1
|
Dutta B, Chatterjee D, Guha A, Ray RR. Green treatments for polyaromatic hydrocarbons in e-wastes. Biodegradation 2025; 36:48. [PMID: 40388048 DOI: 10.1007/s10532-025-10140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Rapid elevation of global population along with increased urbanization and industrialization afflict the water resources leading to the blooming of wastewater. Two or more aromatic rings fused with organic compound Polycyclic Aromatic Hydrocarbons (PAHs) emerged worldwide through anthropogenic processes, mainly due to the incomplete combustion of organic fuels. In accordance with the United States Environmental Protection Agency (USEPA), there are 16 PAHs that are deemed as primary pollutants. These are toxic to the living organisms due to their pervasive existence, rebelliousness, potential for bioaccumulation and carcinogenic venture. Several methods including fixation, incineration and oxidation are put forward to remove PAHs. Occasionally some fictional toxic products are produced by the incomplete removal of PAHs. Bioremediation is one of the ecological techniques to remove the PAHs. Microbial biodegradation is considered as an effective and inexpensive technique to remove PAHs along with other hydrocarbons and xenobiotic compounds and are accomplished by few PAHs degrading bacteria including Haemophilus spp., Mycobacterium spp., Paenibacillus spp., Pseudomonas aeruginosa, P. fluorescens, Rhodococcus spp. along with few biosurfactant-producing microbes. The novel biochemical events involved in hydrocarbon catabolism are microbial physical adaptation, their acquisition and uptake. The bioremediation efficacy can be further ameliorated through genetic modification of the microbes. This chapter will focus on the eco-friendly treatment for the PAHs remediation in in situ and ex situ. This chapter will explore the remediation of the PAH by-products through the multi-process conjunctional treatment processes under the green therapy.
Collapse
Affiliation(s)
- Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Debarati Chatterjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Arina Guha
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India.
| |
Collapse
|
2
|
Jassal PS, Kudave PS, Wani AK, Yadav T. Prospects of phytoremediation in degradation of environmental contaminants: recent advances, challenges and way forward. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-18. [PMID: 40358137 DOI: 10.1080/15226514.2025.2500643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Phytoremediation has gained recognition as an environmentally friendly, cost-efficient, and sustainable solution for addressing pollution in soil and water. This review provides an in-depth analysis of how this technique is applied to treat contaminants such as heavy metals, antibiotics, plastics, and radioactive substances. It emphasizes the effectiveness of plants like Brassica juncea, Pteris vittata, and Eichhornia crassipes, which have demonstrated significant pollutant uptake-removing arsenic concentrations as high as 20,000 mg/kg and reducing lead in wastewater by up to 75%. Innovations in genetic modification and nanotechnology have further enhanced the capabilities of these plants by boosting their tolerance and pollutant degradation potential. The review also explores the role of soil microbes, rhizosphere-based degradation, and the integration of nanomaterials in advancing phytoremediation. However, several challenges persist, such as limited pollutant availability to plants, slow breakdown of plastic waste, and low absorption rates for pharmaceutical residues. This work outlines existing research gaps, highlights regulatory and technical limitations, and proposes forward-looking approaches, including CRISPR-based gene editing, microbial partnerships, and hybrid remediation models. Although still developing, phytoremediation holds considerable promise as a comprehensive approach for restoring polluted environments.
Collapse
Affiliation(s)
- Prabhjot Singh Jassal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Tusha Yadav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
3
|
Zubrova A, Tadrosova M, Semerad J, Cajthaml T, Pajer P, Strejcek M, Suman J, Uhlik O. Differential effect of monoterpenes and flavonoids on the transcription of aromatic ring-hydroxylating dioxygenase genes in Rhodococcus opacus C1 and Rhodococcus sp. WAY2. Microb Genom 2025; 11:001359. [PMID: 40042991 PMCID: PMC11881993 DOI: 10.1099/mgen.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
Aromatic ring-hydroxylating dioxygenases (ARHDs) play a crucial role in the aerobic biodegradation of both natural and anthropogenic aromatic compounds. Although their ability to process contaminants is not entirely understood, it is thought to have evolved from the transformation of structurally similar secondary plant metabolites (SPMs). Hence, to investigate this connection, we tested a variety of SPMs from the monoterpene and flavonoid classes as carbon sources and transcriptional effectors of several phylogenetically distant ARHD genes involved in the degradation of aromatic pollutants. Specifically, we focused on bphA1, nahA1 and phtA1 in Rhodococcus opacus C1, whose genomic analysis is also presented hereinafter, and bphA1a, nahA1-bphA1b and etbA1ab in Rhodococcus sp. WAY2. Whilst induction was only observed with (R)-carvone for bphA1a and nahA1-bphA1b of strain WAY2, and with p-cymene for nahA1 and nahA1-bphA1b of strains C1 and WAY2, respectively, an extensive inhibition by flavonoids was observed for most of the genes in both strains. To the best of our knowledge, our study is the first to report the effect of flavonoids and monoterpenes on the transcription of nahA1, etbA1 and phtA1 genes. In addition, we show that, in contrast to pseudomonads, many flavonoids inhibit the transcription of the ARHD genes in rhodococci. Thus, our work provides a new perspective on flavonoids as the transcriptional effectors of ARHDs, highlighting the significant variability of these enzymes and the divergent responses that they elicit. Moreover, our results contribute to understanding the complex interactions between microorganisms and SPMs and provide insights into the molecular basis of a number of them.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Manuela Tadrosova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Hu F, An J, Su A, Wang B, Ding Z, Yan X, Wei S, Xu M, Zhang H. Green manure plants enhance atrazine degradation in agriculture soil through modulating rhizosphere microbial communities. ENVIRONMENTAL RESEARCH 2025; 265:120478. [PMID: 39613010 DOI: 10.1016/j.envres.2024.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The widespread use of atrazine in agriculture threatens soil health and the safety of agricultural products. In this study, the removal and mechanism of green manure plants (GMPs) hairy vetch (Vicia villosa Roth, VV) and ryegrass (Lolium perenne L., LP) to atrazine were investigated. The results showed that VV and LP show a certain tolerance to 5-25 mg/kg atrazine contamination compared to VV and LP without atrazine (VV0 and LP0), with LP exhibiting higher tolerance. Moreover, compared to CK, VV and LP significantly promoted the removal of atrazine by 13.49%∼26.41% and 13.98%∼23.42%, respectively. VV was more effective at lower concentrations (5-10 mg/kg), while LP showed better results at 25 mg/kg. Soil enzyme activities (catalase and urease), as well as bacterial abundance and diversity, were significantly increased by VV and LP treatments. LP had a stronger effect. The function analysis revealed that VV enhances the Cell growth and death pathway in the rhizosphere soil, while LP primarily boosts the Replication and repair pathway to cope with atrazine stress. This difference likely results from the distinct root structures of the two plants, which create varying rhizosphere environments. Additionally, VV and LP upregulate the Atrazine degradation pathway by enriching atrazine-degrading bacteria, thereby promoting atrazine removal. VV growth was affected under 25 mg/kg atrazine treatment, which may lead to lower Atrazine degradation pathway abundance in the rhizosphere compared to LP. This study provides a theoretical basis for selecting plant species for the remediation of atrazine-contaminated soils.
Collapse
Affiliation(s)
- Fangyu Hu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110142, China.
| | - Ao Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Baoyu Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Ding
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
5
|
Mao X, Ahmad B, Hussain S, Azeem F, Waseem M, Alhaj Hamoud Y, Shaghaleh H, Abeed AHA, Rizwan M, Yong JWH. Microbial assisted alleviation of nickel toxicity in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117669. [PMID: 39788037 DOI: 10.1016/j.ecoenv.2025.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Nickel (Ni) is required in trace amounts (less than 500 µg kg-1) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases. Due to anthropogenic activities, the nickel concentrations in various environmental scenarios have progressively risen to levels as high as 26,000 ppm in soil and 0.2 mg L-1 in water; surpassing the established safety threshold limits of 100 ppm for soil and 0.005 ppm for surface water. Nickel is required by various plant species for facilitating biological processes; in the range of 0.01-5 µg g-1 (dry weight). When present in excess, nickel toxicity in plants (10-1000 mg kg-1 dry weight mass) causes many disrupted metabolic processes; leading to lower growth, altered development, hindered seed germination, chlorosis, and necrosis. To tackle any metal-linked pollution issues, various remediation approaches are employed to remove heavy metals (especially nickel) and metalloids including physicochemical, and biological methods. Based on literature, the physicochemical methods are not commonly used due to their costly nature and the potential for producing secondary pollutants. Interestingly, bioremediation is considered by many practitioners as an easy-to-handle, efficient, and cost-effective approach, encompassing techniques such as phytoremediation, bioleaching, bioreactors, green landforming, and bio-augmentation. Operationally, phytoremediation is widely utilized for cleaning up contaminated sites. To support the phytoremediative processes, numerous nickel hyperaccumulating plants have been identified; these species can absorb from their surroundings and store high concentrations of nickel (through various mechanisms) in their biomass, thereby helping to detoxify nickel-contaminated soils via phytoextraction. The microbe-assisted phytoremediation further optimizes the nickel detoxification processes by fostering beneficial interactions between microbes and the nickel-hyperaccumulators; promoting enhanced metal uptake, transformation, and sequestration. Microbe-assisted phytoremediation can be categorized into four subtypes: bacterial-assisted phytoremediation, cyanoremediation, mycorrhizal-assisted remediation, and rhizoremediation. These diverse approaches are likely to offer more effective and sustainable remediative strategy to ecologically restore the nickel-contaminated environments.
