1
|
Surano A, del Grosso C, Musio B, Todisco S, Giampetruzzi A, Altamura G, Saponari M, Gallo V, Mastrorilli P, Boscia D, Saldarelli P. Exploring the xylem-sap to unravel biological features of Xylella fastidiosa subspecies pauca ST53 in immune, resistant and susceptible crop species through metabolomics and in vitro studies. FRONTIERS IN PLANT SCIENCE 2024; 14:1343876. [PMID: 38312355 PMCID: PMC10834688 DOI: 10.3389/fpls.2023.1343876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Xylella fastidiosa subsp. pauca ST53 (Xfp) is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.g. Leccino and FS17), being less impacted by the infections. The present study contributes to elucidating the basis of the resistance phenomenon by investigating the influence of the composition of the xylem sap of plant species on the rate of bacterial multiplication. Xylem saps from Xfp host and non-host species were used for growing the bacterium in vitro, monitoring bacterial growth, biofilm formation, and the expression of specific genes. Moreover, species-specific metabolites, such as mannitol, quinic acid, tartaric acid, and choline were identified by non-targeted NMR-based metabolomic analysis in olive, grapevine, and citrus. In general, the xylem saps of immune species, including grapevine and citrus, were richer in amino acids, organic acids, and glucose. The results showed greater bacterial growth in the olive cultivar notoriously susceptible to Xfp (Cellina di Nardò), compared to that recorded in the resistant cultivar Leccino. Conversely, higher biofilm formation occurred in Leccino compared to Cellina di Nardò. Using the xylem saps of two Xfp-immune species (citrus and grapevine), a divergent bacterial behavior was recorded: low planktonic growth and biofilm production were detected in citrus compared to the grapevine. A parallel evaluation of the expression of 15 genes showed that Xfp directs its molecular functions mainly to virulence. Overall, the results gained through this multidisciplinary study contribute to extending the knowledge on the host-pathogen interaction, while confirming that the host response and resistance mechanism have a multifactorial basis, most likely with a cumulative effect on the phenotype.
Collapse
Affiliation(s)
- Antony Surano
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Carmine del Grosso
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Annalisa Giampetruzzi
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Giuseppe Altamura
- CRSFA-Centro Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| |
Collapse
|
2
|
Feitosa-Junior OR, Souza APS, Zaini PA, Baccari C, Ionescu M, Pierry PM, Uceda-Campos G, Labroussaa F, Almeida RPP, Lindow SE, da Silva AM. The XadA Trimeric Autotransporter Adhesins in Xylella fastidiosa Differentially Contribute to Cell Aggregation, Biofilm Formation, Insect Transmission and Virulence to Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:857-866. [PMID: 35704683 DOI: 10.1094/mpmi-05-22-0108-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula S Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Zaini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Paulo M Pierry
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabien Labroussaa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Picchi SC, de Souza E Silva M, Saldanha LL, Ferreira H, Takita MA, Caldana C, de Souza AA. GC-TOF/MS-based metabolomics analysis to investigate the changes driven by N-Acetylcysteine in the plant-pathogen Xanthomonas citri subsp. citri. Sci Rep 2021; 11:15558. [PMID: 34330957 PMCID: PMC8324833 DOI: 10.1038/s41598-021-95113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
N-Acetylcysteine (NAC) is an antioxidant, anti-adhesive, and antimicrobial compound. Even though there is much information regarding the role of NAC as an antioxidant and anti-adhesive agent, little is known about its antimicrobial activity. In order to assess its mode of action in bacterial cells, we investigated the metabolic responses triggered by NAC at neutral pH. As a model organism, we chose the Gram-negative plant pathogen Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker disease, due to the potential use of NAC as a sustainable molecule against phytopathogens dissemination in citrus cultivated areas. In presence of NAC, cell proliferation was affected after 4 h, but damages to the cell membrane were observed only after 24 h. Targeted metabolite profiling analysis using GC-MS/TOF unravelled that NAC seems to be metabolized by the cells affecting cysteine metabolism. Intriguingly, glutamine, a marker for nitrogen status, was not detected among the cells treated with NAC. The absence of glutamine was followed by a decrease in the levels of the majority of the proteinogenic amino acids, suggesting that the reduced availability of amino acids affect protein synthesis and consequently cell proliferation.
Collapse
Affiliation(s)
- Simone Cristina Picchi
- Centro de Citricultura "Sylvio Moreira" - Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, 13490-970, Brazil
| | - Mariana de Souza E Silva
- Centro de Citricultura "Sylvio Moreira" - Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, 13490-970, Brazil
| | - Luiz Leonardo Saldanha
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Marco Aurélio Takita
- Centro de Citricultura "Sylvio Moreira" - Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, 13490-970, Brazil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol - Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, 13083-100, Brazil.,Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alessandra Alves de Souza
- Centro de Citricultura "Sylvio Moreira" - Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, 13490-970, Brazil.
