1
|
Holzknecht J, Marx F. Navigating the fungal battlefield: cysteine-rich antifungal proteins and peptides from Eurotiales. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1451455. [PMID: 39323611 PMCID: PMC11423270 DOI: 10.3389/ffunb.2024.1451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans. Although host immunity opposes invading pathogens, certain factors favor the manifestation of fungal diseases. The prevalence of fungal infections is on the rise, and there is an alarming increase in the resistance of fungal pathogens to approved drugs. The limited number of antimycotics, the obstacles encountered in the development of new drugs due to the poor tolerability of antifungal agents in patients, the limited number of unique antifungal targets, and the low species specificity contribute to the gradual depletion of the antifungal pipeline and newly discovered antifungal drugs are rare. Promising candidates as next-generation therapeutics are antimicrobial proteins and peptides (AMPs) produced by numerous prokaryotic and eukaryotic organisms belonging to all kingdom classes. Importantly, filamentous fungi from the order Eurotiales have been shown to be a rich source of AMPs with specific antifungal activity. A growing number of published studies reflects the efforts made in the search for new antifungal proteins and peptides (AFPs), their efficacy, species specificity and applicability. In this review, we discuss important aspects related to fungi, their impact on our life and issues involved in treating fungal infections in plants, animals and humans. We specifically highlight the potential of AFPs from Eurotiales as promising alternative antifungal therapeutics. This article provides insight into the structural features, mode of action, and progress made toward their potential application in a clinical and agricultural setting. It also identifies the challenges that must be overcome in order to develop AFPs into therapeutics.
Collapse
Affiliation(s)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| |
Collapse
|
2
|
Álvarez M, Andrade MJ, Delgado J, Núñez F, Román ÁC, Rodrigues P. Rosmarinus officinalis reduces the ochratoxin A production by Aspergillus westerdijkiae in a dry-cured fermented sausage-based medium. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Pharmacokinetic profile of sarcin and thionin from Aspergillus giganteus and in vitro validation against human fungal pathogen. Biosci Rep 2022; 42:231624. [PMID: 35924795 PMCID: PMC9469106 DOI: 10.1042/bsr20220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Fungal infections are more predominant in agricultural and clinical fields. Aspergillosis caused by Aspergillus fumigatus leads to respiratory failure in patients along with various illnesses. Due to the limitation of antifungal therapy and antifungal drugs, there is an emergence to develop efficient antifungal compounds (AFCs) from natural sources to cure and prevent fungal infections. The present study deals with the investigation of the mechanism of the active compounds from Aspergillus giganteus against aspergillosis. Primarily, the bioavailability and toxicological properties of antifungal proteins such as, sarcin, thionin, chitinase and their derivatives have proved the efficiency of pharmacokinetic properties of selected compounds. Molecular interactions of selected compounds from A. giganteus with the virulence proteins of A. fumigatus (UDP-N-acetylglucosamine pyrophosphorylase, N-myristoyl transferase and Chitinase) have exhibited a good glide score and druggable nature of the AFCs. The antagonistic potential of AFCs on the pathogen was confirmed by SEM analysis where the shrunken and damaged spores of AFCs treated pathogen were observed. The integrity of A. fumigatus cell membrane and nuclear membrane treated with AFCs were analyzed by determining the release of cellular materials. The effective concentration of AFCs was found to be 250 µg/ml (P<0.0001). The GC-MS profiling has revealed the volatile bioactive metabolites present in A. giganteus. Further, interaction studies might provide more information on the synergism activity with the non-volatile metabolites which leads to the development of novel drugs for the treatment of aspergillosis.
Collapse
|
4
|
Dhandapani K, Sivarajan K, Ravindhiran R, Sekar JN. Fungal Infections as an Uprising Threat to Human Health: Chemosensitization of Fungal Pathogens With AFP From Aspergillus giganteus. Front Cell Infect Microbiol 2022; 12:887971. [PMID: 35694549 PMCID: PMC9174459 DOI: 10.3389/fcimb.2022.887971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Occurrence and intensity of systemic invasive fungal infections have significantly risen in recent decades with large amount of mortality and morbidity rates at global level. Treatment therapy lies on the current antifungal interventions and are often limited due to the emergence of resistance to antifungal agents. Chemosensitization of fungal strains to the conventional antimycotic drugs are of growing concern. Current antifungal drugs often have been reported with poor activity and side effects to the host and have a few number of targets to manifest their efficacy on the pathogens. Indiscriminately, the aforementioned issues have been easily resolved by the development of new intervention strategies. One such approach is to employ combinational therapy that has exhibited a great level of inhibitions than that of a single compound. Chemosensitization of pathogenic mycoses to commercial antifungal drugs could be drastically enhanced by co-application of chemosensitizers along with the conventional drugs. Chemosensitizers could address the resistance mechanisms evolved in the pathogenic fungi and targeting the system to make the organism susceptible to commercially and clinically proven antifungal drugs. However, this strategy has not been overreached to the greater level, but it needs much attention to fight against not only with the pathogen but combat the resistance mechanisms of pathogens to drugs. Natural compounds including plant compounds and microbial proteins act as potential chemosensitizers to break the resistance in mycoses. Aspergillus giganteus, a filamentous fungus, is known to produce a cysteine rich extracellular protein called as antifungal protein (AFP). AFP has shown enhanced efficacy against several filamentous and non-filamentous fungal pathogens. On the basis of the reported studies on its targeted potential against pathogenic mycoses, AFP would be fabricated as a good chemosensitizer to augment the fungicidal efficacy of commercial antimycotic drugs. This paper reviews on breakthrough in the discovery of antifungal drugs along with the resistance patterns of mycoses to commercial drugs followed by the current intervention strategies applied to augment the fungicidal potential of drugs.