Collapse
Affiliation(s)
- Xinyu Mao
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Bilal Ahmad
- Molecular, Cellular, and Developmental Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing 210098, China
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| |
Collapse
|
6
|
Laishram B, Devi OR, Dutta R, Senthilkumar T, Goyal G, Paliwal DK, Panotra N, Rasool A. Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100333. [PMID: 39835267 PMCID: PMC11743900 DOI: 10.1016/j.crmicr.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability. Therefore, the introduction of beneficial microbes into agricultural ecosystems by bio-augmentation reduces the negative effects of intensive, non-sustainable agriculture on the environment, society, and economy, into the mechanisms underlying the application of plant growth promoting microbes as microbial inoculants/biofertilizers; their interactions, the factors influencing their dynamics, and the implications for agricultural practices, emerging technologies and strategies that leverage plant-microbe interactions for improving crop yields, soil fertility, and overall agricultural sustainability.
Collapse
Affiliation(s)
- Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Rinjumoni Dutta
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | | | - Girish Goyal
- Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India
| | | | - Narinder Panotra
- Institute of Biotechnology, SKUAST Jammu, Jammu and Kashmir 180009, India
| | - Akhtar Rasool
- Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| |
Collapse
|
7
|
Zheng Y, Liu Y, Jiang Y, Li Z, Zhang Q, Yu Q, Liu Y, Liu J, Yang Z, Chen Y. Posphoproteomics profiling reveals the regulatory role of a phosphorylated protein PvFBA1 in cadmium tolerance in seashore paspalum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117220. [PMID: 39427543 DOI: 10.1016/j.ecoenv.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Seashore paspalum (Paspalum vaginatum) is a warm-season and perennial turfgrass and is known for its cadmium (Cd)-stress tolerance. Here, a Phosphoproteomics analysis was performed to examine the key proteins relating to Cd tolerance in seashore paspalum. Fructose 1,6-biphosphate aldolase, PvFBA1, was identified for its phosphorylated state after exposure to Cd stress. Specifically, the phosphorylation of PvFBA1 was enhanced in several metabolic pathways, including pentose phosphate pathway (PPP), carbon fixation and biosynthesis of amino acids under Cd stress. By transforming PvFBA1 into Arabidopsis, the PvFBA1-OE plants exhibited longer roots, greater FBA activity and higher soluble sugar content than WT under 100 µM CdCl2 treatment. By expressing the PvFBA1 in yeast, a serine 50 phosphorylation site was identified as functional site. By microscale thermophoresis experiment, we indicted that PvFBA1can bind Cd directly enhancing its phosphorylation level to alleviate the damage of Cd. This finding may provide new insights into the molecular mechanisms of plants Cd tolerance.
Collapse
Affiliation(s)
- YuYing Zheng
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Liu
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Yan Jiang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Li
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qiang Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qing Yu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
8
|
Sharma I, Sharma S, Sharma V, Singh AK, Sharma A, Kumar A, Singh J, Sharma A. PGPR-Enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. CHEMOSPHERE 2024; 362:142678. [PMID: 38908452 DOI: 10.1016/j.chemosphere.2024.142678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
The excessive usage of agrochemicals, including pesticides, along with various reckless human actions, has ensued discriminating prevalence of pesticides and heavy metals (HMs) in crop plants and the environment. The enhanced exposure to these chemicals is a menace to living organisms. The pesticides may get bioaccumulated in the food chain, thereby leading to several deteriorative changes in the ecosystem health and a rise in the cases of some serious human ailments including cancer. Further, both HMs and pesticides cause some major metabolic disturbances in plants, which include oxidative burst, osmotic alterations and reduced levels of photosynthesis, leading to a decline in plant productivity. Moreover, the synergistic interaction between pesticides and HMs has a more serious impact on human and ecosystem health. Various attempts have been made to explore eco-friendly and environmentally sustainable methods of improving plant health under HMs and/or pesticide stress. Among these methods, the employment of PGPR can be a suitable and effective strategy for managing these contaminants and providing a long-term remedy. Although, the application of PGPR alone can alleviate HM-induced phytotoxicities; however, several recent reports advocate using PGPR with other micro- and macro-organisms, biochar, chelating agents, organic acids, plant growth regulators, etc., to further improve their stress ameliorative potential. Further, some PGPR are also capable of assisting in the degradation of pesticides or their sequestration, reducing their harmful effects on plants and the environment. This present review attempts to present the current status of our understanding of PGPR's potential in the remediation of pesticides and HMs-contaminated soil for the researchers working in the area.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Anil Kumar Singh
- Department of Agriculture Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Aksh Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Hqrs. Lumami, Zunheboto, Nagaland, 798627, India.
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, Punjab, 144012, India.
| |
Collapse
|
9
|
Sharma N, Yadav G, Tyagi J, Kumar A, Koul M, Joshi NC, Hashem A, Abd_Allah EF, Mishra A. Synergistic impact of Serendipita indica and Zhihengliuella sp. ISTPL4 on the mitigation of arsenic stress in rice. Front Microbiol 2024; 15:1374303. [PMID: 38868093 PMCID: PMC11168111 DOI: 10.3389/fmicb.2024.1374303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Arsenic (As) is a highly toxic metal that interferes with plant growth and disrupts various biochemical and molecular processes in plants. In this study, the harmful effects of As on rice were mitigated using combined inoculation of a root endophyte Serendipita indica and an actinobacterium Zhihengliuella sp. ISTPL4. A randomized experiment was conducted, in which rice plants were grown under controlled conditions and As-stressed conditions. The control and treatment groups consisted of untreated and non-stressed plants (C1), treated and non-stressed plants (C2), stressed and untreated plants (T1), and stressed and treated plants (T2). Various phenotypic characteristics such as shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW), and root dry weight (RDW) and biochemical parameters such as chlorophyll content, protein content, and antioxidant enzymatic activities were evaluated. The activity of various antioxidant enzymes was increased in T2 followed by T1 plants. Furthermore, high concentrations of phytohormones such as ethylene (ET), gibberellic acid (GA), and cytokinin (CK) were found at 4.11 μmol mg-1, 2.53 μmol mg-1, and 3.62 μmol mg-1 of FW of plant, respectively. The results of AAS indicated an increased As accumulation in roots of T2 plants (131.5 mg kg-1) than in roots of T1 plants (120 mg kg-1). It showed that there was an increased As accumulation and sequestration in roots of microbial-treated plants (T2) than in uninoculated plants (T1). Our data suggest that this microbial combination can be used to reduce the toxic effects of As in plants by increasing the activity of antioxidant enzymes such as SOD, CAT, PAL, PPO and POD. Furthermore, rice plants can withstand As stress owing to the active synthesis of phytohormones in the presence of microbial combinations.
Collapse
Affiliation(s)
- Neha Sharma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Gaurav Yadav
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Jaagriti Tyagi
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Arti Mishra
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Khoso MA, Wang M, Zhou Z, Huang Y, Li S, Zhang Y, Qian G, Ko SN, Pang Q, Liu C, Li L. Bacillus altitudinis AD13-4 Enhances Saline-Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community. Int J Mol Sci 2024; 25:5785. [PMID: 38891975 PMCID: PMC11171787 DOI: 10.3390/ijms25115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Zhenzhen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Yongxue Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Song Nam Ko
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Changli Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| |
Collapse
|
11
|
Roy R, Samanta S, Pandit S, Naaz T, Banerjee S, Rawat JM, Chaubey KK, Saha RP. An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies. Appl Biochem Biotechnol 2024; 196:1712-1751. [PMID: 37410353 DOI: 10.1007/s12010-023-04614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Contamination-free groundwater is considered a good source of potable water. Even in the twenty-first century, over 90 percent of the population is reliant on groundwater resources for their lives. Groundwater influences the economical state, industrial development, ecological system, and agricultural and global health conditions worldwide. However, different natural and artificial processes are gradually polluting groundwater and drinking water systems throughout the world. Toxic metalloids are one of the major sources that pollute the water system. In this review work, we have collected and analyzed information on metal-resistant bacteria along with their genetic information and remediation mechanisms of twenty different metal ions [arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), cadmium (Cd), palladium (Pd), zinc (Zn), cobalt (Co), antimony (Sb), gold (Au), silver (Ag), platinum (Pt), selenium (Se), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and uranium (U)]. We have surveyed the scientific information available on bacteria-mediated bioremediation of various metals and presented the data with responsible genes and proteins that contribute to bioremediation, bioaccumulation, and biosorption mechanisms. Knowledge of the genes responsible and self-defense mechanisms of diverse metal-resistance bacteria would help us to engineer processes involving multi-metal-resistant bacteria that may reduce metal toxicity in the environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Tahseena Naaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Srijoni Banerjee
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Janhvi Mishra Rawat
- Department of Life Sciences, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Rudra P Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| |
Collapse
|
12
|
Mun BG, Hussain A, Park YG, Kang SM, Lee IJ, Yun BW. The PGPR Bacillus aryabhattai promotes soybean growth via nutrient and chlorophyll maintenance and the production of butanoic acid. FRONTIERS IN PLANT SCIENCE 2024; 15:1341993. [PMID: 38439982 PMCID: PMC10909845 DOI: 10.3389/fpls.2024.1341993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots, establish a mutualistic relationship with the plants and help them grow better. This study reports novel findings on the plant growth-promoting effects of the PGPR Bacillus aryabhattai. Soil was collected from a soybean field, PGPR were isolated, identified, and characterized for their ability to promote plant growth and development. The bacterium was isolated from the soybean rhizosphere and identified as B. aryabhattai strain SRB02 via 16s rRNA sequencing. As shown by SEM, the bacterium successfully colonized rice and soybean roots within 2 days and significantly promoted the growth of the GA-deficient rice cultivar Waito-C within 10 days, as well as the growth of soybean plants with at least six times longer shoots, roots, higher chlorophyll content, fresh, and dry weight after 10 days of inoculation. ICP analysis showed up to a 100% increase in the quantity of 18 different amino acids in the SRB02-treated soybean plants. Furthermore, the 2-DE gel assay indicated the presence of several differentially expressed proteins in soybean leaves after 24 hrs of SRB02 application. MALDI-TOF-MS identified β-conglycinin and glycinin along with several other proteins that were traced back to their respective genes. Analysis of bacterial culture filtrates via GCMS recorded significantly higher quantities of butanoic acid which was approximately 42% of all the metabolites found in the filtrates. The application of 100 ppm butanoic acid had significantly positive effects on plant growth via chlorophyll maintenance. These results establish the suitability of B. aryabhattai as a promising PGPR for field application in various crops.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yeon-Gyeong Park
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
13
|
Yessentayeva K, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Appl Microbiol Biotechnol 2024; 108:189. [PMID: 38305872 PMCID: PMC10837267 DOI: 10.1007/s00253-024-13010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.