| |
Collapse
|
4
|
Chen H, De La Fuente L. Calcium transcriptionally regulates movement, recombination and other functions of Xylella fastidiosa under constant flow inside microfluidic chambers. Microb Biotechnol 2019; 13:548-561. [PMID: 31729188 PMCID: PMC7017821 DOI: 10.1111/1751-7915.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Xylella fastidiosa is a xylem‐limited bacterial pathogen causing devastating diseases in many economically important crops. Calcium (Ca) is a major inorganic nutrient in xylem sap that influences virulence‐related traits of this pathogen, including biofilm formation and twitching motility. This study aimed to adapt a microfluidic system, which mimics the natural habitat of X. fastidiosa, for whole transcriptome analysis under flow conditions. A microfluidic chamber with two parallel channels was used, and RNA isolated from cells grown inside the system was analysed by RNA‐Seq. Ca transcriptionally regulated the machinery of type IV pili and other genes related to pathogenicity and host adaptation. Results were compared to our previous RNA‐Seq study in biofilm cells in batch cultures (Parker et al., 2016, Environ Microbiol 18, 1620). Ca‐regulated genes in both studies belonged to similar functional categories, but the number and tendencies (up‐/downregulation) of regulated genes were different. Recombination‐related genes were upregulated by Ca, and we proved experimentally that 2 mM Ca enhances natural transformation frequency. Taken together, our results suggest that the regulatory role of Ca in X. fastidiosa acts differently during growth in flow or batch conditions, and this can correlate to the different phases of growth (planktonic and biofilm) during the infection process.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
5
|
Kandel PP, Chen H, De La Fuente L. A Short Protocol for Gene Knockout and Complementation in Xylella fastidiosa Shows that One of the Type IV Pilin Paralogs (PD1926) Is Needed for Twitching while Another (PD1924) Affects Pilus Number and Location. Appl Environ Microbiol 2018; 84:e01167-18. [PMID: 29980551 PMCID: PMC6121978 DOI: 10.1128/aem.01167-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
Twitching motility is one of the major virulence factors of the plant-pathogenic bacterium Xylella fastidiosa, and it is mediated by type IV pili (TFP) that are present at one of the cell poles. Genome analysis of X. fastidiosa showed the presence of at least four paralogs of the gene pilA, which encodes the TFP major pilin subunit. However, whether all of these paralogs have a functional role in TFP structure and function is unknown. Here, using a short and reliable protocol based on overlap extension PCR and natural transformation, deletion mutants of two pilA paralogs (pilA1 PD1924 and pilA2 PD1926) were generated in two X. fastidiosa subsp. fastidiosa strains, WM1-1 and TemeculaL, followed by assessment of twitching motility and biofilm formation. Deletion of pilA2 caused loss of twitching motility, whereas deletion of pilA1 did not influence twitching motility but caused hyperpiliation and extended distribution of TFP along the sides of the cell. Loss of twitching motility due to pilA2 deletion was restored when a wild-type copy of the pilA2 gene was added at a neutral site in the genome of mutants in both wild-type backgrounds. This study demonstrates that PCR templates generated by overlap extension PCR can be successfully used to rapidly generate gene knockouts and perform genetic complementation in X. fastidiosa, and that twitching motility in X. fastidiosa is controlled by regulating the transcription of the major pilin subunit, pilA2IMPORTANCE The bacterial plant pathogen Xylella fastidiosa causes incurable diseases in multiple hosts, including grape, citrus, and blueberry. Historically restricted to the Americas, it was recently found to cause epidemics in olives in Italy and to infect other hosts in Europe and Asia. In this study, we report a short protocol to create deletion and complemented mutants using fusion PCR and natural transformation. We also determined the distinct function of two pilin paralogs, the main structural component of TFP involved in twitching motility, which allows this bacterium to move inside the xylem vessels against the flow. One of the paralogs is needed for twitching movement, whereas the other does not have an effect on motility but influences the number and position of TFP. Since twitching motility is fundamental for the virulence of this xylem-limited bacterium, this study contributes to the understanding of the regulation of virulence by this pathogen.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Alencar VC, Jabes DL, Menegidio FB, Sassaki GL, de Souza LR, Puzer L, Meneghetti MCZ, Lima MA, Tersariol ILDS, de Oliveira RC, Nunes LR. Functional and Evolutionary Characterization of a UDP-Xylose Synthase Gene from the Plant Pathogen Xylella fastidiosa, Involved in the Synthesis of Bacterial Lipopolysaccharide. Biochemistry 2017; 56:779-792. [PMID: 28125217 DOI: 10.1021/acs.biochem.6b00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.
Collapse
Affiliation(s)
- Valquíria Campos Alencar
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Daniela Leite Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Fabiano Bezerra Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Guilherme Lanzi Sassaki
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular Laboratório de Química de Carboidratos, Universidade Federal do Paraná (UFPR) , Rua Cel. Francisco H. dos Santos, 100, Curitiba, Paraná CEP 81531-980, Brazil
| | - Lucas Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Regina Costa de Oliveira
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Luiz R Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| |
Collapse
|
7
|
|
8
|
Merfa MV, Niza B, Takita MA, De Souza AA. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation. Front Microbiol 2016; 7:904. [PMID: 27375608 PMCID: PMC4901048 DOI: 10.3389/fmicb.2016.00904] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.
Collapse
Affiliation(s)
- Marcus V. Merfa
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Bárbara Niza
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Marco A. Takita
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
| | | |
Collapse
|
9
|
Dantas GC, Martins PMM, Martins DAB, Gomes E, Ferreira H. A protein expression system for tandem affinity purification in Xanthomonas citri subsp. citri. Braz J Microbiol 2016; 47:518-26. [PMID: 26991273 PMCID: PMC4874617 DOI: 10.1016/j.bjm.2016.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022] Open
Abstract
Citrus canker, caused by the Gram-negative bacterium Xanthomonas citri subsp. citri (Xac), is one of the most devastating diseases to affect citrus crops. There is no treatment for citrus canker; effective control against the spread of Xac is usually achieved by the elimination of affected plants along with that of asymptomatic neighbors. An in depth understanding of the pathogen is the keystone for understanding of the disease; to this effect we are committed to the development of strategies to ease the study of Xac. Genome sequencing and annotation of Xac revealed that ∼37% of the genome is composed of hypothetical ORFs. To start a systematic characterization of novel factors encoded by Xac, we constructed integrative-vectors for protein expression specific to this bacterium. The vectors allow for the production of TAP-tagged proteins in Xac under the regulation of the xylose promoter. In this study, we show that a TAP-expression vector, integrated into the amy locus of Xac, does not compromise its virulence. Furthermore, our results also demonstrate that the polypeptide TAP can be overproduced in Xac and purified from the soluble phase of cell extracts. Our results substantiate the use of our vectors for protein expression in Xac thus contributing a novel tool for the characterization of proteins and protein complexes generated by this bacterium in vivo.
Collapse
Affiliation(s)
- Giordanni C Dantas
- Depto. de Bioquimica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Paula M M Martins
- Depto. de Bioquimica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Daniela A B Martins
- Depto. de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Eleni Gomes
- Depto. de Biologia, Universidade Estadual Paulista, São Jose do Rio Preto, SP, Brazil
| | - Henrique Ferreira
- Depto. de Bioquimica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil.
| |
Collapse
|
10
|
|
11
|
Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil. Microbiology (Reading) 2015; 161:1018-1033. [DOI: 10.1099/mic.0.000068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/28/2015] [Indexed: 12/28/2022] Open
|
12
|
Cursino L, Athinuwat D, Patel KR, Galvani CD, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease. PLoS One 2015; 10:e0121851. [PMID: 25811864 PMCID: PMC4374697 DOI: 10.1371/journal.pone.0121851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Kelly R. Patel
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Cheryl D. Galvani
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Paulo A. Zaini
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Yaxin Li
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Leonardo De La Fuente
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Harvey C. Hoch
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Thomas J. Burr
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rodrigues CM, de Souza AA, Takita MA, Kishi LT, Machado MA. RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BMC Genomics 2013; 14:676. [PMID: 24090429 PMCID: PMC3852278 DOI: 10.1186/1471-2164-14-676] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022] Open
Abstract
Background Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. Results Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. Conclusions This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen.
