1
|
Asadi S, Soorni A, Mehrabi R, Talebi M. Exploring effector candidates in Rhynchosporium commune: insights into their expression dynamics during barley infection. Sci Rep 2025; 15:17667. [PMID: 40399472 DOI: 10.1038/s41598-025-02572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
Rhynchosporium commune is a fungal pathogen responsible for causing scald disease in barley, leading to significant yield losses and reduced grain quality in susceptible cultivars. Effector proteins secreted by R. commune play crucial roles in manipulating host defenses and facilitating infection. Hence, this study aimed to identify and characterize effector candidates (ECs) in R. commune using a comprehensive bioinformatics approach combined with experimental validation. Initially, a dataset of 12,211 genes from the R. commune strain UK7 genome was analyzed to identify potential ECs, resulting in the selection of 48 candidate proteins. These candidates were further validated using RNA-Seq analysis, which confirmed significant expression of 27 ECs during infection. Our analysis re-identified key effectors, including CZT06923 and CZT13833, with 100% identity to NIP3 and NIP2, respectively, in R. commune. Novel ECs, such as CZT07600, CZT13755, and CZT13375, were identified with lower identity to NIP2, suggesting potential variants. Additionally, structural analysis revealed that CZT07873 EC indicates significant structural similarity to known fungal effector. qRT-PCR validation confirmed the differential expression of CZS93219 and CZT13755, with peak expression at 9 and 12 dpi, respectively. This comprehensive approach enhances our understanding of R. commune's pathogenic mechanisms and provides insights into potential targets for developing disease management strategies in barley cultivation.
Collapse
Affiliation(s)
- Samin Asadi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
- Keygene N.V., 6700 AE, Wageningen, The Netherlands.
| | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
2
|
Landi L, D’Ortenzio AL, Makau SM, De Miccolis Angelini RM, Romanazzi G. Validation of Monilinia fructicola Putative Effector Genes in Different Host Peach ( Prunus persica) Cultivars and Defense Response Investigation. J Fungi (Basel) 2025; 11:39. [PMID: 39852458 PMCID: PMC11766245 DOI: 10.3390/jof11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Monilinia fructicola is the most common and destructive brown rot agent on peaches. Knowledge of gene expression mediating host-pathogen interaction is essential to manage fungal plant diseases. M. fructicola putative virulence factors have been predicted by genome investigations. The pathogen interaction with the host was validated. Five M. fructicola isolates were inoculated on two cultivars (cv.s) of peach (Prunus persica (L.) Batsch) 'Royal Summer' and 'Messapia' with intermediate and late ripening periods, respectively. The expression pattern of 17 candidate effector genes of M. fructicola with functions linked to host invasion and fungal life, and seven peach genes involved in the immune defense system were monitored at 0, 2, 6, 10, and 24 h-post inoculation (hpi). All fungal isolates induced similar brown rot lesions on both cv.s whereas the modulation of effector genes was regulated mainly at 2, 6, and 10 hpi, when disease symptoms appeared on the fruit surface, confirming the involvement of effector genes in the early infection stage. Although differences were observed among the fungal isolates, the principal component investigation identified the main differences linked to the host genotype. The salicylic acid and jasmonate/ethylene signaling pathways were differently modulated in the host independent from the fungal isolate used for inoculation. On plants susceptible to brown rot, the pathogen may have adapted to the host's physiology by modulating its effectors as weapons.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (A.L.D.); (S.M.M.); (G.R.)
| | - Annamaria Lucrezia D’Ortenzio
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (A.L.D.); (S.M.M.); (G.R.)
| | - Sarah Mojela Makau
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (A.L.D.); (S.M.M.); (G.R.)
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | | | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (A.L.D.); (S.M.M.); (G.R.)
| |
Collapse
|
3
|
Chen C, Keunecke H, Bemm F, Gyetvai G, Neu E, Kopisch‐Obuch FJ, McDonald BA, Stapley J. GWAS reveals a rapidly evolving candidate avirulence effector in the Cercospora leaf spot pathogen. MOLECULAR PLANT PATHOLOGY 2024; 25:e13407. [PMID: 38009399 PMCID: PMC10799204 DOI: 10.1111/mpp.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
The major resistance gene BvCR4 recently bred into sugar beet hybrids provides a high level of resistance to Cercospora leaf spot caused by the fungal pathogen Cercospora beticola. The occurrence of pathogen strains that overcome BvCR4 was studied using field trials in Switzerland conducted under natural disease pressure. Virulence of a subset of these strains was evaluated in a field trial conducted under elevated artificial disease pressure. We created a new C. beticola reference genome and mapped whole genome sequences of 256 isolates collected in Switzerland and Germany. These were combined with virulence phenotypes to conduct three separate genome-wide association studies (GWAS) to identify candidate avirulence genes. We identified a locus associated with avirulence containing a putative avirulence effector gene named AvrCR4. All virulent isolates either lacked AvrCR4 or had nonsynonymous mutations within the gene. AvrCR4 was present in all 74 isolates from non-BvCR4 hybrids, whereas 33 of 89 isolates from BvCR4 hybrids carried a deletion. We also mapped genomic data from 190 publicly available US isolates to our new reference genome. The AvrCR4 deletion was found in only one of 95 unique isolates from non-BvCR4 hybrids in the United States. AvrCR4 presents a unique example of an avirulence effector in which virulent alleles have only recently emerged. Most likely these were selected out of standing genetic variation after deployment of BvCR4. Identification of AvrCR4 will enable real-time screening of C. beticola populations for the emergence and spread of virulent isolates.
Collapse
Affiliation(s)
- Chen Chen
- Plant Pathology GroupInstitute of Integrative Biology, ETH ZurichZürichSwitzerland
| | | | | | | | - Enzo Neu
- KWS SAAT SE & Co. KGaAEinbeckGermany
| | | | - Bruce A. McDonald
- Plant Pathology GroupInstitute of Integrative Biology, ETH ZurichZürichSwitzerland
| | - Jessica Stapley
- Plant Pathology GroupInstitute of Integrative Biology, ETH ZurichZürichSwitzerland
| |
Collapse
|
4
|
Rad SH, Ebrahimi L, Croll D. Virulence Associations and Global Context of AvrStb6 Genetic Diversity in Iranian Populations of Zymoseptoria tritici. PHYTOPATHOLOGY 2023; 113:1924-1933. [PMID: 37261424 DOI: 10.1094/phyto-09-22-0348-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Managing pathogen damage in wheat production is important for sustaining yields. Fungal plant pathogen genomes encode many small secreted proteins acting as effectors that play key roles in the successful colonization of host tissue and triggering host defenses. AvrStb6 is the first described Zymoseptoria tritici avirulence effector, which triggers Stb6-mediated immunity in the wheat host in a gene-for-gene manner. Evasion of major resistance factors such as Stb6 challenges deployment decisions on wheat cultivars. In this study, we analyzed the evolution of the AvrStb6 effector in Iranian isolates of Z. tritici. In total, 78 isolates were isolated and purified from 30 infected wheat specimens collected from the East Azerbaijan and Ardabil provinces of Iran. The pathogenicity of all isolates was evaluated on the susceptible wheat cultivar 'Tajan'. A subset of 40 isolates were also tested for pathogenicity on the resistant cultivar 'Shafir' carrying Stb6. Genetic diversity at the AvrStb6 locus was analyzed for 14 isolates covering the breadth of the observed disease severity. The AvrStb6 sequence variation was high, with virulent isolates carrying highly diverse AvrStb6 haplotypes. In an analysis including more than 1,000 additional AvrStb6 sequences from a global set of isolates, we found that virulent isolates carried AvrStb6 haplotypes either clustering with known virulent haplotypes on different continents or constituting previously unknown haplotypes. Furthermore, we found that AvrStb6 variants from avirulent isolates clustered with known avirulent genotypes from Europe. Our study highlights the relevance of AvrStb6 for Z. tritici virulence and the exceptional global diversity patterns of this effector.
Collapse
Affiliation(s)
- Sepideh Hatami Rad
- Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture and Natural Resources, University of Tehran, Tehran 33916-53755, Iran
| | - Leila Ebrahimi
- Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture and Natural Resources, University of Tehran, Tehran 33916-53755, Iran
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
5
|
Wang X, Wu W, Zhang Y, Li C, Wang J, Wen J, Zhang S, Yao Y, Lu W, Zhao Z, Zhan J, Pan Q. The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae. Genes (Basel) 2023; 14:genes14051065. [PMID: 37239425 DOI: 10.3390/genes14051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen's avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene.