Collapse
Affiliation(s)
- Kuralay Yessentayeva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
14
|
Eze MO, Amuji CF. Elucidating the significant roles of root exudates in organic pollutant biotransformation within the rhizosphere. Sci Rep 2024; 14:2359. [PMID: 38286879 PMCID: PMC10824751 DOI: 10.1038/s41598-024-53027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Biotransformation of organic pollutants is crucial for the dissipation of environmental pollutants. While the roles of microorganisms have been extensively studied, the significant contribution of various root exudates are still not very well understood. Through plant growth experiment, coupled with gas and liquid chromatography-mass spectrometry methods, this study examined the effect of the presence of M. sativa on microbial-associated biochemical transformation of petroleum hydrocarbons. The results of this study revealed that the concentration of exudates within the soil matrix is a function of proximity to root surfaces. Similarly, biodegradation was found to correlate with distance from roots, ranging from ≥ 90% within the rhizosphere to < 50% in bulk soil and unplanted control soil. Most importantly, for the first time in a study of an entire petroleum distillate, this study revealed a statistically significant negative correlation between root exudate concentration and residual total petroleum hydrocarbons. While not all the compounds that may influence biodegradation are derived from roots, the results of this study show that the presence of plant can significantly influence biodegradation of hydrocarbon pollutants through such root exudation as organic acids, amino acids, soluble sugars and terpenoids. Therefore, root exudates, including secondary metabolites, offer great prospects for biotechnological applications in the remediation of organic pollutants, including recalcitrant ones.
Collapse
Affiliation(s)
- Michael O Eze
- Department of Chemistry, and Metabolomics and Environmental Toxicology Laboratory, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
- Centre for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| | - Chinedu F Amuji
- Department of Crop Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
15
|
Tarigholizadeh S, Sushkova S, Rajput VD, Ranjan A, Arora J, Dudnikova T, Barbashev A, Mandzhieva S, Minkina T, Wong MH. Transfer and Degradation of PAHs in the Soil-Plant System: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:46-64. [PMID: 38108272 DOI: 10.1021/acs.jafc.3c05589] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, persistent organic pollutants that threaten ecosystems and human health. Consistent monitoring is essential to minimize the entry of PAHs into plants and reduce food chain contamination. PAHs infiltrate plants through multiple pathways, causing detrimental effects and triggering diverse plant responses, ultimately increasing either toxicity or tolerance. Primary plant detoxification processes include enzymatic transformation, conjugation, and accumulation of contaminants in cell walls/vacuoles. Plants also play a crucial role in stimulating microbial PAHs degradation by producing root exudates, enhancing bioavailability, supplying nutrients, and promoting soil microbial diversity and activity. Thus, synergistic plant-microbe interactions efficiently decrease PAHs uptake by plants and, thereby, their accumulation along the food chain. This review highlights PAHs uptake pathways and their overall fate as contaminants of emerging concern (CEC). Understanding plant uptake mechanisms, responses to contaminants, and interactions with rhizosphere microbiota is vital for addressing PAH pollution in soil and ensuring food safety and quality.
Collapse
Affiliation(s)
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Anuj Ranjan
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida 201301, India
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Andrey Barbashev
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Hong Kong, China; Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
16
|
Zhong J, Chen S, Lin S, Jia Y, Li H, Zhan T, Li J. Obtainment and Inoculation of Acinetobacter pittii Strain JJ-2, and Combined Action with Plants for Formaldehyde and CO 2 Removal: A Research Study. Curr Microbiol 2023; 81:31. [PMID: 38062219 DOI: 10.1007/s00284-023-03536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023]
Abstract
A formaldehyde-degrading bacterium JJ-2 was isolated from the rhizosphere of Chlorophytum and identified as Acinetobacter pittii by colony morphology and 16S rDNA sequence analysis. Further studies showed that under optimal conditions, JJ-2 could maintain activity for six cycles at an initial formaldehyde concentration of 450 mg L-1. At the same time, the complete degradation time was shortened from 12 to 6 h. When the JJ-2 strain was inoculated into sterile soil, the surface spray method had the best effect, and the removal efficiency of 5 ppm formaldehyde increased by 22.63%. In an actual potted plants system colonized with strain JJ-2, the first and second fumigations (without re-inoculation) increased removal by 1.36 times and 0.92 times during the day and 1.27 times and 2.07 times at night. In addition, in the second fumigation, the plant-bacteria combined system was 693.63 ppm and the plant system was 715.34 ppm, effectively reducing the CO2 concentration. This study provides an economical, ecological, and efficient approach to improve the combined system of plants and bacteria to remove gaseous formaldehyde from indoor air, with a positive impact on carbon neutrality.
Collapse
Affiliation(s)
- Jiaochan Zhong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Silan Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Shujie Lin
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Yinjuan Jia
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Han Li
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Ting Zhan
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China
| | - Jian Li
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696 South Fenghe Ave., Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
17
|
Feng R, Wang H, Liu T, Wang F, Cai L, Chen X, Zhang S. Response of microbial communities in the phyllosphere ecosystem of tobacco exposed to the broad-spectrum copper hydroxide. Front Microbiol 2023; 14:1229294. [PMID: 37840714 PMCID: PMC10568630 DOI: 10.3389/fmicb.2023.1229294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Copper hydroxide is a broad-spectrum copper fungicide, which is often used to control crop fungal and bacterial diseases. In addition to controlling targeted pathogens, copper hydroxide may also affect other non-targeted microorganisms in the phyllosphere ecosystem. At four time points (before spraying, and 5, 10 and 15 days after fungicide application), the response of diseased and healthy tobacco phyllosphere microorganisms to copper hydroxide stress was studied by using Illumina high-throughput sequencing technology, and Biolog tools. The results showed that the microbiome communities of the healthy group were more affected than the disease group, and the fungal community was more sensitive than the bacterial community. The most common genera in the disease group were Alternaria, Boeremia, Cladosporium, Pantoea, Ralstonia, Pseudomonas, and Sphingomonas; while in the healthy group, these were Alternaria, Cladosporium, Symmetrospora, Ralstonia, and Pantoea. After spraying, the alpha diversity of the fungal community decreased at 5 days for both healthy and diseased groups, and then showed an increasing trend, with a significant increase at 15 days for the healthy group. The alpha diversity of bacterial community in healthy and diseased groups increased at 15 days, and the healthy group had a significant difference. The relative abundance of Alternaria and Cladosporium decreased while that of Boeremia, Stagonosporopsis, Symmetrospora, Epicoccum and Phoma increased in the fungal communities of healthy and diseased leaves. The relative abundance of Pantoea decreased first and then increased, while that of Ralstonia, Pseudomonas and Sphingomonas increased first and then decreased in the bacterial communities of healthy and diseased leaves. While copper hydroxide reduced the relative abundance of pathogenic fungi Alternaria and Cladosporium, it also resulted in the decrease of beneficial bacteria such as Actinomycetes and Pantoea, and the increase of potential pathogens such as Boeremia and Stagonosporopsis. After treatment with copper hydroxide, the metabolic capacity of the diseased group improved, while that of the healthy group was significantly suppressed, with a gradual recovery of metabolic activity as the application time extended. The results revealed changes in microbial community composition and metabolic function of healthy and diseased tobacco under copper hydroxide stress, providing a theoretical basis for future studies on microecological protection of phyllosphere.
