1
|
Wang Y, Ji X, Min S, Gao T, Li C, Ge Y. Inhibitory effects of phytic acid on the in vitro and in vivo growth of Trichothecium roseum in apple fruit and the underlying mechanisms involved in its action. Food Chem 2025; 463:141140. [PMID: 39243626 DOI: 10.1016/j.foodchem.2024.141140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study evaluated the inhibitory impacts of phytic acid on the growth of T. roseum both in vitro and in apple fruit, as well as elucidated the potential mechanisms underlying its action. Results showed that phytic acid suppressed the lesion diameter caused by T. roseum inoculation in apples, as well as spore germination and mycelial growth of T. roseum in vitro. Phytic acid reduced intracellular conductivity and soluble sugar content, while increasing malondialdehyde and soluble protein contents. Phytic acid treatment inhibited the activities of pectin lyase, pectin methyl polygalacturonase, β-glucosidase, cellulase, xylanase, pectin methyl trans-eliminase, polygalacturonase, and polygalacturonase both in vitro and in apples. In contrast, inoculation of control and phytic acid-treated fruit with T. roseum resulted in increased enzyme activity. These findings suggest that phytic acid decrease the occurrence of heart rot in apples through inducing disruption of the cell membrane of T. roseum and mediating cell wall metabolism.
Collapse
Affiliation(s)
- Yajun Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Xiaonan Ji
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Shuang Min
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Tian Gao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Canying Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China..
| | - Yonghong Ge
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China..
| |
Collapse
|
2
|
Zhang C, Yang C, Jin M, Feng Z, Osei R, Cai F, Ma T, Wang Y. A PL1 family pectate lyase CP966_RS08110 gene was the pathogenic factor of Streptomyces galilaeus 5T-1 causing potato common scab. Front Microbiol 2024; 15:1469709. [PMID: 39664058 PMCID: PMC11631876 DOI: 10.3389/fmicb.2024.1469709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Pectate lyases (PL), as important polysaccharide lyases, play an important role in the infection of host plants by pathogenic. A previous study found that the PL gene CP966_RS08110 was up-regulated in the interaction between Streptomyces galilaeus 5T-1 and potatoes. In this study, S. galilaeus 5T-1 was used as the study object, and its gene function was investigated using bioinformatics analysis, prokaryotic expression, and CRISPR-Cas9 technology. The previous results showed that the pectate lyase CP966_RS08110 gene of Streptomyces galilaeus 5T-1 was up-regulated in the pathogenic process. In this study, the CP966_RS08110 gene was cloned from the genomic DNA of S. galilaeus 5T-1. It encoded for a 415-residue protein with a complete PL-6 superfamily domain and Pec_lyase_C domain, which belongs to the PL1 family. The soluble protein encoded by CP966_RS08110 was obtained successfully, which has high pathogenicity after inoculating healthy potatoes. The mutant strain △PL5T-1 with CP966_RS08110 gene deletion was successfully obtained, and its colony morphology and pigment were not significantly different from that of wild strains, but its growth rate was slowed down, moreover, the hyaline circle formed by the mutant strain ΔPL5T-1 using pectin was significantly smaller than wild strain, and the deletion of this gene affected the infestation rate of S. galilaeus 5T-1. Our results confirm that the CP966_RS08110 gene was the pathogenic factors and played a key role in process of infecting and causing potato common scab, which laid foundation for understanding the pathogenic mechanism of S. galilaeus 5T-1.
Collapse
Affiliation(s)
- Cuiwen Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Chengde Yang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Mengjun Jin
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Zhonghong Feng
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Richard Osei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Fengfeng Cai
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Ting Ma
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Yidan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
3
|
Liu Q, Yang L, Xue H, Bi Y, Zhang Q, Zong Y, Li X. Effects of Ambient pH on the Growth and Development, Pathogenicity, and Diacetoxyscirpenol Accumulation of Muskmelon Fruit Caused by Fusarium sulphureum. J Fungi (Basel) 2024; 10:765. [PMID: 39590684 PMCID: PMC11595694 DOI: 10.3390/jof10110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Ambient pH, an important environmental factor, affects the growth, pathogenicity, and mycotoxin production of pathogenic fungus. Fusarium sulphureum is one of the predominant causal agents causing fusarium rot of muskmelon. In this study, we investigated the effects of ambient pH on fusarium rot development and diacetoxyscirpenol (DAS) accumulation in muskmelon infected with F. sulphureum, then analyzed the possible mechanisms in vitro and in vivo. The results suggested that ambient pH 6 was more conducive to the growth, pathogenicity, and mycotoxin production of F. sulphureum in vitro. Ambient pH 6 was also more favorable for secretion of cell wall-degrading enzymes for the pathogen to degrade the cell wall of the host plant and up-regulated the relative expression of genes involved in DAS biosynthesis, thus aggravating fruit disease and DAS accumulation. However, when the pH of the inoculated spore suspension was too acidic or too alkaline, the opposite results were observed.
Collapse
Affiliation(s)
- Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lan Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Yang Y, Xiong D, Zhao D, Huang H, Tian C. Genome sequencing of Elaeocarpus spp. stem blight pathogen Pseudocryphonectria elaeocarpicola reveals potential adaptations to colonize woody bark. BMC Genomics 2024; 25:714. [PMID: 39048950 PMCID: PMC11267912 DOI: 10.1186/s12864-024-10615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| | - Danyang Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Huayi Huang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China.
| | - Chengming Tian
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Baroncelli R, Cobo-Díaz JF, Benocci T, Peng M, Battaglia E, Haridas S, Andreopoulos W, LaButti K, Pangilinan J, Lipzen A, Koriabine M, Bauer D, Le Floch G, Mäkelä MR, Drula E, Henrissat B, Grigoriev IV, Crouch JA, de Vries RP, Sukno SA, Thon MR. Genome evolution and transcriptome plasticity is associated with adaptation to monocot and dicot plants in Colletotrichum fungi. Gigascience 2024; 13:giae036. [PMID: 38940768 PMCID: PMC11212070 DOI: 10.1093/gigascience/giae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/05/2024] [Accepted: 05/25/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Colletotrichum fungi infect a wide diversity of monocot and dicot hosts, causing diseases on almost all economically important plants worldwide. Colletotrichum is also a suitable model for studying gene family evolution on a fine scale to uncover events in the genome associated with biological changes. RESULTS Here we present the genome sequences of 30 Colletotrichum species covering the diversity within the genus. Evolutionary analyses revealed that the Colletotrichum ancestor diverged in the late Cretaceous in parallel with the diversification of flowering plants. We provide evidence of independent host jumps from dicots to monocots during the evolution of Colletotrichum, coinciding with a progressive shrinking of the plant cell wall degradative arsenal and expansions in lineage-specific gene families. Comparative transcriptomics of 4 species adapted to different hosts revealed similarity in gene content but high diversity in the modulation of their transcription profiles on different plant substrates. Combining genomics and transcriptomics, we identified a set of core genes such as specific transcription factors, putatively involved in plant cell wall degradation. CONCLUSIONS These results indicate that the ancestral Colletotrichum were associated with dicot plants and certain branches progressively adapted to different monocot hosts, reshaping the gene content and its regulation.
Collapse
Affiliation(s)
- Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 40-50, 40127 Bologna, Italy
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Calle del Duero, 37185 Villamayor, Salamanca, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, Campus Vegazana, 24007 León, Spain
| | - Tiziano Benocci
- Center for Health and Bioresources, Austrian Institute of Technology (AIT), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Mao Peng
- Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Fungal Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Evy Battaglia
- Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Fungal Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Sajeet Haridas
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
| | - William Andreopoulos
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
| | - Kurt LaButti
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
| | - Jasmyn Pangilinan
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
| | - Maxim Koriabine
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
| | - Diane Bauer
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
| | - Gaetan Le Floch
- Laboratory of Biodiversity and Microbial Ecology (LUBEM), IBSAM, ESIAB, EA 3882, University of Brest, Technopôle Brest-Iroise, Parv. Blaise Pascal, 29280 Plouzané, France
| | - Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Siltavuorenpenger 5, 00170 Helsinki, Finland
| | - Elodie Drula
- UMR 7257, Architecture et Fonction des Macromolécules Biologiques, The French National Centre for Scientific Research (CNRS), University of Aix-Marseille (AMU), 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
- The French National Institute for Agricultural Research (INRA), USC 1408 AFMB, 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| | - Bernard Henrissat
- UMR 7257, Architecture et Fonction des Macromolécules Biologiques, The French National Centre for Scientific Research (CNRS), University of Aix-Marseille (AMU), 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
- The French National Institute for Agricultural Research (INRA), USC 1408 AFMB, 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, 23453 Jeddah, Saudi Arabia
| | - Igor V Grigoriev
- Joint Genome Institute, Lawrence Berkeley National Laboratory, United States Department of Energy, McMillan rd, CA 94720 Berkeley, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Ave, MD 20705, Beltsville, USA
| | - Ronald P de Vries
- Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Fungal Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Serenella A Sukno
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Calle del Duero, 37185 Villamayor, Salamanca, Spain
| | - Michael R Thon
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Calle del Duero, 37185 Villamayor, Salamanca, Spain
| |
Collapse
|
6
|
Liu S, Liu R, Lv J, Feng Z, Wei F, Zhao L, Zhang Y, Zhu H, Feng H. The glycoside hydrolase 28 member VdEPG1 is a virulence factor of Verticillium dahliae and interacts with the jasmonic acid pathway-related gene GhOPR9. MOLECULAR PLANT PATHOLOGY 2023; 24:1238-1255. [PMID: 37401912 PMCID: PMC10502839 DOI: 10.1111/mpp.13366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 07/05/2023]
Abstract
Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.