Collapse
Affiliation(s)
- Xing Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Weihuai Wu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaling Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Cheng Li
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jinyan Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jianqiang Wen
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxiang Yao
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Corn Research Institute, Dandong Academy of Agricultural Sciences, Dandong 118109, China
| | - Weisheng Lu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Qinghua Pan
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Clare SJ, Çelik Oğuz A, Effertz K, Karakaya A, Azamparsa MR, Brueggeman RS. Wild barley (Hordeum spontaneum) and landraces (Hordeum vulgare) from Turkey contain an abundance of novel Rhynchosporium commune resistance loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:15. [PMID: 36662256 DOI: 10.1007/s00122-023-04245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Rhynchosporium commune is a globally devastating pathogen of barley. Wild and landrace barley are underutilized, however, contain an abundance of loci that can be used as potential sources of resistance. Rhynchosporium commune, the causal agent of the disease scald or leaf blotch of barley, is a hemibiotrophic fungal pathogen of global importance, responsible for yield losses ranging from 30 to 40% on susceptible varieties. To date, over 150 resistance loci have been characterized in barley. However, due to the suspected location of the R. commune host jump in Europe, European germplasm has been the primary source used to screen for R. commune resistance leaving wild (Hordeum spontaneum) and landrace (H. vulgare) barley populations from the center of origin largely underutilized. A diverse population consisting of 94 wild and 188 barley landraces from Turkey were genotyped using PCR-GBS amplicon sequencing and screened with six Turkish R. commune isolates. The isolates were collected from distinct geographic regions of Turkey with two from the Aegean region, two from central Turkey and two from the Fertile Crescent region. The data set was utilized for association mapping analysis with a total of 21 loci identified, of which 12 were novel, indicating that these diverse primary barley gene pools contain an abundance of novel R. commune resistances that could be utilized for resistance breeding.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Mohammad Reza Azamparsa
- Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA.
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
7
|
Malvestiti MC, Steentjes MBF, Beenen HG, Boeren S, van Kan JAL, Shi-Kunne X. Analysis of plant cell death-inducing proteins of the necrotrophic fungal pathogens Botrytis squamosa and Botrytis elliptica. FRONTIERS IN PLANT SCIENCE 2022; 13:993325. [PMID: 36304392 PMCID: PMC9593002 DOI: 10.3389/fpls.2022.993325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Fungal plant pathogens secrete proteins that manipulate the host in order to facilitate colonization. Necrotrophs have evolved specialized proteins that actively induce plant cell death by co-opting the programmed cell death machinery of the host. Besides the broad host range pathogen Botrytis cinerea, most other species within the genus Botrytis are restricted to a single host species or a group of closely related hosts. Here, we focused on Botrytis squamosa and B. elliptica, host specific pathogens of onion (Allium cepa) and lily (Lilium spp.), respectively. Despite their occurrence on different hosts, the two fungal species are each other's closest relatives. Therefore, we hypothesize that they share a considerable number of proteins to induce cell death on their respective hosts. In this study, we first confirmed the host-specificity of B. squamosa and B. elliptica. Then we sequenced and assembled high quality genomes. The alignment of these two genomes revealed a high level of synteny with few balanced structural chromosomal arrangements. To assess the cell death-inducing capacity of their secreted proteins, we produced culture filtrates of B. squamosa and B. elliptica that induced cell death responses upon infiltration in host leaves. Protein composition of the culture filtrate was analysed by mass spectrometry, and we identified orthologous proteins that were present in both samples. Subsequently, the expression of the corresponding genes during host infection was compared. RNAseq analysis showed that the majority of the orthogroups of the two sister species display similar expression patterns during infection of their respective host. The analysis of cell death-inducing proteins of B. squamosa and B. elliptica provides insights in the mechanisms used by these two Botrytis species to infect their respective hosts.
Collapse
Affiliation(s)
| | | | - Henriek G. Beenen
- Wageningen University, Laboratory of Phytopathology, Wageningen, Netherlands
| | - Sjef Boeren
- Wageningen University, Laboratory of Biochemistry, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Wageningen University, Laboratory of Phytopathology, Wageningen, Netherlands
| | - Xiaoqian Shi-Kunne
- Wageningen University, Laboratory of Phytopathology, Wageningen, Netherlands
| |
Collapse
|
8
|
Stalder L, Oggenfuss U, Mohd‐Assaad N, Croll D. The population genetics of adaptation through copy‐number variation in a fungal plant pathogen. Mol Ecol 2022; 32:2443-2460. [PMID: 35313056 DOI: 10.1111/mec.16435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
Microbial pathogens can adapt rapidly to changing environments such as the application of pesticides or host resistance. Copy number variations (CNVs) are a major source of adaptive genetic variation for recent adaptation. Here, we analyse how a major fungal pathogen of barley, Rhynchosporium commune, has adapted to the host environment and fungicide applications. We screen the genomes of 125 isolates sampled across a worldwide set of populations and identify a total of 7,879 gene duplications and 116 gene deletions. Most gene duplications result from segmental chromosomal duplications. Although CNVs are generally under negative selection, we find that genes affected by CNVs are enriched in functions related to host exploitation (i.e., effectors and cell-wall-degrading enzymes). We perform genome-wide association studies (GWAS) and identify a large segmental duplication of CYP51A that has contributed to the emergence of azole resistance and a duplication encompassing an effector gene affecting virulence. We show that the adaptive CNVs were probably created by recently active transposable element families. Moreover, we find that specific transposable element families are important drivers of recent gene CNV. Finally, we use a genome-wide single nucleotide polymorphism data set to replicate the GWAS and contrast it with the CNV-focused analysis. Together, our findings show how extensive segmental duplications create the raw material for recent adaptation in global populations of a fungal pathogen.
Collapse
Affiliation(s)
- Luzia Stalder
- Laboratory of Evolutionary Genetics Institute of Biology University of Neuchâtel 2000 Neuchâtel Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics Institute of Biology University of Neuchâtel 2000 Neuchâtel Switzerland
| | - Norfarhan Mohd‐Assaad
- Plant Pathology Institute of Integrative Biology ETH, Zurich 8092 Zurich Switzerland
- Department of Applied Physics Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 Bangi Selangor Malaysia
| | - Daniel Croll
- Laboratory of Evolutionary Genetics Institute of Biology University of Neuchâtel 2000 Neuchâtel Switzerland
| |
Collapse
|
9
|
Stephens C, Ölmez F, Blyth H, McDonald M, Bansal A, Turgay EB, Hahn F, Saintenac C, Nekrasov V, Solomon P, Milgate A, Fraaije B, Rudd J, Kanyuka K. Remarkable recent changes in the genetic diversity of the avirulence gene AvrStb6 in global populations of the wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2021; 22:1121-1133. [PMID: 34258838 PMCID: PMC8358995 DOI: 10.1111/mpp.13101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Z. tritici and wheat, the wheat receptor-like kinase Stb6 and the Z. tritici secreted effector protein AvrStb6, have been identified. Previous analyses revealed a high diversity of AvrStb6 haplotypes present in earlier Z. tritici isolate collections, with up to c.18% of analysed isolates possessing the avirulence isoform of AvrStb6 identical to that originally identified in the reference isolate IPO323. With Stb6 present in many commercial wheat cultivars globally, we aimed to assess potential changes in AvrStb6 genetic diversity and the incidence of haplotypes allowing evasion of Stb6-mediated resistance in more recent Z. tritici populations. Here we show, using targeted resequencing of AvrStb6, that this gene is universally present in field isolates sampled from major wheat-growing regions of the world in 2013-2017. However, in contrast to the data from previous AvrStb6 population studies, we report a complete absence of the originally described avirulence isoform of AvrStb6 amongst modern Z. tritici isolates. Moreover, a remarkably small number of haplotypes, each encoding AvrStb6 protein isoforms conditioning virulence on Stb6-containing wheat, were found to predominate among modern Z. tritici isolates. A single virulence isoform of AvrStb6 was found to be particularly abundant throughout the global population. These findings indicate that, despite the ability of Z. tritici to sexually reproduce on resistant hosts, AvrStb6 avirulence haplotypes tend to be eliminated in subsequent populations.
Collapse
Affiliation(s)
| | - Fatih Ölmez
- Department of Plant ProtectionSivas Science and Technology UniversitySivasTurkey
| | - Hannah Blyth
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Megan McDonald
- Division of Plant SciencesResearch School of BiologyAustralian National UniversityCanberraAustralia
- Present address:
Megan McDonald, School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Anuradha Bansal
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- Present address:
British American TobaccoSouthamptonUK
| | - Emine Burcu Turgay
- Department of Plant PathologyPlant Protection Central Research InstituteField Crops Central Research InstituteAnkaraTurkey
| | - Florian Hahn
- Department of Plant SciencesRothamsted ResearchHarpendenUK
- Present address:
Department of Plant SciencesUniversity of OxfordOxfordUK
| | | | | | - Peter Solomon
- Division of Plant SciencesResearch School of BiologyAustralian National UniversityCanberraAustralia
| | - Andrew Milgate
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaAustralia
| | - Bart Fraaije
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- Present address:
NIABCambridgeUK
| | - Jason Rudd
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| |
Collapse
|
10
|
Büttner B, Draba V, Pillen K, Schweizer G, Maurer A. Identification of QTLs conferring resistance to scald (Rhynchosporium commune) in the barley nested association mapping population HEB-25. BMC Genomics 2020; 21:837. [PMID: 33246416 PMCID: PMC7694317 DOI: 10.1186/s12864-020-07258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Barley scald, caused by the fungus Rhynchosporium commune, is distributed worldwide to all barley growing areas especially in cool and humid climates. Scald is an economically important leaf disease resulting in yield losses of up to 40%. To breed resistant cultivars the identification of quantitative trait loci (QTLs) conferring resistance to scald is necessary. Introgressing promising resistance alleles of wild barley is a way to broaden the genetic basis of scald resistance in cultivated barley. Here, we apply nested association mapping (NAM) to map resistance QTLs in the barley NAM population HEB-25, comprising 1420 lines in BC1S3 generation, derived from crosses of 25 wild barley accessions with cv. Barke. RESULTS In scald infection trials in the greenhouse variability of resistance across and within HEB-25 families was found. NAM based on 33,005 informative SNPs resulted in the identification of eight reliable QTLs for resistance against scald with most wild alleles increasing resistance as compared to cv. Barke. Three of them are located in the region of known resistance genes and two in the regions of QTLs, respectively. The most promising wild allele was found at Rrs17 in one specific wild donor. Also, novel QTLs with beneficial wild allele effects on scald resistance were detected. CONCLUSIONS To sum up, wild barley represents a rich resource for scald resistance. As the QTLs were linked to the physical map the identified candidate genes will facilitate cloning of the scald resistance genes. The closely linked flanking molecular markers can be used for marker-assisted selection of the respective resistance genes to integrate them in elite cultivars.
