1
|
Schultz BJ, Walker S. Acyltransferases that Modify Cell Surface Polymers Across the Membrane. Biochemistry 2025; 64:1728-1749. [PMID: 40171682 PMCID: PMC12021268 DOI: 10.1021/acs.biochem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface oligosaccharides and related polymers are commonly decorated with acyl esters that alter their structural properties and influence their interactions with other molecules. In many cases, these esters are added to polymers that are already positioned on the extracytoplasmic side of a membrane, presenting cells with a chemical challenge because the high-energy acyl donors used for these modifications are made in the cytoplasm. How activated acyl groups are passed from the cytoplasm to extra-cytoplasmic polymers has been a longstanding question. Recent mechanistic work has shown that many bacterial acyl transfer pathways operate by shuttling acyl groups through two covalent intermediates to their final destination on an extracellular polymer. Key to these and other pathways are cross-membrane acyltransferases─enzymes that catalyze transfer of acyl groups from a donor on one side of the membrane to a recipient on the other side. Here we review what has been learned recently about how cross-membrane acyltransferases in polymer acylation pathways function, highlighting the chemical and biosynthetic logic used by two key protein families, membrane-bound O-acyltransferases (MBOATs) and acyltransferase-3 (AT3) proteins. We also point out outstanding questions and avenues for further exploration.
Collapse
Affiliation(s)
- Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Martinez K, Stillson PT, Ravenscraft A. Inferior Caballeronia symbiont lacks conserved symbiosis genes. Microb Genom 2024; 10:001333. [PMID: 39680049 PMCID: PMC11893276 DOI: 10.1099/mgen.0.001333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024] Open
Abstract
Pentatomomorphan bugs can form symbiotic associations with bacteria belonging to the supergenus Burkholderia sensu lato. This relationship has become a model for understanding environmental symbiont acquisition. Host insects can utilize various symbiont strains from across Burkholderia sensu lato; however, host colonization success and benefits conferred vary by bacterial clade. Therefore, we conducted a meta-analysis aimed at identifying candidate genes that underpin beneficial symbioses within this system. We scanned the entire Burkholderiaceae family for the presence of 17 colonization-associated genes, as well as 88 candidate genes that are differentially expressed during symbiosis. There was no difference in the distribution of the 17 colonization-associated genes between symbiotic (Caballeronia and insect-associated plant beneficial and environmental clade) and non-symbiotic lineages; however, there was a higher prevalence of the 88 candidate genes in the insect symbiont lineages. We subsequently analysed the genomes of nine symbiotic Caballeronia species that confer varying fitness benefits to their insect hosts. One symbiont species was significantly worse, one was significantly better and the remaining seven were intermediate in terms of conferred host fitness benefits. We found that species possessing a higher number of the candidate genes conferred faster host development time. Furthermore, we identified two candidate genes that were missing in the least beneficial species but present in the other eight, suggesting that these genes may be important in modulating symbiont quality. Our study suggests that the mechanisms required for host colonization are broadly distributed across Burkholderiaceae, but the genes that determine symbiont quality are more prevalent in insect-associated species. This work helps to identify genes that influence this highly specialized yet diverse symbiosis between Pentatomomorphan insects and Burkholderiaceae bacteria.
Collapse
Affiliation(s)
- Kaisy Martinez
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - Patrick T. Stillson
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - Alison Ravenscraft
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
3
|
Hu S, Maeda S, Tezuka T, Ohnishi Y. Involvement of a putative acyltransferase gene in sporangium formation in Actinoplanes missouriensis. Microbiol Spectr 2024; 12:e0401023. [PMID: 38501822 PMCID: PMC11064477 DOI: 10.1128/spectrum.04010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
The actinomycete Actinoplanes missouriensis forms branched substrate mycelia during vegetative growth and produces terminal sporangia, each of which contains a few hundred spherical flagellated spores, from the substrate mycelia through short sporangiophores. Based on the observation that remodeling of membrane lipid composition is involved in the morphological development of Streptomyces coelicolor A3(2), we hypothesized that remodeling of membrane lipid composition is also involved in sporangium formation in A. missouriensis. Because some acyltransferases are presumably involved in the remodeling of membrane lipid composition, we disrupted each of the 22 genes annotated as encoding putative acyltransferases in the A. missouriensis genome and evaluated their effects on sporangium formation. The atsA (AMIS_52390) null mutant (ΔatsA) strain formed irregular sporangia of various sizes. Transmission electron microscopy revealed that some ΔatsA sporangiospores did not mature properly. Phase-contrast microscopy revealed that sporangium dehiscence did not proceed properly in the abnormally small sporangia of the ΔatsA strain, whereas apparently normal sporangia opened to release the spores. Consistently, the number of spores released from ΔatsA sporangia was lower than that released from wild-type sporangia. These phenotypic changes were recovered by introducing atsA with its own promoter into the ΔatsA strain. These results demonstrate that AtsA is required for normal sporangium formation in A. missouriensis, although the involvement of AtsA in the remodeling of membrane lipid composition is unlikely because AtsA is an acyltransferase_3 (AT3) protein, which is an integral membrane protein that usually catalyzes the acetylation of cell surface structures.IMPORTANCEActinoplanes missouriensis goes through a life cycle involving complex morphological development, including mycelial growth, sporangium formation and dehiscence, swimming as zoospores, and germination to mycelial growth. In this study, we carried out a comprehensive gene disruption experiment of putative acyltransferase genes to search for acyltransferases involved in the morphological differentiation of A. missouriensis. We revealed that a stand-alone acyltransferase_3 domain-containing protein, named AtsA, is required for normal sporangium formation. Although the molecular mechanism of AtsA in sporangium formation, as well as the enzymatic activity of AtsA, remains to be elucidated, the identification of a putative acyltransferase involved in sporangium formation is significant in the study of morphological development of A. missouriensis. This finding will contribute to our understanding of a complex system for producing sporangia, a rare multicellular organism in bacteria.
Collapse
Affiliation(s)
- Shixuan Hu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Maeda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
5
|
Wang T, Balla B, Kovács S, Kereszt A. Varietas Delectat: Exploring Natural Variations in Nitrogen-Fixing Symbiosis Research. FRONTIERS IN PLANT SCIENCE 2022; 13:856187. [PMID: 35481136 PMCID: PMC9037385 DOI: 10.3389/fpls.2022.856187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The nitrogen-fixing symbiosis between leguminous plants and soil bacteria collectively called rhizobia plays an important role in the global nitrogen cycle and is an essential component of sustainable agriculture. Genetic determinants directing the development and functioning of the interaction have been identified with the help of a very limited number of model plants and bacterial strains. Most of the information obtained from the study of model systems could be validated on crop plants and their partners. The investigation of soybean cultivars and different rhizobia, however, has revealed the existence of ineffective interactions between otherwise effective partners that resemble gene-for-gene interactions described for pathogenic systems. Since then, incompatible interactions between natural isolates of model plants, called ecotypes, and different bacterial partner strains have been reported. Moreover, diverse phenotypes of both bacterial mutants on different host plants and plant mutants with different bacterial strains have been described. Identification of the genetic factors behind the phenotypic differences did already and will reveal novel functions of known genes/proteins, the role of certain proteins in some interactions, and the fine regulation of the steps during nodule development.