Collapse
Affiliation(s)
- Carolina M Rodrigues
- Departamento de Biotecnologia, Centro APTA Citros Sylvio Moreira, CP4, Cordeirópolis, SP 13490-970, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Muranaka LS, Giorgiano TE, Takita MA, Forim MR, Silva LFC, Coletta-Filho HD, Machado MA, de Souza AA. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa. PLoS One 2013; 8:e72937. [PMID: 24009716 PMCID: PMC3751844 DOI: 10.1371/journal.pone.0072937] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.
Collapse
Affiliation(s)
- Lígia S. Muranaka
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
- Departamento de Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thais E. Giorgiano
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Marco A. Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Moacir R. Forim
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Luis F. C. Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | | | - Marcos A. Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Alessandra A. de Souza
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
15
|
Leite NR, Faro AR, Dotta MAO, Faim LM, Gianotti A, Silva FH, Oliva G, Thiemann OH. The crystal structure of the cysteine protease Xylellain from Xylella fastidiosa reveals an intriguing activation mechanism. FEBS Lett 2013; 587:339-44. [PMID: 23333295 DOI: 10.1016/j.febslet.2013.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Xylella fastidiosa is responsible for a wide range of economically important plant diseases. We report here the crystal structure and kinetic data of Xylellain, the first cysteine protease characterized from the genome of the pathogenic X. fastidiosa strain 9a5c. Xylellain has a papain-family fold, and part of the N-terminal sequence blocks the enzyme active site, thereby mediating protein activity. One novel feature identified in the structure is the presence of a ribonucleotide bound outside the active site. We show that this ribonucleotide plays an important regulatory role in Xylellain enzyme kinetics, possibly functioning as a physiological mediator.
Collapse
Affiliation(s)
- Ney Ribeiro Leite
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
ABSTRACT Xylella fastidiosa regulates traits important to both virulence of grape as well as colonization of sharpshooter vectors via its production of a fatty acid signal molecule known as DSF whose production is dependent on rpfF. Although X. fastidiosa rpfF mutants exhibit increased virulence to plants, they are unable to be spread from plant to plant by insect vectors. To gain more insight into the traits that contribute to these processes, a whole-genome Agilent DNA microarray for this species was developed and used to determine the RpfF-dependent regulon by transcriptional profiling. In total, 446 protein coding genes whose expression was significantly different between the wild type and an rpfF mutant (false discovery rate < 0.05) were identified when cells were grown in PW liquid medium. Among them, 165 genes were downregulated in the rpfF mutant compared with the wild-type strain whereas 281 genes were over-expressed. RpfF function was required for regulation of 11 regulatory and σ factors, including rpfE, yybA, PD1177, glnB, rpfG, PD0954, PD0199, PD2050, colR, rpoH, and rpoD. In general, RpfF is required for regulation of genes involved in attachment and biofilm formation, enhancing expression of hemagglutinin genes hxfA and hxfB, and suppressing most type IV pili and gum genes. A large number of other RpfF-dependent genes that might contribute to virulence or insect colonization were also identified such as those encoding hemolysin and colicin V, as well as genes with unknown functions.
Collapse
Affiliation(s)
- Nian Wang
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
17
|
Santos CA, Toledo MAS, Trivella DBB, Beloti LL, Schneider DRS, Saraiva AM, Crucello A, Azzoni AR, Souza AA, Aparicio R, Souza AP. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogenXylella fastidiosareveals a redox-dependent oligomeric modulationin vitro. FEBS J 2012; 279:3828-43. [DOI: 10.1111/j.1742-4658.2012.08743.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Clelton A. Santos
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Daniela B. B. Trivella
- Laboratório de Biologia Estrutural e Cristalografia; Instituto de Química; Universidade Estadual de Campinas; Brazil
| | - Lilian L. Beloti
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Dilaine R. S. Schneider
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Antonio M. Saraiva
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | | | | | - Ricardo Aparicio
- Laboratório de Biologia Estrutural e Cristalografia; Instituto de Química; Universidade Estadual de Campinas; Brazil
| | | |
Collapse
|
18
|
Lorite GS, de Souza AA, Neubauer D, Mizaikoff B, Kranz C, Cotta MA. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation. Colloids Surf B Biointerfaces 2012; 102:519-25. [PMID: 23164974 DOI: 10.1016/j.colsurfb.2012.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/09/2012] [Accepted: 08/16/2012] [Indexed: 01/15/2023]
Abstract
The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process.
Collapse
Affiliation(s)
- Gabriela S Lorite
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Rua Sergio Buarque de Holanda, no 777 Cidade Universitária Zeferino Vaz, 13083-859 Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
19
|
Renzi M, Copini P, Taddei AR, Rossetti A, Gallipoli L, Mazzaglia A, Balestra GM. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. PHYTOPATHOLOGY 2012; 102:827-840. [PMID: 22713076 DOI: 10.1094/phyto-02-12-0019-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae is a severe threat to kiwifruit production worldwide. Many aspects of P. syringae pv. actinidiae biology and epidemiology still require in-depth investigation. The infection by and spread of P. syringae pv. actinidiae in xylem and phloem was investigated by carrying out artificial inoculation experiments with histological and dendrochronological analyses of naturally diseased plants in Italy. We found that the bacterium can infect host plants by entering natural openings and lesions. In naturally infected kiwifruit plants, P. syringae pv. actinidiae is present in the lenticels as well as in the dead phloem tissue beneath the lenticels, surrounded by a lesion in the periderm which appears to indicate the importance of lenticels to kiwifruit infection. Biofilm formation was observed outside and inside plants. In cases of advanced stages of P. syringae pv. actinidiae infection, neuroses of the phloem occur, which are followed by cambial dieback and most likely by infection of the xylem. Anatomical changes in wood such as reduced ring width, a drastic reduction in vessel size, and the presence of tyloses were observed within several infected sites. In the field, these changes occur only a year after the first leaf symptoms are observed suggesting a significant time lapse between primary and secondary symptoms. It was possible to study the temporal development of P. syringae pv. actinidiae-induced cambial dieback by applying dendrochronology methods which revealed that cambial dieback occurs only during the growing season.