Collapse
Affiliation(s)
- Shichao Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Ruibing Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Junyuan Lv
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Zili Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Feng Wei
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| |
Collapse
|
7
|
Jeyaraj A, Elango T, Chen X, Zhuang J, Wang Y, Li X. Advances in understanding the mechanism of resistance to anthracnose and induced defence response in tea plants. MOLECULAR PLANT PATHOLOGY 2023; 24:1330-1346. [PMID: 37522519 PMCID: PMC10502868 DOI: 10.1111/mpp.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 08/01/2023]
Abstract
The tea plant (Camellia sinensis) is susceptible to anthracnose disease that causes considerable crop loss and affects the yield and quality of tea. Multiple Colletotrichum spp. are the causative agents of this disease, which spreads quickly in warm and humid climates. During plant-pathogen interactions, resistant cultivars defend themselves against the hemibiotrophic pathogen by activating defence signalling pathways, whereas the pathogen suppresses plant defences in susceptible varieties. Various fungicides have been used to control this disease on susceptible plants, but these fungicide residues are dangerous to human health and cause fungicide resistance in pathogens. The problem-solving approaches to date are the development of resistant cultivars and ecofriendly biocontrol strategies to achieve sustainable tea cultivation and production. Understanding the infection stages of Colletotrichum, tea plant resistance mechanisms, and induced plant defence against Colletotrichum is essential to support sustainable disease management practices in the field. This review therefore summarizes the current knowledge of the identified causative agent of tea plant anthracnose, the infection strategies and pathogenicity of C. gloeosporioides, anthracnose disease resistance mechanisms, and the caffeine-induced defence response against Colletotrichum infection. The information reported in this review will advance our understanding of host-pathogen interactions and eventually help us to develop new disease control strategies.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | | | - Xuan Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jing Zhuang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuhua Wang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xinghui Li
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
8
|
Pineda-Fretez A, Orrego A, Iehisa JCM, Flores-Giubi ME, Barúa JE, Sánchez-Lucas R, Jorrín-Novo J, Romero-Rodríguez MC. Secretome analysis of the phytopathogen Macrophomina phaseolina cultivated in liquid medium supplemented with and without soybean leaf infusion. Fungal Biol 2023; 127:1043-1052. [PMID: 37142363 DOI: 10.1016/j.funbio.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Macrophomina phaseolina (Tassi) Goid. is a fungal pathogen that causes root and stem rot in several economically important crops. However, most of disease control strategies have shown limited effectiveness. Despite its impact on agriculture, molecular mechanisms involved in the interaction with host plant remains poorly understood. Nevertheless, it has been proven that fungal pathogens secrete a variety of proteins and metabolites to successfully infect their host plants. In this study, a proteomic analysis of proteins secreted by M. phaseolina in culture media supplemented with soybean leaf infusion was performed. A total of 250 proteins were identified with a predominance of hydrolytic enzymes. Plant cell wall degrading enzymes together peptidases were found, probably involved in the infection process. Predicted effector proteins were also found that could induce plant cell death or suppress plant immune response. Some of the putative effectors presented similarities to known fungal virulence factors. Expression analysis of ten selected protein-coding genes showed that these genes are induced during host tissue infection and suggested their participation in the infection process. The identification of secreted proteins of M. phaseolina could be used to improve the understanding of the biology and pathogenesis of this fungus. Although leaf infusion was able to induce changes at the proteome level, it is necessary to study the changes induced under conditions that mimic the natural infection process of the soil-borne pathogen M. phaseolina to identify virulence factors.
Collapse
Affiliation(s)
- Amiliana Pineda-Fretez
- Department of Chemical Biology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Adriana Orrego
- Department of Biotechnology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Julio César Masaru Iehisa
- Department of Biotechnology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.
| | - María Eugenia Flores-Giubi
- Department of Chemical Biology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Javier E Barúa
- Department of Chemical Biology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Rosa Sánchez-Lucas
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Jesús Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014, Cordoba, Spain
| | | |
Collapse
|
9
|
Pectate Lyase Genes Abundantly Expressed During the Infection Regulate Morphological Development of Colletotrichum camelliae and CcPEL16 Is Required for Full Virulence to Tea Plants. mSphere 2023; 8:e0067722. [PMID: 36692304 PMCID: PMC9942558 DOI: 10.1128/msphere.00677-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Colletotrichum camelliae is the dominant species causing foliar diseases of tea plants (Camellia sinensis) in China. Transcriptome data and reverse transcription-quantitative PCR (qRT-PCR) analysis have demonstrated that the pectate lyase genes in C. camelliae (CcPELs) were significantly upregulated during infectious development on tea plants (cv. Longjing43). To further evaluate the biological functions of CcPELs, we established a polyethylene glycol (PEG)-mediated protoplast transformation system of C. camelliae and generated targeted deletion mutants of seven CcPELs. Phenotypic assays showed that the genes contribute to mycelial growth, conidiation, and appressorium development. The polypeptides encoded by each CcPEL gene contained a predicted N-terminal signal peptide, and a yeast invertase secretion assay suggested that each CcPEL protein could be secreted. Cell death-suppressive activity assays confirmed that all seven CcPELs did not suppress Bax-induced cell death in tobacco leaf cells. However, deletion of CcPEL16 significantly reduced necrotic lesions on tea leaves. Taken together, these results indicated that CcPELs play essential roles in regulating morphological development, and CcPEL16 is required for full virulence in C. camelliae. IMPORTANCE In this study, we first established a PEG-mediated protoplast transformation system of C. camelliae and used it to investigate the biological functions of seven pectate lyase genes (CcPELs) which were abundantly expressed during infection. The results provided insights into the contributions of pectate lyase to mycelial growth, conidial production, appressorium formation, and the pathogenicity of C. camelliae. We also confirmed the secretory function of CcPEL proteins and their role in suppressing Bax-induced cell death. Overall, this study provides an effective method for generating gene-deletion transformants in C. camelliae and broadens our understanding of pectate lyase in regulating morphological development and pathogenicity.
Collapse
|
10
|
Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. STRESSES 2023. [DOI: 10.3390/stresses3010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruit diseases brought on by fungus infestation leads to postharvest losses of fresh fruit. Approximately 30% of harvested fruits do not reach consumers’ plates due to postharvest losses. Fungal pathogens play a substantial part in those losses, as they cause the majority of fruit rots and consumer complaints. Understanding fungal pathogenic processes and control measures is crucial for developing disease prevention and treatment strategies. In this review, we covered the presented pathogen entry, environmental conditions for pathogenesis, fruit’s response to pathogen attack, molecular mechanisms by which fungi infect fruits in the postharvest phase, production of mycotoxin, virulence factors, fungal genes involved in pathogenesis, and recent strategies for protecting fruit from fungal attack. Then, in order to investigate new avenues for ensuring fruit production, existing fungal management strategies were then assessed based on their mechanisms for altering the infection process. The goal of this review is to bridge the knowledge gap between the mechanisms of fungal disease progression and numerous disease control strategies being developed for fruit farming.
