36 are prehaustorial, and are a result of very rapid recognition of molecules derived from avirulent isolates of P. graminis f. sp. tritici, in contrast to the responses triggered in lines with Sr6, Sr24, and Sr30.
Collapse
Affiliation(s)
- X Wang
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - B D McCallum
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - T Fetch
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - G Bakkeren
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| | - B J Saville
- First, second, and third authors: Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada; fourth author: Pacific Agri-Food Research Centre, Agriculture and Agri Food Canada, Summerland, BC, VOH 1ZO, Canada; and fifth author: Forensic Science Program, and Environmental and Life Sciences Graduate Program Trent University, Peterborough, ON, K9J 7B8, Canada
| |
Collapse
|
27
|
Arnaud D, Hwang I. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. MOLECULAR PLANT 2015; 8:566-81. [PMID: 25661059 DOI: 10.1016/j.molp.2014.10.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/25/2014] [Accepted: 10/26/2014] [Indexed: 05/03/2023]
Abstract
Guard cells are specialized cells forming stomatal pores at the leaf surface for gas exchanges between the plant and the atmosphere. Stomata have been shown to play an important role in plant defense as a part of the innate immune response. Plants actively close their stomata upon contact with microbes, thereby preventing pathogen entry into the leaves and the subsequent colonization of host tissues. In this review, we present current knowledge of molecular mechanisms and signaling pathways implicated in stomatal defenses, with particular emphasis on plant-bacteria interactions. Stomatal defense responses begin from the perception of pathogen-associated molecular patterns (PAMPs) and activate a signaling cascade involving the production of secondary messengers such as reactive oxygen species, nitric oxide, and calcium for the regulation of plasma membrane ion channels. The analyses on downstream molecular mechanisms implicated in PAMP-triggered stomatal closure have revealed extensive interplays among the components regulating hormonal signaling pathways. We also discuss the strategies deployed by pathogenic bacteria to counteract stomatal immunity through the example of the phytotoxin coronatine.
Collapse
Affiliation(s)
- Dominique Arnaud
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
28
|
Liu R, Wang L, Zhu J, Chen T, Wang Y, Xu Y. Histological responses to downy mildew in resistant and susceptible grapevines. PROTOPLASMA 2015; 252:259-70. [PMID: 25027553 DOI: 10.1007/s00709-014-0677-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/28/2014] [Indexed: 05/04/2023]
Abstract
Downy mildew in grapevines, caused by Plasmopara viticola, is a very serious disease throughout the grape-producing nations, especially in more humid climates. Downy mildew mainly affects the cultivated varieties of Vitis vinifera. A promising way to minimize or eliminate P. viticola infections is by the adoption of resistant cultivars. Chinese wild grapevines are reported to possess resistance to many fungal diseases. In this study, three Chinese wild grapevines (Vitis pseudoreticulata Baihe-35-1, Vitis davidii var. cyanocarpa Langao-5, and Vitis piasezkii Liuba-8) and a European cultivated variety (V. vinifera cv. Pinot noir) were inoculated with P. viticola, and a histological survey was undertaken. Macroscopic observations revealed no sporulation in V. piasezkii Liuba-8, little sporulation in V. pseudoreticulata Baihe-35-1 and V. davidii var. cyanocarpa Langao-5, but serious sporulation in V. vinifera cv. Pinot noir. Aniline blue staining indicated callose deposition in V. pseudoreticulata Baihe-35-1, V. davidii var. cyanocarpa Langao-5, and V. piasezkii Liuba-8. Cells with distinctive fluorescence were also observed in V. pseudoreticulata Baihe-35-1. After staining with 3,3-diaminobenzidine, production of H₂O₂ was observed early on, after infection in V. davidii var. cyanocarpa Langao-5 and V. piasezkii Liuba-8. No H₂O₂ accumulation was observed in V. vinifera cv. Pinot noir. It is concluded that V. piasezkii Liuba-8 should be classified as "highly resistant" to downy mildew, V. pseudoreticulata Baihe-35-1 and V. davidii var. cyanocarpa Langao-5 as "resistant," and V. vinifera Pinot noir as "susceptible." The possible roles of stomatal callose deposition in the defense r6eactions of the mildew-resistant grapevines are discussed.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. FRONTIERS IN PLANT SCIENCE 2014; 5:592. [PMID: 25408694 PMCID: PMC4219568 DOI: 10.3389/fpls.2014.00592] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/11/2014] [Indexed: 05/18/2023]
Abstract
Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of "PAMP, MAMP, and DAMP (Pathogen-, Microbe-, Damage-Associated Molecular Patterns) type" oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure/activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora.
