1
|
Pombo MA, Rosli HG, Maiale S, Elliott C, Stieben ME, Romero FM, Garriz A, Ruiz OA, Idnurm A, Rossi FR. Unveiling the virulence mechanism of Leptosphaeria maculans in the Brassica napus interaction: the key role of sirodesmin PL in the induction of cell death. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1767-1783. [PMID: 39680058 DOI: 10.1093/jxb/erae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus, leading to substantial yield losses. Sirodesmin PL, the principal toxin produced by L. maculans, has been implicated in the infection process in plants. However, the precise molecular and physiological mechanisms governing its effects remain elusive. This study investigates the changes induced by sirodesmin PL at the transcriptomic, physiological, and morphological levels in B. napus cotyledons. Sirodesmin PL treatment up-regulated genes associated with plant defense processes, including response to chitin, sulfur compound biosynthesis, toxin metabolism, oxidative stress response, and jasmonic acid/ethylene synthesis and signaling. Validation of these transcriptomic changes is evidenced by several typical defense response processes, such as the accumulation of reactive oxygen species (ROS) and callose deposition. Concomitantly, oxidized sirodesmin PL induced concentration- and exposure duration-dependent cell death. This cellular death is likely to be attributed to diminished activity of PSII and reduced number of chloroplasts per cell. In agreement, a down-regulation of genes associated with the photosynthesis process is observed following sirodesmin PL treatment. Thus, it is plausible that L. maculans exploits sirodesmin PL as a virulence factor to instigate cell death in B. napus during its necrotrophic stage, favoring the infection process.
Collapse
Affiliation(s)
- Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Santiago Maiale
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Candace Elliott
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Micaela E Stieben
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Fernando M Romero
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Andrés Garriz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Oscar A Ruiz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Franco R Rossi
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
2
|
Mooney BC, van der Hoorn RAL. Novel structural insights at the extracellular plant-pathogen interface. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102629. [PMID: 39299144 DOI: 10.1016/j.pbi.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Plant pathogens represent a critical threat to global agriculture and food security, particularly under the pressures of climate change and reduced agrochemical use. Most plant pathogens initially colonize the extracellular space or apoplast and understanding the host-pathogen interactions that occur here is vital for engineering sustainable disease resistance in crops. Structural biology has played important roles in elucidating molecular mechanisms underpinning plant-pathogen interactions but only few studies have reported structures of extracellular complexes. This article highlights these resolved extracellular complexes by describing the insights gained from the solved structures of complexes consisting of CERK1-chitin, FLS2-flg22-BAK1, RXEG1-XEG1-BAK1 and PGIP2-FpPG. Finally, we discuss the potential of AI-based structure prediction platforms like AlphaFold as an alternative hypothesis generator to rapidly advance our molecular understanding of plant pathology and develop novel strategies to increase crop resilience against disease.
Collapse
|
3
|
De la Cruz Gómez N, Poza-Carrión C, Del Castillo-González L, Martínez Sánchez ÁI, Moliner A, Aranaz I, Berrocal-Lobo M. Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2158. [PMID: 39124276 PMCID: PMC11313925 DOI: 10.3390/plants13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming.
Collapse
Affiliation(s)
- Noelia De la Cruz Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
- Arquimea Agrotech S.L.U, 28400 Madrid, Spain
| | - César Poza-Carrión
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ángel Isidro Martínez Sánchez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ana Moliner
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense, 28040 Madrid, Spain;
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| |
Collapse
|
4
|
Mészáros Z, Kulik N, Petrásková L, Bojarová P, Texidó M, Planas A, Křen V, Slámová K. Three-Step Enzymatic Remodeling of Chitin into Bioactive Chitooligomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15613-15623. [PMID: 38978453 PMCID: PMC11261597 DOI: 10.1021/acs.jafc.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of β-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Natalia Kulik
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Mònica Texidó
- Laboratory
of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, ES 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, ES 08017 Barcelona, Spain
| | - Vladimír Křen
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Kristýna Slámová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| |
Collapse
|
5
|
Saberi Riseh R, Gholizadeh Vazvani M, Vatankhah M, Kennedy JF. Chitin-induced disease resistance in plants: A review. Int J Biol Macromol 2024; 266:131105. [PMID: 38531527 DOI: 10.1016/j.ijbiomac.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
6
|
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2469. [PMID: 37447031 DOI: 10.3390/plants12132469] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Chitosan is illustrated in research as a stimulant of plant tolerance and resistance that promotes natural defense mechanisms against biotic and abiotic stressors, and its use may lessen the amount of agrochemicals utilized in agriculture. Recent literature reports indicate the high efficacy of soil or foliar usage of chitin and chitosan in the promotion of plant growth and the induction of secondary metabolites biosynthesis in various species, such as Artemisia annua, Curcuma longa, Dracocephalum kotschyi, Catharanthus roseus, Fragaria × ananassa, Ginkgo biloba, Iberis amara, Isatis tinctoria, Melissa officinalis, Mentha piperita, Ocimum basilicum, Origanum vulgare ssp. Hirtum, Psammosilene tunicoides, Salvia officinalis, Satureja isophylla, Stevia rebaudiana, and Sylibum marianum, among others. This work focuses on the outstanding scientific contributions to the field of the production and quality of aromatic and medicinal plants, based on the different functions of chitosan and chitin in sustainable crop production. The application of chitosan can lead to increased medicinal plant production and protects plants against harmful microorganisms. The effectiveness of chitin and chitosan is also due to the low concentration required, low cost, and environmental safety. On the basis of showing such considerable characteristics, there is increasing attention on the application of chitin and chitosan biopolymers in horticulture and agriculture productions.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Nazanin Shahrajabian
- Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
| |
Collapse
|
7
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
8
|
Yang S, Zhang X, Zhang X, Bi Y, Gao W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ 2022; 10:e12939. [PMID: 35282281 PMCID: PMC8916028 DOI: 10.7717/peerj.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.
Collapse
Affiliation(s)
- Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoxiao Zhang
- College of Agriculture, Guangxi University, Nanning, China,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
García YH, Zamora OR, Troncoso-Rojas R, Tiznado-Hernández ME, Báez-Flores ME, Carvajal-Millan E, Rascón-Chu A. Toward Understanding the Molecular Recognition of Fungal Chitin and Activation of the Plant Defense Mechanism in Horticultural Crops. Molecules 2021; 26:molecules26216513. [PMID: 34770922 PMCID: PMC8587247 DOI: 10.3390/molecules26216513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Large volumes of fruit and vegetable production are lost during postharvest handling due to attacks by necrotrophic fungi. One of the promising alternatives proposed for the control of postharvest diseases is the induction of natural defense responses, which can be activated by recognizing molecules present in pathogens, such as chitin. Chitin is one of the most important components of the fungal cell wall and is recognized through plant membrane receptors. These receptors belong to the receptor-like kinase (RLK) family, which possesses a transmembrane domain and/or receptor-like protein (RLP) that requires binding to another RLK receptor to recognize chitin. In addition, these receptors have extracellular LysM motifs that participate in the perception of chitin oligosaccharides. These receptors have been widely studied in Arabidopsis thaliana (A. thaliana) and Oryza sativa (O. sativa); however, it is not clear how the molecular recognition and plant defense mechanisms of chitin oligosaccharides occur in other plant species or fruits. This review includes recent findings on the molecular recognition of chitin oligosaccharides and how they activate defense mechanisms in plants. In addition, we highlight some of the current advances in chitin perception in horticultural crops.