Collapse
|
11
|
Liu W, Han L, Chen J, Liang X, Wang B, Gleason ML, Zhang R, Sun G. The CfMcm1 Regulates Pathogenicity, Conidium Germination, and Sexual Development in Colletotrichum fructicola. PHYTOPATHOLOGY 2022; 112:2159-2173. [PMID: 35502927 DOI: 10.1094/phyto-03-22-0090-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a severe disease worldwide on apple, causing defoliation, leaf and fruit spot, and substantial yield loss. However, little is known about its molecular mechanisms of pathogenesis. Previous transcriptome analysis revealed that a transcription factor, CfMcm1, was induced during leaf infection. In the present work, expression pattern analysis verified that the CfMcm1 gene was strongly expressed in conidia and early infection. Phenotypic analysis revealed that the gene deletion mutant ΔCfMcm1 lost pathogenicity to apple leaves by inhibiting conidial germination and appressorium formation. In addition to appressorium-mediated pathogenicity, ΔCfMcm1 colonization and hyphal extension in wounded apple fruit was also reduced, and conidial germination mode and conidial color were altered. ΔCfMcm1 displayed impairment of cell wall integrity and response to stress caused by oxidation, osmosis, and an acid environment. Furthermore, the deletion mutant produced fewer and smaller perithecia and no ascospores. In contrast, melanin deposition in mycelia of ΔCfMcm1 was strengthened. Further comparative transcriptome and quantitative PCR analysis revealed that CfMcm1 modulated expression of genes related to conidial development (CfERG5A, CfERG5B, CfHik5, and CfAbaA), appressorium formation (CfCBP1 and CfCHS7), pectin degradation (CfPelA and CfPelB), sexual development (CfMYB, CfFork, CfHMG, and CfMAT1-2-1), and melanin biosynthesis (CfCmr1, CfPKS1, CfT4HR1, CfTHR1, and CfSCD1). Our results demonstrated that CfMcm1 is a pivotal regulator possessing multiple functions in pathogenicity, asexual and sexual reproduction, and melanin biosynthesis.
Collapse
Affiliation(s)
- Wenkui Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Lu Han
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Jinzhu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
12
|
Hypovirulence of Colletotrichum gloesporioides Associated with dsRNA Mycovirus Isolated from a Mango Orchard in Thailand. Viruses 2022; 14:v14091921. [PMID: 36146727 PMCID: PMC9504431 DOI: 10.3390/v14091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
The pathogenic fungus Colletotrichum gloeosporioides causes anthracnose disease, which is an important fungal disease affecting the production of numerous crops around the world. The presence of mycoviruses, however, may have an impact on the pathogenicity of the fungal host. Here, we describe a double-stranded RNA (dsRNA) mycovirus, which was isolated from a field strain of C. gloeosporioides, Ssa-44.1. The 2939 bp genome sequence comprises two open reading frames (ORFs) that encode for a putative protein and RNA-dependent RNA polymerase (RdRp). The Ssa-44.1 mycovirus is a member of the unclassified mycovirus family named Colletotrichum gloeosporioides RNA virus 1 strain Ssa-44.1 (CgRV1-Ssa-44.1), which has a phylogenetic similarity to Colletotrichum gleosporioides RNA virus 1 (CgRV1), which was isolated from citrus leaves in China. In C. gloeosporioides, CgRV1-Ssa-44.1 was shown to be linked to hypovirulence. CgRV1-Ssa-44.1 has a low spore transfer efficiency but can successfully spread horizontally to isogenic virus-free isolates. Furthermore, CgRV1-Ssa-44.1 had a strong biological control impact on C. gloeosporioides on mango plants. This study is the first to describe a hypovirulence-associated mycovirus infecting C. gloeosporioides, which has the potential to assist with anthracnose disease biological management.
Collapse
|
13
|
Chen X, Luo M, Wu W, Dong Z, Zou H. Virulence-Associated Genes of Calonectria ilicola, Responsible for Cylindrocladium Black Rot. J Fungi (Basel) 2022; 8:jof8080869. [PMID: 36012857 PMCID: PMC9410443 DOI: 10.3390/jof8080869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Cylindrocladium black rot caused by Calonectria ilicicola is a destructive disease affecting a broad range of crops. Herein, we study virulence-associated genes of C. ilicicolaCi14017 isolated from diseased peanut roots (Arachis hypogaea L.). Ci14017 was identified via phylogenetic analysis of the internal transcribed spacer region and standard Koch’s postulate testing. Virulence-associated genes were based on genome analyses and comparative analysis of transcriptome and proteome profiles of sensitive and resistant peanut cultivars. Ci14017 identified as C. ilicicola has a 66 Mb chromosome with 18,366 predicted protein-coding genes. Overall, 46 virulence-associated genes with enhanced expression levels in the sensitive cultivars were identified. Sequence analysis indicated that the 46 gene products included two merops proteins, eight carbohydrate-active enzymes, seven cytochrome P450 enzymes, eight lipases, and 20 proteins with multi-conserved enzyme domains. The results indicate a complex infection mechanism employed by Ci14017 for causing Cylindrocladium black rot in peanuts.
Collapse
Affiliation(s)
- Xinyu Chen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wei Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (Z.D.); (H.Z.); Tel.: +86-020-89-0031-92 (Z.D.); Tel.: +86-591-837-8469 (H.Z.)
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (H.Z.); Tel.: +86-020-89-0031-92 (Z.D.); Tel.: +86-591-837-8469 (H.Z.)
| |
Collapse
|
14
|
Chen J, Han S, Li S, Wang M, Zhu H, Qiao T, Lin T, Zhu T. Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Neofusicoccum parvum in Walnut. Front Microbiol 2022; 13:926620. [PMID: 35910616 PMCID: PMC9335079 DOI: 10.3389/fmicb.2022.926620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
Neofusicoccum parvum can cause stem and branch blight of walnut (Juglans spp.), resulting in great economic losses and ecological damage. A total of two strains of N. parvum were subjected to RNA-sequencing after being fed on different substrates, sterile water (K1/K2), and walnut (T1/T2), and the function of ABC1 was verified by gene knockout. There were 1,834, 338, and 878 differentially expressed genes (DEGs) between the K1 vs. K2, T1 vs. K1, and T2 vs. K2 comparison groups, respectively. The expression changes in thirty DEGs were verified by fluorescent quantitative PCR. These thirty DEGs showed the same expression patterns under both RNA-seq and PCR. In addition, ΔNpABC1 showed weaker virulence due to gene knockout, and the complementary strain NpABC1c showed the same virulence as the wild-type strain. Compared to the wild-type and complemented strains, the relative growth of ΔNpABC1 was significantly decreased when grown with H2O2, NaCl, Congo red, chloramphenicol, MnSO4, and CuSO4. The disease index of walnuts infected by the mutants was significantly lower than those infected by the wild-type and complementary strains. This result indicates that ABC1 gene is required for the stress response and virulence of N. parvum and may be involved in heavy metal resistance.
Collapse
Affiliation(s)
- Jie Chen
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Ming Wang
- Ecological Institute, Academy of Sichuan Forestry and Grassland Inventory and Planning, Chengdu, China
| | - Hanmingyue Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianmin Qiao
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Wang M, Ji Z, Yan H, Xu J, Zhao X, Zhou Z. Effector Sntf2 Interacted with Chloroplast-Related Protein Mdycf39 Promoting the Colonization of Colletotrichum gloeosporioides in Apple Leaf. Int J Mol Sci 2022; 23:ijms23126379. [PMID: 35742821 PMCID: PMC9224526 DOI: 10.3390/ijms23126379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022] Open
Abstract
Glomerella leaf spot of apple, caused by Colletotrichumgloeosporioides, is a devastating disease that leads to severe defoliation and fruit spots. The Colletotrichum species secretes a series of effectors to manipulate the host’s immune response, facilitating its colonization in plants. However, the mechanism by which the effector of C. gloeosporioides inhibits the defenses of the host remains unclear. In this study, we reported a novel effector Sntf2 of C. gloeosporioides. The transient expression of SNTF2 inhibits BAX-induced cell death in tobacco plants. Sntf2 suppresses plant defense responses by reducing callose deposition and H2O2 accumulation. SNTF2 is upregulated during infection, and its deletion reduces virulence to the plant. Sntf2 is localized to the chloroplasts and interacts with Mdycf39 (a chloroplast PSII assembly factor) in apple leaves. The Mdycf39 overexpression line increases susceptibility to C. gloeosporioides, whereas the Mdycf39 transgenic silent line does not grow normally with pale white leaves, indicating that Sntf2 disturbs plant defense responses and growth by targeting Mdycf39.
Collapse
|
16
|
Prasanth CN, Viswanathan R, Malathi P, Sundar AR. Carbohydrate active enzymes (CAZy) regulate cellulolytic and pectinolytic enzymes in Colletotrichum falcatum causing red rot in sugarcane. 3 Biotech 2022; 12:48. [PMID: 35127303 PMCID: PMC8787009 DOI: 10.1007/s13205-022-03113-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Colletotrichum falcatum, an ascomycete pathogen causes red rot of sugarcane which is specialized to infect cane stalks. Cellulolytic and pectinolytic enzymes are necessary for degradation of plant cell wall which stands as barrier for successful fungal pathogenesis. In the study, we have confined to the CAZy genes that regulate cellulolytic and pectinolytic enzymes in two distinctive pathotypes of C. falcatum. Comparative transcriptome analysis revealed that a number of CAZy genes producing cellulolytic and pectinolytic enzyme were present in the virulent (Cf671) and least virulent (RoC) pathotypes. Two consecutive transcriptome analyses (in vitro) were performed using Illumina Hi Seq 2500, further analysis was done with various bioinformatic tools. In vitro expression analysis of cutinase, glycoside hydrolyase and pectin-related genes revealed number of genes that attributes virulence. Numerous pectin-related genes involved in degradation of plant cell wall, pectinase and pectin lyase are considered to be key precursor in degradation of pectin in sugarcane. These results suggest that cellulolytic enzymes, cutinase and pectin-related genes are essential for degradation of sugarcane cell wall and considered to be an important pathogenic factor in C. falcatum. This is the first detailed report on sugarcane cell wall-degrading enzymes during its interaction with C. falcatum and also this comparative transcriptome analysis provided more insights into pathogen mechanism on C. falcatum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03113-6.