Collapse
Affiliation(s)
- Sophie Trouvelot
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Marie-Claire Héloir
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Benoît Poinssot
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Adrien Gauthier
- Department of Biosciences, Plant Biology, University of HelsinkiHelsinki, Finland
| | - Franck Paris
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Christelle Guillier
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Maud Combier
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Lucie Trdá
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Xavier Daire
- INRA, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Marielle Adrian
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| |
Collapse
|
30
|
McLachlan DH, Kopischke M, Robatzek S. Gate control: guard cell regulation by microbial stress. THE NEW PHYTOLOGIST 2014; 203:1049-1063. [PMID: 25040778 DOI: 10.1111/nph.12916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/26/2014] [Indexed: 05/07/2023]
Abstract
Terrestrial plants rely on stomata, small pores in the leaf surface, for photosynthetic gas exchange and transpiration of water. The stomata, formed by a pair of guard cells, dynamically increase and decrease their volume to control the pore size in response to environmental cues. Stresses can trigger similar or opposing movements: for example, drought induces closure of stomata, whereas many pathogens exploit stomata and cause them to open to facilitate entry into plant tissues. The latter is an active process as stomatal closure is part of the plant's immune response. Stomatal research has contributed much to clarify the signalling pathways of abiotic stress, but guard cell signalling in response to microbes is a relatively new area of research. In this article, we discuss present knowledge of stomatal regulation in response to microbes and highlight common points of convergence, and differences, compared to stomatal regulation by abiotic stresses. We also expand on the mechanisms by which pathogens manipulate these processes to promote disease, for example by delivering effectors to inhibit closure or trigger opening of stomata. The study of pathogen effectors in stomatal manipulation will aid our understanding of guard cell signalling.
Collapse
Affiliation(s)
| | | | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
31
|
Chalal M, Klinguer A, Echairi A, Meunier P, Vervandier-Fasseur D, Adrian M. Antimicrobial activity of resveratrol analogues. Molecules 2014; 19:7679-88. [PMID: 24918540 PMCID: PMC6271662 DOI: 10.3390/molecules19067679] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity.
Collapse
Affiliation(s)
- Malik Chalal
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France.
| | - Agnès Klinguer
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France.
| | - Abdelwahad Echairi
- Welience, Maison Régionale de L'Innovation, 64 A rue de Sully, CS 77124, 21071 Dijon Cedex, France.
| | - Philippe Meunier
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, 9 Avenue Alain Savary, 21000 Dijon, France.
| | - Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, 9 Avenue Alain Savary, 21000 Dijon, France.
| | - Marielle Adrian
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
32
|
Delaunois B, Farace G, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4837-46. [PMID: 23719689 DOI: 10.1007/s11356-013-1841-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/17/2013] [Indexed: 05/22/2023]
Abstract
Development and optimisation of alternative strategies to reduce the use of classic chemical inputs for protection against diseases in vineyard is becoming a necessity. Among these strategies, one of the most promising consists in the stimulation and/or potentiation of the grapevine defence responses by the means of elicitors. Elicitors are highly diverse molecules both in nature and origins. This review aims at providing an overview of the current knowledge on these molecules and will highlight their potential efficacy from the laboratory in controlled conditions to vineyards. Recent findings and concepts (especially on plant innate immunity) and the new terminology (microbe-associated molecular patterns, effectors, etc.) are also discussed in this context. Other objectives of this review are to highlight the difficulty of transferring elicitors use and results from the controlled conditions to the vineyard, to determine their practical and effective use in viticulture and to propose ideas for improving their efficacy in non-controlled conditions.