Collapse
Affiliation(s)
- Yaima Henry García
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Orlando Reyes Zamora
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
- Correspondence:
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - María Elena Báez-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Calle de las Américas y Josefa Ortiz de Domínguez, Culiacán C.P. 80013, Mexico;
| | - Elizabeth Carvajal-Millan
- Coordinación de Tecnología en Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico;
| | - Agustín Rascón-Chu
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| |
Collapse
|
10
|
Ramakrishna B, Sarma PVSRN, Ankati S, Bhuvanachandra B, Podile AR. Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydr Res 2021; 510:108459. [PMID: 34700217 DOI: 10.1016/j.carres.2021.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Long-chain chitooligosaccharides (COS) with degree of polymerization (DP) more than 4 are known to have potential biological activities. A hyper-transglycosylating mutant of an endo-chitinase from Serratia proteamaculans (SpChiD-Y28A) was used to synthesize COS with DP6 and DP7 using COS DP5 as substrate. Purified COS with DP5-7 were tested to elicit the defense response in rice seedlings. Among the COS used, DP7 strongly induced oxidative burst response as well as peroxidase, and phenylalanine ammonia lyase activites. A few selected marker genes in salicylic acid (SA)- and jasmonic acid-dependent pathways were evaluated by real-time PCR. The expression levels of pathogenesis-related (PR) genes PR1a and PR10 and defense response genes (chitinase1, peroxidase and β -1,3-glucanase) were up regulated upon COS treatment in rice seedlings. The DP7 induced Phenylalanine ammonia lyase and Isochorismate synthase 1 genes, with concomitant increase of Mitogen-activated protein kinase 6 and WRKY45 transcription factor genes indicated the possible role of phosphorylation in the transmission of a signal to induce SA-mediated defense response in rice.
Collapse
Affiliation(s)
- Bellamkonda Ramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - P V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Sravani Ankati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
11
|
De A, Maity A, Mazumder M, Mondal B, Mukherjee A, Ghosh S, Ray P, Polley S, Dastidar SG, Basu D. Overexpression of LYK4, a lysin motif receptor with non-functional kinase domain, enhances tolerance to Alternaria brassicicola and increases trichome density in Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110953. [PMID: 34134846 DOI: 10.1016/j.plantsci.2021.110953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Lysin motif receptor-like kinases (LYKs) are involved in the recognition of chitin and activation of plant immune response. In this study, we found LYK4 to be strongly induced in resistant Sinapis alba compared with susceptible Brassica juncea on challenge with Alternaria brassicicola. In silico analysis and in vitro kinase assay revealed that despite the presence of canonical protein kinase fold, B.juncea LYK4 (BjLYK4) lacks several key residues of a prototype protein kinase which renders it catalytically inactive. Transient expression analysis confirmed that fluorescently tagged BjLYK4 localizes specifically to the plasma membrane. Overexpression (OE) of BjLYK4 in B. juncea enhanced tolerance against A. brassicicola. Interestingly, the OE lines also exhibited a novel trichome dense phenotype and increased jasmonic acid (JA) responsiveness. We further showed that many chitin responsive WRKY transcription factors and JA biosynthetic genes were strongly induced in the OE lines on challenge with the pathogen. Moreover, several JA inducible trichome developmental genes constituting the WD-repeat/bHLH/MYB activator complex were also upregulated in the OE lines compared with vector control and RNA interference line. These results suggest that BjLYK4 plays an essential role in chitin-dependent activation of defense response and chitin independent trichome development likely by influencing the JA signaling pathway.
Collapse
Affiliation(s)
- Aishee De
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Atanu Maity
- Division of Bioinformatics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Mrinmoy Mazumder
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, 119077.
| | - Banani Mondal
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Amrita Mukherjee
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Pranita Ray
- Department of Biophysics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Smarajit Polley
- Department of Biophysics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| |
Collapse
|
12
|
Shahrajabian MH, Chaski C, Polyzos N, Tzortzakis N, Petropoulos SA. Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules 2021; 11:biom11060819. [PMID: 34072781 PMCID: PMC8226918 DOI: 10.3390/biom11060819] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Chitin and chitosan are natural compounds that are biodegradable and nontoxic and have gained noticeable attention due to their effective contribution to increased yield and agro-environmental sustainability. Several effects have been reported for chitosan application in plants. Particularly, it can be used in plant defense systems against biological and environmental stress conditions and as a plant growth promoter—it can increase stomatal conductance and reduce transpiration or be applied as a coating material in seeds. Moreover, it can be effective in promoting chitinolytic microorganisms and prolonging storage life through post-harvest treatments, or benefit nutrient delivery to plants since it may prevent leaching and improve slow release of nutrients in fertilizers. Finally, it can remediate polluted soils through the removal of cationic and anionic heavy metals and the improvement of soil properties. On the other hand, chitin also has many beneficial effects such as plant growth promotion, improved plant nutrition and ability to modulate and improve plants’ resistance to abiotic and biotic stressors. The present review presents a literature overview regarding the effects of chitin, chitosan and derivatives on horticultural crops, highlighting their important role in modern sustainable crop production; the main limitations as well as the future prospects of applications of this particular biostimulant category are also presented.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
- Correspondence: (M.H.S.); (S.A.P.); Tel.: +30-24210-93196 (S.A.P.)
| | - Christina Chaski
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
| | - Nikolaos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
- Correspondence: (M.H.S.); (S.A.P.); Tel.: +30-24210-93196 (S.A.P.)
| |
Collapse
|
13
|
Bozsoki Z, Gysel K, Hansen SB, Lironi D, Krönauer C, Feng F, de Jong N, Vinther M, Kamble M, Thygesen MB, Engholm E, Kofoed C, Fort S, Sullivan JT, Ronson CW, Jensen KJ, Blaise M, Oldroyd G, Stougaard J, Andersen KR, Radutoiu S. Ligand-recognizing motifs in plant LysM
receptors are major determinants of
specificity. Science 2020; 369:663-670. [DOI: 10.1126/science.abb3377] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/12/2020] [Indexed: 01/02/2023]
Abstract
Plants evolved lysine motif (LysM)
receptors to recognize and parse microbial
elicitors and drive intracellular signaling to
limit or facilitate microbial colonization. We
investigated how chitin and nodulation (Nod)
factor receptors of Lotus
japonicus initiate differential
signaling of immunity or root nodule symbiosis.
Two motifs in the LysM1 domains of these receptors
determine specific recognition of ligands and
discriminate between their in planta functions.
These motifs define the ligand-binding site and
make up the most structurally divergent regions in
cognate Nod factor receptors. An adjacent motif
modulates the specificity for Nod factor
recognition and determines the selection of
compatible rhizobial symbionts in legumes. We also
identified how binding specificities in LysM
receptors can be altered to facilitate Nod factor
recognition and signaling from a chitin receptor,
advancing the prospects of engineering rhizobial
symbiosis into nonlegumes.
Collapse
Affiliation(s)
- Zoltan Bozsoki
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Simon B. Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Damiano Lironi
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Feng Feng
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Manoj Kamble
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ebbe Engholm
- Department of Chemistry, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Christian Kofoed
- Department of Chemistry, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - John T. Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Clive W. Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Knud J. Jensen
- Department of Chemistry, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Mickaël Blaise
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Giles Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Tang L, Yang G, Ma M, Liu X, Li B, Xie J, Fu Y, Chen T, Yu Y, Chen W, Jiang D, Cheng J. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:686-701. [PMID: 32105402 PMCID: PMC7170781 DOI: 10.1111/mpp.12922] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
SsITL, a secretory protein of the necrotrophic phytopathogen Sclerotinia sclerotiorum, was previously reported to suppress host immunity at the early stages of infection. However, the molecular mechanism that SsITL uses to inhibit plant defence against S. sclerotiorum has not yet been elucidated. Here, we report that SsITL interacted with a chloroplast-localized calcium-sensing receptor, CAS, in chloroplasts. We found that CAS is a positive regulator of the salicylic acid signalling pathway in plant immunity to S. sclerotiorum and CAS-mediated resistance against S. sclerotiorum depends on Ca2+ signalling. Furthermore, we showed that SsITL could interfere with the plant salicylic acid (SA) signalling pathway and SsITL-expressing transgenic plants were more susceptible to S. sclerotiorum. However, truncated SsITLs (SsITL-NT1 or SsITL-CT1) that lost the ability to interact with CAS do not affect plant resistance to S. sclerotiorum. Taken together, our findings reveal that SsITL inhibits SA accumulation during the early stage of infection by interacting with CAS and then facilitating the infection by S. sclerotiorum.