Collapse
Affiliation(s)
- Ruichao Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Tingting Liu
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xingjiang Chen
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
18
|
Shi M, Qin T, Cheng Z, Zheng D, Pu Z, Yang Z, Lim KJ, Yang M, Wang Z. Exploring the Core Bacteria and Functional Traits in Pecan (Carya illinoinensis) Rhizosphere. Microbiol Spectr 2023; 11:e0011023. [PMID: 37310220 PMCID: PMC10433825 DOI: 10.1128/spectrum.00110-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Pecan (Carya illinoinensis) and Chinese hickory (Carya cathayensis) are important commercially cultivated nut trees. They are phylogenetically closely related plants; however, they exhibit significantly different phenotypes in response to abiotic stress and development. The rhizosphere selects core microorganisms from bulk soil, playing a pivotal role in the plant's resistance to abiotic stress and growth. In this study, we used metagenomic sequencing to compare the selection capabilities of seedling pecan and seedling hickory at taxonomic and functional levels in bulk soil and the rhizosphere. We observed that pecan has a stronger capacity to enrich rhizosphere plant-beneficial microbe bacteria (e.g., Rhizobium, Novosphingobium, Variovorax, Sphingobium, and Sphingomonas) and their associated functional traits than hickory. We also noted that the ABC transporters (e.g., monosaccharide transporter) and bacterial secretion systems (e.g., type IV secretion system) are the core functional traits of pecan rhizosphere bacteria. Rhizobium and Novosphingobium are the main contributors to the core functional traits. These results suggest that monosaccharides may help Rhizobium to efficiently enrich this niche. Novosphingobium may use a type IV secretion system to interact with other bacteria and thereby influence the assembly of pecan rhizosphere microbiomes. Our data provide valuable information to guide core microbial isolation and expand our knowledge of the assembly mechanisms of plant rhizosphere microbes. IMPORTANCE The rhizosphere microbiome has been identified as a fundamental factor in maintaining plant health, helping plants to fight the deleterious effects of diseases and abiotic stresses. However, to date, studies on the nut tree microbiome have been scarce. Here, we observed a significant "rhizosphere effect" on the seedling pecan. We furthermore demonstrated the core rhizosphere microbiome and function in the seedling pecan. Moreover, we deduced possible factors that help the core bacteria, such as Rhizobium, to efficiently enrich the pecan rhizosphere and the importance of the type IV system for the assembly of pecan rhizosphere bacterial communities. Our findings provide information for understanding the mechanism of the rhizosphere microbial community enrichment process.
Collapse
Affiliation(s)
- Mengting Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhitao Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Dingwei Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhenyang Pu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang, China
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, Zhejiang, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A, Malik S, Slama P. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol 2023; 14:1229828. [PMID: 37555069 PMCID: PMC10405491 DOI: 10.3389/fmicb.2023.1229828] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as MerT and MerA of mer operon and czcCBA, ArsR, ArsA, ArsD, ArsB, and ArsC genes are responsible for metal detoxification in bacterial cell. This review gives insights about the potential of rhizospheric bacteria in HM removal from various polluted areas. In addition, it also gives deep insights about different mechanism of action expressed by microorganisms for HM detoxification. The dual-purpose use of biological agent as plant growth enhancement and remediation of HM contaminated site is the most significant future prospect of this article.
Collapse
Affiliation(s)
- Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Geeta Bhandari
- Department of Biosciences, Himalayan School of Bio Sciences, Swami Rama Himalayan University, Dehradun, India
| | | | - Deepa Nainwal
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Anju Rani
- Department of Life Sciences, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
- Department of Applied Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
20
|
Dhawi F. The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming. Metabolites 2023; 13:metabo13020247. [PMID: 36837866 PMCID: PMC9964210 DOI: 10.3390/metabo13020247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
There are many reasons for the increase in hydroponics/soil-free systems in agriculture, and these systems have now advanced to the form of vertical farming. The sustainable use of space, the reduction in water use compared to soil-based agriculture, the lack of pesticides, the ability to control nutrient inputs, and the implementation of user-friendly technology for environmental control and harvesting are all factors that have made the global market for vertical farming predicted to reach more than USD 10.02 billion by 2027. By comparison, soil-based agriculture consumes 20 times more water, and some agricultural practices promote soil deterioration and cause environmental pollution. Plant growth-promoting microorganisms (PGPMs) have been used extensively in traditional agriculture to enhance plant growth, environmental stress tolerance, and the efficacy of phytoremediation in soil-based farming. Due to the controlled atmosphere in hydroponics and vertical farms, there is strong potential to maximize the use of PGPMs. Here, we review the leveraging of plant growth-promoting microorganism mechanisms in hydroponics and vertical farming. We recommend a synchronized PGPM treatment using a biostimulant extract added to the hydroponic medium while also pre-treating seeds or seedlings with a microbial suspension for aquaponic and aeroponic systems.
Collapse
Affiliation(s)
- Faten Dhawi
- Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
21
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
22
|
Danyal Y, Mahmood K, Ullah S, Rahim A, Raheem G, Khan AH, Ullah A. Phytoremediation of industrial effluents assisted by plant growth promoting bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5296-5311. [PMID: 36402881 DOI: 10.1007/s11356-022-23967-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Industrialization plays a crucial role in the economic development of a country; however, the effluents produced as a byproduct generally contain toxic substances which are detrimental to living organisms. In this regard, it is essential to treat these toxic effluents before exposing them to the natural environment by selecting the most appropriate method accordingly. Several techniques are used to remediate industrial effluents including physical, chemical, and biological. Although some physical and chemical remediation technologies are of substantially important in remediation of industrial effluents, however, these technologies are either expensive to be applied by developing countries or not suitable for remediation of all kinds of effluents. In contrast, biological remediation is cost effective, nature friendly, and easy to use for almost all kinds of effluents. Among biological remediation strategies, phytoremediation is considered to be the most suitable method for remediation of industrial effluents; however, the phytoremediation process is slow, takes time in application and some effluents even affect plants growth and development. Alternately, plant microbe interactions could be a winning partner to remediate industrial effluents more efficiently. Among the microbes, plant growth promoting bacteria (PGPB) not only improve plant growth but also help in degradation, sequestration, volatilization, solubilization, mobilization, and bioleaching of industrial effluents which subsequently improve the phytoremediation process. The current study discusses the role of PGPB in enhancing the phytoremediation processes of industrial effluents.
Collapse
Affiliation(s)
- Youshaa Danyal
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Kainat Mahmood
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Shariat Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Gul Raheem
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Abid Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
23
|
Simmer RA, Schnoor JL. Phytoremediation, Bioaugmentation, and the Plant Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16602-16610. [PMID: 36399658 PMCID: PMC9730846 DOI: 10.1021/acs.est.2c05970] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Understanding plant biology and related microbial ecology as a means to phytoremediate soil and groundwater contamination has broadened and advanced the field of environmental engineering and science over the past 30 years. Using plants to transform and degrade xenobiotic organic pollutants delivers new methods for environmental restoration. Manipulations of the plant microbiome through bioaugmentation, endophytes, adding various growth factors, genetic modification, and/or selecting the microbial community via insertion of probiotics or phages for gene transfer are future areas of research to further expand this green, cost-effective, aesthetically pleasing technology─phytoremediation.
Collapse
|
24
|
Robas Mora M, Fernández Pastrana VM, González Reguero D, Gutiérrez Oliva LL, Probanza Lobo A, Jiménez Gómez PA. Oxidative stress protection and growth promotion activity of Pseudomonas mercuritolerans sp. nov., in forage plants under mercury abiotic stress conditions. Front Microbiol 2022; 13:1032901. [PMID: 36560952 PMCID: PMC9763275 DOI: 10.3389/fmicb.2022.1032901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
SAICEUPSMT strain was isolated from soils in the mining district of Almadén (Ciudad Real, Spain), subjected to a high concentration of mercury. Using the plant model of lupinus, the strain was inoculated into the rhizosphere of the plant in a soil characterized by a high concentration of mercury (1,710 ppm) from an abandoned dump in the mining district of Almadén (Ciudad Real, Spain). As a control, a soil with a minimum natural concentration of mercury, from a surrounding area, was used. Under greenhouse conditions, the effect that the inoculum of the SAICEUPSMT strain had on the antioxidant capacity of the plant was studied, through the quantification of the enzymatic activity catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and glutathione reductase (GR). Likewise, the capacity of the plant to bioaccumulate mercury in the presence of the inoculum was studied, as well as the effect on the biometric parameters total weight (g), shoot weight (g), root weight (g), shoot length (cm), root length (cm), total number of leaves (N), and total number of secondary roots (No). Finally, in view of the results, the SAICEUPSMT strain was identified from the phenotypic and genotypic point of view (housekeeping genes and complete genome sequencing). The inoculum with the SAICEUPSMT strain in the presence of mercury produced a significant reduction in the enzymatic response to oxidative stress (CAT, APX, and SOD). It can be considered that the strain exerts a phytoprotective effect on the plant. This led to a significant increase in the biometric parameters total plant weight, root weight and the number of leaves under mercury stress, compared to the control without abiotic stress. When analyzing the mercury content of the plant with and without bacterial inoculum, it was found that the incorporation of the SAICEUPSMT strain significantly reduced the uptake of mercury by the plant, while favoring its development in terms of biomass. Given the positive impact of the SAICEUPSMT strain on the integral development of the plant, it was identified, proving to be a Gram negative bacillus, in vitro producer of siderophores, auxins and molecules that inhibit stress precursors. The most represented fatty acids were C16:0 (33.29%), characteristic aggregate 3 (22.80%) comprising C16:1 ω7c and C16: 1ω6c, characteristic aggregate 8 (13.66%) comprising C18:1 ω7c, and C18: 1 cycle ω6c and C 17:0 (11.42%). From the genotypic point of view, the initial identification of the strain based on the 16S rRNA gene sequence classified it as Pseudomonas iranensis. However, genome-wide analysis showed that average nucleotide identity (ANI, 95.47%), DNA-DNA in silico hybridization (dDDH, 61.9%), average amino acid identity (AAI, 97.13%), TETRA (0.99%) and intergenic distance (0.04) values were below the established thresholds for differentiation. The results of the genomic analysis together with the differences in the phenotypic characteristics and the phylogenetic and chemotaxonomic analysis support the proposal of the SAICEUPSMT strain as the type strain of a new species for which the name Pseudomonas mercuritolerans sp. is proposed. No virulence genes or transmissible resistance mechanisms have been identified, which reveals its safety for agronomic uses, under mercury stress conditions.