Collapse
|
5
|
Tóth L, Poór P, Ördög A, Váradi G, Farkas A, Papp C, Bende G, Tóth GK, Rákhely G, Marx F, Galgóczy L. The combination of Neosartorya ( Aspergillus) fischeri antifungal proteins with rationally designed γ-core peptide derivatives is effective for plant and crop protection. BIOCONTROL (DORDRECHT, NETHERLANDS) 2022; 67:249-262. [PMID: 35463117 PMCID: PMC8993730 DOI: 10.1007/s10526-022-10132-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
UNLABELLED Plant pathogenic fungi are responsible for enormous crop losses worldwide. Overcoming this problem is challenging as these fungi can be highly resistant to approved chemical fungicides. There is thus a need to develop and introduce fundamentally new plant and crop protection strategies for sustainable agricultural production. Highly stable extracellular antifungal proteins (AFPs) and their rationally designed peptide derivatives (PDs) constitute feasible options to meet this challenge. In the present study, their potential for topical application to protect plants and crops as combinatorial biofungicides is supported by the investigation of two Neosartorya (Aspergillus) fischeri AFPs (NFAP and NFAP2) and their γ-core PDs. Previously, the biofungicidal potential of NFAP, its rationally designed γ-core PD (γNFAP-opt), and NFAP2 was reported. Susceptibility tests in the present study extended the in vitro antifungal spectrum of NFAP2 and its γ-core PD (γNFAP2-opt) to Botrytis, Cladosporium, and Fusarium spp. Besides, in vitro additive or indifferent interactions, and synergism were observed when NFAP or NFAP2 was applied in combination with γNFAP-opt. Except for γNFAP2-opt, the investigated proteins and peptides did not show any toxicity to tomato plant leaves. The application of NFAP in combination with γNFAP-opt effectively inhibited conidial germination, biofilm formation, and hyphal extension of the necrotrophic mold Botrytis cinerea on tomato plant leaves. However, the same combination only partially impeded the B. cinerea-mediated decay of tomato fruits, but mitigated the symptoms. Our results highlight the feasibility of using the combination of AFP and PD as biofungicide for the fungal infection control in plants and crops. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10526-022-10132-y.
Collapse
Affiliation(s)
- Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, 6726 Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Gábor Bende
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Florentine Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, 6726 Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
6
|
Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyanobacteria, also called blue-green algae, are a group of prokaryotic microorganisms largely distributed in both terrestrial and aquatic environments. They produce a wide range of bioactive compounds that are mostly used in cosmetics, animal feed and human food, nutraceutical and pharmaceutical industries, and the production of biofuels. Nowadays, the research concerning the use of cyanobacteria in agriculture has pointed out their potential as biofertilizers and as a source of bioactive compounds, such as phycobiliproteins, for plant pathogen control and as inducers of plant systemic resistance. The use of alternative products in place of synthetic ones for plant disease control is also encouraged by European Directive 2009/128/EC. The present up-to-date review gives an overall view of the recent results on the use of cyanobacteria for both their bioprotective effect against fungal and oomycete phytopathogens and their plant biostimulant properties. We highlight the need for considering several factors for a proper and sustainable management of agricultural crops, ranging from the mechanisms by which cyanobacteria reduce plant diseases and modulate plant resistance to the enhancement of plant growth.
Collapse
|
7
|
Citores L, Valletta M, Singh VP, Pedone PV, Iglesias R, Ferreras JM, Chambery A, Russo R. Deciphering Molecular Determinants Underlying Penicillium digitatum's Response to Biological and Chemical Antifungal Agents by Tandem Mass Tag (TMT)-Based High-Resolution LC-MS/MS. Int J Mol Sci 2022; 23:680. [PMID: 35054864 PMCID: PMC8775614 DOI: 10.3390/ijms23020680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection and proliferation of fungicide-resistant strains require more efforts to explore new alternatives acting via new or unexplored mechanisms for postharvest disease management. To date, several non-chemical compounds have been investigated for the control of fungal pathogens. In this scenario, understanding the molecular determinants underlying P. digitatum's response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods. In this work, a proteomic approach based on isobaric labelling and a nanoLC tandem mass spectrometry approach was used to investigate molecular changes associated with P. digitatum's response to treatments with α-sarcin and beetin 27 (BE27), two proteins endowed with antifungal activity. The outcomes of treatments with these biological agents were then compared with those triggered by the commonly used chemical fungicide thiabendazole (TBZ). Our results showed that differentially expressed proteins mainly include cell wall-degrading enzymes, proteins involved in stress response, antioxidant and detoxification mechanisms and metabolic processes such as thiamine biosynthesis. Interestingly, specific modulations in response to protein toxins treatments were observed for a subset of proteins. Deciphering the inhibitory mechanisms of biofungicides and chemical compounds, together with understanding their effects on the fungal physiology, will provide a new direction for improving the efficacy of novel antifungal formulations and developing new control strategies.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Vikram Pratap Singh
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - José Miguel Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (M.V.); (V.P.S.); (P.V.P.)