Collapse
Affiliation(s)
- C. Naveen Prasanth
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Tamil Nadu, Coimbatore, 641007 India
| | - R. Viswanathan
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Tamil Nadu, Coimbatore, 641007 India
| | - P. Malathi
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Tamil Nadu, Coimbatore, 641007 India
| | - A. Ramesh Sundar
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Tamil Nadu, Coimbatore, 641007 India
| |
Collapse
|
17
|
Wang M, Wang LS, Fang JN, Du GC, Zhang TT, Li RG. Transcriptomic Profiling of Bursaphelenchus xylophilus Reveals Differentially Expressed Genes in Response to Ethanol. Mol Biochem Parasitol 2022; 248:111460. [DOI: 10.1016/j.molbiopara.2022.111460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/18/2023]
|
18
|
Anand G, Rajeshkumar KC. Challenges and Threats Posed by Plant Pathogenic Fungi on Agricultural Productivity and Economy. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Achari SR, Edwards J, Mann RC, Kaur JK, Sawbridge T, Summerell BA. Comparative transcriptomic analysis of races 1, 2, 5 and 6 of Fusarium oxysporum f.sp. pisi in a susceptible pea host identifies differential pathogenicity profiles. BMC Genomics 2021; 22:734. [PMID: 34627148 PMCID: PMC8502283 DOI: 10.1186/s12864-021-08033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.
Collapse
Affiliation(s)
- Saidi R Achari
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Jacqueline Edwards
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Ross C Mann
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Jatinder K Kaur
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Tim Sawbridge
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, NSW, Australia
| |
Collapse
|
20
|
Zhang J, Yu X, Zhang C, Zhang Q, Sun Y, Zhu H, Tang C. Pectin lyase enhances cotton resistance to Verticillium wilt by inducing cell apoptosis of Verticillium dahliae. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124029. [PMID: 33068990 DOI: 10.1016/j.jhazmat.2020.124029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae Kleb. is a major disease in cotton. We found that pectin lyase can enhance cotton resistance to Verticillium wilt and induce cell apoptosis of V. dahliae strain Vd080. The biocontrol effect of pectin lyase on Vd080 reached 61.9%. Pectin lyase increased ERG4 (Delta (24 (24 (1)))-sterol reductase) expression, the ergosterol content of the cell membrane, the collapse of mitochondrial membrane potential, hydrogen peroxide content, metacaspase activity, and Ca2+ content in the cytoplasm in the Vd080 strain and induced endoplasmic reticulum (ER) stress. Pectin lyase also increased the expression levels of the ER molecular chaperone glucose regulating protein Grp78 (BiP), protein disulfide isomerase (PDI) and calnexin (CNX), reduced the expression levels of the protein Hsp40. When the PDI and BiP genes of Vd080 were knocked out, the mutants △BiP and △PDI had reduced sensitivity to pectin lyase. In the absence of external stress, ER stress appeared in mutant △BiP cells. Pectin lyase affects the ergosterol content of the Vd080 cell membrane, which causes ER stress and increases the level of BiP to induce Vd080 cell apoptosis. These results demonstrate that pectin lyase can be used to control Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xinru Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Qiong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ying Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China.
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
21
|
Plaza V, Silva-Moreno E, Castillo L. Breakpoint: Cell Wall and Glycoproteins and their Crucial Role in the Phytopathogenic Fungi Infection. Curr Protein Pept Sci 2021; 21:227-244. [PMID: 31490745 DOI: 10.2174/1389203720666190906165111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023]
Abstract
The cell wall that surrounds fungal cells is essential for their survival, provides protection against physical and chemical stresses, and plays relevant roles during infection. In general, the fungal cell wall is composed of an outer layer of glycoprotein and an inner skeletal layer of β-glucans or α- glucans and chitin. Chitin synthase genes have been shown to be important for septum formation, cell division and virulence. In the same way, chitin can act as a potent elicitor to activate defense response in several plant species; however, the fungi can convert chitin to chitosan during plant infection to evade plant defense mechanisms. Moreover, α-1,3-Glucan, a non-degradable polysaccharide in plants, represents a key feature in fungal cell walls formed in plants and plays a protective role for this fungus against plant lytic enzymes. A similar case is with β-1,3- and β-1,6-glucan which are essential for infection, structure rigidity and pathogenicity during fungal infection. Cell wall glycoproteins are also vital to fungi. They have been associated with conidial separation, the increase of chitin in conidial cell walls, germination, appressorium formation, as well as osmotic and cell wall stress and virulence; however, the specific roles of glycoproteins in filamentous fungi remain unknown. Fungi that can respond to environmental stimuli distinguish these signals and relay them through intracellular signaling pathways to change the cell wall composition. They play a crucial role in appressorium formation and penetration, and release cell wall degrading enzymes, which determine the outcome of the interaction with the host. In this review, we highlight the interaction of phypatophogen cell wall and signaling pathways with its host and their contribution to fungal pathogenesis.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Evelyn Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Temuco, Chile
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
22
|
Zhao X, Tang B, Xu J, Wang N, Zhou Z, Zhang J. A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides. Fungal Genet Biol 2020; 145:103474. [PMID: 33007450 DOI: 10.1016/j.fgb.2020.103474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022]
Abstract
The chromatin modulator Set5 plays important regulatory roles in both cell growth and stress responses of Saccharomyces cerevisiae. However, its function in filamentous fungi remains poorly understood. Here, we report the pathogenicity-related gene CgSET5 discovered in a T-DNA insertional mutant M285 of Colletotrichum gloeosporioides. Bioinformatic analysis revealed that CgSET5 encodes a SET domain-containing protein that is a homolog of the budding yeast S. cerevisiae Set5. CgSET5 is important for hyphae growth and conidiation and is necessary for appressorium formation and pathogenicity. CgSet5 regulates appressorium formation in a mitogen-activated protein kinase-independent manner. Inactivation of CgSET5 resulted in a significant reduction in chitin content within the cell wall, indicating CgSet5 plays a vital role in cell wall integrity. CgSet5 is involved in peroxisome biogenesis. We identified CgSet5 as the histone H4 methyltransferase, which methylates the critical H4 lysine residues 5 and 8 in C. gloeosporioides. We carried out a yeast two-hybrid screen to find CgSet5 interacting partners. We found CgSet5 putatively interacts with an inorganic pyrophosphatase named CgPpa1, which co-localized in the cytoplasm with CgSet5. Finally, CgPpa1 was found to strongly interact with CgSet5 in vivo during appressorium formation by bimolecular fluorescence complementation assays. These data corroborate a complex control function of CgSet5 acting as a core pathogenic regulator, which connects cell wall integrity and peroxisome biogenesis in C. gloeosporioides.