Collapse
Affiliation(s)
- Marina Robas Mora
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | | | | | | | - Pedro A. Jiménez Gómez
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
25
|
Hu Y, Mu S, Zhang J, Li Q. Regional distribution, properties, treatment technologies, and resource utilization of oil-based drilling cuttings: A review. CHEMOSPHERE 2022; 308:136145. [PMID: 36029858 DOI: 10.1016/j.chemosphere.2022.136145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Oil-based drilling cuttings (OBDC) are hazardous wastes produced during the extensive use of oil-based drilling mud in oil and gas exploration and development. They have strong mutagenic, carcinogenic, and teratogenic effects and need to be properly disposed of to avoid damaging the natural environment. This paper reviews the recent research progress on the regional distribution, properties, treatment technologies, and resource utilization of OBDC. The advantages and disadvantages of different technologies for removing petroleum pollutants from OBDC were comprehensively analyzed, and required future developments in treatment technologies were proposed.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jingjing Zhang
- Sichuan Solid Waste and Chemicals Management Center, Chengdu, 610036, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
26
|
Ali N, Khanafer M, Al-Awadhi H. Indigenous oil-degrading bacteria more efficient in soil bioremediation than microbial consortium and active even in super oil-saturated soils. Front Microbiol 2022; 13:950051. [PMID: 35979488 PMCID: PMC9376284 DOI: 10.3389/fmicb.2022.950051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
A microbial consortium of the hydrocarbonoclastic bacterial species, comprising Actinotalea ferrariae, Arthrobacter ginsengisoli, Dietzia cinnamea, Dietzia papillomatosis, and Pseudomonas songnenensis, isolated from oil-saturated desert soil did not consume more oil in batch cultures than the individual species with the maximum oil consumption. In oil-polluted desert soil microcosms, the rate of oil removal in the soil samples bioaugmented with the microbial consortium was similar to the rate of oil removal in the unbioaugmented ones through a 6-month bioremediation experiment. Although the composition of hydrocarbonoclastic bacterial communities in the unbioaugmented and bioaugmented soil samples was different, the predominant bacterial species during most of the months were the same. Toward the end of the bioremediation experiment, Ar. ginsengisoli prevailed in both soil samples, suggesting its important role in oil removal. Self-cleaning proceeded in desert soil samples artificially polluted with 1, 10, 20, and 30% of crude oil and incubated at 30 °C for 6 months. Oil was removed effectively at rates reaching 73.6 and 69.3% in the soils polluted with 1 and 10% oil concentrations, respectively, and reached 50% in desert soils polluted with 20 and 30% oil concentrations. The bacterial numbers increased in all soil samples from hundreds of thousands per gram of soil samples at time zero to millions and tens of millions per gram of soil samples after 6 months. It was concluded that bioaugmenting oil-polluted soil samples with microbial consortium of hydrocarbonoclastic bacterial species with high oil removal potential did not drastically enhance oil bioremediation and that even in super oil-saturated soils, indigenous oil-degrading bacteria will prevail and effectively contribute to oil removal from the surrounding environment.
Collapse
|
27
|
Elehinafe FB, Agboola O, Vershima AD, Bamigboye GO. Insights on the Advanced Separation Processes in Water Pollution Analyses and Wastewater Treatment – A Review. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
28
|
Abstract
Petroleum is the most common global fossil fuel. It is a complex multi-component system mainly composed of various hydrocarbons such as alkanes, cycloalkanes, mono-, bi- and polyaromatic compounds, resins and asphaltenes. In spite of humanity’s need for petroleum, it negatively affects the environment due to its toxicity. The ecological problem is especially serious at petroleum mining sites or during petroleum transportation. Since it is not possible to replace petroleum with less toxic fuel, ways to reduce the toxic impact of petroleum hydrocarbons on the environment need to be developed. This review addresses bioremediation, a biological approach to petroleum degradation, which is mainly performed by microbes. The pathways of degradation of alkanes, alkenes and aromatic hydrocarbons are presented in detail. The effects of temperature, aeration and the presence of biogenic elements on microbial degradation of petroleum are discussed. Plant–microbe interactions involved with the bioremediation of petroleum-polluted soils are specifically addressed. The data presented in this review point to the great potential of bioremediation practices for cleaning soils of petroleum.
Collapse
|
29
|
da Silva Correa H, Blum CT, Galvão F, Maranho LT. Effects of oil contamination on plant growth and development: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43501-43515. [PMID: 35386087 DOI: 10.1007/s11356-022-19939-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Oil spills generate several environmental impacts and have become more common with the increase in petroleum extraction, refining, transportation, and trade. In soil, oil contamination increases water and nutrient availability and compaction, directly affecting plant growth and development. Different aspects of phytotoxicity can be observed and will vary according to the characteristics of soil and plants. Oil-contaminated soil also results in negative effects on biomass and changes in leaves and roots. Investigating the effects of oil contamination on plant growth and development can aid in the conservation of plant species and in the development of techniques such as bioremediation and biomonitoring. Thus, this review aims to discuss the main effects of oil contamination on plants, such as environmental stress and morphological, physiological, and anatomical changes, and the strategies developed by plants to survive contamination, as well as to identify plants with phytoremediation potential that can assist in removing oil from the environment.
Collapse
Affiliation(s)
- Hauane da Silva Correa
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Christopher Thomas Blum
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Franklin Galvão
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Leila Teresinha Maranho
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil.
| |
Collapse
|
30
|
Alotaibi F, St-Arnaud M, Hijri M. In-Depth Characterization of Plant Growth Promotion Potentials of Selected Alkanes-Degrading Plant Growth-Promoting Bacterial Isolates. Front Microbiol 2022; 13:863702. [PMID: 35422791 PMCID: PMC9002309 DOI: 10.3389/fmicb.2022.863702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 01/20/2023] Open
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) as a bioremediation enhancer in plant-assisted phytoremediation requires several steps, consisting of the screening, selection, and characterization of isolates. A subset of 50 bacterial isolates representing a wide phylogenetic range were selected from 438 morphologically different bacteria that were originally isolated from a petroleum hydrocarbon (PHC)-polluted site of a former petrochemical plant. Selected candidate bacteria were screened using six conventional plant growth-promoting (PGP) traits, complemented with the genetic characterization of genes involved in alkane degradation, as well as other pertinent functions. Finally, the bacterial isolates were subjected to plant growth promotion tests using a gnotobiotic approach under normal and stressed conditions. Our results indicated that 35 bacterial isolates (70%) possessed at least four PGP traits. Twenty-nine isolates (58%) were able to utilize n-hexadecane as a sole carbon source, whereas 43 isolates (86%) were able to utilize diesel as the sole carbon source. The presence of catabolic genes related to hydrocarbon degradation was assessed using endpoint PCR, with the alkane monooxygenase (alkB) gene found in 34 isolates, the cytochrome P450 hydroxylase (CYP153) gene found in 24 isolates, and the naphthalene dioxygenase (nah1) gene found to be present in 33 isolates. Thirty-six strains (72%) promoted canola root elongation in the growth pouch assay. After several rounds of screening, seven bacterial candidates (individually or combined in a consortium) were tested for canola root and shoot growth promotion in substrates amended by different concentrations of n-hexadecane (0%, 1%, 2%, and 3%) under gnotobiotic conditions. Our results showed that Nocardia sp. (WB46), Pseudomonas plecoglossicida (ET27), Stenotrophomonas pavanii (EB31), and Gordonia amicalis (WT12) significantly increased the root length of canola grown in 3% n-hexadecane compared with the control treatment, whereas Nocardia sp. (WB46) and Bacillus megaterium (WT10) significantly increased shoot length compared to control treatment at the same concentration of n-hexadecane. The consortium had a significant enhancement effect on root length compared to all isolates inoculated individually or to the control. This study demonstrates that the combination of PGPR traits and the PHC degradation potential of bacteria can result in an enhanced beneficial effect in phytoremediation management, which could lead to the development of innovative bacterial inoculants for plants to remediate PHC-contaminated soils.
Collapse
Affiliation(s)
- Fahad Alotaibi
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.,Department of Soil Science, King Saud University, Riyadh, Saudi Arabia
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.,African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
31
|
Njoku KL, Ude EO, Jegede TO, Adeyanju OZ, Iheme PO. Characterization of hydrocarbon degrading microorganisms from Glycine max and Zea mays phytoremediated crude oil contaminated soil. Environ Anal Health Toxicol 2022; 37:e2022008-0. [PMID: 35878916 PMCID: PMC9314210 DOI: 10.5620/eaht.2022008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Microbe-plant partnership in phytoremediation involves a synergistic interaction that leads to degradation of contaminants. The identification and characterization of these microorganisms is fundamental in environmental management. This study is aimed at investigating the influence of Glycine max and Zea mays on microbial make-up and differentiation of soil bacterial and fungal isolates in crude oil contaminated soil. We employed conventional technique of microbial isolation and gene sequencing to evaluate the microbial composition in crude oil contaminated soil. The microorganisms were isolated from crude oil contaminated soil (0%, 4%, 8%) and were identified using 16S rRNA gene (for bacteria) and Internal Transcribed Spacer (ITS) gene (for fungi). We observed a change in the microbial cell density with respect to treatment conditions implying a shift in microbial dynamics to total hydrocarbon utilizing bacteria as the dominant microbes. The sequence data revealed five bacteria strain; Klebsiella aerogenes strain 77, Klebsiella aerogenes strain UISO178, Salmonella enterica strain ABUH7, Klebsiella aerogenes strain M242 and Enterobacter sp. NCCP-607 and three fungi strains; Galactomyces geotrichum strain CBS, Aspergillus niger strain YMCHA73 and Trichoderma virens isolate A701. Annotation analysis using FGENESB and gene scan revealed proteins involved in various metabolic processes and hydrocarbon utilization. GHOSTKOLA output revealed several genetic elements and pathways such as DnaA, PYG, mrcA, environmental, cellular and genetic information processing and degradation enhancers. Our findings show that G. max and Z. mays in association with bacteria can enhance ecosystem restoration of crude oil contaminated soil.