Collapse
Affiliation(s)
- Ting Wang
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Benedikta Balla
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Szilárd Kovács
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Attila Kereszt
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
6
|
Pearson C, Tindall S, Potts JR, Thomas GH, van der Woude MW. Diverse functions for acyltransferase-3 proteins in the modification of bacterial cell surfaces. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001146. [PMID: 35253642 PMCID: PMC9558356 DOI: 10.1099/mic.0.001146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022]
Abstract
The acylation of sugars, most commonly via acetylation, is a widely used mechanism in bacteria that uses a simple chemical modification to confer useful traits. For structures like lipopolysaccharide, capsule and peptidoglycan, that function outside of the cytoplasm, their acylation during export or post-synthesis requires transport of an activated acyl group across the membrane. In bacteria this function is most commonly linked to a family of integral membrane proteins - acyltransferase-3 (AT3). Numerous studies examining production of diverse extracytoplasmic sugar-containing structures have identified roles for these proteins in O-acylation. Many of the phenotypes conferred by the action of AT3 proteins influence host colonisation and environmental survival, as well as controlling the properties of biotechnologically important polysaccharides and the modification of antibiotics and antitumour drugs by Actinobacteria. Herein we present the first systematic review, to our knowledge, of the functions of bacterial AT3 proteins, revealing an important protein family involved in a plethora of systems of importance to bacterial function that is still relatively poorly understood at the mechanistic level. By defining and comparing this set of functions we draw out common themes in the structure and mechanism of this fascinating family of membrane-bound enzymes, which, due to their role in host colonisation in many pathogens, could offer novel targets for the development of antimicrobials.
Collapse
Affiliation(s)
| | - Sarah Tindall
- Department of Biology, University of York, Heslington, UK
| | | | - Gavin H. Thomas
- Department of Biology, University of York, Heslington, UK
- York Biomedical Institute, University of York, Heslington, UK
| | - Marjan W. van der Woude
- York Biomedical Institute, University of York, Heslington, UK
- Hull York Medical School, Heslington, UK
| |
Collapse
|
7
|
Perry BJ, Sullivan JT, Colombi E, Murphy RJT, Ramsay JP, Ronson CW. Symbiosis islands of Loteae-nodulating Mesorhizobium comprise three radiating lineages with concordant nod gene complements and nodulation host-range groupings. Microb Genom 2020; 6. [PMID: 32845829 PMCID: PMC7643969 DOI: 10.1099/mgen.0.000426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mesorhizobium is a genus of soil bacteria, some isolates of which form an endosymbiotic relationship with diverse legumes of the Loteae tribe. The symbiotic genes of these mesorhizobia are generally carried on integrative and conjugative elements termed symbiosis islands (ICESyms). Mesorhizobium strains that nodulate Lotus spp. have been divided into host-range groupings. Group I (GI) strains nodulate L. corniculatus and L. japonicus ecotype Gifu, while group II (GII) strains have a broader host range, which includes L. pedunculatus. To identify the basis of this extended host range, and better understand Mesorhizobium and ICESym genomics, the genomes of eight Mesorhizobium strains were completed using hybrid long- and short-read assembly. Bioinformatic comparison with previously sequenced mesorhizobia genomes indicated host range was not predicted by Mesorhizobium genospecies but rather by the evolutionary relationship between ICESym symbiotic regions. Three radiating lineages of Loteae ICESyms were identified on this basis, which correlate with Lotus spp. host-range grouping and have lineage-specific nod gene complements. Pangenomic analysis of the completed GI and GII ICESyms identified 155 core genes (on average 30.1 % of a given ICESym). Individual GI or GII ICESyms carried diverse accessory genes with an average of 34.6 % of genes unique to a given ICESym. Identification and comparative analysis of NodD symbiotic regulatory motifs – nod boxes – identified 21 branches across the NodD regulons. Four of these branches were associated with seven genes unique to the five GII ICESyms. The nod boxes preceding the host-range gene nodZ in GI and GII ICESyms were disparate, suggesting regulation of nodZ may differ between GI and GII ICESyms. The broad host-range determinant(s) of GII ICESyms that confer nodulation of L. pedunculatus are likely present amongst the 53 GII-unique genes identified.
Collapse
Affiliation(s)
- Benjamin J Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Elena Colombi
- School of Pharmacy and Biomedical Science, Curtin University, Perth, Australia
| | - Riley J T Murphy
- School of Pharmacy and Biomedical Science, Curtin University, Perth, Australia
| | - Joshua P Ramsay
- School of Pharmacy and Biomedical Science, Curtin University, Perth, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Acetylation of Surface Carbohydrates in Bacterial Pathogens Requires Coordinated Action of a Two-Domain Membrane-Bound Acyltransferase. mBio 2020; 11:mBio.01364-20. [PMID: 32843546 PMCID: PMC7448272 DOI: 10.1128/mbio.01364-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acyltransferase-3 (AT3) domain-containing membrane proteins are involved in O-acetylation of a diverse range of carbohydrates across all domains of life. In bacteria they are essential in processes including symbiosis, resistance to antimicrobials, and biosynthesis of antibiotics. Their mechanism of action, however, is poorly characterized. We analyzed two acetyltransferases as models for this important family of membrane proteins, which modify carbohydrates on the surface of the pathogen Salmonella enterica, affecting immunogenicity, virulence, and bacteriophage resistance. We show that when these AT3 domains are fused to a periplasmic partner domain, both domains are required for substrate acetylation. The data show conserved elements in the AT3 domain and unique structural features of the periplasmic domain. Our data provide a working model to probe the mechanism and function of the diverse and important members of the widespread AT3 protein family, which are required for biologically significant modifications of cell-surface carbohydrates. Membrane bound acyltransferase-3 (AT3) domain-containing proteins are implicated in a wide range of carbohydrate O-acyl modifications, but their mechanism of action is largely unknown. O-antigen acetylation by AT3 domain-containing acetyltransferases of Salmonella spp. can generate a specific immune response upon infection and can influence bacteriophage interactions. This study integrates in situ and in vitro functional analyses of two of these proteins, OafA and OafB (formerly F2GtrC), which display an “AT3-SGNH fused” domain architecture, where an integral membrane AT3 domain is fused to an extracytoplasmic SGNH domain. An in silico-inspired mutagenesis approach of the AT3 domain identified seven residues which are fundamental for the mechanism of action of OafA, with a particularly conserved motif in TMH1 indicating a potential acyl donor interaction site. Genetic and in vitro evidence demonstrate that the SGNH domain is both necessary and sufficient for lipopolysaccharide acetylation. The structure of the periplasmic SGNH domain of OafB identified features not previously reported for SGNH proteins. In particular, the periplasmic portion of the interdomain linking region is structured. Significantly, this region constrains acceptor substrate specificity, apparently by limiting access to the active site. Coevolution analysis of the two domains suggests possible interdomain interactions. Combining these data, we propose a refined model of the AT3-SGNH proteins, with structurally constrained orientations of the two domains. These findings enhance our understanding of how cells can transfer acyl groups from the cytoplasm to specific extracellular carbohydrates.