| |
Collapse
|
8
|
Murali M, Naziya B, Ansari MA, Alomary MN, AlYahya S, Almatroudi A, Thriveni MC, Gowtham HG, Singh SB, Aiyaz M, Kalegowda N, Lakshmidevi N, Amruthesh KN. Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture. J Fungi (Basel) 2021; 7:314. [PMID: 33919629 PMCID: PMC8072672 DOI: 10.3390/jof7040314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023] Open
Abstract
Rhizosphere-resident fungi that are helpful to plants are generally termed as 'plant growth promoting fungi' (PGPF). These fungi are one of the chief sources of the biotic inducers known to give their host plants numerous advantages, and they play a vital role in sustainable agriculture. Today's biggest challenge is to satisfy the rising demand for crop protection and crop yield without harming the natural ecosystem. Nowadays, PGPF has become an eco-friendly way to improve crop yield by enhancing seed germination, shoot and root growth, chlorophyll production, and fruit yield, etc., either directly or indirectly. The mode of action of these PGPF includes the solubilization and mineralization of the essential micro- and macronutrients needed by plants to regulate the balance for various plant processes. PGPF produce defense-related enzymes, defensive/volatile compounds, and phytohormones that control pathogenic microbes' growth, thereby assisting the plants in facing various biotic and abiotic stresses. Therefore, this review presents a holistic view of PGPF as efficient natural biofertilizers to improve crop plants' growth and resistance.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| | - Banu Naziya
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh P.O. Box 6086, Saudi Arabia; (M.N.A.); (S.A.)
| | - Sami AlYahya
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh P.O. Box 6086, Saudi Arabia; (M.N.A.); (S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | | | - Sudarshana Brijesh Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (S.B.S.); (M.A.)
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (S.B.S.); (M.A.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| |
Collapse
|
9
|
Preliminary Study on the Activity of Phycobiliproteins against Botrytis cinerea. Mar Drugs 2020; 18:md18120600. [PMID: 33260719 PMCID: PMC7759837 DOI: 10.3390/md18120600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
Phycobiliproteins (PBPs) are proteins of cyanobacteria and some algae such as rhodophytes. They have antimicrobial, antiviral, antitumor, antioxidative, and anti-inflammatory activity at the human level, but there is a lack of knowledge on their antifungal activity against plant pathogens. We studied the activity of PBPs extracted from Arthrospiraplatensis and Hydropuntiacornea against Botrytiscinerea, one of the most important worldwide plant-pathogenic fungi. PBPs were characterized by using FT-IR and FT-Raman in order to investigate their structures. Their spectra differed in the relative composition in the amide bands, which were particularly strong in A. platensis. PBP activity was tested on tomato fruits against gray mold disease, fungal growth, and spore germination at different concentrations (0.3, 0.6, 1.2, 2.4, and 4.8 mg/mL). Both PBPs reduced fruit gray mold disease. A linear dose–response relationship was observed for both PBPs against disease incidence and H. cornea against disease severity. Pathogen mycelial growth and spore germination were reduced significantly by both PBPs. In conclusion, PBPs have the potential for being also considered as natural compounds for the control of fungal plant pathogens in sustainable agriculture.
Collapse
|
10
|
Tóth L, Boros É, Poór P, Ördög A, Kele Z, Váradi G, Holzknecht J, Bratschun‐Khan D, Nagy I, Tóth GK, Rákhely G, Marx F, Galgóczy L. The potential use of the Penicillium chrysogenum antifungal protein PAF, the designed variant PAF opt and its γ-core peptide Pγ opt in plant protection. Microb Biotechnol 2020; 13:1403-1414. [PMID: 32207883 PMCID: PMC7415367 DOI: 10.1111/1751-7915.13559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
The prevention of enormous crop losses caused by pesticide-resistant fungi is a serious challenge in agriculture. Application of alternative fungicides, such as antifungal proteins and peptides, provides a promising basis to overcome this problem; however, their direct use in fields suffers limitations, such as high cost of production, low stability, narrow antifungal spectrum and toxicity on plant or mammalian cells. Recently, we demonstrated that a Penicillium chrysogenum-based expression system provides a feasible tool for economic production of P. chrysogenum antifungal protein (PAF) and a rational designed variant (PAFopt ), in which the evolutionary conserved γ-core motif was modified to increase antifungal activity. In the present study, we report for the first time that γ-core modulation influences the antifungal spectrum and efficacy of PAF against important plant pathogenic ascomycetes, and the synthetic γ-core peptide Pγopt , a derivative of PAFopt , is antifungal active against these pathogens in vitro. Finally, we proved the protective potential of PAF against Botrytis cinerea infection in tomato plant leaves. The lack of any toxic effects on mammalian cells and plant seedlings, as well as the high tolerance to harsh environmental conditions and proteolytic degradation further strengthen our concept for applicability of these proteins and peptide in agriculture.