Collapse
Affiliation(s)
- Xuanzhu Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, China
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park NR4 7UH, UK
| | - Jie Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Na Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Zongshan Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Junxiang Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, China.
| |
Collapse
|
23
|
Leonard M, Kühn A, Harting R, Maurus I, Nagel A, Starke J, Kusch H, Valerius O, Feussner K, Feussner I, Kaever A, Landesfeind M, Morgenstern B, Becher D, Hecker M, Braus-Stromeyer SA, Kronstad JW, Braus GH. Verticillium longisporum Elicits Media-Dependent Secretome Responses With Capacity to Distinguish Between Plant-Related Environments. Front Microbiol 2020; 11:1876. [PMID: 32849460 PMCID: PMC7423881 DOI: 10.3389/fmicb.2020.01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Verticillia cause a vascular wilt disease affecting a broad range of economically valuable crops. The fungus enters its host plants through the roots and colonizes the vascular system. It requires extracellular proteins for a successful plant colonization. The exoproteomes of the allodiploid Verticillium longisporum upon cultivation in different media or xylem sap extracted from its host plant Brassica napus were compared. Secreted fungal proteins were identified by label free liquid chromatography-tandem mass spectrometry screening. V. longisporum induced two main secretion patterns. One response pattern was elicited in various non-plant related environments. The second pattern includes the exoprotein responses to the plant-related media, pectin-rich simulated xylem medium and pure xylem sap, which exhibited similar but additional distinct features. These exoproteomes include a shared core set of 221 secreted and similarly enriched fungal proteins. The pectin-rich medium significantly induced the secretion of 143 proteins including a number of pectin degrading enzymes, whereas xylem sap triggered a smaller but unique fungal exoproteome pattern with 32 enriched proteins. The latter pattern included proteins with domains of known pathogenicity factors, metallopeptidases and carbohydrate-active enzymes. The most abundant proteins of these different groups are the necrosis and ethylene inducing-like proteins Nlp2 and Nlp3, the cerato-platanin proteins Cp1 and Cp2, the metallopeptidases Mep1 and Mep2 and the carbohydrate-active enzymes Gla1, Amy1 and Cbd1. Their pathogenicity contribution was analyzed in the haploid parental strain V. dahliae. Deletion of the majority of the corresponding genes caused no phenotypic changes during ex planta growth or invasion and colonization of tomato plants. However, we discovered that the MEP1, NLP2, and NLP3 deletion strains were compromised in plant infections. Overall, our exoproteome approach revealed that the fungus induces specific secretion responses in different environments. The fungus has a general response to non-plant related media whereas it is able to fine-tune its exoproteome in the presence of plant material. Importantly, the xylem sap-specific exoproteome pinpointed Nlp2 and Nlp3 as single effectors required for successful V. dahliae colonization.
Collapse
Affiliation(s)
- Miriam Leonard
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Burkhard Morgenstern
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Dörte Becher
- Department Microbial Proteomics, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Khodadadi F, González JB, Martin PL, Giroux E, Bilodeau GJ, Peter KA, Doyle VP, Aćimović SG. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov. Sci Rep 2020; 10:11043. [PMID: 32632221 PMCID: PMC7338416 DOI: 10.1038/s41598-020-66761-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
Apple bitter rot caused by Colletotrichum species is a growing problem worldwide. Colletotrichum spp. are economically important but taxonomically un-resolved. Identification of Colletotrichum spp. is critical due to potential species-level differences in pathogenicity-related characteristics. A 400-isolate collection from New York apple orchards were morphologically assorted to two groups, C. acutatum species complex (CASC) and C. gloeosporioides species complex (CGSC). A sub-sample of 44 representative isolates, spanning the geographical distribution and apple varieties, were assigned to species based on multi-locus phylogenetic analyses of nrITS, GAPDH and TUB2 for CASC, and ITS, GAPDH, CAL, ACT, TUB2, APN2, ApMat and GS genes for CGSC. The dominant species was C. fioriniae, followed by C. chrysophilum and a novel species, C. noveboracense, described in this study. This study represents the first report of C. chrysophilum and C. noveboracense as pathogens of apple. We assessed the enzyme activity and fungicide sensitivity for isolates identified in New York. All isolates showed amylolytic, cellulolytic and lipolytic, but not proteolytic activity. C. chrysophilum showed the highest cellulase and the lowest lipase activity, while C. noveboracense had the highest amylase activity. Fungicide assays showed that C. fioriniae was sensitive to benzovindiflupyr and thiabendazole, while C. chrysophilum and C. noveboracense were sensitive to fludioxonil, pyraclostrobin and difenoconazole. All species were pathogenic on apple fruit with varying lesion sizes. Our findings of differing pathogenicity-related characteristics among the three species demonstrate the importance of accurate species identification for any downstream investigations of Colletotrichum spp. in major apple growing regions.
Collapse
Affiliation(s)
- Fatemeh Khodadadi
- Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Hudson Valley Research Laboratory, Highland, NY, USA
| | - Jonathan B González
- Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Ithaca, NY, USA
| | - Phillip L Martin
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA, USA
| | - Emily Giroux
- Pathogen Identification Research Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Guillaume J Bilodeau
- Pathogen Identification Research Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Kari A Peter
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA, USA
| | - Vinson P Doyle
- Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, USA
| | - Srđan G Aćimović
- Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Hudson Valley Research Laboratory, Highland, NY, USA.
| |
Collapse
|
25
|
Jeffress S, Arun-Chinnappa K, Stodart B, Vaghefi N, Tan YP, Ash G. Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters. PLoS One 2020; 15:e0227396. [PMID: 32469865 PMCID: PMC7259788 DOI: 10.1371/journal.pone.0227396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.
Collapse
Affiliation(s)
- Sarah Jeffress
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Ben Stodart
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Gavin Ash
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
26
|
Tapia Rodríguez A, Ramírez Dávila JF, Salgado Siclán ML, Castañeda Vildózola Á, Maldonado Zamora FI, Lara Díaz AV. [Spatial distribution of anthracnose (Colletotrichum gloeosporioides Penz) in avocado in the State of Mexico, Mexico]. Rev Argent Microbiol 2020; 52:72-81. [PMID: 31926749 DOI: 10.1016/j.ram.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/29/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022] Open
Abstract
Persea americana is a species of great nutritional and economic importance for Mexico, however, like any other agricultural crop, it is affected by pests and diseases that limit its worldwide commercialization. The phytopathogenic fungus Colletotrichum gloeosporioides is the causative agent of anthracnose in avocado and manifests itself in the early stages of fruit development as well as in post-harvest and storage, under conditions of high relative humidity (80%) and at temperatures from 20°C, causing losses economic up to 20% of production. Applying geostatistical methods the present study aims to define the spatial distribution of anthracnose in Hass avocado fruits in four municipalities of the State of Mexico during the period from January to June 2017. The results show that the distribution of anthracnose was adjusted to gaussian and exponential models in most, the infestation maps made through the kriging show more than one center of aggregation of the disease, based on it the infested surface was estimated, finding an infestation of more than 50% in the first samples and up to 98% in the samplings belonging to the month of June in all the areas studied.
Collapse
Affiliation(s)
- Atenas Tapia Rodríguez
- Ciencias Agropecuarias en Recursos Naturales, Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México
| | | | | | | | | | - Ana V Lara Díaz
- Ciencias Agropecuarias en Recursos Naturales, Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México
| |
Collapse
|
27
|
Huang Y, Li B, Yin J, Yang Q, Sheng O, Deng G, Li C, Hu C, Dong T, Dou T, Gao H, Bi F, Yi G. CgGCS, Encoding a Glucosylceramide Synthase, Is Required for Growth, Conidiation and Pathogenicity in Colletotrichum gloeosporioides. Front Microbiol 2019; 10:1016. [PMID: 31164871 PMCID: PMC6536669 DOI: 10.3389/fmicb.2019.01016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 01/11/2023] Open
Abstract
Fungal glucosylceramide plays important role in cell division, hyphal formation and growth, spore germination and the modulation of virulence and has recently been considered as target for small molecule inhibitors. In this study, we characterized CgGCS, a protein encoding a glucosylceramide synthase (GCS) in Colletotrichum gloeosporioides. Disruption of CgGCS resulted in a severe reduction of mycelial growth and defects in conidiogenesis. Sphingolipid profile analysis revealed large decreases in glucosylceramide production in the mutant strains. Pathogenicity assays indicated that the ability of the ΔCgGCS mutants to invade both tomato and mango hosts was almost lost. In addition, the expression levels of many genes, especially those related to metabolism, were shown to be affected by the mutation of CgGCS via transcriptome analysis. Overall, our results demonstrate that C. gloeosporioides glucosylceramide is an important regulatory factor in fungal growth, conidiation, and pathogenesis in hosts.