Collapse
Affiliation(s)
- Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Vera Draba
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Günther Schweizer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.
| |
Collapse
|
11
|
Wang Q, Li J, Lu L, He C, Li C. Novel Variation and Evolution of AvrPiz-t of Magnaporthe oryzae in Field Isolates. Front Genet 2020; 11:746. [PMID: 33005166 PMCID: PMC7484972 DOI: 10.3389/fgene.2020.00746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
The product of the avirulence (Avr) gene of Magnaporthe oryzae can be detected by the product of the corresponding resistance (R) gene of rice and activates immunity to rice mediated by the R gene. The high degree of variability of M. oryzae isolates in pathogenicity makes the control of rice blast difficult. That resistance of the R gene in rice has been lost has been ascribed to the instability of the Avr gene in M. oryzae. Further study on the variation of the Avr genes in M. oryze field isolates may yield valuable information on the durable and effective deployment of R genes in rice production areas. AvrPiz-t and Piz-t are a pair of valuable genes in the Rice-Magnaporthe pathosystem. AvrPiz-t is detectable by Piz-t and determines the effectiveness of Piz-t. To effectively deploy the R gene Piz-t, the distribution, variation, and evolution of the corresponding Avr gene AvrPiz-t were found among 312 M. oryzae isolates collected from Yunnan rice production areas of China. PCR amplification and pathogenicity assays of AvrPiz-t showed that 202 isolates (64.7%) held AvrPiz-t alleles and were avirulent to IRBLzt-T (holding Piz-t). There were 42.3–83.3% avirulent isolates containing AvrPiz-t among seven regions in Yunnan Province. Meanwhile, 11 haplotypes of AvrPiz-t encoding three novel AvrPiz-t variants were identified among 100 isolates. A 198 bps insertion homologous to solo-LTR of the retrotransposon inago2 in the promoter region of AvrPiz-t in one isolate and a frameshift mutation of CDS in another isolate were identified among 100 isolates, and those two isolates had evolved to virulent from avirulent. Synonymous mutation and non-AUG-initiated N-terminal extensions keeps the AvrPiz-t gene avirulence function in M. oryzae field isolates in Yunnan. A haplotype network showed that H3 was an ancestral haplotype. Structure variance for absence (28.2%) or partial fragment loss (71.8%) of AvrPiz-t was found among 39 virulent isolates and may cause the AvrPiz-t avirulence function to be lost. Overall, AvrPiz-t evolved to virulent from avirulent forms via point mutation, retrotransposon, shift mutation, and structure variance under field conditions.
Collapse
Affiliation(s)
- Qun Wang
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinbin Li
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengxing He
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Li J, Cornelissen B, Rep M. Host-specificity factors in plant pathogenic fungi. Fungal Genet Biol 2020; 144:103447. [PMID: 32827756 DOI: 10.1016/j.fgb.2020.103447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/18/2023]
Abstract
Fortunately, no fungus can cause disease on all plant species, and although some plant-pathogenic fungi have quite a broad host range, most are highly limited in the range of plant species or even cultivars that they cause disease in. The mechanisms of host specificity have been extensively studied in many plant-pathogenic fungi, especially in fungal pathogens causing disease on economically important crops. Specifically, genes involved in host specificity have been identified during the last few decades. In this overview, we describe and discuss these host-specificity genes. These genes encode avirulence (Avr) proteins, proteinaceous host-specific toxins or secondary metabolites. We discuss the genomic context of these genes, their expression, polymorphism, horizontal transfer and involvement in pathogenesis.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Ben Cornelissen
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands.
| |
Collapse
|
13
|
Zhang X, Ovenden B, Milgate A. Recent insights into barley and Rhynchosporium commune interactions. MOLECULAR PLANT PATHOLOGY 2020; 21:1111-1128. [PMID: 32537933 PMCID: PMC7368125 DOI: 10.1111/mpp.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Rhynchosporium commune is the causal pathogen of scald in barley (Hordeum vulgare), a foliar disease that can reduce yield by up to 40% in susceptible cultivars. R. commune is found worldwide in all temperate growing regions and is regarded as one of the most economically important barley pathogens. It is a polycyclic pathogen with the ability to rapidly evolve new virulent strains in response to resistance genes deployed in commercial cultivars. Hence, introgression and pyramiding of different loci for resistance (qualitative or quantitative) through marker-assisted selection is an effective way to improve scald resistance in barley. This review summarizes all 148 resistance quantitative trait loci reported at the date of submission of this review and projects them onto the barley physical map, where it is clear many loci co-locate on chromosomes 3H and 7H. We have summarized the major named resistance loci and reiterated the renaming of Rrs15 (CI8288) to Rrs17. This review provides a comprehensive resource for future discovery and breeding efforts of qualitative and quantitative scald resistance loci.
Collapse
Affiliation(s)
- Xuechen Zhang
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Ben Ovenden
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Andrew Milgate
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| |
Collapse
|
14
|
Wang Y, Xu Y, Gupta S, Zhou Y, Wallwork H, Zhou G, Broughton S, Zhang XQ, Tan C, Westcott S, Moody D, Sun D, Loughman R, Zhang W, Li C. Fine mapping QSc.VR4, an effective and stable scald resistance locus in barley (Hordeum vulgare L.), to a 0.38-Mb region enriched with LRR-RLK and GLP genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2307-2321. [PMID: 32405768 DOI: 10.1007/s00122-020-03599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
An effective and stable quantitative resistance locus, QSc.VR4, was fine mapped, characterized and physically anchored to the short arm of 4H, conferring adult plant resistance to the fungus Rhynchosporium commune in barley. Scald caused by Rhynchosporium commune is one of the most destructive barley diseases worldwide. Accumulation of adult plant resistance (APR) governed by multiple resistance alleles is predicted to be effective and long-lasting against a broad spectrum of pathotypes. However, the molecular mechanisms that control APR remain poorly understood. Here, quantitative trait loci (QTL) analysis of APR and fine mapping were performed on five barley populations derived from a common parent Vlamingh, which expresses APR to scald. Two QTLs, designated QSc.VR4 and QSc.BR7, were detected from a cross between Vlamingh and Buloke. Our data confirmed that QSc.VR4 is an effective and stable APR locus, residing on the short arm of chromosome 4H, and QSc.BR7 derived from Buloke may be an allele of reported Rrs2. High-resolution fine mapping revealed that QSc.VR4 is located in a 0.38 Mb genomic region between InDel markers 4H2282169 and 4H2665106. The gene annotation analysis and sequence comparison suggested that a gene cluster containing two adjacent multigene families encoding leucine-rich repeat receptor kinase-like proteins (LRR-RLKs) and germin-like proteins (GLPs), respectively, is likely contributing to scald resistance. Adult plant resistance (APR) governed by QSc.VR4 may confer partial levels of resistance to the fungus Rhynchosporium commune and, furthermore, be an important resource for gene pyramiding that may contribute broad-based and more durable resistance.