Collapse
Affiliation(s)
- Bertrand Delaunois
- UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne-EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, Université de Reims Champagne-Ardenne, B.P. 1039, 51687, Reims cedex 02, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Bonnin E, Garnier C, Ralet MC. Pectin-modifying enzymes and pectin-derived materials: applications and impacts. Appl Microbiol Biotechnol 2013; 98:519-32. [DOI: 10.1007/s00253-013-5388-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 11/30/2022]
|
34
|
Salam MA, Jammes F, Hossain MA, Ye W, Nakamura Y, Mori IC, Kwak JM, Murata Y. Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:436-42. [PMID: 23043299 DOI: 10.1111/j.1438-8677.2012.00671.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report that two mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate abscisic acid (ABA)-induced stomatal closure in Arabidopsis thaliana. Yeast elicitor (YEL) induced stomatal closure accompanied by intracellular reactive oxygen species (ROS) accumulation and cytosolic free calcium concentration ([Ca(2+) ]cyt ) oscillation. In this study, we examined whether these two MAP kinases are involved in YEL-induced stomatal closure using MAPKK inhibitors, PD98059 and U0126, and MAPK mutants, mpk9, mpk12 and mpk9 mpk12. Both PD98059 and U0126 inhibited YEL-induced stomatal closure. YEL induced stomatal closure in the mpk9 and mpk12 mutants but not in the mpk9 mpk12 mutant, suggesting that a MAPK cascade involving MPK9 and MPK12 functions in guard cell YEL signalling. However, YEL induced extracellular ROS production, intracellular ROS accumulation and cytosolic alkalisation in the mpk9, mpk12 and mpk9 mpk12 mutants. YEL induced [Ca(2+) ]cyt oscillations in both wild type and mpk9 mpk12 mutant. These results suggest that MPK9 and MPK12 function redundantly downstream of extracellular ROS production, intracellular ROS accumulation, cytosolic alkalisation and [Ca(2+) ]cyt oscillation in YEL-induced stomatal closure in Arabidopsis guard cells and are shared with ABA signalling.
Collapse
Affiliation(s)
- M A Salam
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Perazzolli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics 2012; 13:660. [PMID: 23173562 PMCID: PMC3551682 DOI: 10.1186/1471-2164-13-660] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/13/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39) can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq) approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control. RESULTS More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms. CONCLUSIONS The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers for selecting novel resistance inducers and for the analysis of environmental conditions that might affect induced resistance mechanisms.
Collapse
Affiliation(s)
- Michele Perazzolli
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E, Mach 1, 38010, San Michele all'Adige (TN), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang H, Gao Z, Zheng X, Zhang Z. The role of G-proteins in plant immunity. PLANT SIGNALING & BEHAVIOR 2012; 7:1284-8. [PMID: 22895102 PMCID: PMC3493415 DOI: 10.4161/psb.21431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterotrimeric G-proteins play an important regulatory role in multiple physiological processes, including the plant immune response, and substantial progress has been made in elucidating the G-protein-mediated defense-signaling network. This mini-review discusses the importance of G-proteins in plant immunity. We also provide an overview of how G-proteins affect plant cell death and stomatal movement. Our recent studies demonstrated that G-proteins are involved in signal transduction and induction of stomatal closure and defense responses. We also discuss future directions for G-protein signaling studies involving plant immunity.
Collapse
Affiliation(s)
- Huajian Zhang
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing, China
- Department of Plant Pathology; Anhui Agricultural University; Hefei, China
| | - Zhimou Gao
- Department of Plant Pathology; Anhui Agricultural University; Hefei, China
| | - Xiaobo Zheng
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology; College of Plant Protection; Nanjing Agricultural University; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing, China
- Correspondence to: Zhengguang Zhang,
| |
Collapse
|
37
|
Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A, Pertot I. Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6237-51. [PMID: 23105132 PMCID: PMC3481215 DOI: 10.1093/jxb/ers279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Downy mildew is caused by the oomycete Plasmopara viticola and is one of the most serious diseases of grapevine. The beneficial microorganism Trichoderma harzianum T39 (T39) has previously been shown to induce plant-mediated resistance and to reduce the severity of downy mildew in susceptible grapevines. In order to better understand the cellular processes associated with T39-induced resistance, the proteomic and histochemical changes activated by T39 in grapevine were investigated before and 1 day after P. viticola inoculation. A comprehensive proteomic analysis of T39-induced resistance in grapevine was performed using an eight-plex iTRAQ protocol, resulting in the identification and quantification of a total of 800 proteins. Most of the proteins directly affected by T39 were found to be involved in signal transduction, indicating activation of a complete microbial recognition machinery. Moreover, T39-induced resistance was associated with rapid accumulation of reactive oxygen species and callose at infection sites, as well as changes in abundance of proteins involved in response to stress and redox balance, indicating an active defence response to downy mildew. On the other hand, proteins affected by P. viticola in control plants mainly decreased in abundance, possibly reflecting the establishment of a compatible interaction. Finally, the high-throughput iTRAQ protocol allowed de novo peptide sequencing, which will be used to improve annotation of the Vitis vinifera cv. Pinot Noir proteome.