Collapse
Affiliation(s)
- Kelechi L Njoku
- Environmental Biology Research Unit, Cell Biology and Genetics Department, University of Lagos, Akoka, Lagos,
Nigeria
- Correspondence:
| | - Eme O Ude
- Environmental Biology Research Unit, Cell Biology and Genetics Department, University of Lagos, Akoka, Lagos,
Nigeria
- Helmholtz Zentrum UFZ, Department of Environmental Biotechnology, Leipzig,
Germany
| | - Temitope O Jegede
- Environmental Biology Research Unit, Cell Biology and Genetics Department, University of Lagos, Akoka, Lagos,
Nigeria
| | - Omotoyosi Z Adeyanju
- Environmental Biology Research Unit, Cell Biology and Genetics Department, University of Lagos, Akoka, Lagos,
Nigeria
| | - Patricia O Iheme
- Environmental Biology Research Unit, Cell Biology and Genetics Department, University of Lagos, Akoka, Lagos,
Nigeria
| |
Collapse
|
32
|
Zhao X, Li J, Zhang D, Huang Z, Luo C, Jiang L, Huang D, Zhang G. Mechanism of salicylic acid in promoting the rhizosphere benzo[a]pyrene biodegradation as revealed by DNA-stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152202. [PMID: 34890682 DOI: 10.1016/j.scitotenv.2021.152202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a typical high-molecular-weight PAH with carcinogenicity. Rhizoremediation is commonly applied to remove soil BaP, but its mechanism remains unclear. The role of inducers in root exudates in BaP rhizoremediation is rarely studied. Here, to address this problem, we firstly investigated the effect of the inducer salicylic acid on BaP rhizoremediation, rhizosphere BaP degraders, and PAH degradation-related genes by combining DNA-stable-isotope-probing, high-throughput sequencing, and gene function prediction. BaP removal in the rhizosphere was significantly increased by stimulation with salicylic acid, and the rhizosphere BaP-degrading microbial community structure was significantly changed. Fourteen microbes were responsible for the BaP metabolism, and most degraders, e.g. Aeromicrobium and Myceligenerans, were firstly linked with BaP biodegradation. The enrichment of the PAH-ring hydroxylating dioxygenase (PAH-RHD) gene in the heavy fractions of all 13C-treatments further indicated their involvement in the BaP biodegradation, which was also confirmed by the enrichment of dominant PAH degradation-related genes (e.g. PAH dioxygenase and protocatechuate 3,4-dioxygenase genes) based on gene function prediction. Overall, our study demonstrates that salicylic acid can enhance the rhizosphere BaP biodegradation by altering the community structure of rhizosphere BaP-degrading bacteria and the abundance of PAH degradation-related genes, which provides new insights into BaP rhizoremediation mechanisms in petroleum-contaminated sites.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zilin Huang
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Deyin Huang
- Guangdong Institute of Eco-environmental and Soil sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
33
|
Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. CHEMOSPHERE 2022; 289:133252. [PMID: 34902385 DOI: 10.1016/j.chemosphere.2021.133252] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology, as an emerging science, has taken over all fields of life including industries, health and medicine, environmental issues, agriculture, biotechnology etc. The use of nanostructure molecules has revolutionized all sectors. Environmental pollution is a great concern now a days, in all industrial and developing as well as some developed countries. A number of remedies are in practice to overcome this problem. The application of nanotechnology in the bioremediation of environmental pollutants is a step towards revolution. The use of various types of nanoparticles (TiO2 based NPs, dendrimers, Fe based NPs, Silica and carbon nanomaterials, Graphene based NPs, nanotubes, polymers, micelles, nanomembranes etc.) is in practice to diminish environmental hazards. For this many In-situ (bioventing, bioslurping, biosparging, phytoremediation, permeable reactive barrier etc.) and Ex-situ (biopile, windrows, bioreactors, land farming etc.) methodologies are employed. Improved properties like nanoscale size, less time utilization, high adaptability for In-situ and Ex-situ use, undeniable degree of surface-region to-volume proportion for possible reactivity, and protection from ecological elements make nanoparticles ideal for natural applications. There are distinctive nanomaterials and nanotools accessible to treat the pollutants. Each of these methods and nanotools depends on the properties of foreign substances and the pollution site. The current designed review highlights the techniques used for bioremediation of environmental pollutants as well as use of various nanoparticles along with proposed In-situ and Ex-situ bioremediation techniques.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazeelat Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Sciences, National Textile University Faisalabad, 37610, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
34
|
Bio- and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractBio- and phytoremediation, being encouraging terms implying the use of biological systems for cleansing purposes, have risen a worthy venture toward environmental restoration in discouraging scenarios, such as the augmentation of indestructible heavy metals. Hyperaccumulating plants and heavy metal resistant microbes own mechanisms embedded in their metabolism, proteins, and genes that confer them with “super characteristics” allowing them to assimilate heavy metals in order to amend polluted soils, and when combined in a symbiotic system, these super features could complement each other and be enhanced to overpower the exposure to toxic environments. Though xenobiotic pollution has been an object of concern for decades and physicochemical procedures are commonly carried out to offset this purpose, a “live” remediation is rather chosen and looked upon for promising results. A variety of benefits have been registered from symbiotic relationships, including plants teaming up with microbes to cope down with non-biodegradable elements such as heavy metals; but a carefully maneuvered interaction might signify a greater insight toward the application of bioremediation systems. These manipulations could consist of genetic engineering and/or additional supplementation of molecules and microbes. In the present study, a contemporary connection between plants and microbes involving their controlled management is summarized in a visionary display.
Collapse
|
35
|
Supreeth M. Enhanced remediation of pollutants by microorganisms-plant combination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 19:4587-4598. [PMID: 34122578 PMCID: PMC8183586 DOI: 10.1007/s13762-021-03354-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/06/2021] [Accepted: 04/22/2021] [Indexed: 05/02/2023]
Abstract
The pollutants have become ubiquitous in the total environment (water, soil and air) due to human activities and they are hazardous to all forms of life on the earth. This problem has made scientists focus on mitigating or complete reduction in pollutants by several means. Microorganism and plants are known to scavenge pollutants. Both are studied enormously in reducing, refining, and removing pollutants from the environment successfully. But, their slow process for removal is disadvantage. However, according to recent advancements in the abatement of pollutants, a combined system of both microorganisms and plant has shown to enhance the remediation of pollutants to an efficient level. In a nutrient-depleted pollutant-rich environment, when suitable plant and microorganisms are introduced, the plant interacts with the rhizosphere and root associate with microorganisms to survive in toxic conditions. The chemicals released by plants signal the microorganisms for interactions. This interaction leads in higher germination efficiency and enhanced root elongation which results in enhanced degradation of pollutants in both rhizosphere and phyllosphere. In this background, the current review article provides an overview of the recent advancement in microorganisms plant combined systems in enhanced removal of several recalcitrant pollutants. The conclusion highlights the challenges and future perspectives in this area of research.
Collapse
Affiliation(s)
- M. Supreeth
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| |
Collapse
|
36
|
Kalu CM, Rauwane ME, Ntushelo K. Microbial Spectra, Physiological Response and Bioremediation Potential of Phragmites australis for Agricultural Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.696196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Common reed (Phragmites australis) can invade and dominate in its natural habitat which is mainly wetlands. It can tolerate harsh environments as well as remediate polluted and environmental degraded sites such as mine dumps and other polluted wastelands. For this reason, this can be a very critical reed to reclaim wastelands for agricultural use to ensure sustainability. The present review manuscript examined the microbial spectra of P. australis as recorded in various recent studies, its physiological response when growing under stress as well as complementation between rhizosphere microbes and physiological responses which result in plant growth promotion in the process of phytoremediation. Microbes associated with P. australis include Proteobacteria, Bacteriodetes, and Firmicutes, Fusobacteria, Actinobacteria, and Planctomycetes families of bacteria among others. Some of these microbes and arbuscular mycorrhizal fungi have facilitated plant growth and phytoremediation by P. australis. This is worthwhile considering that there are vast areas of polluted and wasted land which require reclamation for agricultural use. Common reed with its associated rhizosphere microbes can be utilized in these land reclamation efforts. This present study suggests further work to identify microbes which when administered to P. australis can stimulate its growth in polluted environments and help in land reclamation efforts for agricultural use.