Collapse
Affiliation(s)
- Liguang Tang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Guogen Yang
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
| | - Ming Ma
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Xiaofan Liu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Bo Li
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Yang Yu
- College of Plant ProtectionSouthwest UniversityChongqing CityChina
| | - Weidong Chen
- United States Department of AgricultureAgricultural Research ServiceWashington State UniversityPullmanWAUSA
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
- The Provincial Key Lab of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan, Hubei ProvinceChina
| |
Collapse
|
15
|
Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms 2020; 8:microorganisms8020305. [PMID: 32098375 PMCID: PMC7075021 DOI: 10.3390/microorganisms8020305] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023] Open
Abstract
Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops. F. graminearum has been extensively studied to understand its pathogenicity and virulence factors. These studies gained momentum with the advent of next-generation sequencing (NGS) technologies and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and virulence factors of F. graminearum. This current review aimed to trace progress made in discovering F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence factors discovered using NGS, and to some extent, using proteomics. We present more than 100 discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity and virulence factors have already been discovered, more work needs to be done to take advantage of NGS and its companion applications of proteomics.
Collapse
|
16
|
Volpe V, Carotenuto G, Berzero C, Cagnina L, Puech-Pagès V, Genre A. Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydr Polym 2020; 229:115505. [DOI: 10.1016/j.carbpol.2019.115505] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 01/17/2023]
|
17
|
Henry García Y, Troncoso-Rojas R, Tiznado-Hernández ME, Báez-Flores ME, Carvajal-Millan E, Rascón-Chu A, Lizardi-Mendoza J, Martínez-Robinson KG. Enzymatic treatments as alternative to produce chitin fragments of low molecular weight from Alternaria alternata. J Appl Polym Sci 2019. [DOI: 10.1002/app.47339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaima Henry García
- Coordinación de Tecnología en Alimentos de Origen Vegetal; Centro de Investigación en Alimentación y Desarrollo, A.C.; Carretera a La Victoria km 0.6, Col. Ejido La Victoria, C.P. 83304 Hermosillo Sonora México
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología en Alimentos de Origen Vegetal; Centro de Investigación en Alimentación y Desarrollo, A.C.; Carretera a La Victoria km 0.6, Col. Ejido La Victoria, C.P. 83304 Hermosillo Sonora México
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología en Alimentos de Origen Vegetal; Centro de Investigación en Alimentación y Desarrollo, A.C.; Carretera a La Victoria km 0.6, Col. Ejido La Victoria, C.P. 83304 Hermosillo Sonora México
| | - María Elena Báez-Flores
- Facultad de Ciencias Químico Biológicas; Universidad Autónoma de Sinaloa; Calle de las Américas y Josefa Ortiz de Domínguez, C.P. 80010 Culiacán Sinaloa México
| | - Elizabeth Carvajal-Millan
- Coordinación de Tecnologíaen Alimentos de Origen Animal; Centro de Investigación en Alimentación y Desarrollo, A.C.; Carretera a La Victoria km 0.6, Col. Ejido La Victoria, C.P. 83304 Hermosillo Sonora México
| | - Agustín Rascón-Chu
- Coordinación de Tecnología en Alimentos de Origen Vegetal; Centro de Investigación en Alimentación y Desarrollo, A.C.; Carretera a La Victoria km 0.6, Col. Ejido La Victoria, C.P. 83304 Hermosillo Sonora México
| | - Jaime Lizardi-Mendoza
- Coordinación de Tecnologíaen Alimentos de Origen Animal; Centro de Investigación en Alimentación y Desarrollo, A.C.; Carretera a La Victoria km 0.6, Col. Ejido La Victoria, C.P. 83304 Hermosillo Sonora México
| | - Karla Guadalupe Martínez-Robinson
- Coordinación de Tecnologíaen Alimentos de Origen Animal; Centro de Investigación en Alimentación y Desarrollo, A.C.; Carretera a La Victoria km 0.6, Col. Ejido La Victoria, C.P. 83304 Hermosillo Sonora México
| |
Collapse
|
18
|
Shi Q, George J, Krystel J, Zhang S, Lapointe SL, Stelinski LL, Stover E. Hexaacetyl-chitohexaose, a chitin-derived oligosaccharide, transiently activates citrus defenses and alters the feeding behavior of Asian citrus psyllid. HORTICULTURE RESEARCH 2019; 6:76. [PMID: 31231534 PMCID: PMC6555843 DOI: 10.1038/s41438-019-0158-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 05/16/2023]
Abstract
Plants have a perception system triggered by pathogen and pest signals to initiate defense. These signals include evolutionarily conserved molecules from microbes and insects termed pathogen/herbivore-associated molecular patterns (PAMPs/HAMPs). Here we showed that hexaacetyl-chitohexaose (HC), an oligosaccharide from chitin, a structural component in insect exoskeletons and fungi cell walls, upregulated defense-associated genes WRKY22, GST1, RAR1, EDS1, PAL1 and NPR2, and downregulated ICS1 at 1 h after HC treatment in Sun Chu Sha mandarin leaves. The effect was transient as defense gene transcriptional changes were not observed at 18 h after the treatment. Electrical penetration graph (EPG) recordings were used to study the feeding behavior of Asian citrus psyllid (ACP) following the HC treatment. ACP is the hemipteran vector of Candidatus Liberibacter asiaticus (CLas), the pathogen associated with huanglongbing (HLB). Adult ACP displayed reduced intercellular probing, reduced xylem feeding count and duration, and increased non-probing activity on HC-treated citrus compared to controls. During an 18-h recording, percentage for total duration of xylem ingestion, phloem ingestion, intercellular probing were lower, and the percentage of non-probing behavior was higher in HC-treated leaves than in controls. In host-selection behavior studies, HC treatment did not alter the attractiveness of citrus leaves under light or dark conditions. In addition, ACP feeding on HC-treated leaves did not show differences in mortality for up to 10 day of exposure. In summary, we report that HC induced a transient defense in citrus and an inhibitory effect on ACP feeding but did not affect host selection or the insect fitness under the tested conditions.