Collapse
Affiliation(s)
- Maria Cristina Palmieri
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Michele Perazzolli
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
- * To whom correspondence should be addressed. E-mail:
| | - Vittoria Matafora
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy
| | - Marco Moretto
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Angela Bachi
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy
| | - Ilaria Pertot
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| |
Collapse
|
38
|
Zhang H, Wang M, Wang W, Li D, Huang Q, Wang Y, Zheng X, Zhang Z. Silencing of G proteins uncovers diversified plant responses when challenged by three elicitors in Nicotiana benthamiana. PLANT, CELL & ENVIRONMENT 2012; 35:72-85. [PMID: 21895695 DOI: 10.1111/j.1365-3040.2011.02417.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Signalling through heterotrimeric G protein composed of α-, β- and γ-subunits is essential in numerous physiological processes. Here we show that this prototypical G protein complex acts mechanistically by controlling elicitor sensitivity towards hypersensitive response (HR) and stomatal closure in Nicotiana benthamiana. Gα-, Gβ1-, and Gβ2-silenced plants were generated using virus-induced gene silencing. All silenced plants were treated with Xanthomonas oryzae harpin, Magnaporthe oryzae Nep1 and Phytophthora boehmeriae boehmerin, respectively. HR was dramatically impaired in Gα- and Gβ2-silenced plants treated with harpin, indicating that harpin-, rather than Nep1- or boehmerin-triggered HR, is Gα- and Gβ2-dependent. Moreover, all Gα-, Gβ1- and Gβ2-silenced plants significantly impaired elicitor-induced stomatal closure, elicitor-promoted nitric oxide (NO) production and active oxygen species accumulation in guard cells. To our knowledge, this is the first report of Gα and Gβ subunits involvement in stomatal closure in response to elicitors. Furthermore, silencing of Gα, Gβ1 and Gβ2 has an effect on the transcription of plant defence-related genes when challenged by three elicitors. In conclusion, silencing of G protein subunits results in many interesting plant cell responses, revealing that plant immunity systems employ both conserved and distinct G protein pathways to sense elicitors from distinct phytopathogens formed during plant-microbe evolution.
Collapse
Affiliation(s)
- Huajian Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Milli A, Cecconi D, Bortesi L, Persi A, Rinalducci S, Zamboni A, Zoccatelli G, Lovato A, Zolla L, Polverari A. Proteomic analysis of the compatible interaction between Vitis vinifera and Plasmopara viticola. J Proteomics 2011; 75:1284-302. [PMID: 22120121 DOI: 10.1016/j.jprot.2011.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/13/2011] [Accepted: 11/04/2011] [Indexed: 11/26/2022]
Abstract
We analyzed the proteome of grapevine (Vitis vinifera) leaves 24, 48 and 96 h post infection (hpi) with the downy mildew pathogen Plasmopara viticola. Total proteins were separated on 2-DE gels. By MS analysis, we identified 82 unique grapevine proteins differentially expressed after infection. Upregulated proteins were often included in the functional categories of general metabolism and stress response, while proteins related to photosynthesis and energy production were mostly downregulated. As expected, the activation of a defense reaction was observed more often at the late time point, consistent with the establishment of a compatible interaction. Most proteins involved in resistance were isoforms of different PR-10 pathogenesis-related proteins. Although >50 differentially expressed protein isoforms were observed at 24 and 96 hpi, only 18 were detected at 48 hpi and no defense-related proteins were among this group. This profile suggests a transient breakdown in defense responses accompanying the onset of disease, further supported by gene expression analyses and by a western blot analysis of a PR-10 protein. Our data reveal the complex modulation of plant metabolism and defense responses during compatible interactions, and provide insight into the underlying molecular processes which may eventually yield novel strategies for pathogen control in the field.
Collapse
Affiliation(s)
- Alberto Milli
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Galbiati M, Matus JT, Francia P, Rusconi F, Cañón P, Medina C, Conti L, Cominelli E, Tonelli C, Arce-Johnson P. The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC PLANT BIOLOGY 2011; 11:142. [PMID: 22018045 PMCID: PMC3206852 DOI: 10.1186/1471-2229-11-142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Under drought, plants accumulate the signaling hormone abscisic acid (ABA), which induces the rapid closure of stomatal pores to prevent water loss. This event is trigged by a series of signals produced inside guard cells which finally reduce their turgor. Many of these events are tightly regulated at the transcriptional level, including the control exerted by MYB proteins. In a previous study, while identifying the grapevine R2R3 MYB family, two closely related genes, VvMYB30 and VvMYB60 were found with high similarity to AtMYB60, an Arabidopsis guard cell-related drought responsive gene. RESULTS Promoter-GUS transcriptional fusion assays showed that expression of VvMYB60 was restricted to stomatal guard cells and was attenuated in response to ABA. Unlike VvMYB30, VvMYB60 was able to complement the loss-of-function atmyb60-1 mutant, indicating that VvMYB60 is the only true ortholog of AtMYB60 in the grape genome. In addition, VvMYB60 was differentially regulated during development of grape organs and in response to ABA and drought-related stress conditions. CONCLUSIONS These results show that VvMYB60 modulates physiological responses in guard cells, leading to the possibility of engineering stomatal conductance in grapevine, reducing water loss and helping this species to tolerate drought under extreme climatic conditions.