Collapse
|
37
|
Rani R, Kumar V, Gupta P, Chandra A. Potential use of Solanum lycopersicum and plant growth promoting rhizobacterial (PGPR) strains for the phytoremediation of endosulfan stressed soil. CHEMOSPHERE 2021; 279:130589. [PMID: 33894513 DOI: 10.1016/j.chemosphere.2021.130589] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to assess the role of Solanum lycopersicum and plant growth promoting rhizobacterial (PGPR) strains to remove endosulfan present in the soil. S. lycopersicum was grown in endosulfan amended soil (5, 10, 25, and 50 mg kg-1) inoculated with PGPR strains for 40, 80, and 120 days. The influence of PGPR inoculation on endosulfan accumulation in plant tissues, endosulfan degradation in soil, and plant growth parameters were evaluated. The oxidative stress tolerance was assessed by determining the malondialdehyde formation in S. lycopersicum planted in endosulfan stressed soil inoculated with PGPR strains. The results showed that uptake of endosulfan followed root > shoot pathway in association with a reduction in endosulfan accumulation in inoculated plants as related to un-inoculated plants. Moreover, inoculation of PGPR strains showed a beneficial influence on the degradation of endosulfan, Bacillus sp. PRB101 showed maximum degradation (89% at 5 mg kg-1 of soil) of endosulfan at 120 days after sowing. Furthermore, the content of malondialdehyde was lower in inoculated plants as related to un-inoculated plants. Inoculation of PGPR strains efficiently enhanced plant biomass. The findings showed the effectiveness of PGPR strains to increase the decontamination of endosulfan stressed soil and decline endosulfan concentration in the plant tissues.
Collapse
Affiliation(s)
- Rupa Rani
- Laboratory of Applied Microbiology Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, Jharkhand, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, Jharkhand, India
| | - Avantika Chandra
- Laboratory of Applied Microbiology Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826 004, Jharkhand, India
| |
Collapse
|
38
|
Dike CC, Shahsavari E, Surapaneni A, Shah K, Ball AS. Can biochar be an effective and reliable biostimulating agent for the remediation of hydrocarbon-contaminated soils? ENVIRONMENT INTERNATIONAL 2021; 154:106553. [PMID: 33872955 DOI: 10.1016/j.envint.2021.106553] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Petroleum hydrocarbons represent one of the most common soil contaminants, whose presence poses a significant risk to soil biota and human health; for example, in Europe, hydrocarbon contamination accounts for more than 30% of contaminated sites. The use of biochar as a proposed alternative to the conventional remediation of soil contaminated with petroleum hydrocarbons has gained credence in recent times because of its cost-effectiveness and environmentally friendly nature. Biochar is a carbonaceous material produced by heating biomass in an oxygen-limited environment at high temperature. This review provides an overview of the application of biochar to remediate petroleum hydrocarbon-contaminated soils, with emphasis on the possibility of biochar functioning as a biostimulation agent. The properties of biochar were also examined. Furthermore, the mechanism, ecotoxicological impact and possible factors affecting biochar-based remediation are discussed. The review concludes by examining the drawbacks of biochar use in the remediation of hydrocarbon-contaminated soils and how to mitigate them. Biochar impacts soil microbes, which may result in the promotion of the degradation of petroleum hydrocarbons in the soil. Linear regression between bacterial population and degradation efficiency showed that R2 was higher (0.50) and significant in treatment amended with biochar or both biochar and nutrient/fertiliser (p < 0.01), compared to treatment with nutrient/fertiliser only or no amendment (R2 = 0.11). This suggest that one of the key impacts of biochar is enhancing microbial biomass and thus the biodegradation of petroleum hydrocarbons. Biochar represents a promising biostimulation agent for the remediation of hydrocarbon-contaminated soil. However, there remains key questions to be answered.
Collapse
Affiliation(s)
- Charles Chinyere Dike
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Esmaeil Shahsavari
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Aravind Surapaneni
- South East Water, 101 Wells Street, Frankston, Victoria 3199, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
39
|
Clover Root Exudates Favor Novosphingobium sp. HR1a Establishment in the Rhizosphere and Promote Phenanthrene Rhizoremediation. mSphere 2021; 6:e0041221. [PMID: 34378981 PMCID: PMC8386446 DOI: 10.1128/msphere.00412-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizoremediation is based on the ability of microorganisms to metabolize nutrients from plant root exudates and, thereby, to cometabolize or even mineralize toxic environmental contaminants. Novosphingobium sp. HR1a is a bacterial strain able to degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs). Here, we have demonstrated that the number of CFU in microcosms vegetated with clover was almost 2 orders of magnitude higher than that in nonvegetated microcosms or microcosms vegetated with rye-grass or grass. Strain HR1a was able to eliminate 92% of the phenanthrene in the microcosms with clover after 9 days. We have studied the molecular basis of the interaction between strain HR1a and clover by phenomic, metabolomic, and transcriptomic analyses. By measuring the relative concentrations of several metabolites exudated by clover both in the presence and in the absence of the bacteria, we identified some compounds that were probably consumed in the rhizosphere; the transcriptomic analyses confirmed the expression of genes involved in the catabolism of these compounds. By using a transcriptional fusion of the green fluorescent protein (GFP) to the promoter of the gene encoding the dioxygenase involved in the degradation of PAHs, we have demonstrated that this gene is induced at higher levels in clover microcosms than in nonvegetated microcosms. Therefore, the positive interaction between clover and Novosphingobium sp. HR1a during rhizoremediation is a result of the bacterial utilization of different carbon and nitrogen sources released during seedling development and the capacity of clover exudates to induce the PAH degradation pathway. IMPORTANCE The success of an eco-friendly and cost-effective strategy for soil decontamination is conditioned by the understanding of the ecology of plant-microorganism interactions. Although many studies have been published about the bacterial metabolic capacities in the rhizosphere and about rhizoremediation of contaminants, there are fewer studies dealing with the integration of bacterial metabolic capacities in the rhizosphere during PAH bioremediation, and some aspects still remain controversial. Some authors have postulated that the presence of easily metabolizable carbon sources in root exudates might repress the expression of genes required for contaminant degradation, while others found that specific rhizosphere compounds can induce such genes. Novosphingobium sp. HR1a, which is our model organism, has two characteristics desirable in bacteria for use in remediation: its ubiquity and the capacity to degrade a wide variety of contaminants. We have demonstrated that this bacterium consumes several rhizospheric compounds without repression of the genes required for the mineralization of PAHs. In fact, some compounds even induced their expression.
Collapse
|
40
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
41
|
Shoaib M, Hussain S, Cheng X, Cui Y, Liu H, Chen Q, Ma M, Gu Y, Zhao K, Xiang Q, Zhou J, Liu J, Li S, Zou T, Yu X. Synergistic anti-oxidative effects of Pongamia pinnata against nickel mediated by Rhizobium pisi and Ochrobacterium pseudogrignonense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112244. [PMID: 33933891 DOI: 10.1016/j.ecoenv.2021.112244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Nickel is widely spread by different anthropogenic activities and shows toxicity for plant growth and development. Whether rhizobia symbiotically fix nitrogen can eliminate or reduce nickel toxic effect on plant or not is still unknown. This study was aimed to investigate the effect of different rhizobia genus inoculation on growth, nitrogen fixing ability, metal accumulation and enzymatic antioxidative balance of Pongamia pinnnaa. Inoculation with Rhizobium pisi and Ochrobacterium pseudogrignonense increased the all the growth parameters both in 0 and 40 mg/kg nickel as comparison with control. Only shoot length increased in presence of nitrogen as compared with no supply of nitrogen. Nitrogen content also increased both in rhizobia inoculation as compared to no nitrogen supply and non-inoculation control, respectively. Nickel uptake was higher in shoots and leaves but lower in roots in case of inoculation as compared to non-inoculation control. Rhizobia inoculation improved the plant antioxidant capacity by increasing the activity of enzymatic scavengers catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and ascorbate (GR). However, 40 mg/kg of nickel adding showed mostly effect on the activity CAT, SOD, POD in leaves. All the enzymatic activity showed a significant increase in absence of nitrogen supply as compared nitrogen supply. Our results suggested that rhizobia inoculation effectively mediated nickel stress for legume plants by increasing nitrogen supplement and inducing antioxidant capacity.
Collapse
Affiliation(s)
- Muhammad Shoaib
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, PR China
| | - Xiran Cheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu 610015, PR China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ting Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
42
|
Tondera K, Chazarenc F, Chagnon PL, Brisson J. Bioaugmentation of treatment wetlands - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145820. [PMID: 33618303 DOI: 10.1016/j.scitotenv.2021.145820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Bioaugmentation in the form of artificial mycorrhization of plant roots and bacterial inoculation has been successfully implemented in several fields including soil remediation or activated sludge treatment. Likewise, bioaugmentation seems a promising approach to improve the functioning of treatment wetlands, considering that natural mycorrhization has been detected in treatment wetlands and that bacteria are the main driver of contaminant degradation processes. However, to date, full scale implementation seems to be rare. This review synthesizes the effects of bioaugmentation on different types of treatment wetlands, to a large extent performed on a microcosm (<0.5 m2) or mesocosm scale (0.51 to 5 m2). While inoculation with arbuscular mycorrhizal fungi tended to show a positive effect on the growth of some wetland plants (e.g. Phragmites australis), the mechanisms underlying such positive effects are not well understood and the effects of upscaling to full scale treatment wetlands remain unknown. Bacterial inoculation tended to promote plant growth and pollutant degradation, but longer term data is required.