Collapse
Affiliation(s)
- Yimei Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China.,College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jian Yin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| |
Collapse
|
28
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
29
|
Atanasova L, Dubey M, Grujić M, Gudmundsson M, Lorenz C, Sandgren M, Kubicek CP, Jensen DF, Karlsson M. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol 2018; 18:178. [PMID: 30404596 PMCID: PMC6223089 DOI: 10.1186/s12866-018-1310-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Pectin is one of the major and most complex plant cell wall components that needs to be overcome by microorganisms as part of their strategies for plant invasion or nutrition. Microbial pectinolytic enzymes therefore play a significant role for plant-associated microorganisms and for the decomposition and recycling of plant organic matter. Recently, comparative studies revealed significant gene copy number expansion of the polysaccharide lyase 1 (PL1) pectin/pectate lyase gene family in the Clonostachys rosea genome, while only low numbers were found in Trichoderma species. Both of these fungal genera are widely known for their ability to parasitize and kill other fungi (mycoparasitism) and certain species are thus used for biocontrol of plant pathogenic fungi. Results In order to understand the role of the high number of pectin degrading enzymes in Clonostachys, we studied diversity and evolution of the PL1 gene family in C. rosea compared with other Sordariomycetes with varying nutritional life styles. Out of 17 members of C. rosea PL1, we could only detect two to be secreted at acidic pH. One of them, the pectate lyase pel12 gene was found to be strongly induced by pectin and, to a lower degree, by polygalacturonic acid. Heterologous expression of the PEL12 in a PL1-free background of T. reesei revealed direct enzymatic involvement of this protein in utilization of pectin at pH 5 without a requirement for Ca2+. The mutants showed increased utilization of pectin compounds, but did not increase biocontrol ability in detached leaf assay against the plant pathogen Botrytis cinerea compared to the wild type. Conclusions In this study, we aimed to gain insight into diversity and evolution of the PL1 gene family in C. rosea and other Sordariomycete species in relation to their nutritional modes. We show that C. rosea PL1 expansion does not correlate with its mycoparasitic nutritional mode and resembles those of strong plant pathogenic fungi. We further investigated regulation, specificity and function of the C. rosea PEL12 and show that this enzyme is directly involved in degradation of pectin and pectin-related compounds, but not in C. rosea biocontrol. Electronic supplementary material The online version of this article (10.1186/s12866-018-1310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lea Atanasova
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden. .,Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria. .,Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| | - Mukesh Dubey
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Marica Grujić
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria
| | - Mikael Gudmundsson
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Cindy Lorenz
- Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Mats Sandgren
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Christian P Kubicek
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria.,, Present address: Steinschötelgasse 7, 1100, Vienna, Austria
| | - Dan Funck Jensen
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| |
Collapse
|
30
|
Yang Y, Yang X, Dong Y, Qiu D. The Botrytis cinerea Xylanase BcXyl1 Modulates Plant Immunity. Front Microbiol 2018; 9:2535. [PMID: 30405585 PMCID: PMC6206051 DOI: 10.3389/fmicb.2018.02535] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Botrytis cinerea is one of the most notorious pathogenic species that causes serious plant diseases and substantial losses in agriculture throughout the world. We identified BcXyl1 from B. cinerea that exhibited xylanase activity. Expression of the BcXyl1 gene was strongly induced in B. cinerea infecting Nicotiana benthamiana and tomato plants, and BcXyl1 deletion strains severely compromised the virulence of B. cinerea. BcXyl1 induced strong cell death in several plants, and cell death activity of BcXyl1 was independent of its xylanase activity. Purified BcXyl1 triggered typically PAMP-triggered immunity (PTI) responses and conferred resistance to B. cinerea and TMV in tobacco and tomato plants. A 26-amino acid peptide of BcXyl1 was sufficient for elicitor function. Furthermore, the BcXyl1 death-inducing signal was mediated by the plant LRR receptor-like kinases (RLKs) BAK1 and SOBIR1. Our data suggested that BcXyl1 contributed to B. cinerea virulence and induced plant defense responses.
Collapse
Affiliation(s)
- Yuankun Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijie Dong
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Velho AC, Mondino P, Stadnik MJ. Extracellular enzymes of Colletotrichum fructicola isolates associated to Apple bitter rot and Glomerella leaf spot. Mycology 2018; 9:145-154. [PMID: 30123670 PMCID: PMC6059057 DOI: 10.1080/21501203.2018.1464525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Colletotrichum fructicola causes two important diseases on apple in Southern Brazil, bitter rot (ABR) and Glomerella leaf spot (GLS). In this pathosystem, the Colletotrichum ability to cause different symptoms could be related to differences of extracellular enzymes produced by the fungi. Thus, the objectives of this study were to compare the production of these enzymes between ABR- and GLS-isolate in vitro and to evaluate their involvement on infected apple leaves with C. fructicola. In agar plate enzymatic assay, ABR- showed significantly higher amylolytic and pectolytic activity than GLS-isolate. In contrast, for lipolytic and proteolytic no significant differences were observed between isolates. In culture broth, ABR-isolate also had higher activity of pectin lyase (PNL), polygalacturonase (PG) and laccase (LAC). Notably, LAC was significantly five-fold higher in ABR- than GLS-isolate. On the other hand, in infected apple leaves no significant difference was observed between isolates for PNL, PG and LAC. Although differences in extracellular enzymes of ABR- and GLS-isolate have not been observed in vivo, these results contributed to highlight the importance to investigate such enzymes in depth.
Collapse
Affiliation(s)
- Aline Cristina Velho
- Laboratory of Plant Pathology, Agricultural Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro Mondino
- Department of Plant Protection, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Marciel J. Stadnik
- Laboratory of Plant Pathology, Agricultural Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
32
|
Pandey V, Singh M, Pandey D, Marla S, Kumar A. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat. Proteomics 2018; 18:e1700473. [PMID: 29508525 DOI: 10.1002/pmic.201700473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/22/2018] [Indexed: 11/07/2022]
Abstract
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies.
Collapse
Affiliation(s)
- Vishakha Pandey
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| | - Manoj Singh
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| | - Soma Marla
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| |
Collapse
|
33
|
Yang Y, Zhang Y, Li B, Yang X, Dong Y, Qiu D. A Verticillium dahliae Pectate Lyase Induces Plant Immune Responses and Contributes to Virulence. FRONTIERS IN PLANT SCIENCE 2018; 9:1271. [PMID: 30271415 PMCID: PMC6146025 DOI: 10.3389/fpls.2018.01271] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/14/2018] [Indexed: 05/13/2023]
Abstract
Verticillium dahliae is a wide-host-range fungal pathogen that causes soil-borne disease in hundreds of dicotyledonous hosts. In search of V. dahliae Vd991 cell death-inducing proteins, we identified a pectate lyase (VdPEL1) that exhibited pectin hydrolytic activity, which could induce strong cell death in several plants. Purified VdPEL1 triggered defense responses and conferred resistance to Botrytis cinerea and V. dahliae in tobacco and cotton plants. Our results demonstrated that the mutant VdPEL1rec lacking the enzymatic activity lacked functions to induce both cell death and plant resistance, implying that the enzymatic activity was necessary. In addition, VdPEL1 was strongly induced in V. dahliae infected Nicotiana benthamiana and cotton roots, and VdPEL1 deletion strains severely compromised the virulence of V. dahliae. Our data suggested that VdPEL1 contributed to V. dahliae virulence and induced plant defense responses. These findings provide a new insight for the function of pectate lyase in the host-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Dewen Qiu
- *Correspondence: Yijie Dong, Dewen Qiu,
| |
Collapse
|
34
|
Barad S, Sela N, Dubey AK, Kumar D, Luria N, Ment D, Cohen S, Schaffer AA, Prusky D. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH. BMC Genomics 2017; 18:579. [PMID: 28778147 PMCID: PMC5545021 DOI: 10.1186/s12864-017-3961-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/25/2017] [Indexed: 01/15/2023] Open
Abstract
Background The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi–SlPH tomato lines was sequenced and gene-expression patterns were compared. Results C. gloeosporioides inoculation of the RNAi–SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi–SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi–SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi–SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi–SlPH tomato, it mainly upregulates the nitrate metabolic process. Conclusions Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi–SlPH fruit, and limited colonization on the WT acidic fruit. The change in environmental pH resulted in different defense responses for the two tomato lines. Interestingly, the WT line showed upregulation of jasmonate pathways and glutamate accumulation, supporting the reduced symptom development and increased ammonia accumulation, as the fungus might utilize glutamate to accumulate ammonia and increase environmental pH for better expression of pathogenicity factors. This was not found in the RNAi–SlPH line which downregulated sugar metabolism and upregulated the phenylpropanoid pathway, leading to host susceptibility. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3961-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, 7505101, Rishon LeZion, Israel.,Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, the Volcani Center, 50250, Bet Dagan, Israel
| | - Amit K Dubey
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, 7505101, Rishon LeZion, Israel
| | - Dilip Kumar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, 7505101, Rishon LeZion, Israel
| | - Neta Luria
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, 7505101, Rishon LeZion, Israel
| | - Dana Ment
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, 7505101, Rishon LeZion, Israel
| | - Shahar Cohen
- Department of Plant Sciences, Agricultural Research Organization, the Volcani Center, 50250, Bet Dagan, Israel
| | - Arthur A Schaffer
- Department of Plant Sciences, Agricultural Research Organization, the Volcani Center, 50250, Bet Dagan, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
35
|
Zhou Z, Wu J, Wang M, Zhang J. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides. Microb Pathog 2017. [PMID: 28645773 DOI: 10.1016/j.micpath.2017.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ATP-binding cassette (ABC) proteins are exclusively found in both prokaryotes and eukaryotes. In this study, we have characterized a gene from Glomerella leaf spot pathogen Colletotrichum gloeosporioides that encodes an ABC protein, whose function to date remains unknown. We designated this gene as CgABCF2. Deletion of CgABCF2 showed drastic reduction both growing rate and conidial production in C. gloeosporioides. The Δcgabcf2 mutant did not form the appressoria, lost the capability to infect apple and failed to form lesions on the wounded leaves and fruits. The C. gloeosporioides native CgABCF2 fully recovered defect of the Δcgabcf2 mutant. These data indicated that CgABCF2 was required for fungal development and invasion. The transcriptions of six pectolytic enzymes genes (CgPG1, CgPG2, pnl-1, pnl-2, pelA and pelB) significantly reduced in the Δcgabcf2 mutant, indicating that deletion of CgABCF2 impaired the fungal necrotrophic growth. In addition, CgABCF2 mediated sexual development through the positive regulation of the gene MAT1-2-1 expression. These results indicated that CgABCF2 underlies the complex process governing morphogenesis, sexual and asexual reproduction, appressorial formation and pathogenicity in C. gloeosporioides.