Collapse
Affiliation(s)
- Yonggang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yanhao Xu
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Sanjiv Gupta
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yi Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Hugh Wallwork
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Sue Broughton
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Sharon Westcott
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - David Moody
- InterGrain Pty Ltd, South Perth, WA, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Robert Loughman
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
15
|
Yang Y, Liu X, Cai J, Chen Y, Li B, Guo Z, Huang G. Genomic characteristics and comparative genomics analysis of the endophytic fungus Sarocladium brachiariae. BMC Genomics 2019; 20:782. [PMID: 31660859 PMCID: PMC6819638 DOI: 10.1186/s12864-019-6095-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/10/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Sarocladium brachiariae is a newly identified endophytic fungus isolated from Brachiaria brizantha. A previous study indicated that S. brachiariae had antifungal activity; however, limited genomic information restrains further study. Therefore, we sequenced the genome of S. brachiariae and compared it with the genome of S. oryzae to identify differences between a Sarocladium plant pathogen and an endophyte. RESULTS In this study, we reported a gapless genome sequence of a newly identified endophytic fungus Sarocladium brachiariae isolated from Brachiaria brizantha. The genome of S. brachiariae is 31.86 Mb, with a contig N50 of 3.27 Mb and 9903 protein coding genes. Phylogenomic analysis based on single copy orthologous genes provided insights into the evolutionary relationships of S. brachiariae and its closest species was identified as S. oryzae. Comparative genomics analysis revealed that S. brachiaria has 14.9% more plant cell wall degradation related CAZymes to S. oryzae, and 33.3% more fungal cell wall degradation related CAZymes, which could explain the antifungal activity of S. brachiaria. Based on Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analysis, we identified a contact helvolic acid biosynthetic gene cluster (BGC) for the first time in S. oryzae. However, S. brachiaria had seven fewer terpene gene clusters, including helvolic acid BGC, compared with S. oryzae and this may be associated with adaptation to an endophytic lifestyle. Synteny analysis of polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and hybrid (PKS-NRPS) gene clusters between S. brachiariae and S. oryzae revealed that just 37.5% of tested clusters have good synteny, while 63.5% have no or poor synteny. This indicated that the S. brachiariae could potentially synthesize a variety of unknown-function secondary metabolites, which may play an important role in adaptation to its endophytic lifestyle and antifungal activity. CONCLUSIONS The data provided a better understanding of the Sarocladium brachiariae genome. Further comparative genomic analysis provided insight into the genomic basis of its endophytic lifestyle and antifungal activity.
Collapse
Affiliation(s)
- Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Xiaobao Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Jimiao Cai
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Yipeng Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Boxun Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Zhikai Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| | - Guixiu Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, 571101 China
| |
Collapse
|
16
|
Mohd-Assaad N, McDonald BA, Croll D. The emergence of the multi-species NIP1 effector in Rhynchosporium was accompanied by high rates of gene duplications and losses. Environ Microbiol 2019; 21:2677-2695. [PMID: 30838748 DOI: 10.1111/1462-2920.14583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 01/28/2023]
Abstract
Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
Collapse
Affiliation(s)
- Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH, Zurich, 8092 Zurich, Switzerland.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH, Zurich, 8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Looseley ME, Griffe LL, Büttner B, Wright KM, Middlefell-Williams J, Bull H, Shaw PD, Macaulay M, Booth A, Schweizer G, Russell JR, Waugh R, Thomas WTB, Avrova A. Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2513-2528. [PMID: 30151748 DOI: 10.1007/s00122-018-3168-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.
Collapse
Affiliation(s)
- Mark E Looseley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Lucie L Griffe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- RAGT Seeds Ltd, Grange Road, Ickleton, Saffron Walden, Essex, CB10 1TA, UK
| | - Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| | - Kathryn M Wright
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Hazel Bull
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd, Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - Paul D Shaw
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Malcolm Macaulay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Günther Schweizer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| | - Joanne R Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Anna Avrova
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
18
|
Xia C, Wang M, Yin C, Cornejo OE, Hulbert SH, Chen X. Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). BMC Genomics 2018; 19:664. [PMID: 30208837 PMCID: PMC6134786 DOI: 10.1186/s12864-018-5041-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant fungal pathogens can rapidly evolve and adapt to new environmental conditions in response to sudden changes of host populations in agro-ecosystems. However, the genomic basis of their host adaptation, especially at the forma specialis level, remains unclear. RESULTS We sequenced two isolates each representing Puccinia striiformis f. sp. tritici (Pst) and P. striiformis f. sp. hordei (Psh), different formae speciales of the stripe rust fungus P. striiformis highly adapted to wheat and barley, respectively. The divergence of Pst and Psh, estimated to start 8.12 million years ago, has been driven by high nucleotide mutation rates. The high genomic variation within dikaryotic urediniospores of P. striiformis has provided raw genetic materials for genome evolution. No specific gene families have enriched in either isolate, but extensive gene loss events have occurred in both Pst and Psh after the divergence from their most recent common ancestor. A large number of isolate-specific genes were identified, with unique genomic features compared to the conserved genes, including 1) significantly shorter in length; 2) significantly less expressed; 3) significantly closer to transposable elements; and 4) redundant in pathways. The presence of specific genes in one isolate (or forma specialis) was resulted from the loss of the homologues in the other isolate (or forma specialis) by the replacements of transposable elements or losses of genomic fragments. In addition, different patterns and numbers of telomeric repeats were observed between the isolates. CONCLUSIONS Host adaptation of P. striiformis at the forma specialis level is a complex pathogenic trait, involving not only virulence-related genes but also other genes. Gene loss, which might be adaptive and driven by transposable element activities, provides genomic basis for host adaptation of different formae speciales of P. striiformis.
Collapse
Affiliation(s)
- Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA 99164-7520 USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
- Wheat Health, Genetics, and Quality Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430 USA
| |
Collapse
|
19
|
Meile L, Croll D, Brunner PC, Plissonneau C, Hartmann FE, McDonald BA, Sánchez‐Vallet A. A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. THE NEW PHYTOLOGIST 2018; 219:1048-1061. [PMID: 29693722 PMCID: PMC6055703 DOI: 10.1111/nph.15180] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/20/2018] [Indexed: 05/11/2023]
Abstract
Cultivar-strain specificity in the wheat-Zymoseptoria tritici pathosystem determines the infection outcome and is controlled by resistance genes on the host side, many of which have been identified. On the pathogen side, however, the molecular determinants of specificity remain largely unknown. We used genetic mapping, targeted gene disruption and allele swapping to characterise the recognition of the new avirulence factor Avr3D1. We then combined population genetic and comparative genomic analyses to characterise the evolutionary trajectory of Avr3D1. Avr3D1 is specifically recognised by wheat cultivars harbouring the Stb7 resistance gene, triggering a strong defence response without preventing pathogen infection and reproduction. Avr3D1 resides in a cluster of putative effector genes located in a genome region populated by independent transposable element insertions. The gene was present in all 132 investigated strains and is highly polymorphic, with 30 different protein variants identified. We demonstrated that specific amino acid substitutions in Avr3D1 led to evasion of recognition. These results demonstrate that quantitative resistance and gene-for-gene interactions are not mutually exclusive. Localising avirulence genes in highly plastic genomic regions probably facilitates accelerated evolution that enables escape from recognition by resistance proteins.
Collapse
Affiliation(s)
- Lukas Meile
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary GeneticsInstitute of BiologyUniversity of NeuchâtelCH‐2000NeuchâtelSwitzerland
| | - Patrick C. Brunner
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
| | - Clémence Plissonneau
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
- UMR BIOGERINRAAgroParisTechUniversité Paris‐SaclayAvenue Lucien Bretignières, BP 01Thiverval‐GrignonF‐78850France
| | - Fanny E. Hartmann
- Ecologie Systématique EvolutionUniversite Paris‐SudAgroParisTechCNRSUniversité Paris‐Saclay91400OrsayFrance
| | - Bruce A. McDonald
- Plant PathologyInstitute of Integrative BiologyETH ZürichCH‐8092ZürichSwitzerland
| | | |
Collapse
|
20
|
Mohd-Assaad N, McDonald BA, Croll D. Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen. Genome Biol Evol 2018; 10:1315-1332. [PMID: 29722810 PMCID: PMC5972619 DOI: 10.1093/gbe/evy087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Coevolution between hosts and pathogens generates strong selection pressures to maintain resistance and infectivity, respectively. Genomes of plant pathogens often encode major effect loci for the ability to successfully infect specific host genotypes. Hence, spatial heterogeneity in host genotypes coupled with abiotic factors could lead to locally adapted pathogen populations. However, the genetic basis of local adaptation is poorly understood. Rhynchosporium commune, the pathogen causing barley scald disease, interacts at least partially in a gene-for-gene manner with its host. We analyzed global field populations of 125 R. commune isolates to identify candidate genes for local adaptation. Whole genome sequencing data showed that the pathogen is subdivided into three genetic clusters associated with distinct geographic and climatic regions. Using haplotype-based selection scans applied independently to each genetic cluster, we found strong evidence for selective sweeps throughout the genome. Comparisons of loci under selection among clusters revealed little overlap, suggesting that ecological differences associated with each cluster led to variable selection regimes. The strongest signals of selection were found predominantly in the two clusters composed of isolates from Central Europe and Ethiopia. The strongest selective sweep regions encoded protein functions related to biotic and abiotic stress responses. Selective sweep regions were enriched in genes encoding functions in cellular localization, protein transport activity, and DNA damage responses. In contrast to the prevailing view that a small number of gene-for-gene interactions govern plant pathogen evolution, our analyses suggest that the evolutionary trajectory is largely determined by spatially heterogeneous biotic and abiotic selection pressures.
