1
|
Sawada C, Moreau C, Robinson GHJ, Steuernagel B, Wingen LU, Cheema J, Sizer-Coverdale E, Lloyd D, Domoney C, Ellis N. An Integrated Linkage Map of Three Recombinant Inbred Populations of Pea ( Pisum sativum L.). Genes (Basel) 2022; 13:196. [PMID: 35205241 PMCID: PMC8871737 DOI: 10.3390/genes13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Biparental recombinant inbred line (RIL) populations are sets of genetically stable lines and have a simple population structure that facilitates the dissection of the genetics of interesting traits. On the other hand, populations derived from multiparent intercrosses combine both greater diversity and higher numbers of recombination events than RILs. Here, we describe a simple population structure: a three-way recombinant inbred population combination. This structure was easy to produce and was a compromise between biparental and multiparent populations. We show that this structure had advantages when analyzing cultivar crosses, and could achieve a mapping resolution of a few genes.
Collapse
Affiliation(s)
- Chie Sawada
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| | - Carol Moreau
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| | - Gabriel H. J. Robinson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| | - Burkhard Steuernagel
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| | - Luzie U. Wingen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| | - Ellen Sizer-Coverdale
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK;
| | - David Lloyd
- Germinal Horizon, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK;
| | - Claire Domoney
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| | - Noel Ellis
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; (C.S.); (C.M.); (G.H.J.R.); (B.S.); (L.U.W.); (J.C.); (C.D.)
| |
Collapse
|
2
|
Dolatabadian A, Bayer PE, Tirnaz S, Hurgobin B, Edwards D, Batley J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:969-982. [PMID: 31553100 PMCID: PMC7061875 DOI: 10.1111/pbi.13262] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 05/18/2023]
Abstract
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor-bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R-genes harbour more SNPs than variable genes. More nucleotide binding site-leucine-rich repeat (NBS-LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics-based improvement and improved disease resistance.
Collapse
Affiliation(s)
- Aria Dolatabadian
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Philipp E. Bayer
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Bhavna Hurgobin
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
3
|
Zhong Y, Zhang X, Cheng ZM. Lineage-specific duplications of NBS-LRR genes occurring before the divergence of six Fragaria species. BMC Genomics 2018; 19:128. [PMID: 29422035 PMCID: PMC5806312 DOI: 10.1186/s12864-018-4521-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background Plant disease resistance (R) genes are evolving rapidly and play a critical role in the innate immune system of plants. The nucleotide binding sites-leucine rich repeat (NBS-LRR) genes are one of the largest classes in plant R genes. Previous studies have focused on the NBS-LRR genes from one or several species of different genera, and the sequenced genomes of the genus Fragaria offer the opportunity to study the evolutionary processes of these R genes among the closely related species. Results In this study, 325, 155, 190, 187, and 133 NBS-LRRs were discovered from F. x ananassa, F. iinumae, F. nipponica, F. nubicola, and F. orientalis, respectively. Together with the 144 NBS-LRR genes from F. vesca, a total of 1134 NBS-LRRs containing 866 multi-genes comprised 184 gene families across the six Fragaria genomes. Extremely short branch lengths and shallow nodes were widely present in the phylogenetic tree constructed with all of the NBS-LRR genes of the six strawberry species. The identities of the orthologous genes were highly significantly greater than those of the paralogous genes, while the Ks ratios of the former were very significantly lower than those of the latter in all of the NBS-LRR gene families. In addition, the Ks and Ka/Ks values of the TIR-NBS-LRR genes (TNLs) were significantly greater than those of the non-TIR-NBS-LRR genes (non-TNLs). Furthermore, the expression patterns of the NBS-LRR genes revealed that the same gene expressed differently under different genetic backgrounds in response to pathogens. Conclusions These results, combined with the shared hotspot regions of the duplicated NBS-LRRs on the chromosomes, indicated that the lineage-specific duplication of the NBS-LRR genes occurred before the divergence of the six Fragaria species. The Ks and Ka/Ks ratios suggested that the TNLs are more rapidly evolving and driven by stronger diversifying selective pressures than the non-TNLs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4521-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaohui Zhang
- School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea). GENOMICS DATA 2017; 14:24-31. [PMID: 28840100 PMCID: PMC5558467 DOI: 10.1016/j.gdata.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022]
Abstract
The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis-regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.
Collapse
|
5
|
Lee C, Yu D, Choi HK, Kim RW. Reconstruction of a composite comparative map composed of ten legume genomes. Genes Genomics 2016; 39:111-119. [PMID: 28090266 PMCID: PMC5196017 DOI: 10.1007/s13258-016-0481-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/14/2016] [Indexed: 11/23/2022]
Abstract
The Fabaceae (legume family) is the third largest and the second of agricultural importance among flowering plant groups. In this study, we report the reconstruction of a composite comparative map composed of ten legume genomes, including seven species from the galegoid clade (Medicago truncatula, Medicago sativa, Lens culinaris, Pisum sativum, Lotus japonicus, Cicer arietinum, Vicia faba) and three species from the phaseoloid clade (Vigna radiata, Phaseolus vulgaris, Glycine max). To accomplish this comparison, a total of 209 cross-species gene-derived markers were employed. The comparative analysis resulted in a single extensive genetic/genomic network composed of 93 chromosomes or linkage groups, from which 110 synteny blocks and other evolutionary events (e.g., 13 inversions) were identified. This comparative map also allowed us to deduce several large scale evolutionary events, such as chromosome fusion/fission, with which might explain differences in chromosome numbers among compared species or between the two clades. As a result, useful properties of cross-species genic markers were re-verified as an efficient tool for cross-species translation of genomic information, and similar approaches, combined with a high throughput bioinformatic marker design program, should be effective for applying the knowledge of trait-associated genes to other important crop species for breeding purposes. Here, we provide a basic comparative framework for the ten legume species, and expect to be usefully applied towards the crop improvement in legume breeding.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Medical Bioscience, Graduate School, Dong-A University, Nakdong-Daero 550-Beongil 37, Saha-Gu, Busan, 49315 Republic of Korea
| | - Dongwoon Yu
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Nakdong-Daero 550-Beongil 37, Saha-Gu, Busan, 49315 Republic of Korea
- SeqGenesis Inc., Gajeongbuk-Ro 96, Yuseong-Gu, Daejeon, 34111 Republic of Korea
| | - Hong-Kyu Choi
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Nakdong-Daero 550-Beongil 37, Saha-Gu, Busan, 49315 Republic of Korea
| | - Ryan W. Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Gwahak-Ro 125 Yuseong-Gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
6
|
Puch-Hau C, Oropeza C, Góngora-Paredes M, Córdova I, Tun-Suárez J, Sáenz L. New insights into the evolutionary history of resistance gene candidates in coconut palms and their expression profiles in palms affected by lethal yellowing disease. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Gilbert GS, Parker IM. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:549-78. [PMID: 27359365 DOI: 10.1146/annurev-phyto-102313-045959] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.
Collapse
Affiliation(s)
- Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, California 95064;
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá 0843-03092
| | - Ingrid M Parker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064;
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá 0843-03092
| |
Collapse
|
8
|
Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.). PLoS One 2016; 11:e0150506. [PMID: 26930078 PMCID: PMC4773255 DOI: 10.1371/journal.pone.0150506] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/14/2016] [Indexed: 12/27/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more effective screening of elite germplasm to find resistance alleles for marker-assisted selection in breeding programs.
Collapse
|
9
|
Isolation of NBS-LRR RGAs from invasive Wedelia trilobata and the calculation of evolutionary rates to understand bioinvasion from a molecular evolution perspective. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Chen JY, Huang JQ, Li NY, Ma XF, Wang JL, Liu C, Liu YF, Liang Y, Bao YM, Dai XF. Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC PLANT BIOLOGY 2015; 15:148. [PMID: 26084488 PMCID: PMC4471920 DOI: 10.1186/s12870-015-0508-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/27/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Gossypium raimondii is a Verticillium wilt-resistant cotton species whose genome encodes numerous disease resistance genes that play important roles in the defence against pathogens. However, the characteristics of resistance gene analogues (RGAs) and Verticillium dahliae response loci (VdRLs) have not been investigated on a global scale. In this study, the characteristics of RGA genes were systematically analysed using bioinformatics-driven methods. Moreover, the potential VdRLs involved in the defence response to Verticillium wilt were identified by RNA-seq and correlations with known resistance QTLs. RESULTS The G. raimondii genome encodes 1004 RGA genes, and most of these genes cluster in homology groups based on high levels of similarity. Interestingly, nearly half of the RGA genes occurred in 26 RGA-gene-rich clusters (Rgrcs). The homology analysis showed that sequence exchanges and tandem duplications frequently occurred within Rgrcs, and segmental duplications took place among the different Rgrcs. An RNA-seq analysis showed that the RGA genes play roles in cotton defence responses, forming 26 VdRLs inside in the Rgrcs after being inoculated with V. dahliae. A correlation analysis found that 12 VdRLs were adjacent to the known Verticillium wilt resistance QTLs, and that 5 were rich in NB-ARC domain-containing disease resistance genes. CONCLUSIONS The cotton genome contains numerous RGA genes, and nearly half of them are located in clusters, which evolved by sequence exchanges, tandem duplications and segmental duplications. In the Rgrcs, 26 loci were induced by the V. dahliae inoculation, and 12 are in the vicinity of known Verticillium wilt resistance QTLs.