Collapse
Affiliation(s)
- Liliána Tóth
- Institute of Plant BiologyBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Éva Boros
- Institute of BiochemistryBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Péter Poór
- Department of Plant BiologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
| | - Attila Ördög
- Department of Plant BiologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
| | - Zoltán Kele
- Department of Medical ChemistryFaculty of MedicineUniversity of SzegedDóm tér 8H‐6720SzegedHungary
| | - Györgyi Váradi
- Department of Medical ChemistryFaculty of MedicineUniversity of SzegedDóm tér 8H‐6720SzegedHungary
| | - Jeanett Holzknecht
- Institute of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80‐82A‐6020InnsbruckAustria
| | - Doris Bratschun‐Khan
- Institute of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80‐82A‐6020InnsbruckAustria
| | - István Nagy
- Institute of BiochemistryBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Gábor K. Tóth
- Department of Medical ChemistryFaculty of MedicineUniversity of SzegedDóm tér 8H‐6720SzegedHungary
- MTA‐SZTE Biomimetic Systems Research GroupUniversity of SzegedDóm tér 8H‐6720SzegedHungary
| | - Gábor Rákhely
- Department of BiotechnologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
- Institute of BiophysicsBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Florentine Marx
- Institute of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80‐82A‐6020InnsbruckAustria
| | - László Galgóczy
- Institute of Plant BiologyBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
- Department of BiotechnologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
| |
Collapse
|
11
|
Tóth L, Váradi G, Boros É, Borics A, Ficze H, Nagy I, Tóth GK, Rákhely G, Marx F, Galgóczy L. Biofungicidal Potential of Neosartorya ( Aspergillus) Fischeri Antifungal Protein NFAP and Novel Synthetic γ-Core Peptides. Front Microbiol 2020; 11:820. [PMID: 32477291 PMCID: PMC7237641 DOI: 10.3389/fmicb.2020.00820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Because of enormous crop losses worldwide due to pesticide-resistant plant pathogenic fungi, there is an increasing demand for the development of novel antifungal strategies in agriculture. Antifungal proteins (APs) and peptides are considered potential biofungicides; however, several factors limit their direct agricultural application, such as the high cost of production, narrow antifungal spectrum, and detrimental effects to plant development and human/animal health. This study evaluated the safety of the application of APs and peptides from the ascomycete Neosartorya fischeri as crop preservatives. The full-length N. fischeri AP (NFAP) and novel rationally designed γ-core peptide derivatives (PDs) γNFAP-opt and γNFAP-optGZ exhibited efficacy by inhibiting the growth of the agriculturally relevant filamentous ascomycetes in vitro. A high positive net charge, however, neither the hydrophilicity nor the primary structure supported the antifungal efficacy of these PDs. Further testing demonstrated that the antifungal activity did not require a conformational change of the β-pleated NFAP or the canonically ordered conformation of the synthetic PDs. Neither hemolysis nor cytotoxicity was observed when the NFAP and γNFAP-opt were applied at antifungally effective concentrations in human cell lines. Similarly, the Medicago truncatula plants that served as toxicity model and were grown from seedlings that were treated with NFAP, γNFAP-opt, or γNFAP-optGZ failed to exhibit morphological aberrations, reduction in primary root length, or the number of lateral roots. Crop protection experiments demonstrated that NFAP and associated antifungal active γ-core PDs were able to protect tomato fruits against the postharvest fungal pathogen Cladosporium herbarum.
Collapse
Affiliation(s)
- Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Éva Boros
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hargita Ficze
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Florentine Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Microbial disease management in agriculture: Current status and future prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Delgado J, Núñez F, Asensio MA, Owens RA. Quantitative proteomic profiling of ochratoxin A repression in Penicillium nordicum by protective cultures. Int J Food Microbiol 2019; 305:108243. [DOI: 10.1016/j.ijfoodmicro.2019.108243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
14
|
L'Enfant M, Kutudila P, Rayon C, Domon JM, Shin WH, Kihara D, Wadouachi A, Pelloux J, Pourceau G, Pau-Roblot C. Lactose derivatives as potential inhibitors of pectin methylesterases. Int J Biol Macromol 2019; 132:1140-1146. [DOI: 10.1016/j.ijbiomac.2019.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/01/2023]
|
15
|
Popa C, Shi X, Ruiz T, Ferrer P, Coca M. Biotechnological Production of the Cell Penetrating Antifungal PAF102 Peptide in Pichia pastoris. Front Microbiol 2019; 10:1472. [PMID: 31316491 PMCID: PMC6610294 DOI: 10.3389/fmicb.2019.01472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) have potent and durable antimicrobial activity to a wide range of fungi and bacteria. The growing problem of drug-resistant pathogenic microorganisms, together with the lack of new effective compounds, has stimulated interest in developing AMPs as anti-infective molecules. PAF102 is an AMP that was rationally designed for improved antifungal properties. This cell penetrating peptide has potent and specific activity against major fungal pathogens. Cecropin A is a natural AMP with strong and fast lytic activity against bacterial and fungal pathogens, including multidrug resistant pathogens. Both peptides, PAF102 and Cecropin A, are alternative antibiotic compounds. However, their exploitation requires fast, cost-efficient production systems. Here, we developed an innovative system to produce AMPs in Pichia pastoris using the oleosin fusion technology. Oleosins are plant-specific proteins with a structural role in lipid droplet formation and stabilization, which are used as carriers for recombinant proteins to lipid droplets in plant-based production systems. This study reports the efficient production of PAF102 in P. pastoris when fused to the rice plant Oleosin 18, whereas no accumulation of Cecropin A was detected. The Ole18-PAF102 fusion protein targets the lipid droplets of the heterologous system where it accumulates to high levels. Interestingly, the production of this fusion protein induces the formation of lipid droplets in yeast cells, which can be additionally enhanced by the coexpression of a diacylglycerol transferase gene that allows a three-fold increase in the production of the fusion protein. Using this high producer strain, PAF102 reaches commercially relevant yields of up to 180 mg/l of yeast culture. Moreover, the accumulation of PAF102 in the yeast lipid droplets facilitates its downstream extraction and recovery by flotation on density gradients, with the recovered PAF102 being biologically active against pathogenic fungi. Our results demonstrate that plant oleosin fusion technology can be transferred to the well-established P. pastoris cell factory to produce the PAF102 antifungal peptide, and potentially other AMPs, for multiple applications in crop protection, food preservation and animal and human therapies.
Collapse
Affiliation(s)
- Crina Popa
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Tarik Ruiz
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| |
Collapse
|
16
|
Galgóczy L, Marx F. Do Antimicrobial Proteins Contribute to Overcoming the Hidden Antifungal Crisis at the Dawn of a Post-Antibiotic Era? Microorganisms 2019; 7:16. [PMID: 30641886 PMCID: PMC6352135 DOI: 10.3390/microorganisms7010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of fungal infections has been grossly underestimated in the past decades as a consequence of poor identification techniques and a lack of regular epidemiologic surveys in low- and middle-income countries [...].