Collapse
Affiliation(s)
- Qingchun Shi
- US Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL 34945 USA
| | - Justin George
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Joseph Krystel
- US Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL 34945 USA
| | - Shujian Zhang
- US Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL 34945 USA
| | | | - Lukasz L. Stelinski
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Ed Stover
- US Horticultural Research Laboratory, USDA/ARS, Fort Pierce, FL 34945 USA
| |
Collapse
|
19
|
Gubaeva E, Gubaev A, Melcher RLJ, Cord-Landwehr S, Singh R, El Gueddari NE, Moerschbacher BM. 'Slipped Sandwich' Model for Chitin and Chitosan Perception in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1145-1153. [PMID: 29787346 DOI: 10.1094/mpmi-04-18-0098-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chitin, a linear polymer of N-acetyl-d-glucosamine, and chitosans, fully or partially deacetylated derivatives of chitin, are known to elicit defense reactions in higher plants. We compared the ability of chitin and chitosan oligomers and polymers (chitin oligomers with degree of polymerization [DP] 3 to 8; chitosan oligomers with degree of acetylation [DA] 0 to 35% and DP 3 to 15; chitosan polymers with DA 1 to 60% and DP approximately 1,300) to elicit an oxidative burst indicative of induced defense reactions in Arabidopsis thaliana seedlings. Fully deacetylated chitosans were not able to trigger a response; elicitor activity increased with increasing DA of chitosan polymers. Partially acetylated chitosan oligomers required a minimum DP of 6 and at least four N-acetyl groups to trigger a response. Invariably, elicitation of an oxidative burst required the presence of the chitin receptor AtCERK1. Our results as well as previously published studies on chitin and chitosan perception in plants are best explained by a new general model of LysM-containing receptor complexes in which two partners form a long but off-set chitin-binding groove and are, thus, dimerized by one chitin or chitosan molecule, sharing a central GlcNAc unit with which both LysM domains interact. To verify this model and to distinguish it from earlier models, we assayed elicitor and inhibitor activities of selected partially acetylated chitosan oligomers with fully defined structures. In contrast to the initial 'continuous groove', the original 'sandwich', or the current 'sliding mode' models for the chitin/chitosan receptor, the here-proposed 'slipped sandwich' model-which builds on these earlier models and represents a consensus combination of these-is in agreement with all experimental observations.
Collapse
Affiliation(s)
- Ekaterina Gubaeva
- 1 Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany; and
| | - Airat Gubaev
- 2 Institute for Physical Chemistry, University of Münster, Corrensstraße 30, 48149 Münster, Germany
| | - Rebecca L J Melcher
- 1 Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany; and
| | - Stefan Cord-Landwehr
- 1 Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany; and
| | - Ratna Singh
- 1 Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany; and
| | - Nour Eddine El Gueddari
- 1 Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany; and
| | - Bruno M Moerschbacher
- 1 Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany; and
| |
Collapse
|
20
|
Zhang X, Li K, Xing R, Liu S, Chen X, Yang H, Li P. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3810-3822. [PMID: 29584426 DOI: 10.1021/acs.jafc.7b06081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- University of Chinese Academy of Sciences, Beijing 100049 , China
| | - Kecheng Li
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Ronge Xing
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Song Liu
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Xiaolin Chen
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Haoyue Yang
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Pengcheng Li
- Key Laborotory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
21
|
Xu J, Wang G, Wang J, Li Y, Tian L, Wang X, Guo W. The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC PLANT BIOLOGY 2017; 17:148. [PMID: 28870172 PMCID: PMC5583995 DOI: 10.1186/s12870-017-1096-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/23/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lysin motif (LysM)-containing proteins are important pattern recognition receptors (PRRs) in plants, which function in the perception of microbe-associated molecular patterns (MAMPs) and in the defense against pathogenic attack. To date, the LysM genes have not been systematically analyzed in cotton or effectively utilized for disease resistance. RESULTS Here, we identified 29, 30, 60, and 56 LysM genes in the four sequenced cotton species, diploid Gossypium raimondii, diploid G. arboreum, tetraploid G. hirsutum acc. TM-1, and G. barbadense acc. 3-79, respectively. These LysM genes were classified into four groups with different structural characteristics and a variety of expression patterns in different organs and tissues when induced by chitin or Verticillium dahliae. We further characterized three genes, Lyp1, Lyk7 and LysMe3, which showed significant increase in expression in response to chitin signals, V. dahliae challenge and several stress-related signaling compounds. Lyp1, Lyk7 and LysMe3 proteins were localized to the plasma membrane, and silencing of their expression in cotton drastically impaired salicylic acid, jasmonic acid, and reactive oxygen species generation, impaired defense gene activation, and compromised resistance to V. dahliae. CONCLUSION Our results indicate that Lyp1, Lyk7, and LysMe3 are important PRRs that function in the recognition of chitin signals to activate the downstream defense processes and induce cotton defense mechanisms against V. dahliae.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Yongqing Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Liangliang Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| |
Collapse
|
22
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
23
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
24
|
Cao Y, Halane MK, Gassmann W, Stacey G. The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:535-561. [PMID: 28142283 DOI: 10.1146/annurev-arplant-042916-041030] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A classic view of the evolution of mutualism is that it derives from a pathogenic relationship that attenuated over time to a situation in which both partners can benefit. If this is the case for rhizobia, then one might uncover features of the symbiosis that reflect this earlier pathogenic state. For example, as with plant pathogens, it is now generally assumed that rhizobia actively suppress the host immune response to allow infection and symbiosis establishment. Likewise, the host has retained mechanisms to control the nutrient supply to the symbionts and the number of nodules so that they do not become too burdensome. The open question is whether such events are strictly ancillary to the central symbiotic nodulation factor signaling pathway or are essential for rhizobial host infection. Subsequent to these early infection events, plant immune responses can also be induced inside nodules and likely play a role in, for example, nodule senescence. Thus, a balanced regulation of innate immunity is likely required throughout rhizobial infection, symbiotic establishment, and maintenance. In this review, we discuss the significance of plant immune responses in the regulation of symbiotic associations with rhizobia, as well as rhizobial evasion of the host immune system.
Collapse
Affiliation(s)
- Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Morgan K Halane
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
25
|
Hohmann U, Lau K, Hothorn M. The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:109-137. [PMID: 28125280 DOI: 10.1146/annurev-arplant-042916-040957] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved a family of unique membrane receptor kinases to orchestrate the growth and development of their cells, tissues, and organs. Receptor kinases also form the first line of defense of the plant immune system and allow plants to engage in symbiotic interactions. Here, we discuss recent advances in understanding, at the molecular level, how receptor kinases with lysin-motif or leucine-rich-repeat ectodomains have evolved to sense a broad spectrum of ligands. We summarize and compare the established receptor activation mechanisms for plant receptor kinases and dissect how ligand binding at the cell surface leads to activation of cytoplasmic signaling cascades. Our review highlights that one family of plant membrane receptors has diversified structurally to fulfill very different signaling tasks.
Collapse
Affiliation(s)
- Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Kelvin Lau
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland; , ,
| |
Collapse
|
26
|
Smaili A, Mazoir N, Rifai LA, Koussa T, Makroum K, Kabil EM, Benharref A, Faize M. Triterpene derivatives from Euphorbia enhance resistance against Verticillium wilt of tomato. PHYTOCHEMISTRY 2017; 135:169-180. [PMID: 28027775 DOI: 10.1016/j.phytochem.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/24/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Oxidation of α-euphorbol and 31-norlanostenol, two triterpenic compounds isolated from the latex of Euphorbia resinifera and Euphorbia officinarum respectively, yielded four products named 3β-tosyloxy-4α,14α-dimethyl-5α-cholesta-7,9-diene; 4α,14α-dimethyl-5α-cholesta-7,9-dien-3β-ol; 24-methylen-elemo-lanosta-8,24-dien-3-one and elemo-lanost-8-en-3,11,24-trione. They were evaluated for protection of tomato plants against Verticillium dahliae in a greenhouse. The four semisynthesized products were phytotoxic at higher concentrations as they completely inhibited tomato germination at 100 and 500 μg/ml. However at lower concentrations (10 and 50 μg/ml) germination and root length were not affected. Disease resistance against Verticillium wilt was assessed in tomato plants derived from seeds that germinated in the presence of 10 and 50 μg/ml of the four products. All of them were able to reduce significantly disease severity, with 10 μg/ml being more effective than 50 μg/ml. Reduction of leaf alteration index and of stunting index ranged from 52 to 68% and from 43 to 67%, respectively, while vessel discoloration was reduced by at least 95%. The compounds were also able to elicit H2O2 accumulation before and after fungal inoculation and to significantly enhance peroxidase and polyphenol oxidase activities. These results suggest that the hemisynthetized triterpenes can be used as elicitors of disease resistance.