Collapse
|
9
|
Wong JEMM, Gysel K, Birkefeldt TG, Vinther M, Muszyński A, Azadi P, Laursen NS, Sullivan JT, Ronson CW, Stougaard J, Andersen KR. Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nat Commun 2020; 11:3797. [PMID: 32732998 PMCID: PMC7392887 DOI: 10.1038/s41467-020-17568-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022] Open
Abstract
Receptor-mediated perception of surface-exposed carbohydrates like lipo- and exo-polysaccharides (EPS) is important for non-self recognition and responses to microbial associated molecular patterns in mammals and plants. In legumes, EPS are monitored and can either block or promote symbiosis with rhizobia depending on their molecular composition. To establish a deeper understanding of receptors involved in EPS recognition, we determined the structure of the Lotus japonicus (Lotus) exopolysaccharide receptor 3 (EPR3) ectodomain. EPR3 forms a compact structure built of three putative carbohydrate-binding modules (M1, M2 and LysM3). M1 and M2 have unique βαββ and βαβ folds that have not previously been observed in carbohydrate binding proteins, while LysM3 has a canonical βααβ fold. We demonstrate that this configuration is a structural signature for a ubiquitous class of receptors in the plant kingdom. We show that EPR3 is promiscuous, suggesting that plants can monitor complex microbial communities though this class of receptors. Exopolysaccharides (EPS) are perceived by legumes and regulate symbiosis with rhizobia. Here the authors describe the structure of the Lotus EPS receptor, EPR3 and show that it has atypical βαββ and βαβ folds that represent a structural signature for a unique class of EPS receptors in the plant kingdom.
Collapse
Affiliation(s)
- Jaslyn E M M Wong
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.,MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Thea G Birkefeldt
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Nick S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
10
|
Pauly M, Ramírez V. New Insights Into Wall Polysaccharide O-Acetylation. FRONTIERS IN PLANT SCIENCE 2018; 9:1210. [PMID: 30186297 PMCID: PMC6110886 DOI: 10.3389/fpls.2018.01210] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 05/19/2023]
Abstract
The extracellular matrix of plants, algae, bacteria, fungi, and some archaea consist of a semipermeable composite containing polysaccharides. Many of these polysaccharides are O-acetylated imparting important physiochemical properties to the polymers. The position and degree of O-acetylation is genetically determined and varies between organisms, cell types, and developmental stages. Despite the importance of wall polysaccharide O-acetylation, only recently progress has been made to elucidate the molecular mechanism of O-acetylation. In plants, three protein families are involved in the transfer of the acetyl substituents to the various polysaccharides. In other organisms, this mechanism seems to be conserved, although the number of required components varies. In this review, we provide an update on the latest advances on plant polysaccharide O-acetylation and related information from other wall polysaccharide O-acetylating organisms such as bacteria and fungi. The biotechnological impact of understanding wall polysaccharide O-acetylation ranges from the design of novel drugs against human pathogenic bacteria to the development of improved lignocellulosic feedstocks for biofuel production.
Collapse
Affiliation(s)
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology – Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proc Natl Acad Sci U S A 2017; 114:6854-6859. [PMID: 28607058 DOI: 10.1073/pnas.1700715114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix-). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.
Collapse
|
12
|
Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc Natl Acad Sci U S A 2017; 114:6848-6853. [PMID: 28607056 DOI: 10.1073/pnas.1700460114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The legume-rhizobial symbiosis results in the formation of root nodules that provide an ecological niche for nitrogen-fixing bacteria. However, plant-bacteria genotypic interactions can lead to wide variation in nitrogen fixation efficiency, and it is not uncommon that a bacterial strain forms functional (Fix+) nodules on one plant genotype but nonfunctional (Fix-) nodules on another. Host genetic control of this specificity is unknown. We herein report the cloning of the Medicago truncatula NFS1 gene that regulates the fixation-level incompatibility with the microsymbiont Sinorhizobium meliloti Rm41. We show that NFS1 encodes a nodule-specific cysteine-rich (NCR) peptide. In contrast to the known role of NCR peptides as effectors of endosymbionts' differentiation to nitrogen-fixing bacteroids, we demonstrate that specific NCRs control discrimination against incompatible microsymbionts. NFS1 provokes bacterial cell death and early nodule senescence in an allele-specific and rhizobial strain-specific manner, and its function is dependent on host genetic background.
Collapse
|
13
|
Fan Y, Liu J, Lyu S, Wang Q, Yang S, Zhu H. The Soybean Rfg1 Gene Restricts Nodulation by Sinorhizobium fredii USDA193. FRONTIERS IN PLANT SCIENCE 2017; 8:1548. [PMID: 28936222 PMCID: PMC5594104 DOI: 10.3389/fpls.2017.01548] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/24/2017] [Indexed: 05/06/2023]
Abstract
Sinorhizobium fredii is a fast-growing rhizobial species that can establish a nitrogen-fixing symbiosis with a wide range of legume species including soybeans (Glycine max). In soybeans, this interaction shows a high level of specificity such that particular S. fredii strains nodulate only a limited set of plant genotypes. Here we report the identification of a dominant gene in soybeans that restricts nodulation with S. fredii USDA193. Genetic mapping in an F2 population revealed co-segregation of the underlying locus with the previously cloned Rfg1 gene. The Rfg1 allele encodes a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat class of plant resistance proteins that restricts nodulation by S. fredii strains USDA257 and USDA205, and an allelic variant of this gene also restricts nodulation by Bradyrhizobium japonicum USDA122. By means of complementation tests and CRISPR/Cas9-mediated gene knockouts, we demonstrate that the Rfg1 allele also is responsible for resistance to nodulation by S. fredii USDA193. Therefore, the Rfg1 allele likely provides broad-spectrum resistance to nodulation by many S. fredii and B. japonicum strains in soybeans.