Collapse
Affiliation(s)
- Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | | | - Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xue-Feng Ma
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jin-Long Wang
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Chuan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
| | | | - Yong Liang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Xie Z, Si W, Gao R, Zhang X, Yang S. Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Mol Genet Genomics 2015; 290:2173-86. [PMID: 26008792 DOI: 10.1007/s00438-015-1068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Late blight caused by the oomycete Phytophthora infestans is one of the most severe threats to potato production worldwide. Numerous studies suggest that the most effective protective strategy against the disease would be to provide potato cultivars with durable resistance (R) genes. However, little is known about the origin and evolutional history of these durable R-genes in potato. Addressing this might foster better understanding of the dynamics of these genes in nature and provide clues for identifying potential candidate R-genes. Here, a systematic survey was executed at RB/Rpi-blb1 locus, an exclusive broad-spectrum R-gene locus in potato. As indicated by synteny analysis, RB/Rpi-blb1 homologs were identified in all tested genomes, including potato, tomato, pepper, and Nicotiana, suggesting that the RB/Rpi-blb1 locus has an ancient origin. Two evolutionary patterns, similar to those reported on RGC2 in Lactuca, and Pi2/9 in rice, were detected at this locus. Type I RB/Rpi-blb1 homologs have frequent copy number variations and sequence exchanges, obscured orthologous relationships, considerable nucleotide divergence, and high non-synonymous to synonymous substitutions (Ka/Ks) between or within species, suggesting rapid diversification and balancing selection in response to rapid changes in the oomycete pathogen genomes. These characteristics may serve as signatures for cloning of late blight resistance genes.
Collapse
Affiliation(s)
- Zhengqing Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Weina Si
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rongchao Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
12
|
Hyung D, Lee C, Kim JH, Yoo D, Seo YS, Jeong SC, Lee JH, Chung Y, Jung KH, Cook DR, Choi HK. Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula. PLoS One 2014; 9:e91721. [PMID: 24675968 PMCID: PMC3968010 DOI: 10.1371/journal.pone.0091721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS)-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO). The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress) of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses.
Collapse
Affiliation(s)
- Daejin Hyung
- Department of Computer Science, Dong-A University, Busan, Republic of Korea
| | - Chaeyoung Lee
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Jin-Hyun Kim
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Dongwoon Yoo
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Busan National University, Busan, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Republic of Korea
| | - Jai-Heon Lee
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Youngsoo Chung
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology & Graduate School of Biotechnology, Kyunghee University, Yongin, Republic of Korea
| | - Douglas R. Cook
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Hong-kyu Choi
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Torales SL, Rivarola M, Pomponio MF, Gonzalez S, Acuña CV, Fernández P, Lauenstein DL, Verga AR, Hopp HE, Paniego NB, Poltri SNM. De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba. BMC Genomics 2013; 14:705. [PMID: 24125525 PMCID: PMC4008253 DOI: 10.1186/1471-2164-14-705] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Prosopis alba (Fabaceae) is an important native tree adapted to arid and semiarid regions of north-western Argentina which is of great value as multipurpose species. Despite its importance, the genomic resources currently available for the entire Prosopis genus are still limited. Here we describe the development of a leaf transcriptome and the identification of new molecular markers that could support functional genetic studies in natural and domesticated populations of this genus. Results Next generation DNA pyrosequencing technology applied to P. alba transcripts produced a total of 1,103,231 raw reads with an average length of 421 bp. De novo assembling generated a set of 15,814 isotigs and 71,101 non-assembled sequences (singletons) with an average of 991 bp and 288 bp respectively. A total of 39,000 unique singletons were identified after clustering natural and artificial duplicates from pyrosequencing reads. Regarding the non-redundant sequences or unigenes, 22,095 out of 54,814 were successfully annotated with Gene Ontology terms. Moreover, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 5,992 and 6,236 markers, respectively, throughout the genome. For the validation of the the predicted SSR markers, a subset of 87 SSRs selected through functional annotation evidence was successfully amplified from six DNA samples of seedlings. From this analysis, 11 of these 87 SSRs were identified as polymorphic. Additionally, another set of 123 nuclear polymorphic SSRs were determined in silico, of which 50% have the probability of being effectively polymorphic. Conclusions This study generated a successful global analysis of the P. alba leaf transcriptome after bioinformatic and wet laboratory validations of RNA-Seq data. The limited set of molecular markers currently available will be significantly increased with the thousands of new markers that were identified in this study. This information will strongly contribute to genomics resources for P. alba functional analysis and genetics. Finally, it will also potentially contribute to the development of population-based genome studies in the genera.
Collapse
Affiliation(s)
- Susana L Torales
- Instituto de Recursos Biológicos, IRB, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), CC 25, Castelar B1712WAA, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Griffiths AG, Barrett BA, Simon D, Khan AK, Bickerstaff P, Anderson CB, Franzmayr BK, Hancock KR, Jones CS. An integrated genetic linkage map for white clover (Trifolium repens L.) with alignment to Medicago. BMC Genomics 2013; 14:388. [PMID: 23758831 PMCID: PMC3693905 DOI: 10.1186/1471-2164-14-388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4×=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are available, however, no integrated map and marker set has explored consistency of linkage analysis among unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among populations. Development of these tools provides for a consistent framework map of the white clover genome, and facilitates in silico alignment with the model forage legume, Medicago truncatula. RESULTS This is the first report of integration of independent linkage maps in white clover, and adds to the literature on methyl filtered GeneThresher®-derived microsatellite (simple sequence repeat; SSR) markers for linkage mapping. Gene-targeted SSR markers were discovered in a GeneThresher® (TrGT) methyl-filtered database of 364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465 TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2). This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM. Despite being derived from disparate populations and marker sources, the component maps and the derived IM had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a translocation between T. repens groups 2 and 6 relative to M. truncatula. CONCLUSIONS This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of the white clover genome, with alignment to a model forage legume. Associated marker locus information, particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic analysis and improvement of this forage and grassland species.
Collapse
Affiliation(s)
- Andrew G Griffiths
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Brent A Barrett
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Deborah Simon
- Landcorp Farming Limited, PO Box 5349, Wellington, 6145, New Zealand
| | - Anar K Khan
- AgResearch Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053, New Zealand
| | | | - Craig B Anderson
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Benjamin K Franzmayr
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Kerry R Hancock
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Chris S Jones
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
15
|
Joshi RK, Nayak S. Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:1-9. [PMID: 24381433 PMCID: PMC3550690 DOI: 10.1007/s12298-012-0138-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants are under strong evolutionary pressure in developing new and noble R genes to recognize pathogen avirulence (avr) determinants and bring about stable defense for generation after generations. Duplication, sequence variation by mutation, disparity in the length and structure of leucine rich repeats etc., causes tremendous variations within and among R genes in a plant thereby developing diverse recognitional specificity suitable enough for defense against new pathogens. Recent studies on genome sequencing, diversity and population genetics in different plants have thrown new insights on the molecular evolution of these genes. Tandem and segmental duplication are important factors in R gene abundance as inferred from the distribution of major nucleotide binding site-leucine rich repeats (NBS-LRRs) type R-genes in plant genomes. Likewise, R-gene evolution is also thought to be facilitated by cluster formation thereby causing recombination and sequence exchange and resulting in haplotypic diversity. Population studies have further proven that balancing selection is responsible for the maintenance of allelic diversity in R genes. In this review, we emphasize and discuss on improved perspectives towards the molecular mechanisms and selection pressure responsible for the evolution of NBS-LRR class resistance genes in plants.
Collapse
Affiliation(s)
- Raj Kumar Joshi
- Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar, 751003 India
| | - Sanghamitra Nayak
- Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar, 751003 India
| |
Collapse
|
16
|
Liu Z, Crampton M, Todd A, Kalavacharla V. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2012; 12:42. [PMID: 22443214 PMCID: PMC3353201 DOI: 10.1186/1471-2229-12-42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/23/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is one of the most important legumes in the world. Several diseases severely reduce bean production and quality; therefore, it is very important to better understand disease resistance in common bean in order to prevent these losses. More than 70 resistance (R) genes which confer resistance against various pathogens have been cloned from diverse plant species. Most R genes share highly conserved domains which facilitates the identification of new candidate R genes from the same species or other species. The goals of this study were to isolate expressed R gene-like sequences (RGLs) from 454-derived transcriptomic sequences and expressed sequence tags (ESTs) of common bean, and to develop RGL-tagged molecular markers. RESULTS A data-mining approach was used to identify tentative P. vulgaris R gene-like sequences from approximately 1.69 million 454-derived sequences and 116,716 ESTs deposited in GenBank. A total of 365 non-redundant sequences were identified and named as common bean (P. vulgaris = Pv) resistance gene-like sequences (PvRGLs). Among the identified PvRGLs, about 60% (218 PvRGLs) were from 454-derived sequences. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed that PvRGLs were actually expressed in the leaves of common bean. Upon comparison to P. vulgaris genomic sequences, 105 (28.77%) of the 365 tentative PvRGLs could be integrated into the existing common bean physical map. Based on the syntenic blocks between common bean and soybean, 237 (64.93%) PvRGLs were anchored on the P. vulgaris genetic map and will need to be mapped to determine order. In addition, 11 sequence-tagged-site (STS) and 19 cleaved amplified polymorphic sequence (CAPS) molecular markers were developed for 25 unique PvRGLs. CONCLUSIONS In total, 365 PvRGLs were successfully identified from 454-derived transcriptomic sequences and ESTs available in GenBank and about 65% of PvRGLs were integrated into the common bean genetic map. A total of 30 RGL-tagged markers were developed for 25 unique PvRGLs, including 11 STS and 19 CAPS markers. The expressed PvRGLs identified in this study provide a large sequence resource for development of RGL-tagged markers that could be used further for genetic mapping of disease resistant candidate genes and quantitative trait locus/loci (QTLs). This work also represents an additional method for identifying expressed RGLs from next generation sequencing data.