Collapse
Affiliation(s)
- Marsilio Renzi
- Dipartimento di Scienze e Technologoe per l'Agricoltura Foreste, la Natura e l'Energia, Univesità della Tuscia, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Parker JK, Havird JC, De La Fuente L. Differentiation of Xylella fastidiosa strains via multilocus sequence analysis of environmentally mediated genes (MLSA-E). Appl Environ Microbiol 2012; 78:1385-96. [PMID: 22194287 PMCID: PMC3294468 DOI: 10.1128/aem.06679-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/13/2011] [Indexed: 11/20/2022] Open
Abstract
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Collapse
Affiliation(s)
- Jennifer K. Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Justin C. Havird
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
21
|
Cardinali MCDB, Villas Boas PR, Milori DMBP, Ferreira EJ, França e Silva M, Machado MA, Bellete BS, da Silva MFDGF. Infrared spectroscopy: a potential tool in huanglongbing and citrus variegated chlorosis diagnosis. Talanta 2012; 91:1-6. [PMID: 22365672 DOI: 10.1016/j.talanta.2012.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 01/06/2012] [Indexed: 11/16/2022]
Abstract
Huanglongbing (HLB) and citrus variegated chlorosis (CVC) are serious threats to citrus production and have caused considerable economic losses worldwide, especially in Brazil, which is one of the biggest citrus producers in the world. Neither disease has a cure nor an efficient means of control. They are also generally confused with each other in the field since they share similar initial symptoms, e.g., yellowing blotchy leaves. The most efficient tool for detecting these diseases is by polymerase chain reaction (PCR). However, PCR is expensive, is not high throughput, and is subject to cross reaction and contamination. In this report, a diagnostic method is proposed for detecting HLB and CVC diseases in leaves of sweet orange trees using attenuated total reflectance Fourier transform infrared spectroscopy and the induced classifier via partial least-squares regression. Four different leaf types were considered: healthy, CVC-symptomatic, HLB-symptomatic, and HLB-asymptomatic. The results show a success rate of 93.8% in correctly identifying these different leaf types. In order to understand which compounds are responsible for the spectral differences between the leaf types, samples of carbohydrates starch, sucrose, and glucose, flavonoids hesperidin and naringin, and coumarin umbelliferone were also analyzed. The concentration of these compounds in leaves may vary due to biotic stresses.
Collapse
|
22
|
Chatelet DS, Wistrom CM, Purcell AH, Rost TL, Matthews MA. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. ANNALS OF BOTANY 2011; 108:73-85. [PMID: 21546428 PMCID: PMC3119617 DOI: 10.1093/aob/mcr106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/21/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The bacterium Xylella fastidiosa (Xf), responsible for Pierce's disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf. METHODS Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant. KEY RESULTS There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant 'Sylvaner' had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement. CONCLUSIONS Stem--leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.
Collapse
Affiliation(s)
- David S. Chatelet
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Christina M. Wistrom
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| | - Alexander H. Purcell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| | - Thomas L. Rost
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Mark A. Matthews
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| |
Collapse
|
23
|
Choi HK, Goes da Silva F, Lim HJ, Iandolino A, Seo YS, Lee SW, Cook DR. Diagnosis of Pierce's disease using biomarkers specific to Xylella fastidiosa rRNA and Vitis vinifera gene expression. PHYTOPATHOLOGY 2010; 100:1089-99. [PMID: 20839944 DOI: 10.1094/phyto-01-10-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pierce's disease (PD), caused by Xylella fastidiosa, represents one of the most damaging diseases of cultivated grape. Management of PD in the vineyard often relies on the removal of infected individuals, which otherwise serve as a source of inoculum for nearby healthy vines. Effective implementation of such control measures requires early diagnosis, which is complicated by the fact that infected vines often harbor high titers of the pathogen in advance of visual symptom development. Here, we report a biomarker system that simultaneously monitors Xylella-induced plant transcripts as well as Xylella ribosomal (r)RNA. Plant biomarker genes were derived from a combination of in silico analysis of grape expressed sequence tags and validation by means of reverse-transcriptase polymerase chain reaction (RT-PCR). Four genes upregulated upon PD infection were individually multiplexed with an X. fastidiosa marker rRNA and scored using either real-time RT-PCR or gel-based conventional RT-PCR techniques. The system was sufficiently sensitive to detect both host gene transcript and pathogen rRNA in asymptomatic infected plants. Moreover, these plant biomarker genes were not induced by water deficit, which is a component of PD development. Such biomarker genes could have utility for disease control by aiding early detection and as a screening tool in breeding programs.
Collapse
Affiliation(s)
- H-K Choi
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
24
|
Caserta R, Takita MA, Targon ML, Rosselli-Murai LK, de Souza AP, Peroni L, Stach-Machado DR, Andrade A, Labate CA, Kitajima EW, Machado MA, de Souza AA. Expression of Xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl Environ Microbiol 2010; 76:4250-9. [PMID: 20472735 PMCID: PMC2897468 DOI: 10.1128/aem.02114-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 05/04/2010] [Indexed: 11/20/2022] Open
Abstract
Complete sequencing of the Xylella fastidiosa genome revealed characteristics that have not been described previously for a phytopathogen. One characteristic of this genome was the abundance of genes encoding proteins with adhesion functions related to biofilm formation, an essential step for colonization of a plant host or an insect vector. We examined four of the proteins belonging to this class encoded by genes in the genome of X. fastidiosa: the PilA2 and PilC fimbrial proteins, which are components of the type IV pili, and XadA1 and XadA2, which are afimbrial adhesins. Polyclonal antibodies were raised against these four proteins, and their behavior during biofilm development was assessed by Western blotting and immunofluorescence assays. In addition, immunogold electron microscopy was used to detect these proteins in bacteria present in xylem vessels of three different hosts (citrus, periwinkle, and hibiscus). We verified that these proteins are present in X. fastidiosa biofilms but have differential regulation since the amounts varied temporally during biofilm formation, as well as spatially within the biofilms. The proteins were also detected in bacteria colonizing the xylem vessels of infected plants.