Collapse
Affiliation(s)
- Katharina Tondera
- INRAE, REVERSAAL, F-69625 Villeurbanne, France; IMT Atlantique Bretagne-Pays de Loire, Department of Energy Systems and Environment, 44307 Nantes, France.
| | | | - Pierre-Luc Chagnon
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| | - Jacques Brisson
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
43
|
Rahmeh R, Akbar A, Kumar V, Al-Mansour H, Kishk M, Ahmed N, Al-Shamali M, Boota A, Al-Ballam Z, Shajan A, Al-Okla N. Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment. Evol Bioinform Online 2021; 17:11769343211016887. [PMID: 34163126 PMCID: PMC8191072 DOI: 10.1177/11769343211016887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Abrar Akbar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Vinod Kumar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Hamad Al-Mansour
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Nisar Ahmed
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mustafa Al-Shamali
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anwar Boota
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Zainab Al-Ballam
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Naser Al-Okla
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
44
|
|
45
|
Imade EE, Babalola OO. Biotechnological utilization: the role of Zea mays rhizospheric bacteria in ecosystem sustainability. Appl Microbiol Biotechnol 2021; 105:4487-4500. [PMID: 34043079 DOI: 10.1007/s00253-021-11351-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Maize is an essential cereal crop and the third most essential food crop globally. The extensive dependence on pesticides and chemical fertilizers to control pests and increase crop yield, respectively, has generated an injurious impact on soil and animal health. Plant growth-promoting rhizobacteria (PGPR), which depict a broad array of bacteria inhabiting the root vicinity and root surface, have proven to be a better alternative. These organisms expressly or by implication foster the growth and development of plants by producing and secreting numerous regulatory compounds in the rhizosphere. Some rhizobacteria found to be in association with Zea mays rhizosphere include Bacillus sp., Azotobacter chroococcum, Burkholderia spp., Streptomyces spp., Pseudomonas spp., Paenibacillus spp., and Sphingobium spp. For this review, the mechanism of action of these rhizospheric bacteria was grouped into three, which are bioremediation, biofertilization, and biocontrol. KEY POINTS: • Plant-microbe interaction is vital for ecosystem functioning. • PGPR can produce volatile cues to deter ravaging insects from plants.
Collapse
Affiliation(s)
- Emmanuel Edoghogho Imade
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
46
|
Delgado-González CR, Madariaga-Navarrete A, Fernández-Cortés JM, Islas-Pelcastre M, Oza G, Iqbal HMN, Sharma A. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5215. [PMID: 34068925 PMCID: PMC8157233 DOI: 10.3390/ijerph18105215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Potable and good-quality drinking water availability is a serious global concern, since several pollution sources significantly contribute to low water quality. Amongst these pollution sources, several are releasing an array of hazardous agents into various environmental and water matrices. Unfortunately, there are not very many ecologically friendly systems available to treat the contaminated environment exclusively. Consequently, heavy metal water contamination leads to many diseases in humans, such as cardiopulmonary diseases and cytotoxicity, among others. To solve this problem, there are a plethora of emerging technologies that play an important role in defining treatment strategies. Phytoremediation, the usage of plants to remove contaminants, is a technology that has been widely used to remediate pollution in soils, with particular reference to toxic elements. Thus, hydroponic systems coupled with bioremediation for the removal of water contaminants have shown great relevance. In this review, we addressed several studies that support the development of phytoremediation systems in water. We cover the importance of applied science and environmental engineering to generate sustainable strategies to improve water quality. In this context, the phytoremediation capabilities of different plant species and possible obstacles that phytoremediation systems may encounter are discussed with suitable examples by comparing different mechanistic processes. According to the presented data, there are a wide range of plant species with water phytoremediation potential that need to be studied from a multidisciplinary perspective to make water phytoremediation a viable method.
Collapse
Affiliation(s)
- Cristián Raziel Delgado-González
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Alfredo Madariaga-Navarrete
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - José Miguel Fernández-Cortés
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| | - Margarita Islas-Pelcastre
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico, Pedro Escobedo 76703, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Ashutosh Sharma
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| |
Collapse
|
47
|
Segura A, Udaondo Z, Molina L. PahT regulates carbon fluxes in Novosphingobium sp. HR1a and influences its survival in soil and rhizospheres. Environ Microbiol 2021; 23:2969-2991. [PMID: 33817928 PMCID: PMC8360164 DOI: 10.1111/1462-2920.15509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
Novosphingobium sp. HR1a is a good biodegrader of PAHs and aromatic compounds, and also a good colonizer of rhizospheric environments. It was previously demonstrated that this microbe is able to co-metabolize nutrients existing in root exudates together with the PAHs. We have revealed here that PahT, a regulator of the IclR-family, regulates the central carbon fluxes favouring the degradation of PAHs and mono-aromatic compounds, the ethanol and acetate metabolism and the uptake, phosphorylation and further degradation of mono- and oligo-saccharides through a phosphoenolpyruvate transferase system (PTS). As final products of these fluxes, pyruvate and acetyl-CoA are obtained. The pahT gene is located within a genomic region containing two putative transposons that carry all the genes for PAH catabolism; PahT also regulates these genes. Furthermore, encoded in this genomic region, there are genes that are involved in the recycling of phosphoenolpyruvate, from the obtained pyruvate, which is the motor molecule involved in the saccharide uptake by the PTS system. The co-metabolism of PAHs with different carbon sources, together with the activation of the thiosulfate utilization and an alternative cytochrome oxidase system, also regulated by PahT, represents an advantage for Novosphingobium sp. HR1a to survive in rhizospheric environments.
Collapse
Affiliation(s)
- Ana Segura
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
48
|
Ferrarini A, Fracasso A, Spini G, Fornasier F, Taskin E, Fontanella MC, Beone GM, Amaducci S, Puglisi E. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Front Microbiol 2021; 12:645893. [PMID: 33959108 PMCID: PMC8096354 DOI: 10.3389/fmicb.2021.645893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We assessed the effects of EDTA and selected plant growth-promoting rhizobacteria (PGPR) on the phytoremediation of soils and sediments historically contaminated by Cr, Ni, and Cu. A total of 42 bacterial strains resistant to these heavy metals (HMs) were isolated and screened for PGP traits and metal bioaccumulation, and two Enterobacter spp. strains were finally selected. Phytoremediation pot experiments of 2 months duration were carried out with hemp (Cannabis sativa L.) and giant reed (Arundo donax L.) grown on soils and sediments respectively, comparing in both cases the effects of bioaugmentation with a single PGPR and EDTA addition on plant and root growth, plant HM uptake, HM leaching, as well as the changes that occurred in soil microbial communities (structure, biomass, and activity). Good removal percentages on a dry mass basis of Cr (0.4%), Ni (0.6%), and Cu (0.9%) were observed in giant reed while negligible values (<100‰) in hemp. In giant reed, HMs accumulated differentially in plant (rhizomes > > roots > leaves > stems) with largest quantities in rhizomes (Cr 0.6, Ni 3.7, and Cu 2.2 g plant–1). EDTA increased Ni and Cu translocation to aerial parts in both crops, despite that in sediments high HM concentrations in leachates were measured. PGPR did not impact fine root diameter distribution of both crops compared with control while EDTA negatively affected root diameter class length (DCL) distribution. Under HM contamination, giant reed roots become shorter (from 5.2 to 2.3 mm cm–3) while hemp roots become shorter and thickened from 0.13 to 0.26 mm. A consistent indirect effect of HM levels on the soil microbiome (diversity and activity) mediated by plant response (root DCL distribution) was observed. Multivariate analysis of bacterial diversity and activity revealed not only significant effects of plant and soil type (rhizosphere vs. bulk) but also a clear and similar differentiation of communities between control, EDTA, and PGPR treatments. We propose root DCL distribution as a key plant trait to understand detrimental effect of HMs on microbial communities. Positive evidence of the soil-microbe-plant interactions occurring when bioaugmentation with PGPR is associated with deep-rooting perennial crops makes this combination preferable over the one with chelating agents. Such knowledge might help to yield better bioaugmented bioremediation results in contaminated sites.
Collapse
Affiliation(s)
- Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giulia Spini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Flavio Fornasier
- CREA - Centro Viticoltura ed Enologia, Gorizia, Italy.,SOLIOMICS srl, Udine, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gian Maria Beone
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
49
|
Bhattacharyya A, Pablo CHD, Mavrodi OV, Weller DM, Thomashow LS, Mavrodi DV. Rhizosphere plant-microbe interactions under water stress. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:65-113. [PMID: 34140134 DOI: 10.1016/bs.aambs.2021.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Climate change, with its extreme temperature, weather and precipitation patterns, is a major global concern of dryland farmers, who currently meet the challenges of climate change agronomically and with growth of drought-tolerant crops. Plants themselves compensate for water stress by modifying aerial surfaces to control transpiration and altering root hydraulic conductance to increase water uptake. These responses are complemented by metabolic changes involving phytohormone network-mediated activation of stress response pathways, resulting in decreased photosynthetic activity and the accumulation of metabolites to maintain osmotic and redox homeostasis. Phylogenetically diverse microbial communities sustained by plants contribute to host drought tolerance by modulating phytohormone levels in the rhizosphere and producing water-sequestering biofilms. Drylands of the Inland Pacific Northwest, USA, illustrate the interdependence of dryland crops and their associated microbiota. Indigenous Pseudomonas spp. selected there by long-term wheat monoculture suppress root diseases via the production of antibiotics, with soil moisture a critical determinant of the bacterial distribution, dynamics and activity. Those pseudomonads producing phenazine antibiotics on wheat had more abundant rhizosphere biofilms and provided improved tolerance to drought, suggesting a role of the antibiotic in alleviation of drought stress. The transcriptome and metabolome studies suggest the importance of wheat root exudate-derived osmoprotectants for the adaptation of these pseudomonads to the rhizosphere lifestyle and support the idea that the exchange of metabolites between plant roots and microorganisms profoundly affects and shapes the belowground plant microbiome under water stress.
Collapse
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Clint H D Pablo
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David M Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda S Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
50
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|