Collapse
Affiliation(s)
- Zhanji Liu
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Hi-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Mollee Crampton
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Antonette Todd
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
| | - Venu Kalavacharla
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Center of Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
17
|
Deconstruction of the (paleo)polyploid grapevine genome based on the analysis of transposition events involving NBS resistance genes. PLoS One 2012; 7:e29762. [PMID: 22253773 PMCID: PMC3256180 DOI: 10.1371/journal.pone.0029762] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023] Open
Abstract
Plants have followed a reticulate type of evolution and taxa have frequently merged via allopolyploidization. A polyploid structure of sequenced genomes has often been proposed, but the chromosomes belonging to putative component genomes are difficult to identify. The 19 grapevine chromosomes are evolutionary stable structures: their homologous triplets have strongly conserved gene order, interrupted by rare translocations. The aim of this study is to examine how the grapevine nucleotide-binding site (NBS)-encoding resistance (NBS-R) genes have evolved in the genomic context and to understand mechanisms for the genome evolution. We show that, in grapevine, i) helitrons have significantly contributed to transposition of NBS-R genes, and ii) NBS-R gene cluster similarity indicates the existence of two groups of chromosomes (named as Va and Vc) that may have evolved independently. Chromosome triplets consist of two Va and one Vc chromosomes, as expected from the tetraploid and diploid conditions of the two component genomes. The hexaploid state could have been derived from either allopolyploidy or the separation of the Va and Vc component genomes in the same nucleus before fusion, as known for Rosaceae species. Time estimation indicates that grapevine component genomes may have fused about 60 mya, having had at least 40–60 mya to evolve independently. Chromosome number variation in the Vitaceae and related families, and the gap between the time of eudicot radiation and the age of Vitaceae fossils, are accounted for by our hypothesis.
Collapse
|
18
|
Phylogenetic and evolutionary analysis of NBS-encoding genes in Rutaceae fruit crops. Mol Genet Genomics 2010; 285:151-61. [PMID: 21153735 DOI: 10.1007/s00438-010-0593-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
The nucleotide-binding site leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes in plants. However, our understanding of the evolution of NBS-LRR genes in Rutaceae fruit crops is rather limited. We report an evolutionary study of 103 NBS-encoding genes isolated from Poncirus trifoliata (trifoliate orange), Citrus reticulata (tangerine) and their F(1) progeny. In all, 58 of the sequences contained a continuous open reading frame. Phylogenetic analysis classified the 58 NBS genes into nine clades, eight of which were genus specific. This was taken to imply that most of the ancestors of these NBS genes evolved after the genus split. The motif pattern of the 58 NBS-encoding genes was consistent with their phylogenetic profile. An extended phylogenetic analysis, incorporating citrus NBS genes from the public database, classified 95 citrus NBS genes into six clades, half of which were genus specific. RFLP analysis showed that citrus NBS-encoding genes have been evolving rapidly, and that they are unstable when passed through an intergeneric cross. Of 32 NBS-encoding genes tracked by gene-specific PCR, 24 showed segregation distortion among a set of 94 F(1) individuals. This study provides new insight into the evolution of Rutaceae NBS genes and their behaviour following an intergeneric cross.
Collapse
|
19
|
Friesen ML, Cordeiro MA, Penmetsa RV, Badri M, Huguet T, Aouani ME, Cook DR, Nuzhdin SV. Population genomic analysis of Tunisian Medicago truncatula reveals candidates for local adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:623-35. [PMID: 20545888 DOI: 10.1111/j.1365-313x.2010.04267.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genome-wide association studies rely upon segregating natural genetic variation, particularly the patterns of polymorphism and correlation between adjacent markers. To facilitate association studies in the model legume Medicago truncatula, we present a genome-scale polymorphism scan using existing Affymetrix microarrays. We develop and validate a method that uses a simple information-criteria algorithm to call polymorphism from microarray data without reliance on a reference genotype. We genotype 12 inbred M. truncatula lines sampled from four wild Tunisian populations and find polymorphisms at approximately 7% of features, comprising 31 419 probes. Only approximately 3% of these markers assort by population, and of these only 10% differentiate between populations from saline and non-saline sites. Fifty-two differentiated probes with unique genome locations correspond to 18 distinct genome regions. Sanger resequencing was used to characterize a subset of maker loci and develop a single nucleotide polymorphism (SNP)-typing assay that confirmed marker assortment by habitat in an independent sample of 33 individuals from the four populations. Genome-wide linkage disequilibrium (LD) extends on average for approximately 10 kb, falling to background levels by approximately 500 kb. A similar range of LD decay was observed in the 18 genome regions that assort by habitat; these LD blocks delimit candidate genes for local adaptation, many of which encode proteins with predicted functions in abiotic stress tolerance and are targets for functional genomic studies. Tunisian M. truncatula populations contain substantial amounts of genetic variation that is structured in relatively small LD blocks, suggesting a history of migration and recombination. These populations provide a strong resource for genome-wide association studies.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
David P, des Francs-Small CC, Sévignac M, Thareau V, Macadré C, Langin T, Geffroy V. Three highly similar formate dehydrogenase genes located in the vicinity of the B4 resistance gene cluster are differentially expressed under biotic and abiotic stresses in Phaseolus vulgaris. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:87-103. [PMID: 20182695 DOI: 10.1007/s00122-010-1293-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 01/28/2010] [Indexed: 05/06/2023]
Abstract
In higher plants, formate dehydrogenase (FDH, EC1.2.1.2.) catalyzes the NAD-linked oxidation of formate to CO(2), and FDH transcript accumulation has been reported after various abiotic stresses. By sequencing a Phaseolus vulgaris BAC clone encompassing a CC-NBS-LRR gene rich region of the B4 resistance gene cluster, we identified three FDH-encoding genes. FDH is present as a single copy gene in the Arabidopsis thaliana genome, and public database searches confirm that FDH is a low copy gene in plant genomes, since only 33 FDH homologs were identified from 27 plant species. Three independent prediction programs (Predotar, TargetP and Mitoprot) used on this large subset of 33 plant FDHs, revealed that mitochondrial localization of FDH might be the rule in higher plants. A phylogenetic analysis suggests a scenario of local FDH gene duplication in an ancestor of the Phaseoleae followed by another more recent duplication event after bean/soybean divergence. The expression levels of two common bean FDH genes under different treatments were investigated by quantitative RT-PCR analysis. FDH genes are differentially up-regulated after biotic and abiotic stresses (infection with the fungus Colletotrichum lindemuthianum, and dark treatment, respectively). The present study provides the first report of FDH transcript accumulation after biotic stress, suggesting the involvement of FDH in the pathogen resistance process.
Collapse
Affiliation(s)
- Perrine David
- Institut de Biotechnologie des Plantes, UMR-CNRS 8618, bât. 630, Université Paris-Sud, 91405, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1415-41. [PMID: 20098978 PMCID: PMC2854349 DOI: 10.1007/s00122-010-1265-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/27/2009] [Indexed: 05/18/2023]
Abstract
This study presents the development and mapping of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in chickpea. The mapping population is based on an inter-specific cross between domesticated and non-domesticated genotypes of chickpea (Cicer arietinum ICC 4958 x C. reticulatum PI 489777). This same population has been the focus of previous studies, permitting integration of new and legacy genetic markers into a single genetic map. We report a set of 311 novel SSR markers (designated ICCM-ICRISAT chickpea microsatellite), obtained from an SSR-enriched genomic library of ICC 4958. Screening of these SSR markers on a diverse panel of 48 chickpea accessions provided 147 polymorphic markers with 2-21 alleles and polymorphic information content value 0.04-0.92. Fifty-two of these markers were polymorphic between parental genotypes of the inter-specific population. We also analyzed 233 previously published (H-series) SSR markers that provided another set of 52 polymorphic markers. An additional 71 gene-based SNP markers were developed from transcript sequences that are highly conserved between chickpea and its near relative Medicago truncatula. By using these three approaches, 175 new marker loci along with 407 previously reported marker loci were integrated to yield an improved genetic map of chickpea. The integrated map contains 521 loci organized into eight linkage groups that span 2,602 cM, with an average inter-marker distance of 4.99 cM. Gene-based markers provide anchor points for comparing the genomes of Medicago and chickpea, and reveal extended synteny between these two species. The combined set of genetic markers and their integration into an improved genetic map should facilitate chickpea genetics and breeding, as well as translational studies between chickpea and Medicago.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Department of Genetics, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - Hongyan Zhu
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 USA
| | - Nicy Varghese
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Subhojit Datta
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Indian Institute of Pulses Research, Kanpur, 208024 Uttar Pradesh India
| | - Hong-Kyu Choi
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Department of Genetic Engineering, Dong-A University, Busan, 604-714 South Korea
| | - Ralf Horres
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
| | - Ruth Jüngling
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
| | - Jagbir Singh
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Department of Agricultural Biotechnology, Acharya N.G. Ranga Agricultural University (ANGRAU), Hyderabad, 500030 Andhra Pradesh India
| | - P. B. Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - S. Sivaramakrishnan
- Department of Agricultural Biotechnology, Acharya N.G. Ranga Agricultural University (ANGRAU), Hyderabad, 500030 Andhra Pradesh India
| | - Dave A. Hoisington
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Günter Kahl
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
- GenXPro GmbH, Frankfurter Innovationszentrum Biotechnologie (FIZ), Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Peter Winter
- GenXPro GmbH, Frankfurter Innovationszentrum Biotechnologie (FIZ), Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Genomics Towards Gene Discovery Subprogramme, Generation Challenge Programme (GCP), CIMMYT, Int APDO Postal 6-641, 06600 Mexico DF, Mexico
| |
Collapse
|
22
|
Phylogenetic analyses of peanut resistance gene candidates and screening of different genotypes for polymorphic markers. Saudi J Biol Sci 2010; 17:43-9. [PMID: 23961057 DOI: 10.1016/j.sjbs.2009.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleotide-binding-site-leucine-rich-repeat (NBS-LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. Here, we describe a collection of peanut NBS-LRR resistance gene candidates (RGCs) isolated from peanut (Arachis) species by mining Gene Bank data base. NBS-LRR sequences assembled into TIR-NBS-LRR (75.4%) and non-TIR-NBS-LRR (24.6%) subfamilies. Total of 20 distinct clades were identified and showed a high level of sequence divergence within TIR-NBS and non-TIR-NBS subfamilies. Thirty-four primer pairs were designed from these RGC sequences and used for screening different genotypes belonging to wild and cultivated peanuts. Therefore, peanut RGC identified in this study will provide useful tools for developing DNA markers and cloning the genes for resistance to different pathogens in peanut.