Collapse
Affiliation(s)
- R. Caserta
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. A. Takita
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. L. Targon
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - L. K. Rosselli-Murai
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. P. de Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - L. Peroni
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - D. R. Stach-Machado
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. Andrade
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - C. A. Labate
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - E. W. Kitajima
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. A. Machado
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. A. de Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| |
Collapse
|
25
|
Transcriptome analysis of the phytobacterium Xylella fastidiosa growing under xylem-based chemical conditions. J Biomed Biotechnol 2010; 2010:781365. [PMID: 20625415 PMCID: PMC2896883 DOI: 10.1155/2010/781365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/15/2010] [Accepted: 04/12/2010] [Indexed: 11/17/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.
Collapse
|
26
|
Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host. Appl Microbiol Biotechnol 2010; 87:467-77. [PMID: 20449739 DOI: 10.1007/s00253-010-2631-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell-cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.
Collapse
|
27
|
Voegel TM, Warren JG, Matsumoto A, Igo MM, Kirkpatrick BC. Localization and characterization of Xylella fastidiosa haemagglutinin adhesins. MICROBIOLOGY-SGM 2010; 156:2172-2179. [PMID: 20378647 DOI: 10.1099/mic.0.037564-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Xylella fastidiosa is a gram-negative, xylem-inhabiting, plant-pathogenic bacterium responsible for several important diseases including Pierce's disease (PD) of grapevines. The bacteria form biofilms in grapevine xylem that contribute to the occlusion of the xylem vessels. X. fastidiosa haemagglutinin (HA) proteins are large afimbrial adhesins that have been shown to be crucial for biofilm formation. Little is known about the mechanism of X. fastidiosa HA-mediated cell-cell aggregation or the localization of the adhesins on the cell. We generated anti-HA antibodies and show that X. fastidiosa HAs are present in the outer membrane and secreted both as soluble proteins and in membrane vesicles. Furthermore, the HA pre-proteins are processed from the predicted molecular mass of 360 kDa to a mature 220 kDa protein. Based on this information, we are evaluating a novel form of potential resistance against PD by generating HA-expressing transgenic grapevines.
Collapse
Affiliation(s)
- Tanja M Voegel
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
- Center for Applied Biosciences, University of Freiburg, Germany
| | - Jeremy G Warren
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
| | - Ayumi Matsumoto
- Department of Microbiology, University of California, Davis, CA 951616, USA
| | - Michele M Igo
- Department of Microbiology, University of California, Davis, CA 951616, USA
| | - Bruce C Kirkpatrick
- Department of Plant Pathology, University of California, Davis, CA 951616, USA
| |
Collapse
|
28
|
Assessment of the diagnostic potential of Immmunocapture-PCR and Immuno-PCR for Citrus Variegated Chlorosis. J Microbiol Methods 2008; 75:302-7. [DOI: 10.1016/j.mimet.2008.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 11/23/2022]
|
29
|
Aittamaa M, Somervuo P, Pirhonen M, Mattinen L, Nissinen R, Auvinen P, Valkonen JPT. Distinguishing bacterial pathogens of potato using a genome-wide microarray approach. MOLECULAR PLANT PATHOLOGY 2008; 9:705-17. [PMID: 19018999 PMCID: PMC6640225 DOI: 10.1111/j.1364-3703.2008.00482.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A set of 9676 probes was designed for the most harmful bacterial pathogens of potato and tested in a microarray format. Gene-specific probes could be designed for all genes of Pectobacterium atrosepticum, c. 50% of the genes of Streptomyces scabies and c. 30% of the genes of Clavibacter michiganensis ssp. sepedonicus utilizing the whole-genome sequence information available. For Streptomyces turgidiscabies, 226 probes were designed according to the sequences of a pathogenicity island containing important virulence genes. In addition, probes were designed for the virulence-associated nip (necrosis-inducing protein) genes of P. atrosepticum, P. carotovorum and Dickeya dadantii and for the intergenic spacer (IGS) sequences of the 16S-23S rRNA gene region. Ralstonia solanacearum was not included in the study, because it is a quarantine organism and is not presently found in Finland, but a few probes were also designed for this species. The probes contained on average 40 target-specific nucleotides and were synthesized on the array in situ, organized as eight sub-arrays with an identical set of probes which could be used for hybridization with different samples. All bacteria were readily distinguished using a single channel system for signal detection. Nearly all of the c. 1000 probes designed for C. michiganensis ssp. sepedonicus, c. 50% and 40% of the c. 4000 probes designed for the genes of S. scabies and P. atrosepticum, respectively, and over 100 probes for S. turgidiscabies showed significant signals only with the respective species. P. atrosepticum, P. carotovorum and Dickeya strains were all detected with 110 common probes. By contrast, the strains of these species were found to differ in their signal profiles. Probes targeting the IGS region and nip genes could be used to place strains of Dickeya to two groups, which correlated with differences in virulence. Taken together, the approach of using a custom-designed, genome-wide microarray provided a robust means for distinguishing the bacterial pathogens of potato.