Collapse
Affiliation(s)
- Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Switzerland
| |
Collapse
|
21
|
Hartmann FE, Rodríguez de la Vega RC, Brandenburg JT, Carpentier F, Giraud T. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biol Evol 2018; 10:1298-1314. [PMID: 29722826 PMCID: PMC5967549 DOI: 10.1093/gbe/evy089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Jean-Tristan Brandenburg
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Fantin Carpentier
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
22
|
Stam R, McDonald BA. When resistance gene pyramids are not durable-the role of pathogen diversity. MOLECULAR PLANT PATHOLOGY 2018; 19:521-524. [PMID: 29446883 PMCID: PMC6637985 DOI: 10.1111/mpp.12636] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 05/21/2023]
Affiliation(s)
- Remco Stam
- Chair of PhytopathologyTUM School of Life Sciences Weihenstephan, Technical University of MunichFreising 85354Germany
| | - Bruce A. McDonald
- Plant PathologyInstitute of Integrative Biology, ETH ZurichZurich 8092Switzerland
| |
Collapse
|
23
|
Brunner PC, McDonald BA. Evolutionary analyses of the avirulence effector AvrStb6 in global populations of Zymoseptoria tritici identify candidate amino acids involved in recognition. MOLECULAR PLANT PATHOLOGY 2018; 19:1836-1846. [PMID: 29363872 PMCID: PMC6637991 DOI: 10.1111/mpp.12662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 05/27/2023]
Abstract
We analysed the population genetic diversity of AvrStb6, the first avirulence gene cloned from the wheat pathogen Zymoseptoria tritici, using 142 Z. tritici strains sampled from four wheat fields growing on three continents. Although AvrStb6 was located in a recombination hotspot, it was found in every strain, with 71 polymorphic sites that produced 41 distinct DNA haplotypes encoding 30 AvrStb6 protein isoforms. An AvrStb6 homologue was found in the closest known relative, Z. pseudotritici, but not in three other closely related Zymoseptoria species, indicating that this gene has emerged in Zymoseptoria quite recently. Two AvrStb6 homologues with nucleotide similarities greater than 70% were identified on chromosome 10 in all Z. tritici isolates, suggesting that AvrStb6 belongs to a multigene family of candidate effectors that has expanded recently through gene duplication. The AvrStb6 sequences exhibited strong evidence for non-neutral evolution, including a large number of non-synonymous mutations, with significant positive diversifying selection operating on nine of the 82 codons. It appears that balancing selection is operating across the entire gene in natural field populations. There was also evidence for co-evolving codons within the gene that may reflect compensatory mutations associated with the evasion of recognition by Stb6. Intragenic recombination also appears to have affected the diversity of AvrStb6.
Collapse
Affiliation(s)
- Patrick C. Brunner
- Plant PathologyInstitute of Integrative Biology, ETH Zurich8092 ZurichSwitzerland
| | - Bruce A. McDonald
- Plant PathologyInstitute of Integrative Biology, ETH Zurich8092 ZurichSwitzerland
| |
Collapse
|
24
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
25
|
Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouché S, Hartmann FE, Croll D. Using Population and Comparative Genomics to Understand the Genetic Basis of Effector-Driven Fungal Pathogen Evolution. FRONTIERS IN PLANT SCIENCE 2017; 8:119. [PMID: 28217138 PMCID: PMC5289978 DOI: 10.3389/fpls.2017.00119] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Epidemics caused by fungal plant pathogens pose a major threat to agro-ecosystems and impact global food security. High-throughput sequencing enabled major advances in understanding how pathogens cause disease on crops. Hundreds of fungal genomes are now available and analyzing these genomes highlighted the key role of effector genes in disease. Effectors are small secreted proteins that enhance infection by manipulating host metabolism. Fungal genomes carry 100s of putative effector genes, but the lack of homology among effector genes, even for closely related species, challenges evolutionary and functional analyses. Furthermore, effector genes are often found in rapidly evolving chromosome compartments which are difficult to assemble. We review how population and comparative genomics toolsets can be combined to address these challenges. We highlight studies that associated genome-scale polymorphisms with pathogen lifestyles and adaptation to different environments. We show how genome-wide association studies can be used to identify effectors and other pathogenicity-related genes underlying rapid adaptation. We also discuss how the compartmentalization of fungal genomes into core and accessory regions shapes the evolution of effector genes. We argue that an understanding of genome evolution provides important insight into the trajectory of host-pathogen co-evolution.
Collapse
Affiliation(s)
- Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
- UMR, BIOGER, INRA, AgroParisTech, Université Paris-SaclayThiverval-Grignon, France
| | - Juliana Benevenuto
- College of Agriculture “Luiz de Queiroz”, University of São PauloSão Paulo, Brazil
| | - Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan MalaysiaSelangor, Malaysia
| | - Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
| | - Fanny E. Hartmann
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchatelNeuchatel, Switzerland
- *Correspondence: Daniel Croll,
| |
Collapse
|
26
|
Penselin D, Münsterkötter M, Kirsten S, Felder M, Taudien S, Platzer M, Ashelford K, Paskiewicz KH, Harrison RJ, Hughes DJ, Wolf T, Shelest E, Graap J, Hoffmann J, Wenzel C, Wöltje N, King KM, Fitt BDL, Güldener U, Avrova A, Knogge W. Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. BMC Genomics 2016; 17:953. [PMID: 27875982 PMCID: PMC5118889 DOI: 10.1186/s12864-016-3299-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Rhynchosporium species complex consists of hemibiotrophic fungal pathogens specialized to different sweet grass species including the cereal crops barley and rye. A sexual stage has not been described, but several lines of evidence suggest the occurrence of sexual reproduction. Therefore, a comparative genomics approach was carried out to disclose the evolutionary relationship of the species and to identify genes demonstrating the potential for a sexual cycle. Furthermore, due to the evolutionary very young age of the five species currently known, this genus appears to be well-suited to address the question at the molecular level of how pathogenic fungi adapt to their hosts. RESULTS The genomes of the different Rhynchosporium species were sequenced, assembled and annotated using ab initio gene predictors trained on several fungal genomes as well as on Rhynchosporium expressed sequence tags. Structures of the rDNA regions and genome-wide single nucleotide polymorphisms provided a hypothesis for intra-genus evolution. Homology screening detected core meiotic genes along with most genes crucial for sexual recombination in ascomycete fungi. In addition, a large number of cell wall-degrading enzymes that is characteristic for hemibiotrophic and necrotrophic fungi infecting monocotyledonous hosts were found. Furthermore, the Rhynchosporium genomes carry a repertoire of genes coding for polyketide synthases and non-ribosomal peptide synthetases. Several of these genes are missing from the genome of the closest sequenced relative, the poplar pathogen Marssonina brunnea, and are possibly involved in adaptation to the grass hosts. Most importantly, six species-specific genes coding for protein effectors were identified in R. commune. Their deletion yielded mutants that grew more vigorously in planta than the wild type. CONCLUSION Both cryptic sexuality and secondary metabolites may have contributed to host adaptation. Most importantly, however, the growth-retarding activity of the species-specific effectors suggests that host adaptation of R. commune aims at extending the biotrophic stage at the expense of the necrotrophic stage of pathogenesis. Like other apoplastic fungi Rhynchosporium colonizes the intercellular matrix of host leaves relatively slowly without causing symptoms, reminiscent of the development of endophytic fungi. Rhynchosporium may therefore become an object for studying the mutualism-parasitism transition.