Collapse
Affiliation(s)
- László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
17
|
Garrigues S, Gandía M, Castillo L, Coca M, Marx F, Marcos JF, Manzanares P. Three Antifungal Proteins From Penicillium expansum: Different Patterns of Production and Antifungal Activity. Front Microbiol 2018; 9:2370. [PMID: 30344516 PMCID: PMC6182064 DOI: 10.3389/fmicb.2018.02370] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Antifungal proteins of fungal origin (AFPs) are small, secreted, cationic, and cysteine-rich proteins. Filamentous fungi encode a wide repertoire of AFPs belonging to different phylogenetic classes, which offer a great potential to develop new antifungals for the control of pathogenic fungi. The fungus Penicillium expansum is one of the few reported to encode three AFPs each belonging to a different phylogenetic class (A, B, and C). In this work, the production of the putative AFPs from P. expansum was evaluated, but only the representative of class A, PeAfpA, was identified in culture supernatants of the native fungus. The biotechnological production of PeAfpB and PeAfpC was achieved in Penicillium chrysogenum with the P. chrysogenum-based expression cassette, which had been proved to work efficiently for the production of other related AFPs in filamentous fungi. Western blot analyses confirmed that P. expansum only produces PeAfpA naturally, whereas PeAfpB and PeAfpC could not be detected. From the three AFPs from P. expansum, PeAfpA showed the highest antifungal activity against all fungi tested, including plant and human pathogens. P. expansum was also sensitive to its self-AFPs PeAfpA and PeAfpB. PeAfpB showed moderate antifungal activity against filamentous fungi, whereas no activity could be attributed to PeAfpC at the conditions tested. Importantly, none of the PeAFPs showed hemolytic activity. Finally, PeAfpA was demonstrated to efficiently protect against fungal infections caused by Botrytis cinerea in tomato leaves and Penicillium digitatum in oranges. The strong antifungal potency of PeAfpA, together with the lack of cytotoxicity, and significant in vivo protection against phytopathogenic fungi that cause postharvest decay and plant diseases, make PeAfpA a promising alternative compound for application in agriculture, but also in medicine or food preservation.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Mónica Gandía
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Jose F. Marcos
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Paloma Manzanares
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
18
|
Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. Int J Food Microbiol 2018; 283:45-51. [DOI: 10.1016/j.ijfoodmicro.2018.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023]
|
19
|
Citores L, Iglesias R, Ragucci S, Di Maro A, Ferreras JM. Antifungal Activity of α-Sarcin against Penicillium digitatum: Proposal of a New Role for Fungal Ribotoxins. ACS Chem Biol 2018; 13:1978-1982. [PMID: 29952541 DOI: 10.1021/acschembio.8b00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the putative defense proteins that occur in fungi, one of the best studied is α-sarcin, produced by the mold Aspergillus giganteus. This protein is the most significant member of the ribotoxin family, which consists of extracellular rRNA ribonucleases that display cytotoxic activity toward animal cells. Ribotoxins are rRNA endonucleases that catalyze the hydrolysis of the phosphodiester bond between G4325 and A4326 from the rat 28S rRNA. The results of several experimental approaches have led to propose ribotoxins as insecticidal agents. In this work, we report that α-sarcin displays a strong antifungal activity against Penicillium digitatum, being able to enter into the cytosol where it inactivates the ribosomes, thus killing the cells and arresting the growth of the fungus. This is the first time that a ribotoxin has been found to display antifungal activity. Therefore, this protein could play, besides the already proposed insecticidal function, a role in nature as an antifungal agent.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, I-81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, I-81100 Caserta, Italy
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| |
Collapse
|
20
|
Bertóti R, Vasas G, Gonda S, Nguyen NM, Szőke É, Jakab Á, Pócsi I, Emri T. Glutathione protects Candida albicans against horseradish volatile oil. J Basic Microbiol 2016; 56:1071-1079. [PMID: 27272511 DOI: 10.1002/jobm.201600082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 01/21/2023]
Abstract
Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates.
Collapse
Affiliation(s)
- Regina Bertóti
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Gábor Vasas
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | | | - Éva Szőke
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary.
| | - Ágnes Jakab
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP. Appl Microbiol Biotechnol 2015; 100:371-83. [DOI: 10.1007/s00253-015-7020-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/23/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
|
22
|
Jakab Á, Emri T, Sipos L, Kiss Á, Kovács R, Dombrádi V, Kemény-Beke Á, Balla J, Majoros L, Pócsi I. Betamethasone augments the antifungal effect of menadione--towards a novel anti-Candida albicans combination therapy. J Basic Microbiol 2015; 55:973-81. [PMID: 25707543 DOI: 10.1002/jobm.201400903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022]
Abstract
The fluorinated glucocorticoid betamethasone stimulated both the extracellular phospholipase production and hypha formation of the opportunistic human pathogen Candida albicans and also decreased the efficiency of the polyene antimycotics amphotericin B and nystatin against C. albicans in a dose-dependent manner. Importantly, betamethasone increased synergistically the anti-Candida activity of the oxidative stress generating agent menadione, which may be exploited in future combination therapies to prevent or cure C. albicans infections, in the field of dermatology.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Lilla Sipos
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ágnes Kiss
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Kemény-Beke
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Puig M, Moragrega C, Ruz L, Montesinos E, Llorente I. Postinfection Activity of Synthetic Antimicrobial Peptides Against Stemphylium vesicarium in Pear. PHYTOPATHOLOGY 2014; 104:1192-200. [PMID: 24875384 DOI: 10.1094/phyto-02-14-0036-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brown spot of pear is a fungal disease of economic importance caused by Stemphylium vesicarium that affects the pear crops in Europe. Due to the characteristics of this disease and the moderate efficacy of available fungicides, the effectiveness of control measures is very limited; however, synthetic antimicrobial peptides (AMPs) may be a complement to these fungicides. In the present study, 12 AMPs of the CECMEL11 library were screened for fungicidal activity against S. vesicarium. In vitro experiments showed that eight AMPs significantly reduced the germination of conidia. The most effective peptides, BP15, BP22, and BP25, reduced fungal growth and sporulation at concentrations below 50 μM. Leaf assays showed that preventive application of BP15 and BP22 did not reduce infection; however, when the peptides were applied curatively, infection was significantly reduced. The use of a BP15 fluorescein 5-isothiocyanate conjugate revealed that the peptide binds to hyphae and germ tubes and produces malformations that irreversibly stop their development.