Collapse
|
23
|
Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR. Orphan legume crops enter the genomics era! CURRENT OPINION IN PLANT BIOLOGY 2009; 12:202-10. [PMID: 19157958 DOI: 10.1016/j.pbi.2008.12.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/02/2008] [Accepted: 12/06/2008] [Indexed: 05/19/2023]
Abstract
Many of the world's most important food legumes are grown in arid and semi-arid regions of Africa and Asia, where crop productivity is hampered by biotic and abiotic stresses. Until recently, these crops have also suffered from a dearth of genomic and molecular-genetic resources and thus were 'orphans' of the genome revolution. However, the community of legume researchers has begun a concerted effort to change this situation. The driving force is a series of international collaborations that benefit from recent advances in genome sequencing and genotyping technologies. The focus of these activities is the development of genome-scale data sets that can be used in high-throughput approaches to facilitate genomics-assisted breeding in these legumes.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for Semi-Arid Tropics, Patancheru 502324, A.P., India.
| | | | | | | | | |
Collapse
|
24
|
Pilet-Nayel ML, Prospéri JM, Hamon C, Lesné A, Lecointe R, Le Goff I, Hervé M, Deniot G, Delalande M, Huguet T, Jacquet C, Baranger A. AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. PHYTOPATHOLOGY 2009; 99:203-8. [PMID: 19159312 DOI: 10.1094/phyto-99-2-0203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aphanomyces euteiches is a major soilborne oomycete pathogen that infects various legume species, including pea and alfalfa. The model legume Medicago truncatula has recently emerged as a valuable genetic system for understanding the genetic basis of resistance to A. euteiches in leguminous crops. The objective of this study was to identify genetic determinants of resistance to a broad host-range pea-infecting strain of A. euteiches in M. truncatula. Two M. truncatula segregating populations of 178 F(5) recombinant inbred lines and 200 F(3) families from the cross F83005.5 (susceptible) x DZA045.5 (resistant) were screened for resistance to A. euteiches. Phenotypic distributions observed suggested a dominant monogenic control of resistance. A major locus associated with resistance to A. euteiches, namely AER1, was mapped by bulk segregant analysis to a terminal end of chromosome 3 in M. truncatula and explained 88% of the phenotypic variation. AER1 was identified in a resistance-gene-rich region, where resistance gene analogs and genes associated with disease resistance phenotypes have been identified. Discovery of AER1 opens up new prospects for improving resistance to A. euteiches in cultivated legumes using a comparative genomics approach.
Collapse
Affiliation(s)
- M-L Pilet-Nayel
- INRA, Agrocampus Ouest, Université Rennes I, UMR118, Amélioration des Plantes et Biotechnologies Végétales, Plant Genetics and Biotechnology, OUEST-genopole, Domaine de la Motte, BP35327, 35653 Le Rheu, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Atsumi G, Kagaya U, Kitazawa H, Nakahara KS, Uyeda I. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:166-75. [PMID: 19132869 DOI: 10.1094/mpmi-22-2-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination.
Collapse
Affiliation(s)
- Go Atsumi
- Pathogen-Plant Interactions Group, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
26
|
McHale LK, Truco MJ, Kozik A, Wroblewski T, Ochoa OE, Lahre KA, Knapp SJ, Michelmore RW. The genomic architecture of disease resistance in lettuce. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:565-80. [PMID: 19005638 DOI: 10.1007/s00122-008-0921-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/14/2008] [Indexed: 05/03/2023]
Abstract
Genbank and The Compositae Genome Project database, containing over 42,000 lettuce unigenes from Lactuca sativa cv. Salinas and L. serriola accession UC96US23 were mined to identify 702 candidate genes involved in pathogen recognition (RGCs), resistance signal transduction, defense responses, and disease susceptibility. In addition, to identify sequences representing additional sub-families of nucleotide binding site (NBS)-leucine-rich repeat encoding genes; the major classes of resistance genes (R-genes), NBS-encoding sequences were amplified by PCR using degenerate oligonucleotides designed to NBS sub-families specific to the subclass Asteridae, which includes the Compositae family. These products were cloned and sequenced resulting in 18 novel NBS sequences from cv. Salinas and 15 novel NBS sequences from UC96US23. Using a variety of marker technologies, 294 of the 735 candidate disease resistance genes were mapped in our primary mapping population, which consisted of 119 F7 recombinant inbred lines derived from an interspecific cross between cv. Salinas and UC96US23. Using markers shared across multiple genetic maps, 36 resistance phenotypic loci, including two new loci for resistance to downy mildew and two quantitative trait loci for resistance to anthracnose were positioned onto the reference map to provide a global view of the genomic architecture of disease resistance in lettuce and to identify candidate genes for resistance phenotypes. The majority but not all of the resistance phenotypes were genetically associated with RGCs.
Collapse
Affiliation(s)
- Leah K McHale
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Genet Genomics 2008; 280:521-33. [PMID: 18813956 DOI: 10.1007/s00438-008-0384-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/06/2008] [Indexed: 10/21/2022]
Abstract
In common bean, a complex disease resistance (R) gene cluster, harboring many specific R genes against various pathogens, is located at the end of the linkage group B4. A BAC library of the Meso-american bean genotype BAT93 was screened with PRLJ1, a probe previously shown to be specific to the B4 R gene cluster, leading to the identification of 73 positive BAC clones. BAC-end sequencing (BES) of the 73 positive BACs generated 75 kb of sequence. These BACs were organized into 6 contigs, all mapped at the B4 R gene cluster. To evaluate the potential of BES for marker development, BES-derived specific primers were used to check for linkage with two allelic anthracnose R specificities Co-3 and Co-3 ( 2 ), through the analysis of pairs of Near Isogenic Lines (NILs). Out of 32 primer pairs tested, two revealed polymorphisms between the NILs, confirming the suspected location of Co-3 and Co-3 ( 2 ) at the B4 cluster. In order to identify the orthologous region of the B4 R gene cluster in the two model legume genomes, bean BESs were used as queries in TBLASTX searches of Medicago truncatula and Lotus japonicus BAC clones. Putative orthologous regions were identified on chromosome Mt6 and Lj2, in agreement with the colinearity observed between Mt and Lj for these regions.
Collapse
|
28
|
Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci U S A 2008; 105:12164-9. [PMID: 18719113 PMCID: PMC2527883 DOI: 10.1073/pnas.0802518105] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Indexed: 12/28/2022] Open
Abstract
Alfalfa is economically the most important forage legume worldwide. A recurrent challenge to alfalfa production is the significant yield loss caused by disease. Although knowledge of molecular mechanisms underlying host resistance should facilitate the genetic improvement of alfalfa, the acquisition of such knowledge is hampered by alfalfa's tetrasomic inheritance and outcrossing nature. However, alfalfa is congeneric with the reference legume Medicago truncatula, providing an opportunity to use M. truncatula as a surrogate to clone the counterparts of many agronomically important genes in alfalfa. In particular, the high degree of sequence identity and remarkably conserved genome structure and function between the two species enables M. truncatula genes to be used directly in alfalfa improvement. Here we report the map-based cloning of RCT1, a host resistance (R) gene in M. truncatula that confers resistance to multiple races of Colletotrichum trifolii, a hemibiotrophic fungal pathogen that causes anthracnose disease of alfalfa. RCT1 is a member of the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant R genes and confers broad-spectrum anthracnose resistance when transferred into susceptible alfalfa plants. Thus, RCT1 provides a novel resource to develop anthracnose-resistant alfalfa cultivars and contributes to our understanding of host resistance against the fungal genus Colletotrichum. This work demonstrates the potential of using M. truncatula genes for genetic improvement of alfalfa.