Collapse
Affiliation(s)
- Yinglun Fan
- College of Agriculture, Liaocheng UniversityLiaocheng, China
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Shanhua Lyu
- College of Agriculture, Liaocheng UniversityLiaocheng, China
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Qi Wang
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, United States
- *Correspondence: Hongyan Zhu,
| |
Collapse
|
14
|
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Perea JF, Gil-Serrano A, Jin H, An Q, Rodríguez-Carvajal MA, Andersen SU, Sandal N, Stougaard J, Vinardell JM, Ruiz-Sainz JE. Sinorhizobium fredii HH103 Invades Lotus burttii by Crack Entry in a Nod Factor-and Surface Polysaccharide-Dependent Manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:925-937. [PMID: 27827003 DOI: 10.1094/mpmi-09-16-0195-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sinorhizobium fredii HH103-Rifr, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S. fredii HH103-Rifr invade L. burttii roots through infection threads or epidermal cracks, respectively. Infection threads in root hairs were not observed in L. burttii plants inoculated with S. fredii HH103-Rifr. A S. fredii HH103-Rifr nodA mutant failed to nodulate L. burttii, demonstrating that Nod factors are strictly necessary for this crack-entry mode, and a noeL mutant was also severely impaired in L. burttii nodulation, indicating that the presence of fucosyl residues in the Nod factor is symbiotically relevant. However, significant symbiotic impacts due to the absence of methylation or to acetylation of the fucosyl residue were not detected. In contrast S. fredii HH103-Rifr mutants showing lipopolysaccharide alterations had reduced symbiotic capacity, while mutants affected in production of either exopolysaccharides, capsular polysaccharides, or both were not impaired in nodulation. Mutants unable to produce cyclic glucans and purine or pyrimidine auxotrophic mutants formed ineffective nodules with L. burttii. Flagellin-dependent bacterial mobility was not required for crack infection, since HH103-Rifr fla mutants nodulated L. burttii. None of the S. fredii HH103-Rifr surface-polysaccharide mutants gained effective nodulation with L. japonicus.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | | | - Yasuyuki Kawaharada
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Juan Fernández Perea
- 2 IFAPA, Centro Las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, Sevilla, Spain
| | - Antonio Gil-Serrano
- 4 Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P. 41012, Sevilla, Spain
| | - Haojie Jin
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Qi An
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | - Miguel A Rodríguez-Carvajal
- 4 Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P. 41012, Sevilla, Spain
| | - Stig U Andersen
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Niels Sandal
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Jens Stougaard
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - José-María Vinardell
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | - José E Ruiz-Sainz
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| |
Collapse
|
15
|
New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydr Res 2016; 434:83-93. [PMID: 27623438 PMCID: PMC5080398 DOI: 10.1016/j.carres.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Abstract
Soil-dwelling, nitrogen-fixing rhizobia signal their presence to legume hosts by secreting lipo-chitooligomers (LCOs) that are decorated with a variety of chemical substituents. It has long been assumed, but never empirically shown, that the LCO backbone is synthesized first by NodC, NodB, and NodA, followed by addition of one or more substituents by other Nod proteins. By analyzing a collection of in-frame deletion mutants of key nod genes in the bacterium Rhizobium sp. IRBG74 by mass spectrometry, we were able to shed light on the possible substitution order of LCO decorations, and we discovered that the prevailing view is probably erroneous. We found that most substituents could be transferred to a short chitin backbone prior to acylation by NodA, which is probably one of the last steps in LCO biosynthesis. The existence of substituted, short chitin oligomers offers new insights into symbiotic plant–microbe signaling. Rhizobia produce chemically substituted, short chitooligomers (COs). Deacetylation of the non-reducing GlcNAc is necessary for most substitutions. Acylation may be one of the last steps in the biosynthesis of rhizobial lipo-chitooligosaccharides (LCOs).
Collapse
|
16
|
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 2013; 31:1786-95. [PMID: 24095741 DOI: 10.1016/j.biotechadv.2013.09.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed.
Collapse
Affiliation(s)
- Sina Adrangi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
17
|
Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol Phylogenet Evol 2013; 67:626-30. [DOI: 10.1016/j.ympev.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
|
18
|
Gossmann JA, Markmann K, Brachmann A, Rose LE, Parniske M. Polymorphic infection and organogenesis patterns induced by a Rhizobium leguminosarum isolate from Lotus root nodules are determined by the host genotype. THE NEW PHYTOLOGIST 2012; 196:561-573. [PMID: 22950721 DOI: 10.1111/j.1469-8137.2012.04281.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 07/17/2012] [Indexed: 05/06/2023]
Abstract
To sample the natural variation in genes controlling compatibility in the legume-rhizobium symbiosis, we isolated rhizobia from nodules of endemic Lotus species from 21 sites across Europe. The majority of isolates were identified as Mesorhizobium- or Bradyrhizobium-related and formed nitrogen-fixing root nodules on Lotus corniculatus and L. pendunculatus, respectively, thus confirming previously defined cross-inoculation groups. Rhizobium leguminosarum (Rl) strain Norway, isolated from L. corniculatus nodules, displayed an exceptional phenotypic variation on different Lotus genotypes. On L. burttii, Rl Norway formed infected nodules, whereas tumors and elongated infected swellings were induced on L. glaber and L. japonicus ecotype Nepal, respectively. A symbiosis- and Nod-factor-responsive promoter:uidA fusion was strongly and rapidly induced in L. japonicus Gifu, but infection threads or signs of nodule organogenesis were absent. This complex phenotypic pattern was not mimicked by either of three engineered R. leguminosarum bv viciae strains producing different Nod-factor variants. Intriguingly, Rl Norway formed infection threads on Pisum sativum cv Sparkle, but failed to induce organogenesis. Rl Norway thus uncovered variation in symbiotic capabilities among diploid Lotus species and ecotypes that are obscured by optimally adapted M. loti strains. These contrasting infection and organogenesis phenotypes reveal recent diversification of recognition determinants in Lotus.
Collapse
Affiliation(s)
- Jasmin A Gossmann
- Faculty of Biology, Genetics, University of Munich (LMU), Grosshaderner Strasse 2-4, 82152 , Martinsried, Germany
| | - Katharina Markmann
- Faculty of Biology, Genetics, University of Munich (LMU), Grosshaderner Strasse 2-4, 82152 , Martinsried, Germany
| | - Andreas Brachmann
- Faculty of Biology, Genetics, University of Munich (LMU), Grosshaderner Strasse 2-4, 82152 , Martinsried, Germany
| | - Laura E Rose
- Faculty of Biology, Evolutionary Biology, University of Munich (LMU), Grosshaderner Strasse 2-4, 82152, Martinsried, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Grosshaderner Strasse 2-4, 82152 , Martinsried, Germany
| |
Collapse
|
19
|
Brzezinski K, Dauter Z, Jaskolski M. Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:160-8. [PMID: 22281745 PMCID: PMC3266854 DOI: 10.1107/s0907444911053157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/09/2011] [Indexed: 12/27/2022]
Abstract
Rhizobial NodZ α1,6-fucosyltransferase (α1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5'-diphosphate-β-L-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signalling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two α1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of α1,6-FucT in complex with its substrate GDP-Fuc and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystal of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 Å resolution. The fucose residue is exposed to solvent and is disordered. The enzyme-product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-L-glucosamine (penta-NAG). The structure has been determined at 1.98 Å resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-terminal domain, which are conserved among α1,2-, α1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the loop located between strand βC2 and helix αC3. In addition, there is a shift of the αC3 helix itself upon GDP-Fuc binding.