Collapse
Affiliation(s)
- Daniel Penselin
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanne Kirsten
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Marius Felder
- Genomic Analysis, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Stefan Taudien
- Genomic Analysis, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Matthias Platzer
- Genomic Analysis, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Kevin Ashelford
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | | | | | - David J. Hughes
- Applied Bioinformatics, Rothamsted Research, Harpenden, Hertfordshire UK
| | - Thomas Wolf
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Ekaterina Shelest
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Jenny Graap
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Jan Hoffmann
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Claudia Wenzel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany ,Present address: Food Quality and Nutrition, Agroscope, Bern, Switzerland
| | - Nadine Wöltje
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Kevin M. King
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire UK
| | - Bruce D. L. Fitt
- Biological and Environmental Sciences, University of Hertfordshire, Hatfield, Hertfordshire UK
| | - Ulrich Güldener
- Department of Genome-Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Anna Avrova
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Wolfgang Knogge
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| |
Collapse
|
27
|
Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops. BMC Evol Biol 2016; 16:101. [PMID: 27176034 PMCID: PMC4866072 DOI: 10.1186/s12862-016-0680-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 11/11/2022] Open
Abstract
Background The outcome of the arms race between hosts and pathogens depends heavily on the interactions between their genetic diversity, population size and transmission ability. Theory predicts that genetically diverse hosts will select for higher virulence and more diverse pathogens than hosts with low genetic diversity. Cultivated hosts typically have lower genetic diversity and thus small effective population sizes, but can potentially harbour large pathogen population sizes. On the other hand, hosts, such as weeds, which are genetically more diverse and thus have larger effective population sizes, usually harbour smaller pathogen population sizes. Large pathogen population sizes may lead to more opportunities for mutation and hence more diverse pathogens. Here we test the predictions that pathogen neutral genetic diversity will increase with large pathogen population sizes and host diversity, whereas diversity under selection will increase with host diversity. We assessed and compared the diversity of a fungal pathogen, Rhynchosporium commune, on weedy barley grass (which have a large effective population size) and cultivated barley (low genetic diversity) using microsatellites, effector locus nip1 diversity and pathogen aggressiveness in order to assess the importance of weeds in the evolution of the neutral and selected diversity of pathogens. Results The findings indicated that the large barley acreage and low host diversity maintains higher pathogen neutral genetic diversity and lower linkage disequilibrium, while the weed maintains more pathotypes and higher virulence diversity at nip1. Strong evidence for more pathogen migration from barley grass to barley suggests transmission of virulence from barley grass to barley is common. Conclusions Pathogen census population size is a better predictor for neutral genetic diversity than host diversity. Despite maintaining a smaller pathogen census population size, barley grass acts as an important ancillary host to R. commune, harbouring highly virulent pathogen types capable of transmission to barley. Management of disease on crops must therefore include management of weedy ancillary hosts, which may harbour disproportionate supplies of virulent pathogen strains. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0680-6) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Schmidt SM, Lukasiewicz J, Farrer R, van Dam P, Bertoldo C, Rep M. Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon. THE NEW PHYTOLOGIST 2016; 209:307-18. [PMID: 26305378 PMCID: PMC5769816 DOI: 10.1111/nph.13584] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/29/2015] [Indexed: 05/06/2023]
Abstract
Development of resistant crops is the most effective way to control plant diseases to safeguard food and feed production. Disease resistance is commonly based on resistance genes, which generally mediate the recognition of small proteins secreted by invading pathogens. These proteins secreted by pathogens are called 'avirulence' proteins. Their identification is important for being able to assess the usefulness and durability of resistance genes in agricultural settings. We have used genome sequencing of a set of strains of the melon wilt fungus Fusarium oxysporum f. sp. melonis (Fom), bioinformatics-based genome comparison and genetic transformation of the fungus to identify AVRFOM2, the gene that encodes the avirulence protein recognized by the melon Fom-2 gene. Both an unbiased and a candidate gene approach identified a single candidate for the AVRFOM2 gene. Genetic complementation of AVRFOM2 in three different race 2 isolates resulted in resistance of Fom-2-harbouring melon cultivars. AvrFom2 is a small, secreted protein with two cysteine residues and weak similarity to secreted proteins of other fungi. The identification of AVRFOM2 will not only be helpful to select melon cultivars to avoid melon Fusarium wilt, but also to monitor how quickly a Fom population can adapt to deployment of Fom-2-containing cultivars in the field.
Collapse
Affiliation(s)
- Sarah Maria Schmidt
- Molecular Plant Pathology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| | - Joanna Lukasiewicz
- Molecular Plant Pathology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| | - Rhys Farrer
- Genome Sequencing and Analysis Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter van Dam
- Molecular Plant Pathology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| | - Chiara Bertoldo
- Molecular Plant Pathology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Dehury B, Maharana J, Sahoo BR, Sahu J, Sen P, Modi MK, Barooah M. Molecular recognition of avirulence protein (avrxa5) by eukaryotic transcription factor xa5 of rice (Oryza sativa L.): insights from molecular dynamics simulations. J Mol Graph Model 2015; 57:49-61. [PMID: 25655560 DOI: 10.1016/j.jmgm.2015.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/06/2014] [Accepted: 01/09/2015] [Indexed: 11/17/2022]
Abstract
The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein. From the best three binding poses predicted by molecular docking, MD simulations were performed to explore the dynamic binding mechanism of xa5 and avrxa5. Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) techniques were employed to calculate the binding free energy and to uncover the thriving force behind the molecular recognition of avrxa5 by eukaryotic transcription factor xa5. Binding free energy analysis revealed van der Waals term as the most constructive component that favors the xa5 and avrxa5 interaction. In addition, hydrogen bonds (H-bonds) and essential electrostatic interactions analysis highlighted amino acid residues Lys54/Asp870, Lys56/Ala868, Lys56/Ala866, Lys56/Glu871, Ile59/His862, Gly61/Phe858, His62/Arg841, His62/Leu856, Ser101/Ala872 and Ser105/Asp870 plays pivotal role for the energetically stability of the R-Avr complex. Insights gained from the present study are expected to unveil the molecular mechanisms that define the transcriptional activator mediated transcriptome modification in host plants.
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat -785013, Assam, India; Department of Life Science and Bioinformatics, Assam University, Silchar -788011, Assam, India.
| | - Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar -751003, Odisha, India
| | - Bikash Ranjan Sahoo
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar -751003, Odisha, India
| | - Jagajjit Sahu
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat -785013, Assam, India
| | - Priyabrata Sen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat -785013, Assam, India
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat -785013, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat -785013, Assam, India.
| |
Collapse
|
30
|
Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T. The population biology of fungal invasions. Mol Ecol 2015; 24:1969-86. [DOI: 10.1111/mec.13028] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022]
Affiliation(s)
- P. Gladieux
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - A. Feurtey
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - M. E. Hood
- Department of Biology; Amherst College; Amherst Massachusetts 01002 USA
| | - A. Snirc
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - J. Clavel
- Conservation des Espèces; Restauration et Suivi des Populations - CRBPO; Muséum National d'Histoire Naturelle-CNRS-Université Pierre et Marie Curie; 55 rue Buffon 75005 Paris France
| | - C. Dutech
- Biodiversité Gènes et Communautés; INRA-Université Bordeaux 1; Site de Pierroton 33610 Cestas France
| | - M. Roy
- Evolution et Diversité Biologique; Université Toulouse Paul Sabatier-Ecole Nationale de Formation Agronomique-CNRS; 118 route de Narbonne 31062 Toulouse France
| | - T. Giraud
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| |
Collapse
|
31
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:40-50. [PMID: 27839074 DOI: 10.1094/mpmi-10-13-0313-ta.testissue] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
32
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:17-27. [PMID: 27839075 DOI: 10.1094/mpmi-10-13-0313-cr.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
33
|
Covey PA, Kuwitzky B, Hanson M, Webb KM. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from sugar beet. PHYTOPATHOLOGY 2014; 104:886-896. [PMID: 24502207 DOI: 10.1094/phyto-09-13-0248-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sugar beet (Beta vulgaris) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and can lead to significant reductions in root yield, sucrose percentage, juice purity, and storability. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum strains isolated from symptomatic sugar beet are nonpathogenic. Identifying pathogenicity factors and their diversity in the F. oxysporum f. sp. betae population could further understanding of how this pathogen causes disease and potentially provide molecular markers to rapidly identify pathogenic isolates. This study used several previously described fungal effector genes (Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, Snf1, and Ste12) as genetic markers, in a population of 26 pathogenic and nonpathogenic isolates of F. oxysporum originally isolated from symptomatic sugar beet. Of the genes investigated, six were present in all F. oxysporum isolates from sugar beet (Fmk1, Fow1, PelA, Rho1, Snf1, and Ste12), and seven were found to be dispersed within the population (Pda1, PelD, Pep1, Prt1, Sge1, Six1, and Six6). Of these, Fmk1, Fow1, PelA, Rho1, Sge1, Snf1, and Ste12 were significant in relating clade designations and PelD, and Prt1 were significant for correlating with pathogenicity in F. oxysporum f. sp. betae.
Collapse
|
34
|
Wu W, Wang L, Zhang S, Li Z, Zhang Y, Lin F, Pan Q. Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:759-69. [PMID: 24742074 DOI: 10.1094/mpmi-02-14-0046-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A stepwise mutation that occurred in both pathogens and their respective hosts has played a seminal role in the co-evolutionary arms race evolution in diverse pathosystems. The process driven by rice blast AvrPik and Pik alleles was investigated through population genetic and evolutionary approaches. The genetic diversity of the non-signal domain of AvrPik was higher than that in its signal peptide domain. Positive selection for particular AvrPik alleles in the northeastern region of China was stronger than in the south. The perfect relationship between the functional lineages and AvrPik allele-specific pathotypes was established by ruling out the nonfunctional lineages derived from additional copies. Only four alleles conditioning stepwise pathotypes were detected in natural populations, which were likely created by only one evolutionary pathway with three recognizable mutation steps. Two non-stepwise pathotypes were determined by two blocks in a network constructed by all 16 possible alleles, indicating that a natural evolution process can be artificially changed by a combination of specific single-nucleotide polymorphisms. Assuming that AvrPik evolution has been largely driven by host selection, the co-evolutionary stepwise relationships between AvrPik and Pik was established. The experimental validation of stepwise mutation is required for the development of sustainable management strategies against plant disease.