Collapse
Affiliation(s)
- Shengming Yang
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Muqiang Gao
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Chenwu Xu
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Jianchang Gao
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Shweta Deshpande
- Advanced Center for Genome Technology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73109
| | - Shaoping Lin
- Advanced Center for Genome Technology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73109
| | - Bruce A. Roe
- Advanced Center for Genome Technology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73109
| | - Hongyan Zhu
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| |
Collapse
|
29
|
Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP. Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 2008; 9:380. [PMID: 18691425 PMCID: PMC2533332 DOI: 10.1186/1471-2164-9-380] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 08/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background The development of genetic markers is complex and costly in species with little pre-existing genomic information. Faba bean possesses one of the largest and least studied genomes among cultivated crop plants and no gene-based genetic maps exist. Gene-based orthologous markers allow chromosomal regions and levels of synteny to be characterised between species, reveal phylogenetic relationships and chromosomal evolution, and enable targeted identification of markers for crop breeding. In this study orthologous codominant cross-species markers have been deployed to produce the first exclusively gene-based genetic linkage map of faba bean (Vicia faba), using an F6 population developed from a cross between the lines Vf6 (equina type) and Vf27 (paucijuga type). Results Of 796 intron-targeted amplified polymorphic (ITAP) markers screened, 151 markers could be used to construct a comparative genetic map. Linkage analysis revealed seven major and five small linkage groups (LGs), one pair and 12 unlinked markers. Each LG was comprised of three to 30 markers and varied in length from 23.6 cM to 324.8 cM. The map spanned a total length of 1685.8 cM. A simple and direct macrosyntenic relationship between faba bean and Medicago truncatula was evident, while faba bean and lentil shared a common rearrangement relative to M. truncatula. One hundred and four of the 127 mapped markers in the 12 LGs, which were previously assigned to M. truncatula genetic and physical maps, were found in regions syntenic between the faba bean and M. truncatula genomes. However chromosomal rearrangements were observed that could explain the difference in chromosome numbers between these three legume species. These rearrangements suggested high conservation of M. truncatula chromosomes 1, 5 and 8; moderate conservation of chromosomes 2, 3, 4 and 7 and no conservation with M. truncatula chromosome 6. Multiple PCR amplicons and comparative mapping were suggestive of small-scale duplication events in faba bean. This study also provides a preliminary indication for finer scale macrosynteny between M. truncatula, lentil and faba bean. Markers originally designed from genes on the same M. truncatula BACs were found to be grouped together in corresponding syntenic areas in lentil and faba bean. Conclusion Despite the large size of the faba bean genome, comparative mapping did not reveal evidence for polyploidisation, segmental duplication, or significant rearrangements compared to M. truncatula, although a bias in the use of single locus markers may have limited the detection of duplications. Non-coding repetitive DNA or transposable element content provides a possible explanation for the difference in genome sizes. Similar patterns of rearrangements in faba bean and lentil compared to M. truncatula support phylogenetic studies dividing these species into the tribes Viceae and Trifoliae. However, substantial macrosynteny was apparent between faba bean and M. truncatula, with the exception of chromosome 6 where no orthologous markers were found, confirming previous investigations suggesting chromosome 6 is atypical. The composite map, anchored with orthologous markers mapped in M. truncatula, provides a central reference map for future use of genomic and genetic information in faba bean genetic analysis and breeding.
Collapse
Affiliation(s)
- Simon R Ellwood
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Health Sciences, Murdoch University 6150, Western Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol Genet Genomics 2008; 280:111-25. [PMID: 18553106 DOI: 10.1007/s00438-008-0346-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encode nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from sunflower (Helianthus annuus L.), and most of the previously identified homologs are members of two large NBS-LRR clusters harboring downy mildew R-genes. We mined the sunflower EST database and used comparative genomics approaches to develop a deeper understanding of the diversity and distribution of NBS-LRR homologs in the sunflower genome. Collectively, 630 NBS-LRR homologs were identified, 88 by mining a database of 284,241 sunflower ESTs and 542 by sequencing 1,248 genomic DNA amplicons isolated from common and wild sunflower species. DNA markers were developed from 196 unique NBS-LRR sequences and facilitated genetic mapping of 167 NBS-LRR loci. The latter were distributed throughout the sunflower genome in 44 clusters or singletons. Wild species ESTs were a particularly rich source of novel NBS-LRR homologs, many of which were tightly linked to previously mapped downy mildew, rust, and broomrape R-genes. The DNA sequence and mapping resources described here should facilitate the discovery and isolation of recognition-dependent R-genes guarding sunflower from a broad spectrum of economically important diseases. Sunflower nucleotide and amino acid sequences have been deposited in DDBJ/EMBL/GenBank under accession numbers EF 560168-EF 559378 and ABQ 58077-ABQ 57529.
Collapse
|
31
|
Zhang Q, Zhang ZY, Lin SZ, Zheng HQ, Lin YZ, An XM, Li Y, Li HX. Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:310-322. [PMID: 18426478 DOI: 10.1111/j.1438-8677.2008.00029.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The majority of cloned plant disease resistance genes (R genes) encode a nucleotide binding site (NBS) and a leucine-rich repeat (LRR) domain. In this study, to better understand the R genes in white poplar, 59 resistance gene analogues (RGAs) were identified from a triploid white poplar [(Populus tomentosa x Populus bolleana) x P. tomentosa], based on conserved NBS regions. The 59 RGAs were phylogenetically classified into 10 subfamilies, and 54 RGAs with open-reading frames (ORFs) were further grouped into two classes, toll and interleukin-1 receptor (TIR) and non-TIR. BLAST searches with reference to the genomic sequence of Populus trichocarpa found 96 highly homologous regions distributed in 37 loci, suggesting the abundance and divergence of NBS-encoding genes in the triploid poplar genome. Within subfamilies 1-3, the average non-synonymous/synonymous substitution (omega) rates were < 1, indicating purifying selection on these RGAs, but some sites were clearly under diversifying selection with omega > 1. Many intergenic exchanges were also detected among these RGAs, indicating a probable role in homogenising NBS domains. Quantitative real-time PCR analysis revealed dramatic variations in the transcript level of 18 RGAs in the mature leaves, bark and roots of the triploid poplar, and identified two RGAs that had significantly higher level of transcripts in bark, four RGAs in mature leaves, and 14 in the above-ground portion of poplars, suggesting their probable roles in resistance against diseases attacking the organs. Our results shed light on genetic resources of poplar resistance and will be useful for further resistance gene isolation and exploitation.
Collapse
Affiliation(s)
- Q Zhang
- Key Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, Institute of Chinese White Poplars, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu Q, Wen X, Deng X. Genomic organization, rapid evolution and meiotic instability of nucleotide-binding-site-encoding genes in a new fruit crop, "chestnut rose". Genetics 2008; 178:2081-91. [PMID: 18245857 PMCID: PMC2323798 DOI: 10.1534/genetics.107.086421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/22/2008] [Indexed: 11/18/2022] Open
Abstract
From chestnut rose, a promising fruit crop of the Rosa genus, powdery mildew disease-resistant and susceptible genotypes and their F(1) progeny were used to isolate nucleotide-binding-site (NBS)-encoding genes using 19 degenerate primer pairs and an additional cloning method called overlapping extension amplification. A total of 126 genes were harvested; of these, 38 were from a resistant parent, 37 from a susceptible parent, and 51 from F(1) progeny. A phylogenetic tree was constructed, which revealed that NBS sequences from parents and F(1) progeny tend to form a mixture and are well distributed among the branches of the tree. Mapping of these NBS genes suggested that their organization in the genome is a "tandem duplicated cluster" and, to a lesser extent, a "heterogeneous cluster." Intraspecific polymorphisms and interspecific divergence were detected by Southern blotting with NBS-encoding genes as probes. Sequencing on the nucleotide level revealed even more intraspecific variation: for the R4 gene, 9.81% of the nucleotides are polymorphic. Amino acid sites under positive selection were detected in the NBS region. Some NBS-encoding genes were meiotically unstable, which may due to recombination and deletion events. Moreover, a transposon-like element was isolated in the flanking region of NBS genes, implying a possible role for transposon in the evolutionary history of resistance genes.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | | | | |
Collapse
|
33
|
Kamphuis LG, Lichtenzveig J, Oliver RP, Ellwood SR. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC PLANT BIOLOGY 2008; 8:30. [PMID: 18366746 PMCID: PMC2324085 DOI: 10.1186/1471-2229-8-30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/26/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Knowledge of the genetic basis of plant resistance to necrotrophic pathogens is incomplete and has been characterised in relatively few pathosystems. In this study, the cytology and genetics of resistance to spring black stem and leaf spot caused by Phoma medicaginis, an economically important necrotrophic pathogen of Medicago spp., was examined in the model legume M. truncatula. RESULTS Macroscopically, the resistant response of accession SA27063 was characterised by small, hypersensitive-like spots following inoculation while the susceptible interaction with accessions A17 and SA3054 showed necrotic lesions and spreading chlorosis. No unique cytological differences were observed during early infection (<48 h) between the resistant and susceptible genotypes, except pathogen growth was restricted to one or a few host cells in SA27063. In both interactions reactive oxygen intermediates and phenolic compounds were produced, and cell death occurred. Two F2 populations segregating for resistance to spring black stem and leaf spot were established between SA27063 and the two susceptible accessions, A17 and SA3054. The cross between SA27063 and A17 represented a wider cross than between SA27063 and SA3054, as evidenced by higher genetic polymorphism, reduced fertility and aberrant phenotypes of F2 progeny. In the SA27063 x A17 F2 population a highly significant quantitative trait locus (QTL, LOD = 7.37; P < 0.00001) named resistance to the necrotroph Phoma medicaginis one (rnpm1) genetically mapped to the top arm of linkage group 4 (LG4). rnpm1 explained 33.6% of the phenotypic variance in the population's response to infection depicted on a 1-5 scale and was tightly linked to marker AW256637. A second highly significant QTL (LOD = 6.77; P < 0.00001), rnpm2, was located on the lower arm of LG8 in the SA27063 x SA3054 map. rnpm2 explained 29.6% of the phenotypic variance and was fine mapped to a 0.8 cM interval between markers h2_16a6a and h2_21h11d. rnpm1 is tightly linked to a cluster of Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) genes and disease resistance protein-like genes, while no resistance gene analogues (RGAs) are apparent in the genomic sequence of the reference accession A17 at the rnpm2 locus. CONCLUSION The induction of defence responses and cell death in the susceptible interaction following infection by P. medicaginis suggested this pathogen is not negatively affected by these responses and may promote them. A QTL for resistance was revealed in each of two populations derived from crosses between a resistant accession and two different susceptible accessions. Both loci are recessive in nature, and the simplest explanation for the existence of two separate QTLs is the occurrence of host genotype-specific susceptibility loci that may interact with undetermined P. medicaginis virulence factors.