Collapse
Affiliation(s)
- Zongshan Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Jianyuan Wu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Meiyu Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China
| | - Junxiang Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China.
| |
Collapse
|
36
|
Liu CQ, Hu KD, Li TT, Yang Y, Yang F, Li YH, Liu HP, Chen XY, Zhang H. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit. PLoS One 2017; 12:e0173277. [PMID: 28257463 PMCID: PMC5336277 DOI: 10.1371/journal.pone.0173277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/17/2017] [Indexed: 02/03/2023] Open
Abstract
Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit.
Collapse
Affiliation(s)
- Cheng-Qian Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Kang-Di Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Ting-Ting Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Ying Yang
- College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Yan-Hong Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
- Anhui Siping Food Development Co. Ltd., Tongling, China
| | - He-Ping Liu
- Anhui Siping Food Development Co. Ltd., Tongling, China
| | - Xiao-Yan Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Hua Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
- * E-mail:
| |
Collapse
|
37
|
Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0023-2016. [PMID: 28155813 PMCID: PMC11687436 DOI: 10.1128/microbiolspec.funk-0023-2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Bilal Ökmen
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
38
|
Cation-Stress-Responsive Transcription Factors SltA and CrzA Regulate Morphogenetic Processes and Pathogenicity of Colletotrichum gloeosporioides. PLoS One 2016; 11:e0168561. [PMID: 28030573 PMCID: PMC5193415 DOI: 10.1371/journal.pone.0168561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/02/2016] [Indexed: 11/24/2022] Open
Abstract
Growth of Colletotrichum gloeosporioides in the presence of cation salts NaCl and KCl inhibited fungal growth and anthracnose symptom of colonization. Previous reports indicate that adaptation of Aspergillus nidulans to salt- and osmotic-stress conditions revealed the role of zinc-finger transcription factors SltA and CrzA in cation homeostasis. Homologs of A. nidulans SltA and CrzA were identified in C. gloeosporioides. The C. gloeosporioides CrzA homolog is a 682-amino acid protein, which contains a C2H2 zinc finger DNA-binding domain that is highly conserved among CrzA proteins from yeast and filamentous fungi. The C. gloeosporioides SltA homolog encodes a 775-amino acid protein with strong similarity to A. nidulans SltA and Trichoderma reesei ACE1, and highest conservation in the three zinc-finger regions with almost no changes compared to ACE1 sequences. Knockout of C. gloeosporioides crzA (ΔcrzA) resulted in a phenotype with inhibited growth, sporulation, germination and appressorium formation, indicating the importance of this calciu006D-activated transcription factor in regulating these morphogenetic processes. In contrast, knockout of C. gloeosporioides sltA (ΔsltA) mainly inhibited appressorium formation. Both mutants had reduced pathogenicity on mango and avocado fruit. Inhibition of the different morphogenetic stages in the ΔcrzA mutant was accompanied by drastic inhibition of chitin synthase A and B and glucan synthase, which was partially restored with Ca2+ supplementation. Inhibition of appressorium formation in ΔsltA mutants was accompanied by downregulation of the MAP kinase pmk1 and carnitine acetyl transferase (cat1), genes involved in appressorium formation and colonization, which was restored by Ca2+ supplementation. Furthermore, exposure of C. gloeosporioides ΔcrzA or ΔsltA mutants to cations such as Na+, K+ and Li+ at concentrations that the wild type C. gloeosporioides is not affected had further adverse morphogenetic effects on C. gloeosporioides which were partially or fully restored by Ca2+. Overall results suggest that both genes modulating alkali cation homeostasis have significant morphogenetic effects that reduce C. gloeosporioides colonization.
Collapse
|
39
|
Bi F, Barad S, Ment D, Luria N, Dubey A, Casado V, Glam N, Mínguez JD, Espeso EA, Fluhr R, Prusky D. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2016; 17:1178-95. [PMID: 26666972 PMCID: PMC6638356 DOI: 10.1111/mpp.12355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 05/22/2023]
Abstract
Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens-Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum-secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high-carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host-dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization.
Collapse
Affiliation(s)
- Fangcheng Bi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, and Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Dana Ment
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Neta Luria
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Amit Dubey
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Virginia Casado
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Nofar Glam
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Jose Diaz Mínguez
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (C.I.B.), Madrid, 28040, Spain
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
40
|
Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. Int J Mol Sci 2016; 17:ijms17010125. [PMID: 26797602 PMCID: PMC4730366 DOI: 10.3390/ijms17010125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022] Open
Abstract
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytiscinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinusthunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001) after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD.
Collapse
|
41
|
Prusky DB, Bi F, Moral J, Barad S. How Does Host Carbon Concentration Modulate the Lifestyle of Postharvest Pathogens during Colonization? FRONTIERS IN PLANT SCIENCE 2016; 7:1306. [PMID: 27635125 PMCID: PMC5007722 DOI: 10.3389/fpls.2016.01306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/15/2016] [Indexed: 05/10/2023]
Abstract
Postharvest pathogens can penetrate fruit by breaching the cuticle or directly through wounds, and they show disease symptoms only long after infection. During ripening and senescence, the fruit undergo physiological processes accompanied by a decline in antifungal compounds, which allows the pathogen to activate a mechanism of secretion of small effector molecules that modulate host environmental pH. These result in the activation of genes under their optimal pH conditions, enabling the fungus to use a specific group of pathogenicity factors at each particular pH. New research suggests that carbon availability in the environment is a key factor triggering the production and secretion of small pH-modulating molecules: ammonia and organic acids. Ammonia is secreted under limited carbon and gluconic acid under excess carbon. This mini review describes our most recent knowledge of the mechanism of activation of pH-secreted molecules and their contribution to colonization by postharvest pathogens to facilitate the transition from quiescence to necrotrophic lifestyle.
Collapse
Affiliation(s)
- Dov B Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center Beit Dagan, Israel
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture Guangzhou, China
| | - Juan Moral
- Departamento de Agronomía, Universidad de Córdoba Córdoba, Spain
| | - Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center Beit Dagan, Israel
| |
Collapse
|
42
|
Fu L, Zhu C, Ding X, Yang X, Morris PF, Tyler BM, Zhang X. Characterization of Cell-Death-Inducing Members of the Pectate Lyase Gene Family in Phytophthora capsici and Their Contributions to Infection of Pepper. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:766-75. [PMID: 25775270 DOI: 10.1094/mpmi-11-14-0352-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pectate lyases (PL) play a critical role in pectin degradation. PL have been extensively studied in major bacterial and fungal pathogens of a wide range of plant species. However, the contribution of PL to infection by oomycete pathogens remains largely unknown. Here, we cloned 22 full-length pectate lyase (PcPL) genes from a highly aggressive strain of Phytophthora capsici SD33. Of these, PVX agroinfiltration revealed that 12 PcPL genes were found to be highly induced during infection of pepper by SD33 but the induction level was twofold less in a mildly aggressive strain, YN07. The four genes with the highest transcript levels as measured by by quantitative reverse-transcription polymerase chain reaction (PcPL1, PcPL15, PcPL16, and PcPL20) also produced a severe cell death response following transient expression in pepper leaves but the other eight PcPL genes did not. Overexpression of these four genes increased the virulence of SD33 on pepper slightly, and increased it more substantially during infection of tobacco. Overexpression of the genes in YN07 restored its aggressiveness to near that of SD33. Gene silencing experiments with the 12 PcPL genes produced diverse patterns of silencing of PcPL genes, from which it could be inferred from regression analysis that PcPL1, PcPL16, and PcPL20 could account for nearly all of the contributions of the PcPL genes to virulence.