Collapse
Affiliation(s)
- M Aittamaa
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
30
|
The iron stimulon of Xylella fastidiosa includes genes for type IV pilus and colicin V-like bacteriocins. J Bacteriol 2008; 190:2368-78. [PMID: 18223091 DOI: 10.1128/jb.01495-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2'-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 microM ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X. fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Collapse
|
31
|
da Silva VS, Shida CS, Rodrigues FB, Ribeiro DCD, de Souza AA, Coletta-Filho HD, Machado MA, Nunes LR, de Oliveira RC. Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. BMC Genomics 2007; 8:474. [PMID: 18154652 PMCID: PMC2262912 DOI: 10.1186/1471-2164-8-474] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 12/21/2007] [Indexed: 01/18/2023] Open
Abstract
Background The xylem-inhabiting bacterium Xylella fastidiosa (Xf) is the causal agent of Pierce's disease (PD) in vineyards and citrus variegated chlorosis (CVC) in orange trees. Both of these economically-devastating diseases are caused by distinct strains of this complex group of microorganisms, which has motivated researchers to conduct extensive genomic sequencing projects with Xf strains. This sequence information, along with other molecular tools, have been used to estimate the evolutionary history of the group and provide clues to understand the capacity of Xf to infect different hosts, causing a variety of symptoms. Nonetheless, although significant amounts of information have been generated from Xf strains, a large proportion of these efforts has concentrated on the study of North American strains, limiting our understanding about the genomic composition of South American strains – which is particularly important for CVC-associated strains. Results This paper describes the first genome-wide comparison among South American Xf strains, involving 6 distinct citrus-associated bacteria. Comparative analyses performed through a microarray-based approach allowed identification and characterization of large mobile genetic elements that seem to be exclusive to South American strains. Moreover, a large-scale sequencing effort, based on Suppressive Subtraction Hybridization (SSH), identified 290 new ORFs, distributed in 135 Groups of Orthologous Elements, throughout the genomes of these bacteria. Conclusion Results from microarray-based comparisons provide further evidence concerning activity of horizontally transferred elements, reinforcing their importance as major mediators in the evolution of Xf. Moreover, the microarray-based genomic profiles showed similarity between Xf strains 9a5c and Fb7, which is unexpected, given the geographical and chronological differences associated with the isolation of these microorganisms. The newly identified ORFs, obtained by SSH, represent an approximately 10% increase in our current knowledge of the South American Xf gene pool and include new putative virulence factors, as well as novel potential markers for strain identification. Surprisingly, this list of novel elements include sequences previously believed to be unique to North American strains, pointing to the necessity of revising the list of specific markers that may be used for identification of distinct Xf strains.
Collapse
Affiliation(s)
- Vivian S da Silva
- Núcleo Integrado de Biotecnologia - Universidade de Mogi das Cruzes, Av. Dr, Cândido Xavier de Almeida Souza 200, Mogi das Cruzes, SP 08780-911, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rodrigues CM, Takita MA, Coletta-Filho HD, Olivato JC, Caserta R, Machado MA, de Souza AA. Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Appl Microbiol Biotechnol 2007; 77:1145-57. [PMID: 17992525 DOI: 10.1007/s00253-007-1232-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Collapse
Affiliation(s)
- Carolina M Rodrigues
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
da Silva Neto JF, Koide T, Abe CM, Gomes SL, Marques MV. Role of sigma54 in the regulation of genes involved in type I and type IV pili biogenesis in Xylella fastidiosa. Arch Microbiol 2007; 189:249-61. [PMID: 17985115 DOI: 10.1007/s00203-007-0314-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/05/2007] [Accepted: 10/15/2007] [Indexed: 11/30/2022]
Abstract
The phytopathogen Xylella fastidiosa produces long type IV pili and short type I pili involved in motility and adhesion. In this work, we have investigated the role of sigma factor sigma(54) (RpoN) in the regulation of fimbrial biogenesis in X. fastidiosa. An rpoN null mutant was constructed from the non-pathogenic citrus strain J1a12, and microarray analyses of global gene expression comparing the wild type and rpoN mutant strains showed few genes exhibiting differential expression. In particular, gene pilA1 (XF2542), which encodes the structural pilin protein of type IV pili, showed decreased expression in the rpoN mutant, whereas two-fold higher expression of an operon encoding proteins of type I pili was detected, as confirmed by quantitative RT-PCR (qRT-PCR) analysis. The transcriptional start site of pilA1 was determined by primer extension, downstream of a sigma(54)-dependent promoter. Microarray and qRT-PCR data demonstrated that expression of only one of the five pilA paralogues, pilA1, was significantly reduced in the rpoN mutant. The rpoN mutant made more biofilm than the wild type strain and presented a cell-cell aggregative phenotype. These results indicate that sigma(54) differentially regulates genes involved in type IV and type I fimbrial biogenesis, and is involved in biofilm formation in X. fastidiosa.
Collapse
Affiliation(s)
- José F da Silva Neto
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
34
|
Galvani CD, Li Y, Burr TJ, Hoch HC. Twitching motility among pathogenic Xylella fastidiosa isolates and the influence of bovine serum albumin on twitching-dependent colony fringe morphology. FEMS Microbiol Lett 2007. [DOI: 10.1111/j.1574-6968.2007.00601.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA. Transcript profiling in host-pathogen interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:329-69. [PMID: 17480183 DOI: 10.1146/annurev.phyto.45.011107.143944] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using genomic technologies, it is now possible to address research hypotheses in the context of entire developmental or biochemical pathways, gene networks, and chromosomal location of relevant genes and their inferred evolutionary history. Through a range of platforms, researchers can survey an entire transcriptome under a variety of experimental and field conditions. Interpretation of such data has led to new insights and revealed previously undescribed phenomena. In the area of plant-pathogen interactions, transcript profiling has provided unparalleled perception into the mechanisms underlying gene-for-gene resistance and basal defense, host vs nonhost resistance, biotrophy vs necrotrophy, and pathogenicity of vascular vs nonvascular pathogens, among many others. In this way, genomic technologies have facilitated a system-wide approach to unifying themes and unique features in the interactions of hosts and pathogens.
Collapse
Affiliation(s)
- Roger P Wise
- Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa 50011-1020, USA.
| | | | | | | |
Collapse
|
36
|
da Silva Neto JF, Koide T, Gomes SL, Marques MV. The single extracytoplasmic-function sigma factor of Xylella fastidiosa is involved in the heat shock response and presents an unusual regulatory mechanism. J Bacteriol 2006; 189:551-60. [PMID: 17098905 PMCID: PMC1797396 DOI: 10.1128/jb.00986-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genome sequence analysis of the bacterium Xylella fastidiosa revealed the presence of two genes, named rpoE and rseA, predicted to encode an extracytoplasmic function (ECF) sigma factor and an anti-sigma factor, respectively. In this work, an rpoE null mutant was constructed in the citrus strain J1a12 and shown to be sensitive to exposure to heat shock and ethanol. To identify the X. fastidiosa sigma(E) regulon, global gene expression profiles were obtained by DNA microarray analysis of bacterial cells under heat shock, identifying 21 sigma(E)-dependent genes. These genes encode proteins belonging to different functional categories, such as enzymes involved in protein folding and degradation, signal transduction, and DNA restriction modification and hypothetical proteins. Several putative sigma(E)-dependent promoters were mapped by primer extension, and alignment of the mapped promoters revealed a consensus sequence similar to those of ECF sigma factor promoters of other bacteria. Like other ECF sigma factors, rpoE and rseA were shown to comprise an operon in X. fastidiosa, together with a third open reading frame (XF2241). However, upon heat shock, rpoE expression was not induced, while rseA and XF2241 were highly induced at a newly identified sigma(E)-dependent promoter internal to the operon. Therefore, unlike many other ECF sigma factors, rpoE is not autoregulated but instead positively regulates the gene encoding its putative anti-sigma factor.