Collapse
|
35
|
Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:196-206. [PMID: 24405032 DOI: 10.1094/mpmi-10-13-0313-ia] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
|
36
|
Khatabi B, Wen RH, Hajimorad MR. Fitness penalty in susceptible host is associated with virulence of Soybean mosaic virus on Rsv1-genotype soybean: a consequence of perturbation of HC-Pro and not P3. MOLECULAR PLANT PATHOLOGY 2013; 14:885-97. [PMID: 23782556 PMCID: PMC6638797 DOI: 10.1111/mpp.12054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The multigenic Rsv1 locus in the soybean plant introduction (PI) 'PI96983' confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV-N, but not SMV-G7 and SMV-G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as 'Williams82' (rsv1), SMV-N induces severe disease symptoms and accumulates to a high level, whereas both SMV-G7 and SMV-G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV-N on Rsv1-genotype soybean requires concurrent mutations in both the helper-component proteinase (HC-Pro) and P3 cistrons. This is because of the presence of at least two resistance (R) genes, probably belonging to the nucleotide-binding leucine-rich repeat (NB-LRR) class, within the Rsv1 locus, independently mediating the recognition of HC-Pro or P3. In this study, we show that the majority of experimentally evolved mutational pathways that disrupt the avirulence functions of SMV-N on Rsv1-genotype soybean also result in mild symptoms and reduced accumulation, relative to parental SMV-N, in Williams82 (rsv1). Furthermore, the evaluation of SMV-N-derived HC-Pro and P3 chimeras, containing homologous sequences from virulent SMV-G7 or SMV-G7d strains, as well as SMV-N-derived variants containing HC-Pro or P3 point mutation(s) associated with gain of virulence, reveals a direct correlation between the perturbation of HC-Pro and a fitness penalty in Williams82 (rsv1). Collectively, these data demonstrate that gain of virulence by SMV on Rsv1-genotype soybean results in fitness loss in a previously susceptible soybean genotype, this being a consequence of mutations in HC-Pro, but not in P3.
Collapse
Affiliation(s)
- B Khatabi
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
37
|
McDonald MC, Oliver RP, Friesen TL, Brunner PC, McDonald BA. Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species. THE NEW PHYTOLOGIST 2013; 199:241-251. [PMID: 23550706 DOI: 10.1111/nph.12257] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 05/07/2023]
Abstract
Population genetic and phylogenetic studies have shown that Phaeosphaeria nodorum is a member of a species complex that probably shares its center of origin with wheat (Triticum aestivum and Triticum durum). We examined the evolutionary histories of three known necrotrophic effectors (NEs) produced by P. nodorum and compared them with neutral loci. We screened over 1000 individuals for the presence/absence of each effector and assigned each individual to a multi-effector genotype. Diversity at each NE locus was assessed by sequencing c. 200 individuals for each locus. We found significant differences in effector frequency among populations. We propose that these differences reflect the presence/absence of the corresponding susceptibility gene in wheat cultivars. The population harboring the highest sequence diversity was different for each effector locus and never coincided with populations harboring the highest diversity at neutral loci. Coalescent and phylogenetic analyses showed a discontinuous presence of all three NEs among nine closely related Phaeosphaeria species. Only two of the nine species were found to harbor NEs. We present evidence that the three described NEs of P. nodorum were transmitted to its sister species, Phaeosphaeria avenaria tritici 1, via interspecific hybridization.
Collapse
Affiliation(s)
- Megan C McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Richard P Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Perth, WA, 6845, Australia
| | - Timothy L Friesen
- United States Department of Agriculture-Agriculture Research Service, Northern Crop Science Laboratory, Cereal Crops Research Unit, Fargo, ND, 58105, USA
| | - Patrick C Brunner
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
38
|
Brunner PC, Torriani SFF, Croll D, Stukenbrock EH, McDonald BA. Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 2013; 30:1337-47. [PMID: 23515261 PMCID: PMC3649673 DOI: 10.1093/molbev/mst041] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle.
Collapse
Affiliation(s)
- Patrick C Brunner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
39
|
Avrova A, Knogge W. Rhynchosporium commune: a persistent threat to barley cultivation. MOLECULAR PLANT PATHOLOGY 2012; 13:986-97. [PMID: 22738626 PMCID: PMC6638709 DOI: 10.1111/j.1364-3703.2012.00811.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. TAXONOMY Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. DISEASE SYMPTOMS Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. LIFE CYCLE Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. DISEASE CONTROL The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.
Collapse
Affiliation(s)
- Anna Avrova
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | | |
Collapse
|
40
|
Daverdin G, Rouxel T, Gout L, Aubertot JN, Fudal I, Meyer M, Parlange F, Carpezat J, Balesdent MH. Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathog 2012; 8:e1003020. [PMID: 23144620 PMCID: PMC3493481 DOI: 10.1371/journal.ppat.1003020] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/24/2012] [Indexed: 11/21/2022] Open
Abstract
Modern agriculture favours the selection and spread of novel plant diseases. Furthermore, crop genetic resistance against pathogens is often rendered ineffective within a few years of its commercial deployment. Leptosphaeria maculans, the cause of phoma stem canker of oilseed rape, develops gene-for-gene interactions with its host plant, and has a high evolutionary potential to render ineffective novel sources of resistance in crops. Here, we established a four-year field experiment to monitor the evolution of populations confronted with the newly released Rlm7 resistance and to investigate the nature of the mutations responsible for virulence against Rlm7. A total of 2551 fungal isolates were collected from experimental crops of a Rlm7 cultivar or a cultivar without Rlm7. All isolates were phenotyped for virulence and a subset was genotyped with neutral genetic markers. Virulent isolates were investigated for molecular events at the AvrLm4-7 locus. Whilst virulent isolates were not found in neighbouring crops, their frequency had reached 36% in the experimental field after four years. An extreme diversity of independent molecular events leading to virulence was identified in populations, with large-scale Repeat Induced Point mutations or complete deletion of AvrLm4-7 being the most frequent. Our data suggest that increased mutability of fungal genes involved in the interactions with plants is directly related to their genomic environment and reproductive system. Thus, rapid allelic diversification of avirulence genes can be generated in L. maculans populations in a single field provided that large population sizes and sexual reproduction are favoured by agricultural practices.
Collapse
Affiliation(s)
| | - Thierry Rouxel
- INRA, UR 1290 Bioger, Campus AgroParisTech, Thiverval-Grignon, France
| | - Lilian Gout
- INRA, UR 1290 Bioger, Campus AgroParisTech, Thiverval-Grignon, France
- AgroParisTech, Campus AgroParisTech, Thiverval-Grignon, France
| | | | - Isabelle Fudal
- INRA, UR 1290 Bioger, Campus AgroParisTech, Thiverval-Grignon, France
| | - Michel Meyer
- INRA, UR 1290 Bioger, Campus AgroParisTech, Thiverval-Grignon, France
| | - Francis Parlange
- INRA, UR 1290 Bioger, Campus AgroParisTech, Thiverval-Grignon, France
| | | | | |
Collapse
|
41
|
Kirsten S, Navarro-Quezada A, Penselin D, Wenzel C, Matern A, Leitner A, Baum T, Seiffert U, Knogge W. Necrosis-inducing proteins of Rhynchosporium commune, effectors in quantitative disease resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1314-1325. [PMID: 22712509 DOI: 10.1094/mpmi-03-12-0065-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The barley pathogen Rhynchosporium commune secretes necrosis-inducing proteins NIP1, NIP2, and NIP3. Expression analysis revealed that NIP1 transcripts appear to be present in fungal spores already, whereas NIP2 and NIP3 are synthesized after inoculation of host plants. To assess the contribution of the three effector proteins to disease development, deletion mutants were generated. The development of these fungal mutants on four barley cultivars was quantified in comparison with that of the parent wild-type strain and with two fungal strains failing to secrete an "active" NIP1 avirulence protein, using quantitative polymerase chain reaction as well as microscopic imaging after fungal green fluorescent protein tagging. The impact of the three deletions varied quantitatively depending on the host genotype, suggesting that the activities of the fungal effectors add up to produce stronger growth patterns and symptom development. Alternatively, recognition events of differing intensities may be converted into defense gene expression in a quantitative manner.