Collapse
Affiliation(s)
- Amal Smaili
- Laboratory of Plant Biotechnology and Ecosystem Valorisation, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Noureddine Mazoir
- Department of Chemistry, Faculty of Sciences El Jadida, Chouaib Doukkali University, P.O. Box 20, 24000 El Jadida, Morocco; Laboratory of Biomolecular Chemistry, Natural Substances and Reactivity, URAC 16, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech, Morocco
| | - Lalla Aicha Rifai
- Laboratory of Plant Biotechnology and Ecosystem Valorisation, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Tayeb Koussa
- Laboratory of Plant Biotechnology and Ecosystem Valorisation, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Kacem Makroum
- Laboratory of Plant Biotechnology and Ecosystem Valorisation, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - El Mostafa Kabil
- Laboratory of Plant Biotechnology and Ecosystem Valorisation, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Ahmed Benharref
- Laboratory of Biomolecular Chemistry, Natural Substances and Reactivity, URAC 16, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech, Morocco
| | - Mohamed Faize
- Laboratory of Plant Biotechnology and Ecosystem Valorisation, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco.
| |
Collapse
|
27
|
Winkler AJ, Dominguez-Nuñez JA, Aranaz I, Poza-Carrión C, Ramonell K, Somerville S, Berrocal-Lobo M. Short-Chain Chitin Oligomers: Promoters of Plant Growth. Mar Drugs 2017; 15:md15020040. [PMID: 28212295 PMCID: PMC5334620 DOI: 10.3390/md15020040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 02/06/2017] [Indexed: 01/10/2023] Open
Abstract
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.
Collapse
Affiliation(s)
- Alexander J Winkler
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Department for Wood Biology, Centre for Wood Science and Technology, Universität Hamburg, Leuschnerstr. 91d, D-2103 Hamburg, Germany.
| | - Jose Alfonso Dominguez-Nuñez
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Inmaculada Aranaz
- Departamento de Físico-Química, Instituto de Estudios Bifuncionales, Facultad de Farmacia, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain.
| | | | - Katrina Ramonell
- Department of Biological Sciences, P.O. Box 870344, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Shauna Somerville
- Plant Biology, Carnegie Institution of Science, 260 Panama St., Stanford, CA 94305, USA.
| | - Marta Berrocal-Lobo
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
28
|
Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G, Schumacher K, Krebs M. Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient [Ca(2+)]cyt Patterns in Arabidopsis. MOLECULAR PLANT 2015; 8:1188-200. [PMID: 26002145 PMCID: PMC5134422 DOI: 10.1016/j.molp.2015.05.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 05/17/2023]
Abstract
Intracellular Ca(2+) transients are an integral part of the signaling cascade during pathogen-associated molecular pattern (PAMP)-triggered immunity in plants. Yet, our knowledge about the spatial distribution of PAMP-induced Ca(2+) signals is limited. Investigation of cell- and tissue-specific properties of Ca(2+)-dependent signaling processes requires versatile Ca(2+) reporters that are able to extract spatial information from cellular and subcellular structures, as well as from whole tissues over time periods from seconds to hours. Fluorescence-based reporters cover both a broad spatial and temporal range, which makes them ideally suited to study Ca(2+) signaling in living cells. In this study, we compared two fluorescence-based Ca(2+) sensors: the Förster resonance energy transfer (FRET)-based reporter yellow cameleon NES-YC3.6 and the intensity-based sensor R-GECO1. We demonstrate that R-GECO1 exhibits a significantly increased signal change compared with ratiometric NES-YC3.6 in response to several stimuli. Due to its superior sensitivity, R-GECO1 is able to report flg22- and chitin-induced Ca(2+) signals on a cellular scale, which allowed identification of defined [Ca(2+)]cyt oscillations in epidermal and guard cells in response to the fungal elicitor chitin. Moreover, we discovered that flg22- and chitin-induced Ca(2+) signals in the root initiate from the elongation zone.
Collapse
Affiliation(s)
- Nana F Keinath
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Rainer Waadt
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany; Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, 92093 La Jolla, USA
| | - Rik Brugman
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, 92093 La Jolla, USA
| | - Guido Grossmann
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.cj.2015.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Egusa M, Matsui H, Urakami T, Okuda S, Ifuku S, Nakagami H, Kaminaka H. Chitin Nanofiber Elucidates the Elicitor Activity of Polymeric Chitin in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1098. [PMID: 26697049 PMCID: PMC4673310 DOI: 10.3389/fpls.2015.01098] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/22/2015] [Indexed: 05/19/2023]
Abstract
Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF) of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS) production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1) mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.
Collapse
Affiliation(s)
- Mayumi Egusa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori UniversityTottori, Japan
| | - Hidenori Matsui
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Environmental and Life Science, Okayama UniversityOkayama, Japan
| | - Takeshi Urakami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori UniversityTottori, Japan
| | - Sanami Okuda
- Faculty of Agriculture, Tottori UniversityTottori, Japan
| | - Shinsuke Ifuku
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori UniversityTottori, Japan
| | | | - Hironori Kaminaka
- Faculty of Agriculture, Tottori UniversityTottori, Japan
- *Correspondence: Hironori Kaminaka,
| |
Collapse
|
31
|
Aoyagi LN, Lopes-Caitar VS, de Carvalho MCCG, Darben LM, Polizel-Podanosqui A, Kuwahara MK, Nepomuceno AL, Abdelnoor RV, Marcelino-Guimarães FC. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:32-42. [PMID: 25443831 DOI: 10.1016/j.plantsci.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 05/07/2023]
Abstract
Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies. Due to their apparently highly diverse functions, these genes are promising targets for developing crop varieties resistant to diseases. In the present study, the identification and phylogenetic analysis of the soybean R2R3-MYB (GmMYB) transcription factor family was performed and the expression profiles of these genes under biotic stress were determined. GmMYBs were identified from the soybean genome using bioinformatic tools, and their putative functions were determined based on the phylogenetic tree and classified into subfamilies using guides AtMYBs describing known functions. The transcriptional profiles of GmMYBs upon infection with different pathogen were revealed by in vivo and in silico analyses. Selected target genes potentially involved in disease responses were assessed by RT-qPCR after different times of inoculation with P. pachyrhizi using different genetic backgrounds related to resistance genes (Rpp2 and Rpp5). R2R3-MYB transcription factors related to lignin synthesis and genes responsive to chitin were significantly induced in the resistant genotypes.