Collapse
|
37
|
Koide T, Vêncio RZN, Gomes SL. Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa. J Bacteriol 2006; 188:5821-30. [PMID: 16885450 PMCID: PMC1540087 DOI: 10.1128/jb.00182-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.
Collapse
Affiliation(s)
- Tie Koide
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | | |
Collapse
|
38
|
Chatelet DS, Matthews MA, Rost TL. Xylem structure and connectivity in grapevine (Vitis vinifera) shoots provides a passive mechanism for the spread of bacteria in grape plants. ANNALS OF BOTANY 2006; 98:483-94. [PMID: 16790469 PMCID: PMC2803575 DOI: 10.1093/aob/mcl124] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/23/2006] [Accepted: 04/13/2006] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Bacterial leaf scorch occurring in a number of economically important plants is caused by the xylem-limited bacterium Xylella fastidiosa (Xf). In grapevine, Xf systemic infection causes Pierce's disease and is lethal. Traditional dogma is that Xf movement between vessels requires the digestion of inter-vessel pit membranes. However, Yersinia enterocolitica (Ye) (a bacterium found in animals) and fluorescent beads moved rapidly within grapevine xylem from stem into leaf lamina, suggesting open conduits consisting of long, branched xylem vessels for passive movement. This study builds on and expands previous observations on the nature of these conduits and how they affect Xf movement. METHODS Air, latex paint and green fluorescence protein (GFP)-Xf were loaded into leaves and followed to confirm and identify these conduits. Leaf xylem anatomy was studied to determine the basis for the free and sometimes restricted movement of Ye, beads, air, paint and GFP-Xf into the lamina. KEY RESULTS Reverse loading experiments demonstrated that long, branched xylem vessels occurred exclusively in primary xylem. They were observed in the stem for three internodes before diverging into mature leaves. However, this stem-leaf connection was an age-dependent character and was absent for the first 10-12 leaves basal to the apical meristem. Free movement in leaf blade xylem was cell-type specific with vessels facilitating movement in the body of the blade and tracheids near the leaf margin. Air, latex paint and GFP-Xf all moved about 50-60% of the leaf length. GFP-Xf was never observed close to the leaf margin. CONCLUSIONS The open vessels of the primary xylem offered unimpeded long distance pathways bridging stem to leaves, possibly facilitating the spread of bacterial pathogens in planta. GFP-Xf never reached the leaf margins where scorching appeared, suggesting a signal targeting specific cells or a toxic build-up at hydathodes.
Collapse
Affiliation(s)
- David S Chatelet
- Section of Plant Biology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
39
|
Cloud-Hansen KA, Peterson SB, Stabb EV, Goldman WE, McFall-Ngai MJ, Handelsman J. Breaching the great wall: peptidoglycan and microbial interactions. Nat Rev Microbiol 2006; 4:710-6. [PMID: 16894338 DOI: 10.1038/nrmicro1486] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Once thought to be a process that occurred only in a few human pathogens, release of biologically active peptidoglycan fragments during growth by Gram-negative bacteria controls many types of bacterial interaction, including symbioses and interactions between microorganisms. This Perspective explores the role of peptidoglycan fragments in mediating a range of microbial-host interactions, and discusses the many systems in which peptidoglycan fragments released during bacterial growth might be active.
Collapse
Affiliation(s)
- Karen A Cloud-Hansen
- Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rodrigues JLM, Silva-Stenico ME, de Souza AN, Lopes JRS, Tsai SM. In situ probing of Xylella fastidiosa in honeydew of a xylem sap-feeding insect using 16S rRNA-targeted fluorescent oligonucleotides. Environ Microbiol 2006; 8:747-54. [PMID: 16584486 DOI: 10.1111/j.1462-2920.2005.00958.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylella fastidiosa is a plant pathogen that threatens a US$ 4.6 billion worldwide wine and citrus industry. Monitoring its presence and distribution in plants and vectors is crucial for designing control strategies, as well as for understanding its ecological role and fate. We developed two fluorescent oligonucleotide probes complementary to different regions of the 16S rRNA gene of X. fastidiosa. The specificity of the newly designed probes S-S-X.fas-0067-a-A-18 and S-S-X.fas-1439-a-A-18 was demonstrated using fluorescence in situ hybridization (FISH) for 12 Xylella isolates, 15 closely related microorganisms and three plant endophytes. These probes were used to detect and quantify X. fastidiosa in plant sap (average value of 2.9 +/- 0.3 x 10(6) cells ml(-1)) from three different citrus orchards. In a second experiment, cells were quantified in honeydew (2.2 +/- 0.2 x 10(4) cells ml(-1)) collected from the insect vector Bucephalogonia xanthophis during the acquisition access period on an infected plant. The number of pathogen cells retained or digested by the insect is 10,000 times greater than the estimated minimum value to ensure an efficient transmission. Polymerase chain reaction (PCR) amplification using specific primers with plant sap and honeydew samples, followed by sequencing, confirmed the presence of the plant pathogen. This is the first demonstration of FISH being used for environmental samples, such as plant sap and insect honeydew, to estimate the abundance of a plant pathogen during infection.
Collapse
Affiliation(s)
- Jorge L M Rodrigues
- Centro de Energia Nuclear na Agricultura, ESALQ, Universidade de Sao Paulo, Piracicaba, SP, 13400-970, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci U S A 2006; 103:5983-8. [PMID: 16585516 PMCID: PMC1458684 DOI: 10.1073/pnas.0509860103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Indexed: 01/17/2023] Open
Abstract
The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.