Collapse
Affiliation(s)
- Massimo Galbiati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - José Tomás Matus
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
- Centre for Research in Agricultural Genomics (CRAG), 08193 Barcelona, Spain
| | - Priscilla Francia
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Fabio Rusconi
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - Paola Cañón
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| | - Consuelo Medina
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| | - Lucio Conti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - Eleonora Cominelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Istituto di Biologia e Biotecnologia Agraria, CNR; Milano, Italy
| | - Chiara Tonelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Patricio Arce-Johnson
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| |
Collapse
|
41
|
Gamm M, Héloir MC, Bligny R, Vaillant-Gaveau N, Trouvelot S, Alcaraz G, Frettinger P, Clément C, Pugin A, Wendehenne D, Adrian M. Changes in carbohydrate metabolism in Plasmopara viticola-infected grapevine leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1061-73. [PMID: 21649510 DOI: 10.1094/mpmi-02-11-0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and-to a larger extent-carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activity and modifications in the starch degradation pathway, especially an increased α-amylase activity. Together with these alterations in starch metabolism, we have observed an accumulation of hexoses, an increase in invertase activity, and a reduction of photosynthesis, indicating a source-to-sink transition in infected leaf tissue. Additionally, we have measured an accumulation of the disaccharide trehalose correlated to an increased trehalase gene expression and enzyme activity. Altogether, these results highlight a dramatic alteration of carbohydrate metabolism correlated with later stages of P. viticola development in leaves.
Collapse
Affiliation(s)
- Magdalena Gamm
- Universite de Bourgogne Plante Microbe Environnement, Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fu Y, Yin H, Wang W, Wang M, Zhang H, Zhao X, Du Y. β-1,3-Glucan with different degree of polymerization induced different defense responses in tobacco. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Mol Genet Genomics 2011; 285:273-85. [PMID: 21340517 DOI: 10.1007/s00438-011-0607-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/07/2011] [Indexed: 01/31/2023]
Abstract
The recent publication of the grapevine genome sequence facilitates the use of qRT-PCR to study gene expression changes. For this approach, reference genes are commonly used to normalize data and their stability of expression should be systematically validated. Among grapevine defenses is the production of the antimicrobial stilbenic phytoalexins, notably the highly fungitoxic pterostilbene, which plays a crucial role in grapevine interaction with Plasmopara viticola and Botrytis cinerea. As a resveratrol O-methyltransferase (ROMT) gene involved in pterostilbene synthesis was recently identified, we investigated the accumulation of the corresponding transcripts to those of two other stilbene biosynthesis related genes phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) in response to pathogen infection. Using three computer-based statistical methods and C(t) values or LRE method generated values as input data, we have first identified two reference genes (VATP16 and 60SRP) suitable for normalization of qPCR expression data obtained in grapevine leaves and berries infected by P. viticola and B. cinerea, respectively. Next, we have highlighted that the expression of ROMT is induced in P. viticola-infected leaves and also in B. cinerea-infected berries, confirming the involvement of pterostilbene in grapevine defenses.
Collapse
|
44
|
Zeng W, Melotto M, He SY. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 2010; 21:599-603. [PMID: 20573499 DOI: 10.1016/j.copbio.2010.05.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022]
Abstract
Stomata are microscopic pores formed by pairs of guard cells in the epidermis of terrestrial plants; they are essential for gas exchange with the environment and controlling water loss. Accordingly, plants regulate stomatal aperture in response to environmental conditions, such as relative humidity, CO(2) concentration, and light intensity. Stomatal openings are also a major route of pathogen entry into the plant and plants have evolved mechanisms to regulate stomatal aperture as an immune response against bacterial invasion. In this review, we highlight studies that begin to elucidate signaling events involved in bacterium-triggered stomatal closure and discuss how pathogens may have exploited environmental conditions or, in some cases, have evolved virulence factors to actively counter stomatal closure to facilitate invasion.
Collapse
Affiliation(s)
- Weiqing Zeng
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|