Collapse
Affiliation(s)
- Krzysztof Brzezinski
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland
| |
Collapse
|
20
|
The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
21
|
Anantharaman V, Aravind L. Novel eukaryotic enzymes modifying cell-surface biopolymers. Biol Direct 2010; 5:1. [PMID: 20056006 PMCID: PMC2824669 DOI: 10.1186/1745-6150-5-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/07/2010] [Indexed: 11/30/2022] Open
Abstract
Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
22
|
Bek AS, Sauer J, Thygesen MB, Duus JØ, Petersen BO, Thirup S, James E, Jensen KJ, Stougaard J, Radutoiu S. Improved characterization of nod factors and genetically based variation in LysM Receptor domains identify amino acids expendable for nod factor recognition in Lotus spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:58-66. [PMID: 19958139 DOI: 10.1094/mpmi-23-1-0058] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Formation of functional nodules is a complex process depending on host-microsymbiont compatibility in all developmental stages. This report uses the contrasting symbiotic phenotypes of Lotus japonicus and L. pedunculatus, inoculated with Mesorhizobium loti or the Bradyrhizobium sp. (Lotus), to investigate the role of Nod factor structure and Nod factor receptors (NFR) for rhizobial recognition, infection thread progression, and bacterial persistence within nodule cells. A key contribution was the use of 800 MHz nuclear magnetic resonance spectroscopy and ultrahigh-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for Nod factor analysis. The Nod factor decorations at the nonreducing end differ between Bradyrhizobium sp. (Lotus) and M. loti, and the NFR1/NFR5 extracellular regions of L. pedunculatus and L. japonicus were found to vary in amino acid composition. Genetic transformation experiments using chimeric and wild-type receptors showed that both receptor variants recognize the structurally different Nod factors but the later symbiotic phenotype remained unchanged. These results highlight the importance of additional checkpoints during nitrogen-fixing symbiosis and define several amino acids in the LysM domains as expendable for perception of the two differentially carbamoylated Nod factors.
Collapse
Affiliation(s)
- Anita S Bek
- Centre for Carbohydrate Recognition and signalling, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, Aarhus 8000 C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KWJT, Thomas-Oates J, Radutoiu S, Stougaard J, Ronson CW. Nodulation gene mutants of Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1546-54. [PMID: 19888820 DOI: 10.1094/mpmi-22-12-1546] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rhizobial Nod factors induce plant responses and facilitate bacterial infection, leading to the development of nitrogen-fixing root nodules on host legumes. Nodule initiation is highly dependent on Nod-factor structure and, hence, on at least some of the nodulation genes that encode Nod-factor production. Here, we report the effects of mutations in Mesorhizobium loti R7A nodulation genes on nodulation of four Lotus spp. and on Nod-factor structure. Most mutants, including a DeltanodSDeltanolO double mutant that produced Nod factors lacking the carbamoyl and possibly N-methyl groups on the nonreducing terminal residue, were unaffected for nodulation. R7ADeltanodZ and R7ADeltanolL mutants that produced Nod factors without the (acetyl)fucose on the reducing terminal residue had a host-specific phenotype, forming mainly uninfected nodule primordia on Lotus filicaulis and L. corniculatus and effective nodules with a delay on L. japonicus. The mutants also showed significantly reduced infection thread formation and Nin gene induction. In planta complementation experiments further suggested that the acetylfucose was important for balanced signaling in response to Nod factor by the L. japonicus NFR1/NFR5 receptors. Overall the results reveal differences in the sensitivity of plant perception with respect to signaling leading to root hair deformation and nodule primordium development versus infection thread formation and rhizobial entry.
Collapse
Affiliation(s)
- Patsarin Rodpothong
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oono R, Denison RF, Kiers ET. Controlling the reproductive fate of rhizobia: how universal are legume sanctions? THE NEW PHYTOLOGIST 2009; 183:967-979. [PMID: 19594691 DOI: 10.1111/j.1469-8137.2009.02941.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
When a single host plant is infected by more than one strain of rhizobia, they face a tragedy of the commons. Although these rhizobia benefit collectively from nitrogen fixation, which increases host-plant photosynthesis, each strain might nonetheless increase its own reproduction, relative to competing strains, by diverting resources away from nitrogen fixation. Host sanctions can limit the evolutionary success of such rhizobial cheaters (strains that would otherwise benefit by fixing less nitrogen). Host sanctions have been shown in soybean (Glycine max) nodules, where the next generation of symbiotic rhizobia is descended from bacteroids (the differentiated cells that can fix nitrogen). Evidence for sanctions is less clear in legume species that induce rhizobial dimorphism inside their nodules. There, bacteroids are swollen and cannot reproduce regardless of how much nitrogen they fix, but sanctions could reduce reproduction of their undifferentiated clonemates within the same nodule. This rhizobial dimorphism can affect rhizobial evolution, including cheating options, in ways that may affect future generations of legumes. Both the importance of sanctions to hosts and possible physiological mechanisms for sanctions may depend on whether bacteroids are potentially reproductive.
Collapse
Affiliation(s)
- Ryoko Oono
- Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - R Ford Denison
- Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - E Toby Kiers
- Faculteit der Aard - en Levenswetenschappen, De Boelelaan 1085-1087, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
25
|
Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EMH, Albrektsen AS, James EK, Thirup S, Stougaard J. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 2007; 26:3923-35. [PMID: 17690687 PMCID: PMC1994126 DOI: 10.1038/sj.emboj.7601826] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/18/2007] [Indexed: 11/08/2022] Open
Abstract
Legume-Rhizobium symbiosis is an example of selective cell recognition controlled by host/non-host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod-factor signal and that recognition depends on the structure of the lipochitin-oligosaccharide Nod-factor. We show that a single amino-acid variation in the LysM2 domain of NFR5 changes recognition of the Nod-factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin-oligosaccharide signal molecules.