Collapse
Affiliation(s)
| | | | - Timothy D. Minogue
- Plant Science, University of Connecticut, Storrs, CT 06269; and
- Pathogen Functional Genomic Resource Center, Center for Genomic Research, 9712 Medical Drive, Rockville, MD 20850
| | | |
Collapse
|
42
|
Setubal JC, Moreira LM, da Silva ACR. Bacterial phytopathogens and genome science. Curr Opin Microbiol 2006; 8:595-600. [PMID: 16125997 DOI: 10.1016/j.mib.2005.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
There are now fourteen completed genomes of bacterial phytopathogens, all of which have been generated in the past six years. These genomes come from a phylogenetically diverse set of organisms, and range in size from 870 kb to more than 6Mb. The publication of these annotated genomes has significantly helped our understanding of bacterial plant disease. These genomes have also provided important information about bacterial evolution. Examples of recently completed genomes include: Pseudomonas syringae pv tomato, which is notable for its large repertoire of effector proteins; Leifsonia xyli subsp. xyli, the first Gram-positive bacterial genome to be sequenced; and Phytoplasma asteris, the small genome that lacks important functions previously thought to be essential in a bacterium.
Collapse
Affiliation(s)
- João C Setubal
- Virginia Bioinformatics Institute and Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060-0477, USA
| | | | | |
Collapse
|
43
|
Pashalidis S, Moreira LM, Zaini PA, Campanharo JC, Alves LMC, Ciapina LP, Vêncio RZN, Lemos EGM, Da Silva AM, Da Silva ACR. Whole-genome expression profiling of Xylella fastidiosa in response to growth on glucose. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 9:77-90. [PMID: 15805779 DOI: 10.1089/omi.2005.9.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Xylella fastidiosa is the etiologic agent of diseases in a wide range of economically important crops including citrus variegated chlorosis, a major threat to the Brazilian citrus industry. The genomes of several strains of this phytopathogen have been completely sequenced enabling large-scale functional studies. In this work we used whole-genome DNA microarrays to investigate the transcription profile of X. fastidiosa grown in defined media with different glucose concentrations. Our analysis revealed that while transcripts related to fastidian gum production were unaffected, colicin-V-like and fimbria precursors were induced in high glucose medium. Based on these results, we suggest a model for colicin-defense mechanism in X. fastidiosa.
Collapse
Affiliation(s)
- Stefano Pashalidis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guilhabert MR, Kirkpatrick BC. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:856-68. [PMID: 16134898 DOI: 10.1094/mpmi-18-0856] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.
Collapse
|
45
|
Lu SE, Wang N, Wang J, Chen ZJ, Gross DC. Oligonucleotide microarray analysis of the salA regulon controlling phytotoxin production by Pseudomonas syringae pv. syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:324-333. [PMID: 15828684 DOI: 10.1094/mpmi-18-0324] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The salA gene is a key regulatory element for syringomycin production by Pseudomonas syringae pv. syringae and encodes a member of the LuxR regulatory protein family. Previous studies revealed that salA, a member of the GacS/GacA signal transduction system, was required for bacterial virulence, syringomycin production, and expression of the syrB1 synthetase gene. To define the SalA regulon, the spotted oligonucleotide microarray was constructed using gene-specific 70-mer oligonucleotides of all open reading frames (ORFs) predicted in the syringomycin (syr) and syringopeptin (syp) gene clusters along with representative genes important to bacterial virulence, growth, and survival. The microarray containing 95 oligos was used to analyze transcriptional changes in a salA mutant (B301DSL07) and its wild-type strain, B301D. Expression of 16 genes was significantly higher (> twofold) in B301D than in the salA mutant; the maximum change in expression was 15-fold for some toxin biosynthesis genes. Except for the sylD synthetase gene for syringolin production, all ORFs controlled by SalA were located in the syr-syp genomic island and were associated with biosynthesis, secretion, and regulation of syringomycin and syringopeptin. The positive regulatory effect of SalA on transcription of sypA, syrB1, syrC, and sylD was verified by reporter fusions or real-time polymerase chain reaction analysis. None of the genes or ORFs was significantly down-regulated by the salA gene. These results demonstrated that a subgenomic oligonucleotide microarray is a powerful tool for defining the SalA regulon and its relationship to other genes important to plant pathogenesis.
Collapse
Affiliation(s)
- Shi-En Lu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
46
|
de Souza AA, Takita MA, Pereira EO, Coletta-Filho HD, Machado MA. Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta. Curr Microbiol 2005; 50:223-8. [PMID: 15902471 DOI: 10.1007/s00284-004-4447-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.
Collapse
|
47
|
Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Yanai GM, Muto NH, Oliveira RC, Nunes LR, Machado MA. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09716.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
48
|
Koide T, Zaini PA, Moreira LM, Vêncio RZN, Matsukuma AY, Durham AM, Teixeira DC, El-Dorry H, Monteiro PB, da Silva ACR, Verjovski-Almeida S, da Silva AM, Gomes SL. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence. J Bacteriol 2004; 186:5442-9. [PMID: 15292146 PMCID: PMC490883 DOI: 10.1128/jb.186.16.5442-5449.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 03/22/2004] [Indexed: 12/15/2022] Open
Abstract
Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.
Collapse
Affiliation(s)
- Tie Koide
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Osiro D, Colnago LA, Otoboni AMMB, Lemos EGM, Souza AA, Filho HDC, Machado MA. A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09663.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Pühler A, Arlat M, Becker A, Göttfert M, Morrissey JP, O'Gara F. What can bacterial genome research teach us about bacteria-plant interactions? CURRENT OPINION IN PLANT BIOLOGY 2004; 7:137-147. [PMID: 15003213 DOI: 10.1016/j.pbi.2004.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological research is changing dramatically. Genomic and post-genomic research is responsible for the accumulation of enormous datasets, which allow the formation of holistic views of the organisms under investigation. In the field of microbiology, bacteria represent ideal candidates for this new development. It is relatively easy to sequence the genomes of bacteria, to analyse their transcriptomes and to collect information at the proteomic level. Genome research on symbiotic, pathogenic and associative bacteria is providing important information on bacteria-plant interactions, especially on type-III secretion systems (TTSS) and their role in the interaction of bacteria with plants.
Collapse
Affiliation(s)
- Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, 33594 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|