Collapse
Affiliation(s)
- Li Fu
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Chunyuan Zhu
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Xiaomeng Ding
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Xiaoyan Yang
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Paul F Morris
- 2 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403 U.S.A
| | - Brett M Tyler
- 3 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, 97331, U.S.A
| | - Xiuguo Zhang
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| |
Collapse
|
43
|
Chou CM, Yu FY, Yu PL, Ho JF, Bostock RM, Chung KR, Huang JW, Lee MH. Expression of Five Endopolygalacturonase Genes and Demonstration that MfPG1 Overexpression Diminishes Virulence in the Brown Rot Pathogen Monilinia fructicola. PLoS One 2015; 10:e0132012. [PMID: 26120831 PMCID: PMC4488289 DOI: 10.1371/journal.pone.0132012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
Monilinia fructicola is a devastating pathogen on stone fruits, causing blossom blight and fruit rot. Little is known about pathogenic mechanisms in M. fructicola and related Monilinia species. In this study, five endopolygalacturonase (endo-PG) genes were cloned and functionally characterized in M. fructicola. Quantitative reverse-transcriptase PCR (qRT-PCR) revealed that the five MfPG genes are differentially expressed during pathogenesis and in culture under various pH regimes and carbon and nitrogen sources. MfPG1 encodes the major endo-PG and is expressed to significantly higher levels compared to the other four MfPGs in culture and in planta. MfPG1 function during pathogenesis was evaluated by examining the disease phenotypes and gene expression patterns in M. fructicola MfPG1-overexpressing strains and in strains carrying the β-glucuronidase (GUS) reporter gene fused with MfPG1 (MfPG1-GUS). The MFPG1-GUS reporter was expressed in situ in conidia and hyphae following inoculation of flower petals, and qRT-PCR analysis confirmed MfPG1 expression during pathogenesis. MfPG1-overexpressing strains produced smaller lesions and higher levels of reactive oxygen species (ROS) on the petals of peach and rose flowers than the wild-type strain, suggesting that MfPG1 affecting fungal virulence might be in part resulted from the increase of ROS in the Prunus–M. fructicola interactions.
Collapse
Affiliation(s)
- Chien-Ming Chou
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
| | - Fang-Yi Yu
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Pei-Ling Yu
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Jia-Fang Ho
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Richard M. Bostock
- NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Department of Plant Pathology, University of California, Davis, California, United States of America
| | - Kuang-Ren Chung
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
| | - Jenn-Wen Huang
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
44
|
López-Pérez M, Ballester AR, González-Candelas L. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit. MOLECULAR PLANT PATHOLOGY 2015; 16:262-75. [PMID: 25099378 PMCID: PMC6638479 DOI: 10.1111/mpp.12179] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.
Collapse
Affiliation(s)
- Mario López-Pérez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | | | | |
Collapse
|
45
|
Ment D, Alkan N, Luria N, Bi FC, Reuveni E, Fluhr R, Prusky D. A Role of AREB in the Regulation of PACC-Dependent Acid-Expressed-Genes and Pathogenicity of Colletotrichum gloeosporioides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:154-66. [PMID: 25317668 DOI: 10.1094/mpmi-09-14-0252-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene expression regulation by pH in filamentous fungi and yeasts is controlled by the PACC/RIM101 transcription factor. In Colletotrichum gloeosporioides, PACC is known to act as positive regulator of alkaline-expressed genes, and this regulation was shown to contribute to fungal pathogenicity. PACC is also a negative regulator of acid-expressed genes, however; the mechanism of downregulation of acid-expressed genes by PACC and their contribution to C. gloeosporioides pathogenicity is not well understood. RNA sequencing data analysis was employed to demonstrate that PACC transcription factor binding sites (TFBS) are significantly overrepresented in the promoter of PACC-upregulated, alkaline-expressed genes. In contrast, they are not overrepresented in the PACC-downregulated, acid-expressed genes. Instead, acid-expressed genes showed overrepresentation of AREB GATA TFBS in C. gloeosporioides and in homologs of five other ascomycetes genomes. The areB promoter contains PACC TFBS; its transcript was upregulated at pH 7 and repressed in ΔpacC. Furthermore, acid-expressed genes were found to be constitutively upregulated in ΔareB during alkalizing conditions. The areB mutants showed significantly reduced ammonia secretion and pathogenicity on tomato fruit. Present results indicate that PACC activates areB expression, thereby conditionally repressing acid-expressed genes and contributing critically to C. gloeosporioides pathogenicity.
Collapse
|
46
|
Alkan N, Friedlander G, Ment D, Prusky D, Fluhr R. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. THE NEW PHYTOLOGIST 2015; 205:801-15. [PMID: 25377514 DOI: 10.1111/nph.13087] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/22/2014] [Indexed: 05/20/2023]
Abstract
The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel
| | | | | | | | | |
Collapse
|
47
|
Alkan N, Meng X, Friedlander G, Reuveni E, Sukno S, Sherman A, Thon M, Fluhr R, Prusky D. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1345-58. [PMID: 23902260 DOI: 10.1094/mpmi-03-13-0080-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colletotrichum gloeosporioides alkalinizes its surroundings during colonization of host tissue. The transcription factor pacC is a regulator of pH-controlled genes and is essential for successful colonization. We present here the sequence assembly of the Colletotrichum fruit pathogen and use it to explore the global regulation of pathogenicity by ambient pH. The assembled genome size was 54 Mb, encoding 18,456 genes. Transcriptomes of the wild type and ΔpacC mutant were established by RNA-seq and explored for their global pH-dependent gene regulation. The analysis showed that pacC upregulates 478 genes and downregulates 483 genes, comprising 5% of the fungal genome, including transporters, antioxidants, and cell-wall-degrading enzymes. Interestingly, gene families with similar functionality are both up- and downregulated by pacC. Global analysis of secreted genes showed significant pacC activation of degradative enzymes at alkaline pH and during fruit infection. Select genes from alkalizing-type pathogen C. gloeosporioides and from acidifying-type pathogen Sclerotinia sclerotiorum were verified by quantitative reverse-transcription polymerase chain reaction analysis at different pH values. Knock out of several pacC-activated genes confirmed their involvement in pathogenic colonization of alkalinized surroundings. The results suggest a global regulation by pacC of key pathogenicity genes during pH change in alkalinizing and acidifying pathogens.
Collapse
|
48
|
Qiu X, Wu X, Huang L, Tian M, Ye J. Specifically expressed genes of the nematode Bursaphelenchus xylophilus involved with early interactions with pine trees. PLoS One 2013; 8:e78063. [PMID: 24155981 PMCID: PMC3796492 DOI: 10.1371/journal.pone.0078063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/16/2013] [Indexed: 01/08/2023] Open
Abstract
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD.
Collapse
Affiliation(s)
- Xiuwen Qiu
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Xiaoqin Wu
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Lin Huang
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Minqi Tian
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Jianren Ye
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
50
|
Cnossen-Fassoni A, Bazzolli DMS, Brommonschenkel SH, Fernandes de Araújo E, de Queiroz MV. The pectate lyase encoded by the pecCl1 gene is an important determinant for the aggressiveness of Colletotrichum lindemuthianum. J Microbiol 2013; 51:461-70. [PMID: 23990297 DOI: 10.1007/s12275-013-3078-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/10/2013] [Indexed: 11/30/2022]
Abstract
Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean, and the genes that encode its cell-wall-degrading enzymes are crucial for the development of the disease. Pectinases are the most important group of cell wall-degrading enzymes produced by phytopathogenic fungi. The pecC1l gene, which encodes a pectate lyase in C. lindemuthianum, was isolated and characterized. Possible cis-regulatory elements and transcription factor binding sites that may be involved in the regulation of genetic expression were detected in the promoter region of the gene. pecCl1 is represented by a single copy in the genome of C. lindemuthianum, though in silico analyses of the genomes of Colletotrichum graminicola and Colletotrichum higginsianum suggest that the genome of C. lindemuthianum includes other genes that encode pectate lyases. Phylogenetic analysis detected two groups that clustered based on different members of the pectate lyase family. Analysis of the differential expression of pecCl1 during different stages of infection showed a significant increase in pecCl1 expression five days after infection, at the onset of the necrotrophic phase. The split-maker technique proved to be an efficient method for inactivation of the pecCl1 gene, which allowed functional study of a mutant with a site-specific integration. Though gene inactivation did not result in complete loss of pectate lyase activity, the symptoms of anthracnose were reduced. Analysis of pectate lyases might not only contribute to the understanding of anthracnose in the common bean but might also lead to the discovery of an additional target for controlling anthracnose.
Collapse
Affiliation(s)
- Andréia Cnossen-Fassoni
- Laboratory of Microorganism Molecular Genetics, Department of Microbiology/Institute of Microbiology Applied to Agriculture and Livestock Raising (BIOAGRO), Federal University of Viçosa, Viçosa-MG, Brazil
| | | | | | | | | |
Collapse
|