Collapse
Affiliation(s)
- Lars G Kamphuis
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
| | - Judith Lichtenzveig
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, Private Bag No. 5, Wembley 6913, Western Australia, Australia
| | - Richard P Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
| | - Simon R Ellwood
- Australian Centre for Necrotrophic Fungal Pathogens, State Agricultural Biotechnology Centre, Murdoch University, Perth 6150, Western Australia, Australia
| |
Collapse
|
34
|
Ané JM, Zhu H, Frugoli J. Recent Advances in Medicago truncatula Genomics. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:256597. [PMID: 18288239 PMCID: PMC2216067 DOI: 10.1155/2008/256597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 09/14/2007] [Indexed: 05/23/2023]
Abstract
Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodulation, these two models are now widely used in a variety of biological fields from plant physiology and development to population genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community. Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed.
Collapse
Affiliation(s)
- Jean-Michel Ané
- Department of Agronomy,
University of Wisconsin,
Madison, WI 53706,
USA
| | - Hongyan Zhu
- Department of Plant and Soil Sciences,
University of Kentucky, Lexington, KY 40546,
USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry,
Clemson University,
100 Jordan Hall,
Clemson, SC 29634,
USA
| |
Collapse
|
35
|
Ameline-Torregrosa C, Wang BB, O'Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. PLANT PHYSIOLOGY 2008; 146:5-21. [PMID: 17981990 PMCID: PMC2230567 DOI: 10.1104/pp.107.104588] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/19/2007] [Indexed: 05/18/2023]
Abstract
The nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) gene family accounts for the largest number of known disease resistance genes, and is one of the largest gene families in plant genomes. We have identified 333 nonredundant NBS-LRRs in the current Medicago truncatula draft genome (Mt1.0), likely representing 400 to 500 NBS-LRRs in the full genome, or roughly 3 times the number present in Arabidopsis (Arabidopsis thaliana). Although many characteristics of the gene family are similar to those described on other plant genomes, several evolutionary features are particularly pronounced in M. truncatula, including a high degree of clustering, evidence of significant numbers of ectopic translocations from clusters to other parts of the genome, a small number of more evolutionarily stable NBS-LRRs, and numerous truncations and fusions leading to novel domain compositions. The gene family clearly has had a large impact on the structure of the genome, both through ectopic translocations (potentially, a means of seeding new NBS-LRR clusters), and through two extraordinarily large superclusters. Chromosome 6 encodes approximately 34% of all TIR-NBS-LRRs, while chromosome 3 encodes approximately 40% of all coiled-coil-NBS-LRRs. Almost all atypical domain combinations are in the TIR-NBS-LRR subfamily, with many occurring within one genomic cluster. This analysis shows the gene family not only is important functionally and agronomically, but also plays a structural role in the genome.
Collapse
Affiliation(s)
- Carine Ameline-Torregrosa
- Laboratoire des Interactions Plantes Microorganismes, UMR CNRS-INRA 442-2594, 31326, Castanet Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerré-Tugayé MT, Dumas B, Young ND, Samac DA, Huguet T, Jacquet C. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:61-9. [PMID: 18052883 DOI: 10.1094/mpmi-21-1-0061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Medicago truncatula was used to characterize resistance to anthracnose and powdery mildew caused by Colletotrichum trifolii and Erysiphe pisi, respectively. Two isolates of E. pisi (Ep-p from pea and Ep-a from alfalfa) and two races of C. trifolii (races 1 and 2) were used in this study. The A17 genotype was resistant and displayed a hypersensitive response after inoculation with either pathogen, while lines F83005.5 and DZA315.16 were susceptible to anthracnose and powdery mildew, respectively. To identify the genetic determinants underlying resistance in A17, two F7 recombinant inbred line (RIL) populations, LR4 (A17 x DZA315.16) and LR5 (A17 x F83005.5), were phenotyped with E. pisi isolates and C. trifolii races, respectively. Genetic analyses showed that i) resistance to anthracnose is governed mainly by a single major locus to both races, named Ct1 and located on the upper part of chromosome 4; and ii) resistance to powdery mildew involves three distinct loci, Epp1 on chromosome 4 and Epa1 and Epa2 on chromosome 5. The use of a consensus genetic map for the two RIL populations revealed that Ct1 and Epp1, although located in the same genome region, were clearly distinct. In silico analysis in this region identified the presence of several clusters of nucleotide binding site leucine-rich repeat genes. Many of these genes have atypical resistance gene analog structures and display differential expression patterns in distinct stress-related cDNA libraries.
Collapse
Affiliation(s)
- Carine Ameline-Torregrosa
- UMR 5546, Centre National de la Recherche Scientifique-UPS, Pôle de Biotechnologie Végétale, 24 Chemin Borde Rouge, 34326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang S, Gao M, Deshpande S, Lin S, Roe BA, Zhu H. Genetic and physical localization of an anthracnose resistance gene in Medicago truncatula. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 116:45-52. [PMID: 17891371 DOI: 10.1007/s00122-007-0645-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 09/09/2007] [Indexed: 05/11/2023]
Abstract
Anthracnose of alfalfa, caused by the fungal pathogen Colletotrichum trifolii, is one of the most destructive diseases of alfalfa worldwide. An improved understanding of the genetic and molecular mechanisms underlying host resistance will facilitate the development of resistant alfalfa cultivars, thus providing the most efficient and environmentally sound strategy to control alfalfa diseases. Unfortunately, cultivated alfalfa has an intractable genetic system because of its tetrasomic inheritance and out-crossing nature. Nevertheless, the model legume Medicago truncatula, a close relative of alfalfa, has the potential to serve as a surrogate to map and clone the counterparts of agronomically important genes in alfalfa -- particularly, disease resistance genes against economically important pathogens. Here we describe the high-resolution genetic and physical mapping of RCT1, a host resistance gene against C. trifolii race 1 in M. truncatula. We have delimited the RCT1 locus within a physical interval spanning approximately 200 kb located on the top of M. truncatula linkage group 4. RCT1 is part of a complex locus containing numerous genes homologous to previously characterized TIR-NBS-LRR type resistance genes. The result presented in this paper will facilitate the positional cloning of RCT1 in Medicago.
Collapse
Affiliation(s)
- Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
38
|
Samac DA, Graham MA. Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. PLANT PHYSIOLOGY 2007; 144:582-7. [PMID: 17556521 PMCID: PMC1914196 DOI: 10.1104/pp.107.096503] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/06/2007] [Indexed: 05/07/2023]
Affiliation(s)
- Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, St. Paul, Minnesota 55108, USA.
| | | |
Collapse
|
39
|
Mackie JM, Musial JM, Armour DJ, Phan HTT, Ellwood SE, Aitken KS, Irwin JAG. Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerne. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:1417-26. [PMID: 17356866 DOI: 10.1007/s00122-007-0527-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/16/2007] [Indexed: 05/09/2023]
Abstract
Anthracnose, caused by Colletotrichum trifolii, is one of the most serious diseases of lucerne worldwide. The disease is managed through deployment of resistant cultivars, but new pathotypes present a challenge to the successful implementation of this strategy. This paper reports the genetic map locations of quantitative trait loci (QTL) for reaction to races 1, 2 and 4 of C. trifolii in a single autotetraploid lucerne clone, designated W126 from the Australian cv. Trifecta. Resistance was mapped in a backcross population of 145 individuals, and reaction was assessed both by spray and injection inoculation of stems. Resistance to injection inoculation with races 1 and 4 was incompletely dominant and closely linked (phenotypic markers 2.2 cM apart); these resistances mapped to a linkage group homologous to Medicago truncatula linkage group 8. When the spray inoculation data were subjected to QTL analysis, the strongest QTL for resistance was located on linkage group 8; six QTL were identified for race 1 and four for race 4. Resistance to race 2 was incompletely recessive; four QTL were identified and these include one QTL on linkage group 4 that was also identified for race 1. Modelling of the interactions between individual QTL and marker effects allowed a total of 52-63% of the phenotypic variation to be described for each of the different races. These markers will have value in breeding lucerne, carrying multiple sources of resistance to the three known races of C. trifolii.