Collapse
Affiliation(s)
- S Kirsten
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhan J, Yang L, Zhu W, Shang L, Newton AC. Pathogen populations evolve to greater race complexity in agricultural systems--evidence from analysis of Rhynchosporium secalis virulence data. PLoS One 2012; 7:e38611. [PMID: 22723870 PMCID: PMC3377678 DOI: 10.1371/journal.pone.0038611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Fitness cost associated with pathogens carrying unnecessary virulence alleles is the fundamental assumption for preventing the emergence of complex races in plant pathogen populations but this hypothesis has rarely been tested empirically on a temporal and spatial scale which is sufficient to distinguish evolutionary signals from experimental error. We analyzed virulence characteristics of ≈ 1000 isolates of the barley pathogen Rhynchosporium secalis collected from different parts of the United Kingdom between 1984 and 2005. We found a gradual increase in race complexity over time with a significant correlation between sampling date and race complexity of the pathogen (r(20) = 0.71, p = 0.0002) and an average loss of 0.1 avirulence alleles (corresponding to an average gain of 0.1 virulence alleles) each year. We also found a positive and significant correlation between barley cultivar diversity and R. secalis virulence variation. The conditions assumed to favour complex races were not present in the United Kingdom and we hypothesize that the increase in race complexity is attributable to the combination of natural selection and genetic drift. Host resistance selects for corresponding virulence alleles to fixation or dominant frequency. Because of the weak fitness penalty of carrying the unnecessary virulence alleles, genetic drift associated with other evolutionary forces such as hitch-hiking maintains the frequency of the dominant virulence alleles even after the corresponding resistance factors cease to be used.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
| | | | | | | | | |
Collapse
|
43
|
Stergiopoulos I, Kourmpetis YAI, Slot JC, Bakker FT, De Wit PJGM, Rokas A. In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins. Mol Biol Evol 2012; 29:3371-84. [PMID: 22628532 DOI: 10.1093/molbev/mss143] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most fungal plant pathogens secrete effector proteins during pathogenesis to manipulate their host's defense and promote disease. These are so highly diverse in sequence and distribution, they are essentially considered as species-specific. However, we have recently shown the presence of homologous effectors in fungal species of the Dothideomycetes class. One such example is Ecp2, an effector originally described in the tomato pathogen Cladosporium fulvum but later detected in the plant pathogenic fungi Mycosphaerella fijiensis and Mycosphaerella graminicola as well. Here, using in silico sequence-similarity searches against a database of 135 fungal genomes and GenBank, we extend our queries for homologs of Ecp2 to the fungal kingdom and beyond, and further study their history of diversification. Our analyses show that Ecp2 homologs are members of an ancient and widely distributed superfamily of putative fungal effectors, which we term Hce2 for Homologs of C. fulvum Ecp2. Molecular evolutionary analyses show that the superfamily originated and diversified within the fungal kingdom, experiencing multiple lineage-specific expansions and losses that are consistent with the birth-and-death model of gene family evolution. Newly formed paralogs appear to be subject to diversification early after gene duplication events, whereas at later stages purifying selection acts to preserve diversity and the newly evolved putative functions. Some members of the Hce2 superfamily are fused to fungal Glycoside Hydrolase family 18 chitinases that show high similarity to the Zymocin killer toxin from the dairy yeast Kluyveromyces lactis, suggesting an analogous role in antagonistic interactions. The observed high rates of gene duplication and loss in the Hce2 superfamily, combined with diversification in both sequence and possibly functions within and between species, suggest that Hce2s are involved in adaptation to stresses and new ecological niches. Such findings address the need to rationalize effector biology and evolution beyond the perspective of solely host-microbe interactions.
Collapse
|
44
|
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 2011; 7:e1002147. [PMID: 21829350 PMCID: PMC3145791 DOI: 10.1371/journal.ppat.1002147] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/17/2011] [Indexed: 01/22/2023] Open
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.
Collapse
Affiliation(s)
- Izumi Chuma
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Chihiro Isobe
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Yuma Hotta
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Kana Ibaragi
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Natsuru Futamata
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Yukio Tosa
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
45
|
Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:51-62. [PMID: 20674079 DOI: 10.1016/j.jplph.2010.06.014] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 05/23/2023]
Abstract
Fungi cause severe diseases on a broad range of crop and ornamental plants, leading to significant economical losses. Plant pathogenic fungi exhibit a huge variability in their mode of infection, differentiation and function of infection structures and nutritional strategy. In this review, advances in understanding mechanisms of biotrophy, necrotrophy and hemibiotrophic lifestyles are described. Special emphasis is given to the biotrophy-necrotrophy switch of hemibiotrophic pathogens, and to biosynthesis, chemical diversity and mode of action of various fungal toxins produced during the infection process.
Collapse
Affiliation(s)
- Ralf Horbach
- Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Betty-Heimann-Strasse 3, Halle (Saale), Germany
| | | | | | | |
Collapse
|
46
|
Dai Y, Jia Y, Correll J, Wang X, Wang Y. Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol 2010; 47:973-80. [DOI: 10.1016/j.fgb.2010.08.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 07/12/2010] [Accepted: 08/06/2010] [Indexed: 12/27/2022]
|
47
|
Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog 2010; 6:e1001180. [PMID: 21079787 PMCID: PMC2973834 DOI: 10.1371/journal.ppat.1001180] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022] Open
Abstract
Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a 'gene for gene' manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans.
Collapse
Affiliation(s)
| | | | - James K. Hane
- Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Bentley, Western Australia, Australia
| | - Patrick C. Brunner
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Bentley, Western Australia, Australia
| | | |
Collapse
|
48
|
Abstract
Rhynchosporium consists of two species, R. secalis and R. orthosporum. Both are pathogens of grasses with R. secalis infecting a variety of Poaceae hosts and R. orthosporum infecting Dactylis glomerata. Phylogenetic analyses of multilocus DNA sequence data on R. secalis isolates originating from cultivated barley, rye, triticale and other grasses, including Agropyron spp., Bromus diandrus and Hordeum spp., resolved the monophyletic groups into three species according to their respective hosts. Host specificity according to phylogenetic lineages was confirmed with pathogenicity studies. Because R. secalis was described first on rye this name is retained for Rhynchosporium isolates infecting rye and triticale. Rhynchosporium isolates infecting cultivated barley and other Hordeum spp. and Bromus diandrus belong to a distinct species, R. commune. Similarly isolates infecting Agropyron spp. represent a distinct species of Rhynchosporium, namely R. agropyri. A PCR-RFLP assay was developed as a rapid tool for species identification of R. secalis and R. commune.
Collapse
Affiliation(s)
- Pascal L Zaffarano
- Forest Pathology and Dendrology, Institute of Integrative Biology (IBZ), ETH Zürich, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
49
|
Joly DL, Feau N, Tanguay P, Hamelin RC. Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics 2010; 11:422. [PMID: 20615251 PMCID: PMC2996950 DOI: 10.1186/1471-2164-11-422] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/08/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Obligate biotrophs such as rust fungi are believed to establish long-term relationships by modulating plant defenses through a plethora of effector proteins, whose most recognizable feature is the presence of a signal peptide for secretion. Since the phenotypes of these effectors extend to host cells, their genes are expected to be under accelerated evolution stimulated by host-pathogen coevolutionary arms races. Recently, whole genome sequence data has allowed the prediction of secretomes, facilitating the identification of putative effectors. RESULTS We generated cDNA libraries from four poplar leaf rust pathogens (Melampsora spp.) and used computational approaches to identify and annotate putative secreted proteins with the aim of uncovering new knowledge about the nature and evolution of the rust secretome. While more than half of the predicted secretome members encoded lineage-specific proteins, similarities with experimentally characterized fungal effectors were also identified. A SAGE analysis indicated a strong stage-specific regulation of transcripts encoding secreted proteins. The average sequence identity of putative secreted proteins to their closest orthologs in the wheat stem rust Puccinia graminis f. sp. tritici was dramatically reduced compared with non-secreted ones. A comparative genomics approach based on homologous gene groups unravelled positive selection in putative members of the secretome. CONCLUSION We uncovered robust evidence that different evolutionary constraints are acting on the rust secretome when compared to the rest of the genome. These results are consistent with the view that these genes are more likely to exhibit an effector activity and be involved in coevolutionary arms races with host factors.
Collapse
Affiliation(s)
- David L Joly
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Nicolas Feau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
- Unité Mixte de Recherche 1202, Institut National de la Recherche Agronomique-Université Bordeaux I, Biodiversité, Génes et Communautés (BioGeCo), INRA Bordeaux-Aquitaine, 33612 Cestas Cedex, France
| | - Philippe Tanguay
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Richard C Hamelin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
- Department of Forest Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
50
|
Brunner PC, Keller N, McDonald BA. Wheat domestication accelerated evolution and triggered positive selection in the beta-xylosidase enzyme of Mycosphaerella graminicola. PLoS One 2009; 4:e7884. [PMID: 19924304 PMCID: PMC2774967 DOI: 10.1371/journal.pone.0007884] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/06/2009] [Indexed: 11/28/2022] Open
Abstract
Plant cell wall degrading enzymes (PCWDEs) of plant pathogens are receiving increasing interest for their potential to trigger plant defense reactions. In an antagonistic co-evolutionary arms race between host and pathogen, PCWDEs could be under strong selection. Here, we tested the hypothesis that PCWDEs in the fungal wheat pathogen Mycosphaerella graminicola have been positively selected by analyzing ratios of non-synonymous and synonymous nucleotide changes in the genes encoding these enzymes. Analyses of five PCWDEs demonstrated that one (beta-xylosidase) has been under strong positive selection and experienced an accelerated rate of evolution. In contrast, PCWDEs in the closest relatives of M. graminicola collected from wild grasses did not show evidence for selection or deviation from a molecular clock. Since the genealogical divergence of M. graminicola from these latter species coincided with the onset of agriculture, we hypothesize that the recent domestication of the host plant and/or agricultural practices triggered positive selection in beta-xylosidase and that this enzyme played a key role in the emergence of a host-specialized pathogen.
Collapse
Affiliation(s)
- Patrick C Brunner
- Institute of Integrative Biology, Plant Pathology Group, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|