Collapse
Affiliation(s)
- Simona Radutoiu
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Lene H Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Esben B Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Anna Jurkiewicz
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Eigo Fukai
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Esben M H Quistgaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Anita S Albrektsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Euan K James
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Søren Thirup
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Jens Stougaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark. Tel.: +45 89 42 50 11; Fax: +45 86 20 12 22; E-mail:
| |
Collapse
|
26
|
Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci U S A 2006; 103:5230-5. [PMID: 16547129 PMCID: PMC1458823 DOI: 10.1073/pnas.0600912103] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between legumes and Rhizobium bacteria leads to the formation of root nodules where bacteria in the infected plant cells are converted into nitrogen-fixing bacteroids. Nodules with a persistent meristem are indeterminate, whereas nodules without meristem are determinate. The symbiotic plant cells in both nodule types are polyploid because of several cycles of endoreduplication (genome replication without mitosis and cytokinesis) and grow consequently to extreme sizes. Here we demonstrate that differentiation of bacteroids in indeterminate nodules of Medicago and related legumes from the galegoid clade shows remarkable similarity to host cell differentiation. During bacteroid maturation, repeated DNA replication without cytokinesis results in extensive amplification of the entire bacterial genome and elongation of bacteria. This finding reveals a positive correlation in prokaryotes between DNA content and cell size, similar to that in eukaryotes. These polyploid bacteroids are metabolically functional but display increased membrane permeability and are nonviable, because they lose their ability to resume growth. In contrast, bacteroids in determinate nodules of the nongalegoid legumes lotus and bean are comparable to free-living bacteria in their genomic DNA content, cell size, and viability. Using recombinant Rhizobium strains nodulating both legume types, we show that bacteroid differentiation is controlled by the host plant. Plant factors present in nodules of galegoid legumes but absent from nodules of nongalegoid legumes block bacterial cell division and trigger endoreduplication cycles, thereby forcing the endosymbionts toward a terminally differentiated state. Hence, Medicago and related legumes have evolved a mechanism to dominate the symbiosis.
Collapse
Affiliation(s)
- Peter Mergaert
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Avenue de la Terrasse Bātiment 23, 91198 Gif-sur-Yvette Cedex, France; and
| | - Toshiki Uchiumi
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Avenue de la Terrasse Bātiment 23, 91198 Gif-sur-Yvette Cedex, France; and
| | - Benoît Alunni
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Avenue de la Terrasse Bātiment 23, 91198 Gif-sur-Yvette Cedex, France; and
| | - Gwénaëlle Evanno
- Unité Mixte de Recherche 6061, Bâtiment 13, Centre National de la Recherche Scientifique, Université de Rennes I, Faculté de Médecine, 2 Avenue du Pr. Léon Bernard, 35043 Rennes Cedex, France
| | - Angélique Cheron
- Unité Mixte de Recherche 6061, Bâtiment 13, Centre National de la Recherche Scientifique, Université de Rennes I, Faculté de Médecine, 2 Avenue du Pr. Léon Bernard, 35043 Rennes Cedex, France
| | - Olivier Catrice
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Avenue de la Terrasse Bātiment 23, 91198 Gif-sur-Yvette Cedex, France; and
| | - Anne-Elisabeth Mausset
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Avenue de la Terrasse Bātiment 23, 91198 Gif-sur-Yvette Cedex, France; and
| | - Frédérique Barloy-Hubler
- Unité Mixte de Recherche 6061, Bâtiment 13, Centre National de la Recherche Scientifique, Université de Rennes I, Faculté de Médecine, 2 Avenue du Pr. Léon Bernard, 35043 Rennes Cedex, France
| | - Francis Galibert
- Unité Mixte de Recherche 6061, Bâtiment 13, Centre National de la Recherche Scientifique, Université de Rennes I, Faculté de Médecine, 2 Avenue du Pr. Léon Bernard, 35043 Rennes Cedex, France
| | - Adam Kondorosi
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Avenue de la Terrasse Bātiment 23, 91198 Gif-sur-Yvette Cedex, France; and
| | - Eva Kondorosi
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Avenue de la Terrasse Bātiment 23, 91198 Gif-sur-Yvette Cedex, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K. Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 2006; 24:382-8. [PMID: 16516430 DOI: 10.1016/j.biotechadv.2006.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bradyrhizobium elkanii produces rhizobitoxine, an enol-ether amino acid, which has been regarded as a phytotoxin because it causes chlorosis in soybeans. However, recent studies have revealed that rhizobitoxine plays a positive role in establishing symbiosis between B. elkanii and host legumes: rhizobitoxine enhances the nodulation process by inhibiting ACC (1-aminocyclopropane-1-carboxylate) synthase in the ethylene biosynthesis of host roots. B. elkanii rtxA and rtxC genes are required for rhizobitoxine production. In particular, rtxC gene is involved in the desaturation of dihydrorhizobitoxine into rhizobitoxine. A legume with a mutated ethylene receptor gene produced markedly higher numbers of rhizobial infection threads and nodule primordia. Thus, endogenous ethylene in legume roots negatively regulates the formation of nodule primordia, which is overcome by rhiozbitoxine. Although a plant pathogen Burkholderia andropogonis has been known to produce rhizobitoxine, the genome sequence of Xanthomonas oryzae showed the existence of a putative rhizobitoxine transposon in the genome. The cumulative evidence suggests that rhizobitoxine-producing bacteria modulate plant-microbe interactions via ethylene in the rhizosphere and phyllosphere environments. In addition, rhizobitoxine-producing capability might be utilized as tools in agriculture and biotechnology.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Shibata S, Mitsui H, Kouchi H. Acetylation of a fucosyl residue at the reducing end of Mesorhizobium loti nod factors is not essential for nodulation of Lotus japonicus. PLANT & CELL PHYSIOLOGY 2005; 46:1016-1020. [PMID: 15805124 DOI: 10.1093/pcp/pci099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NodMl-V(C(18:1), Me, Cb, AcFuc) is a major component of lipo-chitin oligosaccharides (LCOs), or Nod factors, produced by Mesorhizobium loti. The presence of a 4-O-acetylated fucosyl residue (AcFuc) at the reducing end has been thought to be essential for symbiotic interactions with the compatible host plant, Lotus japonicus. We generated an M. loti mutant in which the nolL gene is disrupted; nolL has been shown to encode acetyltransferase that is responsible for acetylation of the fucosyl residue. The nolL disruptant Ml107 produced LCOs that lacked acetylation of fucosyl residues as expected, but exhibited nodulation performance on L. japonicus as efficiently as the wild-type M. loti strain MAFF303099. We show that LCOs without acetylation of a fucosyl residue purified from Ml107 are also able to induce abundant root hair deformation and nodule primordium formation. These results indicate that NolL-dependent acetylation of a fucosyl residue at the reducing end of M. loti LCOs is not essential for nodulation of L. japonicus.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Plant Physiology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | |
Collapse
|
29
|
Grønlund M, Roussis A, Flemetakis E, Quaedvlieg NEM, Schlaman HRM, Umehara Y, Katinakis P, Stougaard J, Spaink HP. Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:414-27. [PMID: 15915640 DOI: 10.1094/mpmi-18-0414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Our comparative studies on the promoter (pr) activity of Enod40 in the model legume Lotus japonicus in stably transformed GusA reporter lines and in hairy roots of L. japonicus demonstrate a stringent regulation of the Enod40 promoter in the root cortex and root hairs in response to Nod factors. Interestingly, the L. japonicus Enod40-2 promoter fragment also shows symbiotic activity in the reverse orientation. Deletion analyses of the Glycine max (Gm) Enod40 promoter revealed the presence of a minimal region -185 bp upstream of the transcription start. Stable transgenic L. japonicus reporter lines were used in bioassays to test the effect of different compounds on early symbiotic signaling. The responses of prGmEnod40 reporter lines were compared with the responses of L. japonicus (Lj) reporter lines based on the LjNin promoter. Both reporter lines show very early activity postinoculation in root hairs of the responsive zone of the root and later in the dividing cells of nodule primordia. The LjNin promoter was found to be more responsive than the GmEnod40 promoter to Nod factors and related compounds. The use of prGmEnod40 reporter lines to analyze the effect of nodulin genes on the GmEnod40 promoter activity indicates that LJNIN has a positive effect on the regulation of the Enod40 promoter, whereas the latter is not influenced by ectopic overexpression of its own gene product. In addition to pointing to a difference in the regulation of the two nodulin genes Enod40 and Nin during early time points of symbiosis, the bioassays revealed a difference in the response to the synthetic cytokinin 6-benzylaminopurine (BAP) between alfalfa and clover and L. japonicus. In alfalfa and clover, Enod40 expression was induced upon BAP treatment, whereas this seems not to be the case in L. japonicus; these results correlate with effects at the cellular level because BAP can induce pseudonodules in alfalfa and clover but not in L. japonicus. In conclusion, we demonstrate the applicability of the described L. japonicus reporter lines in analyses of the specificity of compounds related to nodulation as well as for the dissection of the interplay between different nodulin genes.
Collapse
Affiliation(s)
- Mette Grønlund
- Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Yu G, Shen S, Zhu J. Promoter of soybean early nodulin geneenod2B is induced by rhizobial Nod factors in transgenic rice. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02900316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Okazaki S, Nukui N, Sugawara M, Minamisawa K. Rhizobial Strategies to Enhance Symbiotic Interactions: Rhizobitoxine and 1-Aminocyclopropane-1-Carboxylate Deaminase. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.99] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shin Okazaki
- Graduate School of Life Sciences, Tohoku University
| | | | | | | |
Collapse
|
32
|
Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 2003; 425:637-40. [PMID: 14534591 DOI: 10.1038/nature02045] [Citation(s) in RCA: 599] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/11/2003] [Indexed: 11/08/2022]
Abstract
Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.
Collapse
Affiliation(s)
- Esben Bjørn Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 2003; 425:585-92. [PMID: 14534578 DOI: 10.1038/nature02039] [Citation(s) in RCA: 725] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/11/2003] [Indexed: 11/09/2022]
Abstract
Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.
Collapse
Affiliation(s)
- Simona Radutoiu
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pacios-Bras C, van der Burgt YEM, Deelder AM, Vinuesa P, Werner D, Spaink HP. Novel lipochitin oligosaccharide structures produced by Rhizobium etli KIM5s. Carbohydr Res 2002; 337:1193-202. [PMID: 12110194 DOI: 10.1016/s0008-6215(02)00111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The novel lipochitin oligosaccharide (LCOs) structures produced by Rhizobium etli KIM5s were characterized using a nanoHPLC reverse-phase system coupled to an ion-trap mass spectrometer. This technique was shown to be more sensitive for structural elucidation of LCOs than previously used mass spectrometric methods. The structures of the LCOs of R. etli KIM5s, the majority containing six monosaccharide residues, differed from those synthesized by all other rhizobia analyzed to date. In addition, novel structures in which the chitin backbone was deacetylated at one or more GlcNAc moieties were found as minor compounds. The difference in host range of this strain compared to that of other known bean microsymbionts is discussed.
Collapse
Affiliation(s)
- Cristina Pacios-Bras
- Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, NL-2333 AL, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Chazalet V, Uehara K, Geremia RA, Breton C. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ. J Bacteriol 2001; 183:7067-75. [PMID: 11717264 PMCID: PMC95554 DOI: 10.1128/jb.183.24.7067-7075.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nodZ gene, which is present in various rhizobial species, is involved in the addition of a fucose residue in an alpha 1-6 linkage to the reducing N-acetylglucosamine residue of lipo-chitin oligosaccharide signal molecules, the so-called Nod factors. Fucosylation of Nod factors is known to affect nodulation efficiency and host specificity. Despite a lack of overall sequence identity, NodZ proteins share conserved peptide motifs with mammalian and plant fucosyltransferases that participate in the biosynthesis of complex glycans and polysaccharides. These peptide motifs are thought to play important roles in catalysis. NodZ was expressed as an active and soluble form in Escherichia coli and was subjected to site-directed mutagenesis to investigate the role of the most conserved residues. Enzyme assays demonstrate that the replacement of the invariant Arg-182 by either alanine, lysine, or aspartate results in products with no detectable activity. A similar result is obtained with the replacement of the conserved acidic position (Asp-275) into its corresponding amide form. The residues His-183 and Asn-185 appear to fulfill functions that are more specific to the NodZ subfamily. Secondary structure predictions and threading analyses suggest the presence of a "Rossmann-type" nucleotide binding domain in the half C-terminal part of the catalytic domain of fucosyltransferases. Site-directed mutagenesis combined with theoretical approaches have shed light on the possible nucleotide donor recognition mode for NodZ and related fucosyltransferases.