Collapse
Affiliation(s)
- J M Mackie
- School of Integrative Biology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Di Gaspero G, Cipriani G, Adam-Blondon AF, Testolin R. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:1249-63. [PMID: 17380315 DOI: 10.1007/s00122-007-0516-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 01/28/2007] [Indexed: 05/14/2023]
Abstract
Genetic maps functionally oriented towards disease resistance have been constructed in grapevine by analysing with a simultaneous maximum-likelihood estimation of linkage 502 markers including microsatellites and resistance gene analogs (RGAs). Mapping material consisted of two pseudo-testcrosses, 'Chardonnay' x 'Bianca' and 'Cabernet Sauvignon' x '20/3' where the seed parents were Vitis vinifera genotypes and the male parents were Vitis hybrids carrying resistance to mildew diseases. Individual maps included 320-364 markers each. The simultaneous use of two mapping crosses made with two pairs of distantly related parents allowed mapping as much as 91% of the markers tested. The integrated map included 420 Simple Sequence Repeat (SSR) markers that identified 536 SSR loci and 82 RGA markers that identified 173 RGA loci. This map consisted of 19 linkage groups (LGs) corresponding to the grape haploid chromosome number, had a total length of 1,676 cM and a mean distance between adjacent loci of 3.6 cM. Single-locus SSR markers were randomly distributed over the map (CD = 1.12). RGA markers were found in 18 of the 19 LGs but most of them (83%) were clustered on seven LGs, namely groups 3, 7, 9, 12, 13, 18 and 19. Several RGA clusters mapped to chromosomal regions where phenotypic traits of resistance to fungal diseases such as downy mildew and powdery mildew, bacterial diseases such as Pierce's disease, and pests such as dagger and root-knot nematode, were previously mapped in different segregating populations. The high number of RGA markers integrated into this new map will help find markers linked to genetic determinants of different pest and disease resistances in grape.
Collapse
Affiliation(s)
- G Di Gaspero
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100, Udine, Italy.
| | | | | | | |
Collapse
|
41
|
Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A. Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:971-84. [PMID: 17265025 DOI: 10.1007/s00122-006-0492-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 12/21/2006] [Indexed: 05/03/2023]
Abstract
Partial resistance to Mycosphaerella pinodes in pea is quantitatively inherited. Genomic regions involved in resistance (QTLs) have been previously identified in the pea genome, but the molecular basis of the resistance is still unknown. The objective of this study was to map resistance gene analogs (RGA) and defense-related (DR) genes in the JI296 x DP RIL population that has been used for mapping QTLs for resistance to M. pinodes, and identify co-localizations between candidate genes and QTLs. Using degenerate oligonucleotide primers designed on the conserved motifs P-loop and GLPL of cloned resistance genes, we isolated and cloned 16 NBS-LRR sequences, corresponding to five distinct classes of RGAs. Specific second-generation primers were designed for each class. RGAs from two classes were located on the linkage group (LG) VII. Another set of PCR-based markers was designed for four RGA sequences previously isolated in pea and 12 previously cloned DR gene sequences available in databases. Out of the 16 sequences studied, the two RGAs RGA-G3A and RGA2.97 were located on LG VII, PsPRP4A was located on LG II, Peachi21, PsMnSOD, DRR230-b and PsDof1 were mapped on LG III and peabetaglu and DRR49a were located on LG VI. Two co-localizations between candidate genes and QTLs for resistance to M. pinodes were observed on LG III, between the putative transcription factor PsDof1 and the QTL mpIII-1 and between the pea defensin DRR230-b gene and the QTL mpIII-4. Another co-localization was observed on LG VII between a cluster of RGAs and the QTL mpVII-1. The three co-localizations appear to be located in chromosomal regions containing other disease resistance or DR genes, suggesting an important role of these genomic regions in defense responses against pathogens in pea.
Collapse
Affiliation(s)
- S Prioul-Gervais
- UMR INRA-Agrocampus Rennes, Amélioration des Plantes et Biotechnologies Végétales, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Phan HTT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP. The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 2007; 14:59-70. [PMID: 17526914 PMCID: PMC2779896 DOI: 10.1093/dnares/dsm009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/13/2007] [Indexed: 11/13/2022] Open
Abstract
We report the first genetic linkage map of white lupin (Lupinus albus L.). An F8 recombinant inbred line population developed from Kiev mutant x P27174 was mapped with 220 amplified fragment length polymorphism and 105 gene-based markers. The genetic map consists of 28 main linkage groups (LGs) that varied in length from 22.7 cM to 246.5 cM and spanned a total length of 2951 cM. There were seven additional pairs and 15 unlinked markers, and 12.8% of markers showed segregation distortion at P < 0.05. Syntenic relationships between Medicago truncatula and L. albus were complex. Forty-five orthologous markers that mapped between M. truncatula and L. albus identified 17 small syntenic blocks, and each M. truncatula chromosome aligned to between one and six syntenic blocks in L. albus. Genetic mapping of three important traits: anthracnose resistance, flowering time, and alkaloid content allowed loci governing these traits to be defined. Two quantitative trait loci (QTLs) with significant effects were identified for anthracnose resistance on LG4 and LG17, and two QTLs were detected for flowering time on the top of LG1 and LG3. Alkaloid content was mapped as a Mendelian trait to LG11.
Collapse
Affiliation(s)
- Huyen T. T. Phan
- Australian Centre for Necrotrophic Fungal Pathogens, SABC, Department of Health Sciences, Murdoch University, Murdoch 6150, Australia
| | - Simon R. Ellwood
- Australian Centre for Necrotrophic Fungal Pathogens, SABC, Department of Health Sciences, Murdoch University, Murdoch 6150, Australia
| | - Kedar Adhikari
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth 6151, Australia
- Centre for Legumes in Mediterranean Agriculture, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley 6009, Australia
| | - Matthew N. Nelson
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, SABC, Department of Health Sciences, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
43
|
Xu Q, Wen X, Deng X. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol Phylogenet Evol 2007; 44:315-24. [PMID: 17395495 DOI: 10.1016/j.ympev.2006.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/20/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
Phylogenetic relationships of the nucleotide binding site (NBS)-encoding resistance gene homologues (RGHs) among 12 species in five genera of Rosaceae fruit crops were evaluated. A total of 228 Rosaceous RGHs were deeply separated into two distinct clades, designated as TIR (sequences within this clade containing a Toll Interleukin-1 Receptor domain) and NonTIR (sequences lacking a TIR domain). Most Rosaceous RGH genes were phylogenetically distinct from Arabidopsis, Rice or Pine genes, except for a few Rosaceous members which grouped closely with Arabidopsis genes. Within Rosaceae, sequences from multiple species were often phylogenetically clustered together, forming heterogenous groups, however, apple- and chestnut rose-specific groups really exist. Gene duplication followed by sequence divergence were proposed as the mode for the evolution of a large number of distantly or closely related RGH genes in Rosaceae, and this mode may play a role in the generation of new resistance specificity. Positively selected sites within NBS-coding region were detected and thus nucleotide variation within NBS domain may function in determining disease resistance specificity. This study also discusses the synteny of a genomic region that encompass powdery mildew resistance locus among Malus, Prunus and Rosa, which may have potential use for fruit tree disease breeding and important gene cloning.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | |
Collapse
|
44
|
Cogan NOI, Drayton MC, Ponting RC, Vecchies AC, Bannan NR, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW. Validation of in silico-predicted genic SNPs in white clover (Trifolium repens L.), an outbreeding allopolyploid species. Mol Genet Genomics 2007; 277:413-25. [PMID: 17216492 DOI: 10.1007/s00438-006-0198-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
White clover (Trifolium repens L.) is an obligate outbreeding allotetraploid forage legume. Gene-associated SNPs provide the optimum genetic system for improvement of such crop species. An EST resource obtained from multiple cDNA libraries constructed from numerous genotypes of a single cultivar has been used for in silico SNP discovery and validation. A total of 58 from 236 selected sequence clusters (24.5%) were fully validated as containing polymorphic SNPs by genotypic analysis across the parents and progeny of several two-way pseudo-testcross mapping families. The clusters include genes belonging to a broad range of predicted functional categories. Polymorphic SNP-containing ESTs have also been used for comparative genomic analysis by comparison with whole genome data from model legume species, as well as Arabidopsis thaliana. A total of 29 (50%) of the 58 clusters detected putative ortholoci with known chromosomal locations in Medicago truncatula, which is closely related to white clover within the Trifolieae tribe of the Fabaceae. This analysis provides access to translational data from model species. The efficiency of in silico SNP discovery in white clover is limited by paralogous and homoeologous gene duplication effects, which are resolved unambiguously by the transmission test. This approach will also be applicable to other agronomically important cross-pollinating allopolyploid plant species.
Collapse
Affiliation(s)
- N O I Cogan
- Primary Industries Research Victoria, Victorian AgriBiosciences Centre, La Trobe Research and Development Park, Bundoora, VIC, 3083, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kamphuis LG, Williams AH, D'Souza NK, Pfaff T, Ellwood SR, Groves EJ, Singh KB, Oliver RP, Lichtenzveig J. The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. THE NEW PHYTOLOGIST 2007; 174:299-303. [PMID: 17388892 DOI: 10.1111/j.1469-8137.2007.02039.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Medicago truncatula (barrel medic) has emerged as a model legume and accession A17 is the reference genotype selected for the sequencing of the genome. In the present study we compare the A17 chromosomal configuration with that of other accessions by examining pollen viability and genetic maps of intraspecific hybrids. Hybrids derived from crosses between M. truncatula accessions, representative of the large genetic variation within the germplasm collection, were evaluated for pollen viability using Alexander's stain. Genetic maps were generated for the following crosses: SA27063 x SA3054 (n = 94), SA27063 x A17 (n = 92), A17 x Borung (n = 99) and A17 x A20 (n = 69). All F(1) individuals derived from crosses involving A17 showed 50% pollen viability or less. Examination of the recombination frequencies between markers of chromosomes 4 and 8 revealed an apparent genetic linkage between the lower arms of these chromosomes in genetic maps derived from A17. Semisterility and unexpected linkage relationship are both good indicators of a reciprocal translocation. The implications of the A17 distinctive chromosomal rearrangement on studies of genetic mapping, genome sequencing and synteny between species are discussed.