Collapse
|
24
|
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol 2014; 5:97. [PMID: 24688483 PMCID: PMC3960590 DOI: 10.3389/fmicb.2014.00097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023] Open
Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
25
|
Virágh M, Vörös D, Kele Z, Kovács L, Fizil Á, Lakatos G, Maróti G, Batta G, Vágvölgyi C, Galgóczy L. Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expr Purif 2014; 94:79-84. [PMID: 24269762 DOI: 10.1016/j.pep.2013.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
Neosartorya fischeri NRRL 181 isolate secretes a defensin-like antifungal protein (NFAP) which has a remarkable antifungal effect against ascomycetous filamentous fungi. This protein is a promising antifungal agent of biotechnological value; however in spite of the available knowledge of the nature of its 5'-upstream transcriptional regulation elements, the bulk production of NFAP has not been resolved yet. In this study we carried out its heterologous expression in the yeast Pichia pastoris and investigated the growth inhibition effect exerted by the heterologous NFAP (hNFAP) on filamentous fungal isolates from human infections compared with what was caused by the native NFAP. P. pastoris KM71H transformant strain harboring the pPICZαA plasmid with the mature NFAP encoding gene produced the protein. The final yield of the hNFAP was sixfold compared to the NFAP produced by N. fischeri NRRL 181. Based on the signal dispersion of the amide region, it was proven that the hNFAP exists in folded state. The purified hNFAP effectively inhibited the growth of fungal isolates belonging to the Aspergillus and to the Fusarium genus, but all investigated zygomycetous strain proved to be insusceptible. There was no significant difference between the growth inhibition effect exerted by the native and the heterologous NFAP. These data indicated that P. pastoris KM71H can produce the NFAP in an antifungally active folded state. Our results provide a base for further research, e.g., investigation the connection between the protein structure and the antifungal activity using site directed mutagenesis.
Collapse
Affiliation(s)
- Máté Virágh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
| | - Dóra Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary
| | - Laura Kovács
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
| | - Ádám Fizil
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Gergely Lakatos
- Institute of Biochemistry, Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Gergely Maróti
- Institute of Biochemistry, Hungarian Academy of Sciences, Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
| | - László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| |
Collapse
|
26
|
Galgóczy L, Virágh M, Kovács L, Tóth B, Papp T, Vágvölgyi C. Antifungal peptides homologous to the Penicillium chrysogenum antifungal protein (PAF) are widespread among Fusaria. Peptides 2013; 39:131-137. [PMID: 23174348 DOI: 10.1016/j.peptides.2012.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 02/07/2023]
Abstract
Putative antifungal peptide encoding genes containing Penicillium chrysogenum antifungal protein (PAF) characteristic amino acid motifs were identified in 15 Fusarium isolates, representing 10 species. Based on the predicted sequences of mature peptides, discrepancy in one, two or three amino acids was observed between them. Phylogenetic investigations revealed that they show high amino acid sequence similarity to PAF and they belong to the group of fungal derived antifungal peptides with PAF-cluster. Ten from the 15 partially purified <10 kDa peptide fraction of Fusarium ferment broths showed antifungal activity. The presence of approximately 6.3 kDa molecular weight peptides was detected in all of the antifungally active ferment broths, and this peptide was isolated and purified from Fusarium polyphilaidicum. The minimal inhibitiory concentrations of F. polyphilaidicum antifungal protein (FPAP) were determined against different filamentous fungi, yeasts and bacteria. Filamentous fungal species were the most susceptible to FPAF, but some yeasts were also slightly sensitive.
Collapse
Affiliation(s)
- László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
27
|
Galgóczy L, Tóth L, Virágh M, Papp T, Vágvölgyi CS. In vitro interactions of amantadine hydrochloride, R-(-)-deprenyl hydrochloride and valproic acid sodium salt with antifungal agents against filamentous fungal species causing central nervous system infection. ACTA BIOLOGICA HUNGARICA 2012; 63:490-500. [PMID: 23134606 DOI: 10.1556/abiol.63.2012.4.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mortality rates of fungal infections that affect the central nervous system are high in consequence of the absence of effective antifungal drugs with good penetration across the blood-brain barrier and the blood-cerebrospinal fluid barrier. In the present work in vitro antifungal activities of three good penetrating non-antifungal drugs (amantadine hydrochloride, R-(-)-deprenyl hydrochloride, valproic acid sodium salt) and their combinations with three antifungal agents (amphotericin B, itraconazole, terbinafine) were tested with broth microdilution method against eight fungal isolates belonging to Zygomycetes (Lichtheimia corymbifera, Rhizomucor miehei, Rhizopus microsporus var. rhizopodiformis, Saksenaeavasiformis) and Aspergillus genus (A. flavus, A. fumigatus, A. nidulans, A. terreus). These are known to be possible agents of central nervous fungal infections (CNFI). When used alone, the investigated nonantifungal drugs exerted slight antifungal effects. In their combinations with antifungal agents they acted antagonistically, additively and synergistically against zygomyceteous isolates. Primarily antagonistic interactions were revealed between the investigated drugs in case of Aspergilli, but additive and synergistic interactions were also observed. The additive and synergistic combinations allowed the usage of reduced concentrations of antifungal agents to inhibit the fungal growth in our study. These combinations would be a basis of an effective, less toxic therapy for treatment of CNFI.