Collapse
Affiliation(s)
- Luciano N Aoyagi
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Celso Garcia Cid - Pr 445 Highway, Km 380, 86.057-970, Londrina, Paraná, Brazil; Department of Biological Sciences, Universidade Estadual de Maringá, Av. Colombo Avenue, Number 5.790, Jd. Universitário, 87.020-900, Maringa, Paraná, Brazil.
| | - Valéria S Lopes-Caitar
- Departament of Computer Science, Universidade Tecnológica Federal do Paraná, Alberto Carazzai Avenue, Number 1640, 86.300-000, Cornélio Procópio, Parana, Brazil; Department of General Biology, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR 445, Km 380, P.O. Box 6001, 86051-990, Brazil; Brazilian Agricultural Research Corporation - EMBRAPA, P.O. Box 231, Carlos João Strass Highway - Distrito de Warta, 86.001-970, Londrina, Paraná, Brazil.
| | - Mayra C C G de Carvalho
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná, Bandeirantes-Brazil, BR-369 highway, Km 54, Vila Maria, 86.360-000, Bandeirantes, Paraná, Brazil.
| | - Luana M Darben
- Department of Biological Sciences, Universidade Estadual de Maringá, Av. Colombo Avenue, Number 5.790, Jd. Universitário, 87.020-900, Maringa, Paraná, Brazil; Brazilian Agricultural Research Corporation - EMBRAPA, P.O. Box 231, Carlos João Strass Highway - Distrito de Warta, 86.001-970, Londrina, Paraná, Brazil.
| | - Adriana Polizel-Podanosqui
- Brazilian Agricultural Research Corporation - EMBRAPA, P.O. Box 231, Carlos João Strass Highway - Distrito de Warta, 86.001-970, Londrina, Paraná, Brazil.
| | - Marcia K Kuwahara
- Brazilian Agricultural Research Corporation - EMBRAPA, P.O. Box 231, Carlos João Strass Highway - Distrito de Warta, 86.001-970, Londrina, Paraná, Brazil.
| | - Alexandre L Nepomuceno
- Brazilian Agricultural Research Corporation - EMBRAPA, P.O. Box 231, Carlos João Strass Highway - Distrito de Warta, 86.001-970, Londrina, Paraná, Brazil.
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation - EMBRAPA, P.O. Box 231, Carlos João Strass Highway - Distrito de Warta, 86.001-970, Londrina, Paraná, Brazil.
| | - Francismar C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation - EMBRAPA, P.O. Box 231, Carlos João Strass Highway - Distrito de Warta, 86.001-970, Londrina, Paraná, Brazil.
| |
Collapse
|
32
|
Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 2014. [PMID: 25340959 DOI: 10.7554/elife.03766.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Chitin is a fungal microbe-associated molecular pattern recognized in Arabidopsis by a lysin motif receptor kinase (LYK), AtCERK1. Previous research suggested that AtCERK1 is the major chitin receptor and mediates chitin-induced signaling through homodimerization and phosphorylation. However, the reported chitin binding affinity of AtCERK1 is quite low, suggesting another receptor with high chitin binding affinity might be present. Here, we propose that AtLYK5 is the primary chitin receptor in Arabidopsis. Mutations in AtLYK5 resulted in a significant reduction in chitin response. However, AtLYK5 shares overlapping function with AtLYK4 and, therefore, Atlyk4/Atlyk5-2 double mutants show a complete loss of chitin response. AtLYK5 interacts with AtCERK1 in a chitin-dependent manner. Chitin binding to AtLYK5 is indispensable for chitin-induced AtCERK1 phosphorylation. AtLYK5 binds chitin at a much higher affinity than AtCERK1. The data suggest that AtLYK5 is the primary receptor for chitin, forming a chitin inducible complex with AtCERK1 to induce plant immunity.
Collapse
Affiliation(s)
- Yangrong Cao
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Yan Liang
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Kiwamu Tanaka
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Cuong T Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Robert P Jedrzejczak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, United States
| | - Gary Stacey
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| |
Collapse
|
33
|
Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 2014; 3. [PMID: 25340959 PMCID: PMC4356144 DOI: 10.7554/elife.03766] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022] Open
Abstract
Chitin is a fungal microbe-associated molecular pattern recognized in Arabidopsis by a lysin motif receptor kinase (LYK), AtCERK1. Previous research suggested that AtCERK1 is the major chitin receptor and mediates chitin-induced signaling through homodimerization and phosphorylation. However, the reported chitin binding affinity of AtCERK1 is quite low, suggesting another receptor with high chitin binding affinity might be present. Here, we propose that AtLYK5 is the primary chitin receptor in Arabidopsis. Mutations in AtLYK5 resulted in a significant reduction in chitin response. However, AtLYK5 shares overlapping function with AtLYK4 and, therefore, Atlyk4/Atlyk5-2 double mutants show a complete loss of chitin response. AtLYK5 interacts with AtCERK1 in a chitin-dependent manner. Chitin binding to AtLYK5 is indispensable for chitin-induced AtCERK1 phosphorylation. AtLYK5 binds chitin at a much higher affinity than AtCERK1. The data suggest that AtLYK5 is the primary receptor for chitin, forming a chitin inducible complex with AtCERK1 to induce plant immunity. DOI:http://dx.doi.org/10.7554/eLife.03766.001 Invading fungi are responsible for many of the plant diseases that affect global crop production. Plants have to be able to identify these fungi, and activate the right defense strategies if they are to protect themselves. Chitin is a polymer that is found in the cell walls of all fungi, but not in plants, so if the plant detects chitin, it knows that a potentially harmful fungus may be nearby. The detection of chitin, and the resulting activation of a plant's defenses, requires a receptor protein called CERK1. In rice, CERK1 needs to interact with another receptor protein called CEBiP, which binds to chitin. However, in Arabidopsis thaliana—which is widely studied in plant research—CERK1 can bind to chitin on its own, although this interaction is very weak, so it has been suggested that a second protein may be involved. Cao et al. have now found that a receptor protein called LYK5, which is very similar to CERK1, is much better at attaching to chitin in A. thaliana. It can also bind to CERK1, but only when chitin is present, and is required for activation of basic plant defenses. The experiments suggest that LYK5 detects chitin on behalf of CERK1, in a similar way to how CEBiP works in rice. The next step in this research is to work out how CERK1 and LYK5 are able to activate plant defenses. DOI:http://dx.doi.org/10.7554/eLife.03766.002
Collapse
Affiliation(s)
- Yangrong Cao
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Yan Liang
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Kiwamu Tanaka
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Cuong T Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| | - Robert P Jedrzejczak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, United States
| | - Gary Stacey
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, United States
| |
Collapse
|
34
|
Dahmen JL, Yang Y, Greenlief CM, Stacey G, Hunt HK. Interfacing Whispering Gallery Mode Optical Microresonator Biosensors with the Plant Defense Elicitor Chitin. Colloids Surf B Biointerfaces 2014; 122:241-249. [DOI: 10.1016/j.colsurfb.2014.06.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023]
|
35
|
Liu X, Grabherr HM, Willmann R, Kolb D, Brunner F, Bertsche U, Kühner D, Franz-Wachtel M, Amin B, Felix G, Ongena M, Nürnberger T, Gust AA. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis. eLife 2014; 3:e01990. [PMID: 24957336 PMCID: PMC4103680 DOI: 10.7554/elife.01990] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/20/2014] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.
Collapse
Affiliation(s)
- Xiaokun Liu
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Heini M Grabherr
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Roland Willmann
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Dagmar Kolb
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Frédéric Brunner
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ute Bertsche
- Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Daniel Kühner
- Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | | | - Bushra Amin
- Medical and Natural Sciences Research Centre, University of Tübingen, Tübingen, Germany
| | - Georg Felix
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Marc Ongena
- Wallon Centre for Industrial Biology, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Andrea A Gust
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Paparella C, Savatin DV, Marti L, De Lorenzo G, Ferrari S. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. PLANT PHYSIOLOGY 2014; 165:262-76. [PMID: 24639336 PMCID: PMC4012585 DOI: 10.1104/pp.113.233759] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens.