Collapse
Affiliation(s)
- V Chazalet
- Centre de Recherches sur les Macromolécules Végétales and Joseph Fourier University, CNRS, Grenoble, France
| | | | | | | |
Collapse
|
36
|
Rodríguez-Carvajal MA, Tejero-Mateo P, Espartero JL, Ruiz-Sainz JE, Buendía-Clavería AM, Ollero FJ, Yang SS, Gil-Serrano AM. Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast-growing soya bean-nodulating bacterium isolated from an arid region of China. Biochem J 2001; 357:505-11. [PMID: 11439101 PMCID: PMC1221978 DOI: 10.1042/0264-6021:3570505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have determined the structure of a polysaccharide from strain B33, a fast-growing bacterium that forms nitrogen-fixing nodules with Asiatic and American soya bean cultivars. On the basis of monosaccharide analysis, methylation analysis, one-dimensional 1H- and 13C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the repeating unit -->6)-4-O-methyl-alpha-D-Glcp-(1-->4)-3-O-methyl-beta-D-GlcpA-(1--> (where GlcpA is glucopyranuronic acid and Glcp is glucopyranose). Strain B33 produces a K-antigen polysaccharide repeating unit that does not have the structural motif sugar-Kdx [where Kdx is 3-deoxy-D-manno-2-octulosonic acid (Kdo) or a Kdo-related acid] proposed for different Sinorhizobium fredii strains, all of them being effective with Asiatic soya bean cultivars but unable to form nitrogen-fixing nodules with American soya bean cultivars. Instead, it resembles the K-antigen of S. fredii strain HH303 (rhamnose, galacturonic acid)n, which is also effective with both groups of soya bean cultivars. Only the capsular polysaccharide from strains B33 and HH303 have monosaccharide components that are also present in the surface polysaccharide of Bradyrhizobium elkanii strains, which consists of a 4-O-methyl-D-glucurono-L-rhamnan.
Collapse
Affiliation(s)
- M A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41071-Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
van Spronsen PC, Grønlund M, Pacios Bras C, Spaink HP, Kijne JW. Cell biological changes of outer cortical root cells in early determinate nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:839-847. [PMID: 11437257 DOI: 10.1094/mpmi.2001.14.7.839] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the symbiosis of leguminous plants and Rhizobium bacteria, nodule primordia develop in the root cortex. This can be either in the inner cortex (indeterminate-type of nodulation) or outer cortex (determinate-type of nodulation), depending upon the host plant. We studied and compared early nodulation stages in common bean (Phaseolus vulgaris) and Lotus japonicus, both known as determinate-type nodulation plants. Special attention was paid to the occurrence of cytoplasmic bridges, the influence of rhizobial Nod factors (lipochitin oligosaccharides [LCOs]) on this phenomenon, and sensitivity of the nodulation process to ethylene. Our results show that i) both plant species form initially broad, matrix-rich infection threads; ii) cytoplasmic bridges occur in L. japonicus but not in bean; iii) formation of these bridges is induced by rhizobial LCOs; iv) formation of primordia starts in L. japonicus in the middle root cortex and in bean in the outer root cortex; and v) in the presence of the ethylene-biosynthesis inhibitor aminoethoxyvinylglycine (AVG), nodulation of L. japonicus is stimulated when the roots are grown in the light, which is consistent with the role of cytoplasmic bridges during nodulation of L. japonicus.
Collapse
Affiliation(s)
- P C van Spronsen
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Niwa S, Kawaguchi M, Imazumi-Anraku H, Chechetka SA, Ishizaka M, Ikuta A, Kouchi H. Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:848-56. [PMID: 11437258 DOI: 10.1094/mpmi.2001.14.7.848] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lotus japonicus has been proposed as a model legume for molecular genetic studies of symbiotic plant-microbe interactions leading to the fixation of atmospheric nitrogen. Lipochitin oligosaccharides (LCOs), or Nod factors, were isolated from the culture of Mesorhizobium loti strain JRL501 (MAFF303099), an efficient microsymbiont of L. japonicus B-129 cv. Gifu. High-performance liquid chromatography and mass spectrometric analyses allowed us to identify at least five different structures of LCOs that were produced by JRL501. The major component was NodMl-V(C18:1, Me, Cb, AcFuc), an N-acetyl-glucosamine pentamer in which the nonreducing residue is N-acylated with a C18:1 acyl moiety, N-methylated, and carries a carbamoyl group and the reducing N-acetylglucosamine residue is substituted with 4-O-acetyl-fucose. Additional novel LCO structures bearing fucose instead of acetyl-fucose at the reducing end were identified. Mixtures of these LCOs could elicit abundant root hair deformation on L. japonicus roots at a concentration of 10(-7) to 10(-9) M. Spot inoculation of a few nanograms of LCOs on L. japonicus roots induced the formation of nodule primordia in which the early nodulin genes, ENOD40 and ENOD2, were expressed in a tissue-specific manner. We also observed the formation of a cytoplasmic bridge (preinfection thread) in the swollen outermost cortical cells. This is the first description of cytoplasmic bridge formation by purified LCOs alone in a legume-forming determinate nodules.
Collapse
Affiliation(s)
- S Niwa
- Science University of Tokyo, Noda, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Rhizobia are soil bacteria that can engage in a symbiosis with leguminous plants that produces nitrogen-fixing root nodules. This symbiosis is based on specific recognition of signal molecules, which are produced by both the bacterial and plant partners. In this review, recognition factors from the bacterial endosymbionts are discussed, with particular attention to secreted and cell surface glycans. Glycans that are discussed include the Nod factors, the extracellular polysaccharides, the lipopolysaccharides, the K-antigens, and the cyclic glucans. Recent advances in the understanding of the biosynthesis, secretion, and regulation of production of these glycans are reviewed, and their functions are compared with glycans produced by other bacteria, such as plant pathogens.
Collapse
Affiliation(s)
- H P Spaink
- Institute of Molecular Plant Sciences, Leiden University, 2333 AL Leiden, The Netherlands.
| |
Collapse
|
40
|
Stuurman N, Pacios Bras C, Schlaman HR, Wijfjes AH, Bloemberg G, Spaink HP. Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1163-9. [PMID: 11059482 DOI: 10.1094/mpmi.2000.13.11.1163] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We developed two sets of broad-host-range vectors that drive expression of the green fluorescent protein (GFP) or color variants thereof (henceforth collectively called autofluorescent proteins [AFPs]) from the lac promoter. These two sets are based on different replicons that are maintained in a stable fashion in Escherichia coli and rhizobia. Using specific filter sets or a dedicated confocal laser scanning microscope setup in which emitted light is split into its color components through a prism, we were able to unambiguously identify bacteria expressing enhanced cyan fluorescent protein (ECFP) or enhanced yellow fluorescent protein (EYFP) in mixtures of the two. Clearly, these vectors will be valuable tools for competition, cohabitation, and rescue studies and will also allow the visualization of interactions between genetically marked bacteria in vivo. Here, we used these vectors to visualize the interaction between rhizobia and plants. Specifically, we found that progeny from different rhizobia can be found in the same nodule or even in the same infection thread. We also visualized movements of bacteroids within plant nodule cells.
Collapse
Affiliation(s)
- N Stuurman
- Leiden University, Institute of Molecular Plant Sciences, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Stougaard J. Regulators and regulation of legume root nodule development. PLANT PHYSIOLOGY 2000; 124:531-40. [PMID: 11027704 PMCID: PMC1539285 DOI: 10.1104/pp.124.2.531] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- J Stougaard
- Laboratory of Gene Expression, Department of Molecular and Structural Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 C Aarhus, Denmark.
| |
Collapse
|