Collapse
Affiliation(s)
- Lars G Kamphuis
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
| | - Angela H Williams
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
| | - Nola K D'Souza
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
| | - Theo Pfaff
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
| | - Simon R Ellwood
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
| | - Emma J Groves
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Private Bag 5, Wembley WA 6913, Australia
| | - Richard P Oliver
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
| | - Judith Lichtenzveig
- Australian Centre for Necrotrophic Fungal Pathogens (ACNFP), State Agricultural Biotechnology Centre, Department of Health Sciences, Murdoch University, South Street, Murdoch WA 6150, Australia
- CSIRO Plant Industry, Private Bag 5, Wembley WA 6913, Australia
- Centre for Legumes in Mediterranean Agriculture (CLIMA), University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
46
|
Klingler JP, Edwards OR, Singh KB. Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. THE NEW PHYTOLOGIST 2007; 173:630-640. [PMID: 17244058 DOI: 10.1111/j.1469-8137.2006.01939.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Host resistance to aphids is poorly understood. Medicago truncatula, a model legume and cultivated pasture species, was used to elucidate defense against two aphid species, Therioaphis trifolii f. maculata (spotted alfalfa aphid, SAA) and Acyrthosiphon kondoi (bluegreen aphid, BGA). Aphid performance and plant damage were compared between near-isogenic cultivars, Mogul and Borung, that differ in resistance to both aphids. Analyses of aphid resistance in Mogul x Borung F2 plants and their progeny revealed modes of action and chromosome locations of resistance genes. Separate genes were identified for SAA resistance (TTR) and BGA resistance (AKR); both mapped to chromosome 3 but were found to act independently to reduce survival and growth of their target aphid species. The TTR locus controls distinct, and contrasting, local and systemic plant responses between the near-isogenic cultivars. TTR-mediated plant responses imply interaction between a resistance factor(s) in vascular tissue and a bioactive component(s) of SAA saliva. Features of both resistance traits suggest homology to aphid resistance in other legumes; elucidation of their molecular mechanisms will likely apply to other aphid-plant interactions.
Collapse
Affiliation(s)
- John P Klingler
- Commonwealth Scientific and Industrial Research Organization Entomology and
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | - Owain R Edwards
- Commonwealth Scientific and Industrial Research Organization Entomology and
| | - Karam B Singh
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
47
|
Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quétier F, Oldroyd GE, Debellé F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci U S A 2006; 103:14959-64. [PMID: 17003129 PMCID: PMC1578499 DOI: 10.1073/pnas.0603228103] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago-Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20-30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar).
Collapse
Affiliation(s)
- Steven B. Cannon
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
- U.S. Department of Agriculture–Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, IA 50010
| | - Lieven Sterck
- Department of Plant Systems Biology (VIB), Ghent University, B-9052 Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Systems Biology (VIB), Ghent University, B-9052 Ghent, Belgium
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Foo Cheung
- Institute for Genomic Research, Rockville, MD 20850
| | - Jérôme Gouzy
- Laboratoire des Interactions Plantes–Microorganismes, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France
| | - Xiaohong Wang
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Joann Mudge
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | | | - Thomas Schiex
- Unité de Biométrie et Intelligence Artificielle, B.P. 52627, Institut National de la Recherche Agronomique, 31326 Castanet-Tolosan, France
| | - Manuel Spannagl
- Munich Information Center for Protein Sequences Institute for Bioinformatics, Gesellschaft für Strahlung und Umweltforschung, Research Center for Environment and Health, 85764 Neuherberg, Germany
| | | | - Christine Nicholson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sean J. Humphray
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Heiko Schoof
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
| | - Klaus F. X. Mayer
- Munich Information Center for Protein Sequences Institute for Bioinformatics, Gesellschaft für Strahlung und Umweltforschung, Research Center for Environment and Health, 85764 Neuherberg, Germany
| | - Jane Rogers
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | | | - Frédéric Debellé
- Laboratoire des Interactions Plantes–Microorganismes, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| | - Ernest F. Retzel
- Center for Computational Genomics and Bioinformatics, Minneapolis, MN 55455; and
| | - Bruce A. Roe
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | | | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yves Van de Peer
- Department of Plant Systems Biology (VIB), Ghent University, B-9052 Ghent, Belgium
| | - Nevin D. Young
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Phan HTT, Ellwood SR, Ford R, Thomas S, Oliver R. Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:775-782. [PMID: 32689288 DOI: 10.1071/fp06102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/02/2006] [Indexed: 06/11/2023]
Abstract
Orthologous markers transferable between distantly related legume species allow for the rapid generation of genetic maps in species where there is little pre-existing genomic or EST information. We are using the model legume Medicago truncatula Gaertn. to develop such markers in legumes of importance to Australian agriculture. This will enable the construction of comparative genetic maps, help to determine patterns of chromosomal evolution in the legume family, and characterise syntenic relationships between M. truncatula and cultivated legumes. This information can then be used to identify markers that are tightly linked to the genes of interest, candidate gene(s) for a trait, and expedite the isolation of such genes. Among the Papilionoideae, we compared ESTs from the phylogenetically distant species, M. truncatula, Lupinus albus and Glycine max, to produce 500 intron-targeted amplified polymorphic markers (ITAPs). In addition to 126 M. truncatula cross-species markers from Department of Plant Pathology, University of California (USA), these markers were used to generate comparative genetic maps of lentil (Lens culinaris Medik.) and white lupin (Lupinus albus Linn.). Our results showed that 90% of the ITAPs markers amplified genomic DNA in M. truncatula, 80% in Lupinus albus, and 70% in Lens culinaris. The comparative map of Lens culinaris was constructed based on 79 ITAP markers. The Lupinus albus comparative map was developed from 105 gene-based markers together with 223 AFLP markers. Although a direct and simple syntenic relationship was observed between M. truncatula and Lens culinaris genomes, there is evidence of moderate chromosomal rearrangement. This may account for the different chromosome numbers in the two species. A more complicated pattern among homologous blocks was apparent between the Lupinus albus and M. truncatula genomes.
Collapse
Affiliation(s)
- Huyen T T Phan
- Australian Centre of Necrotrophic Plant Pathogens, State Agricultural Biotechnology Centre, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Simon R Ellwood
- Australian Centre of Necrotrophic Plant Pathogens, State Agricultural Biotechnology Centre, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Rebecca Ford
- BioMarka, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Steve Thomas
- NSW Department of Primary Industries, 161 Kite Street, Locked Bag 21, Orange, NSW 2800, Australia
| | - Richard Oliver
- Australian Centre of Necrotrophic Plant Pathogens, State Agricultural Biotechnology Centre, Murdoch University, South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
49
|
Tesfaye M, Samac DA, Vance CP. Insights into symbiotic nitrogen fixation in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:330-41. [PMID: 16570662 DOI: 10.1094/mpmi-19-0330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In silico analysis of the Medicago truncatula gene index release 8.0 at The Institute for Genomic Research identified approximately 530 tentative consensus sequences (TC) clustered from 2,700 expressed sequence tags (EST) derived solely from Sinorhizobium meliloti-inoculated root and nodule tissues. A great majority (76%) of these TC were derived exclusively from nitrogen-fixing and senescent nodules. A cDNA filter array was constructed using approximately 58% of the in silico-identified TC as well as cDNAs representing selected carbon and nitrogen metabolic pathways. The purpose of the array was to analyze transcript abundance in M. truncatula roots and nodules following inoculation by a wild-type S. meliloti strain, a mutant strain that forms ineffective nodules, an uninoculated root control, and roots following nitrate or ammonium treatments. In all, 81 cDNAs were upregulated in both effective and ineffective nodules, and 78% of these cDNAs represent in silico-identified TC. One group of in silico-identified TC encodes genes with similarity to putative plant disease resistance (R) genes of the nucleotide binding site-leucine-rich repeat type. Expression of R genes was enhanced in effective nodules, and transcripts also were detected in ineffective nodules at 14 days postinoculation (dpi). Homologous R gene sequences also have been identified in the Medicago genome. However, their functional importance in nodules remains to be established. Genes for enzymes involved in organic acid synthesis along with genes involved in nitrogen metabolism were shown to be coexpressed in nitrate-fed roots and effective nodules of M. truncatula.
Collapse
Affiliation(s)
- Mesfin Tesfaye
- Department of Plant Pathology, University of Minnesota, St. Paul 55108, USA.
| | | | | |
Collapse
|
50
|
Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG. Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1504-13. [PMID: 16195885 DOI: 10.1007/s00122-005-0079-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 08/01/2005] [Indexed: 05/04/2023]
Abstract
The genetically anchored physical map of peach is a valuable tool for identifying loci controlling economically important traits in Prunus. Breeding for disease resistance is a key component of most breeding programs. The identification of loci for pathogen resistance in peach provides information about resistance loci, the organization of resistance genes throughout the genome, and permits comparison of resistance regions among other genomes in the Rosaceae. This information will facilitate the breeding of resistant species of Prunus. A candidate gene approach was implemented for locating resistance loci in the genome of peach. Candidate genes representing NBS-LRR, kinase, transmembrane domain classes, as well as, pathogen response (PR) proteins and resistance-associated transcription factors were hybridized to a peach BAC library and mapped by using the peach physical map database and the Genome Database for Rosaceae (GDR). A resistance map for Prunus was generated and currently contains 42 map locations for putative resistance regions distributed among 7 of the 8 linkage groups.
Collapse
Affiliation(s)
- D A Lalli
- Department of Genetics, Biochemistry, and Life Science Studies, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | | | |
Collapse
|