Collapse
|
37
|
Jaber E, Xiao C, Asiegbu FO. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems. PLANTA 2014; 239:717-733. [PMID: 24366684 DOI: 10.1007/s00425-013-2012-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Heterobasidion annosum is widely known as a major root and butt rot pathogen of conifer trees, but little information is available on its interaction with the roots of herbaceous angiosperm plants. We investigated the infection biology of H. annosum during challenge with the angiosperm model Arabidopsis and monitored the host response after exposure to different hormone elicitors, chemicals (chitin, glucan and chitosan) and fungal species that represent diverse basidiomycete life strategies [e.g., pathogen (H. annosum), saprotroph (Stereum sanguinolentum) and mutualist (Lactarius rufus)]. The results revealed that the tree pathogen (H. annosum) and the saprotroph (S. sanguinolentum) could infect the Col-8 (Columbia) ecotype of Arabidopsis in laboratory inoculation experiments. Germinated H. annosum spores had appressorium-like penetration structures attached to the surface of the Arabidopsis roots. Subsequent invasive fungal growth led to the disintegration of the vascular region of the root tissues. Progression of root rot symptoms in Arabidopsis was similar to the infection development that was previously documented in Scots pine seedlings. Scots pine PsDef1 and Arabidopsis DEFLs (AT5G44973.1) and PDF1.2 were induced at the initial stage of the infection. However, differences in the expression patterns of the defensin gene homologs from the two plant groups were observed under various conditions, suggesting functional differences in their regulation. The potential use of the H. annosum-Arabidopsis pathosystem as a model for studying forest tree diseases is discussed.
Collapse
Affiliation(s)
- Emad Jaber
- Department of Forest Sciences, University of Helsinki, Box 27, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
38
|
Maksimov IV, Valeev AS, Cherepanova EA, Burkhanova GF. Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen-inducible anionic peroxidase. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813060124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula. PLoS One 2013; 8:e75039. [PMID: 24086432 PMCID: PMC3781040 DOI: 10.1371/journal.pone.0075039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/08/2013] [Indexed: 01/15/2023] Open
Abstract
N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes.
Collapse
|
40
|
Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, Gueddari NEE, Moerschbacher BM, Podile AR. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 2013; 35:29-43. [PMID: 24020506 DOI: 10.3109/07388551.2013.798255] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Collapse
Affiliation(s)
- Subha Narayan Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , Hyderabad , India and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nars A, Rey T, Lafitte C, Vergnes S, Amatya S, Jacquet C, Dumas B, Thibaudeau C, Heux L, Bottin A, Fliegmann J. An experimental system to study responses of Medicago truncatula roots to chitin oligomers of high degree of polymerization and other microbial elicitors. PLANT CELL REPORTS 2013; 32:489-502. [PMID: 23314495 DOI: 10.1007/s00299-012-1380-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
A fully acetylated, soluble CO preparation of mean DP of ca. 7 was perceived with high sensitivity by M. truncatula in a newly designed versatile root elicitation assay. The root system of legume plants interacts with a large variety of microorganisms, either pathogenic or symbiotic. Understanding how legumes recognize and respond specifically to pathogen-associated or symbiotic signals requires the development of standardized bioassays using well-defined preparations of the corresponding signals. Here we describe the preparation of chitin oligosaccharide (CO) fractions from commercial chitin and their characterization by a combination of liquid-state and solid-state nuclear magnetic resonance spectroscopy. We show that the CO fraction with highest degree of polymerization (DP) became essentially insoluble after lyophilization. However, a fully soluble, fully acetylated fraction with a mean DP of ca. 7 was recovered and validated by showing its CERK1-dependent activity in Arabidopsis thaliana. In parallel, we developed a versatile root elicitation bioassay in the model legume Medicago truncatula, using a hydroponic culture system and the Phytophthora β-glucan elicitor as a control elicitor. We then showed that M. truncatula responded with high sensitivity to the CO elicitor, which caused the production of extracellular reactive oxygen species and the transient induction of a variety of defense-associated genes. In addition, the bioassay allowed detection of elicitor activity in culture filtrates of the oomycete Aphanomyces euteiches, opening the way to the analysis of recognition of this important legume root pathogen by M. truncatula.
Collapse
Affiliation(s)
- A Nars
- Université de Toulouse, UPS, UMR5546, Laboratoire de Recherche en Sciences Végétales (LRSV), BP 42617, 31326, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pel MJC, Pieterse CMJ. Microbial recognition and evasion of host immunity. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1237-48. [PMID: 23095994 DOI: 10.1093/jxb/ers262] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants are able to detect microbes by pattern recognition receptors in the host cells that, upon recognition of the enemy, activate effective immune responses in the invaded tissue. Recognition of microbes occurs by common conserved structures called microbe-associated molecular patterns (MAMPs). Plant pathogens and beneficial soil-borne microbes live in close contact with their host. Hence, prevention of the host's defence programme is essential for their survival. Active suppression of host defences by microbial effector proteins is a well-known strategy employed by many successful plant-associated microbes. Evasion of host immune recognition is less well studied but is emerging as another important strategy. Escape from recognition by the host's immune system can be caused by alterations in the structure of the recognized MAMPs, or by active intervention of ligand-receptor recognition. This paper reviews the structure and recognition of common MAMPs and the ways that plant-associated microbes have evolved to prevent detection by their host.
Collapse
Affiliation(s)
- Michiel J C Pel
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB Utrecht, The Netherlands
| | | |
Collapse
|
43
|
Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou JM, Chai J. Chitin-induced dimerization activates a plant immune receptor. Science 2012; 336:1160-4. [PMID: 22654057 DOI: 10.1126/science.1218867] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.
Collapse
Affiliation(s)
- Tingting Liu
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Brotman Y, Landau U, Pnini S, Lisec J, Balazadeh S, Mueller-Roeber B, Zilberstein A, Willmitzer L, Chet I, Viterbo A. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. MOLECULAR PLANT 2012; 5:1113-1124. [PMID: 22461667 DOI: 10.1093/mp/sss021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Application of crab shell chitin or pentamer chitin oligosaccharide to Arabidopsis seedlings increased tolerance to salinity in wild-type but not in knockout mutants of the LysM Receptor-Like Kinase1 (CERK1/LysM RLK1) gene, known to play a critical role in signaling defense responses induced by exogenous chitin. Arabidopsis plants overexpressing the endochitinase chit36 and hexoaminidase excy1 genes from the fungus Trichoderma asperelleoides T203 showed increased tolerance to salinity, heavy-metal stresses, and Botrytis cinerea infection. Resistant lines, overexpressing fungal chitinases at different levels, were outcrossed to lysm rlk1 mutants. Independent homozygous hybrids lost resistance to biotic and abiotic stresses, despite enhanced chitinase activity. Expression analysis of 270 stress-related genes, including those induced by reactive oxygen species (ROS) and chitin, revealed constant up-regulation (at least twofold) of 10 genes in the chitinase-overexpressing line and an additional 76 salt-induced genes whose expression was not elevated in the lysm rlk1 knockout mutant or the hybrids harboring the mutation. These findings elucidate that chitin-induced signaling mediated by LysM RLK1 receptor is not limited to biotic stress response but also encompasses abiotic-stress signaling and can be conveyed by ectopic expression of chitinases in plants.
Collapse
Affiliation(s)
- Yariv Brotman
- Genes and Small Molecules, AG Willmitzer, Max-Planck-Institut of Molecular Plant Physiology, Am Muhlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wan J, Tanaka K, Zhang XC, Son GH, Brechenmacher L, Nguyen THN, Stacey G. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:396-406. [PMID: 22744984 PMCID: PMC3440214 DOI: 10.1104/pp.112.201699] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 06/26/2012] [Indexed: 05/19/2023]
Abstract
Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) was shown to be essential for chitin recognition, whereas in rice (Oryza sativa), the LysM-containing protein, CEBiP (for chitin elicitor-binding protein), was shown to be involved in chitin recognition. Unlike LYK1/CERK1, CEBiP lacks an intracellular kinase domain. Arabidopsis possesses three CEBiP-like genes. Our data show that mutations in these genes, either singly or in combination, did not compromise the response to chitin treatment. Arabidopsis also contains five LYK genes. Analysis of mutations in LYK2, -3, -4, or -5 showed that LYK4 is also involved in chitin signaling. The lyk4 mutants showed reduced induction of chitin-responsive genes and diminished chitin-induced cytosolic calcium elevation as well as enhanced susceptibility to both the bacterial pathogen Pseudomonas syringae pv tomato DC3000 and the fungal pathogen Alternaria brassicicola, although these phenotypes were not as dramatic as that seen in the lyk1/cerk1 mutants. Similar to LYK1/CERK1, the LYK4 protein was also localized to the plasma membrane. Therefore, LYK4 may play a role in the chitin recognition receptor complex to assist chitin signal transduction and plant innate immunity.