Collapse
Affiliation(s)
- L Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | | | | | | | | |
Collapse
|
28
|
Tóth V, Nagy CT, Pócsi I, Emri T. The echinocandin B producer fungus Aspergillus nidulans var. roseus ATCC 58397 does not possess innate resistance against its lipopeptide antimycotic. Appl Microbiol Biotechnol 2012; 95:113-22. [PMID: 22555909 DOI: 10.1007/s00253-012-4027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/01/2022]
Abstract
Aspergillus nidulans var. roseus ATCC 58397 is an echinocandin B (ECB) producer ascomycete with great industrial importance. As demonstrated by ECB/caspofungin sensitivity assays, A. nidulans var. roseus does not possess any inherent resistance to echinocandins, and its tolerance to these lipopeptide antimycotics are even lower than those of the non-producer A. nidulans FGSC A4 strain. Under ECB producing conditions or ECB exposures, A. nidulans var. roseus induced its ECB tolerance via up-regulating elements of the chitin biosynthetic machinery and, hence, through changing dynamically the composition of its own cell wall. Importantly, although the specific β-1,3-glucan synthase activity was elevated, these changes reduced the β-glucan content of hyphae considerably, but the expression of fksA, encoding the catalytic subunit of β-1,3-glucan synthase, the putative target of echinocandins in the aspergilli, was not affected. These data suggest that compensatory chitin biosynthesis is the centerpiece of the induced ECB tolerance of A. nidulans var. roseus. It is important to note that the induced tolerance to ECB (although resulted in paradoxical growth at higher ECB concentrations) was accompanied with reduced growth rate and, under certain conditions, even sensitized the fungus to other stress-generating agents like SDS. We hypothesize that although ECB-resistant mutants may arise in vivo in A. nidulans var. roseus cultures, their widespread propagation is severely restricted by the disadvantageous physiological effects of such mutations.
Collapse
Affiliation(s)
- Viktória Tóth
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | | | | | | |
Collapse
|
29
|
Zhao J, Guo L, Zeng H, Yang X, Yuan J, Shi H, Xiong Y, Chen M, Han L, Qiu D. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 2012; 33:206-11. [PMID: 22244810 DOI: 10.1016/j.peptides.2012.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 01/02/2012] [Accepted: 01/02/2012] [Indexed: 11/25/2022]
Abstract
A novel antimicrobial peptide, with molecular mass of 1602.0469Da, produced by Brevibacillus laterosporus strain A60 was isolated and purified from the soil of mango plants. The purification procedure consisted of ammonium sulfate precipitation, cation exchange chromatography on an HiTrap SP HP column, thin layer chromatography and High Performance Liquid Chromatography (HPLC) on C18 reversed-phase column. After the four isolation procedures, one peptide with antimicrobial activity was obtained and named BL-A60. The determination of the complete amino acid sequences of this peptide showed that it contains eleven amino acid residues, L-Y-K-L-V-K-V-V-L-N-M, and a choline connected to the N-terminal and a tenuazonic acid modified of the C-terminal. This peptide shows relatively low identification to other antimicrobial peptides from bacteria. Purified BL-A60 showed high pH and thermal stability and a strong inhibition of different stages of the life cycle of Phytophthora capsici, including mycelial growth, sporangia formation and cystospore germination, with EC(50) values of 7.89, 0.60 and 21.96 μg ml(-1), respectively.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 12 Zhongguancun South Street, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Galgóczy L, Bácsi A, Homa M, Virágh M, Papp T, Vágvölgyi C. In vitro antifungal activity of phenothiazines and their combination with amphotericin B against different Candida species. Mycoses 2011; 54:e737-e743. [PMID: 21605196 DOI: 10.1111/j.1439-0507.2010.02010.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candidiosis is a mycosis that is currently increasingly affecting the population in consequence of its frequency and the severity of its complications, especially among immunocompromised hosts. In this work, the in vitro anticandidal activities of two phenothiazines (PTZs), chlorpromazine (CPZ) and trifluoperazine (TFP), and their combinations with amphotericin B (AMB) were tested against 12 different Candida strains representing 12 species (Candida albicans, Candida glabrata, Candida guillermondii, Candida inconspicua, Candida krusei, Candida lusitaniae, Candida lypolitica, Candida norvegica, Candida parapsilosis, Candida pulcherrima, Candida tropicalis and Candida zeylanoides). When used alone, both tested PTZs exerted antifungal effects against these strains. In their combinations, these PTZs and AMB mainly acted antagonistically at higher concentrations, but additively and synergistically at lower concentrations as concerns the clinically most important species (C. albicans and C. parapsilosis). For C. albicans, only synergistic interactions were revealed between CPZ and AMB. Synergistic, additive or no interactions were demonstrated between the investigated compounds for the most PTZ-susceptible (C. glabrata to TFP and C. krusei to CPZ) and insusceptible strains (C. glabrata to CPZ and C. lypolitica to TFP).
Collapse
Affiliation(s)
- László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
31
|
Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi C, Galgóczy L. Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 2011; 32:1724-1731. [PMID: 21741420 DOI: 10.1016/j.peptides.2011.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 11/16/2022]
Abstract
A novel 6.6 kDa antifungal peptide (NFAP) from the culture supernatant of the mold, Neosartorya fischeri (anamorf: Aspergillus fischerianus), and its encoding gene were isolated in this study. NFAP is a small, basic and cysteine-rich protein consisting of 57 amino acid residues. It shows 37.9-50% homology to similar proteins described in literature from Aspergillus clavatus, Aspergillus giganteus, Aspergillus niger, and Penicillium chrysogenum. The in silico presumed tertiary structure of NFAP, e.g. the presence of five antiparallel β-sheet connected with filaments, and stabilized by three disulfide bridges, is very similar to those of the defensin-like molecules. NFAP exhibited growth inhibitory action against filamentous fungi in a dose-dependent manner, and maintained high antifungal activity within broad pH and temperature ranges. Furthermore, it exhibited relevant resistance to proteolysis. All these characteristics make NFAP a promising candidate for further in vitro and in vivo investigations aiming at the development of new antifungal compounds.