Collapse
Affiliation(s)
| | | | | | - Geon Hui Son
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
| | - Laurent Brechenmacher
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
| | - Tran Hong Nha Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Division of Plant Sciences, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center (J.W., K.T., X.-C.Z., G.H.S., L.B., T.H.N.N., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
46
|
Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T. Plant LysM proteins: modules mediating symbiosis and immunity. TRENDS IN PLANT SCIENCE 2012; 17:495-502. [PMID: 22578284 DOI: 10.1016/j.tplants.2012.04.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 05/18/2023]
Abstract
Microbial glycans, such as bacterial peptidoglycans, fungal chitin or rhizobacterial Nod factors (NFs), are important signatures for plant immune activation or for the establishment of beneficial symbioses. Plant lysin motif (LysM) domain proteins serve as modules mediating recognition of these different N-acetylglucosamine (GlcNAc)-containing ligands, suggesting that this class of proteins evolved from an ancient sensor for GlcNAc. During early plant evolution, these glycans probably served as immunogenic patterns activating LysM protein receptor-mediated plant immunity and stopping microbial infection. The biochemical potential of plant LysM proteins for sensing microbial GlcNAc-containing glycans has probably since favored the evolution of receptors facilitating microbial infection and symbiosis.
Collapse
Affiliation(s)
- Andrea A Gust
- Department of Plant Biochemistry, ZMBP, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
47
|
Son GH, Wan J, Kim HJ, Nguyen XC, Chung WS, Hong JC, Stacey G. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:48-60. [PMID: 21936663 DOI: 10.1094/mpmi-06-11-0165] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Our recent work demonstrated that chitin treatment modulated the expression of 118 transcription factor (TF) genes in Arabidopsis. To investigate the potential roles of these TF in chitin signaling and plant defense, we initiated an interaction study among these TF proteins, as well as two chitin-activated mitogen-activated protein kinases (MPK3 and MPK6), using a yeast two-hybrid system. This study revealed interactions among the following proteins: three ethylene-responsive element-binding factors (ERF), five WRKY transcription factors, one scarecrow-like (SCL), and the two MPK, in addition to many other interactions, reflecting a complex TF interaction network. Most of these interactions were subsequently validated by other methods, such as pull-down and in planta bimolecular fluorescence complementation assays. The key node ERF5 was shown to interact with multiple proteins in the network, such as ERF6, ERF8, and SCL13, as well as MPK3 and MPK6. Interestingly, ERF5 appeared to negatively regulate chitin signaling and plant defense against the fungal pathogen Alternaria brassicicola and positively regulate salicylic acid signaling and plant defense against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Therefore, ERF5 may play an important role in plant innate immunity, likely through coordinating chitin and other defense pathways in plants in response to different pathogens.
Collapse
|
48
|
Gough C, Cullimore J. Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:867-78. [PMID: 21469937 DOI: 10.1094/mpmi-01-11-0019] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The arbuscular mycorrhizal (AM) and the rhizobia-legume (RL) root endosymbioses are established as a result of signal exchange in which there is mutual recognition of diffusible signals produced by plant and microbial partners. It was discovered 20 years ago that the key symbiotic signals produced by rhizobial bacteria are lipo-chitooligosaccharides (LCO), called Nod factors. These LCO are perceived via lysin-motif (LysM) receptors and activate a signaling pathway called the common symbiotic pathway (CSP), which controls both the RL and the AM symbioses. Recent work has established that an AM fungus, Glomus intraradices, also produces LCO that activate the CSP, leading to induction of gene expression and root branching in Medicago truncatula. These Myc-LCO also stimulate mycorrhization in diverse plants. In addition, work on the nonlegume Parasponia andersonii has shown that a LysM receptor is required for both successful mycorrhization and nodulation. Together these studies show that structurally related signals and the LysM receptor family are key components of both nodulation and mycorrhization. LysM receptors are also involved in the perception of chitooligosaccharides (CO), which are derived from fungal cell walls and elicit defense responses and resistance to pathogens in diverse plants. The discovery of Myc-LCO and a LysM receptor required for the AM symbiosis, therefore, not only raises questions of how legume plants discriminate fungal and bacterial endosymbionts but also, more generally, of how plants discriminate endosymbionts from pathogenic microorganisms using structurally related LCO and CO signals and of how these perception mechanisms have evolved.
Collapse
Affiliation(s)
- Clare Gough
- Laboratory of Plant-Microbe Interactions, UMR CNRS-INRA 2594-441, Castanet-Tolosan Cedex, France.
| | | |
Collapse
|
49
|
Madala NE, Molinaro A, Dubery IA. Distinct carbohydrate and lipid-based molecular patterns within lipopolysaccharides from Burkholderia cepacia contribute to defense-associated differential gene expression in Arabidopsis thaliana. Innate Immun 2011; 18:140-54. [PMID: 21733976 DOI: 10.1177/1753425910392609] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lipopolysaccharides are structural components within the cell walls of Gram-negative bacteria. The LPSs as microbe-associated molecular pattern (MAMP) molecules can trigger defense-related responses involved in MAMP-triggered immunity and basal resistance in plants, presumably from an initial perception event. LPS from Burkholderia cepacia as well as two fragments, the glycolipid, lipid A and the polysaccharide (OPS-core) chain, were used to treat Arabidopsis thaliana seedlings to evaluate the eliciting activities of the individual LPS sub-domains by means of Annealing Control Primer-based Differential Display transcript profiling. Genes found to be up-regulated encode for proteins involved in signal perception and transduction, transcriptional regulation and defense - and stress responses. Furthermore, genes encoding proteins involved in chaperoning, secretion, protein-protein interactions and protein degradation were differentially expressed. It is concluded that intact LPS, as well as the two sub-components, induced the expression of a broad range of genes associated with perception and defense as well as metabolic reprogramming of cellular activities in support of immunity and basal resistance. Whilst the lipid A and OPS moieties were able to up-regulate sub-sets of defense-associated genes over the same spectrum of categories as intact LPS, the up-regulation observed with intact LPS was the more comprehensive, suggesting that the lipid A and glycan molecular patterns of the molecule act as partial agonists, but that the intact LPS structure is required for full agonist activity.
Collapse
Affiliation(s)
- Ntakadzeni E Madala
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | | | | |
Collapse
|
50
|
Whiteman NK, Groen SC, Chevasco D, Bear A, Beckwith N, Gregory TR, Denoux C, Mammarella N, Ausubel FM, Pierce NE. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis. Mol Ecol 2011; 20:995-1014. [PMID: 21073583 PMCID: PMC3062943 DOI: 10.1111/j.1365-294x.2010.04901.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defence and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here, we describe the life cycle of S. flava on Arabidopsis and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defence-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with jasmonate or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis jasmonate signalling mutants and increased in plants pretreated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyse insect-plant interactions.
Collapse
Affiliation(s)
- Noah K Whiteman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|