Collapse
Affiliation(s)
- Laura Kovács
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
32
|
Hegedus N, Leiter E, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pócsi I. The small molecular mass antifungal protein of Penicillium chrysogenum--a mechanism of action oriented review. J Basic Microbiol 2011; 51:561-71. [PMID: 21780144 DOI: 10.1002/jobm.201100041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/02/2011] [Indexed: 12/16/2022]
Abstract
The β-lactam producing filamentous fungus Penicillium chrysogenum secretes a 6.25 kDa small molecular mass antifungal protein, PAF, which has a highly stable, compact 3D structure and is effective against a wide spectrum of plant and zoo pathogenic fungi. Its precise physiological functions and mode of action need to be elucidated before considering possible biomedical, agricultural or food technological applications. According to some more recent experimental data, PAF plays an important role in the fine-tuning of conidiogenesis in Penicillium chrysogenum. PAF triggers apoptotic cell death in sensitive fungi, and cell death signaling may be transmitted through two-component systems, heterotrimeric G protein coupled signal transduction and regulatory networks as well as via alteration of the Ca(2+) -homeostasis of the cells. Possible biotechnological applications of PAF are also outlined in the review.
Collapse
Affiliation(s)
- Nikoletta Hegedus
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tserennadmid R, Takó M, Galgóczy L, Papp T, Vágvölgyi C, Gerő L, Krisch J. Antibacterial effect of essential oils and interaction with food components. Open Life Sci 2010; 5:641-648. [DOI: 10.2478/s11535-010-0058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The antibacterial effect of essential oils (EOs) derived from Citrus lemon, Juniperus communis, Origanum majorana, and Salvia sclarea, was investigated either alone or in combination, on 2 food related bacteria (Bacillus cereus and Escherichia coli). The influence of food ingredients — hydrolyzed proteins originating from animal and plant (meat extract and soy peptone) and sucrose — on the antibacterial effect of EOs was also tested. The most effective antibacterial activities were obtained with marjoram and clary sage oil, alone and in combination. High concentration of meat extract protected the bacteria from the growth inhibiting effect of marjoram oil, while soy peptone had no such effect. Sucrose intensified the lag phase lengthening by marjoram oil in a dose-independent manner.
Collapse
Affiliation(s)
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - László Gerő
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Hungary
| | - Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6725, Szeged, Hungary
| |
Collapse
|
34
|
Galgóczy L, Lukács G, Nyilasi I, Papp T, Vágvölgyi C. Antifungal activity of statins and their interaction with amphotericin B against clinically important Zygomycetes. ACTA BIOLOGICA HUNGARICA 2010; 61:356-365. [PMID: 20724281 DOI: 10.1556/abiol.61.2010.3.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The in vitro antifungal activity of different statins and the combinations of the two most effective ones (fluvastatin and rosuvastatin) with amphotericin B were investigated in this study on 6 fungal isolates representing 4 clinically important genera, namely Absidia, Rhizomucor, Rhizopus and Syncephalastrum . The antifungal effects of statins revealed substantial differences. The synthetic statins proved to be more effective than the fungal metabolites. All investigated strains proved to be sensitive to fluvastatin. Fluvastatin and rosuvastatin acted synergistically and additively with amphotericin B in inhibiting the fungal growth in clinically available concentration ranges. Results suggest that statins combined with amphotericin B have a therapeutic potential against fungal infections caused by Zygomycetes species.
Collapse
Affiliation(s)
- L Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | | | | | | | | |
Collapse
|
35
|
Galgóczy L, Ördögh L, Virágh M, Papp T, Vágvölgyi C. In vitro susceptibility of clinically important zygomycetes to combinations of amphotericin B and suramin. J Mycol Med 2009; 19:241-247. [DOI: 10.1016/j.mycmed.2009.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expr Purif 2009; 70:206-10. [PMID: 19896535 DOI: 10.1016/j.pep.2009.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
Abstract
The mould Aspergillus giganteus produces a basic, low molecular weight protein (AFP) showing in vitro and in vivo antifungal properties against important plant pathogens. AFP is secreted as an inactive precursor containing an amino-terminal extension of six amino acids (lf-AFP) which is later removed to produce the active protein. The molecular basis to explain this behavior and the features that determine the fungal specificity of this protein are not completely solved. In this work, the mature AFP (AFP *) and a version of AFP with an extended amino-terminal (proAFP) have been cloned and produced in the yeast Pichia pastoris. The two proteins have been purified to homogeneity and characterized from structural and functional points of view. Recombinant AFP * produced is practically indistinguishable from the natural fungal protein in terms of its spectroscopic and antifungal properties while proAFP is mostly inactive under identical assay conditions. The availability of an active AFP protein produced in P. pastoris will permit investigation of the mode of action and targeting specificity of AFP by using site-directed mutagenesis approaches.
Collapse
|
37
|
Galgóczy L, Papp T, Vágvölgyi C. In vitro interaction between suramin and fluvastatin against clinically important Zygomycetes. Mycoses 2009; 52:447-453. [PMID: 18983427 DOI: 10.1111/j.1439-0507.2008.01634.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The in vitro antifungal activity of suramin and its combinations with fluvastatin was investigated in this study. Several species belonging to the class Zygomycetes are considered agents of opportunistic human or animal infections. In the present work, 15 fungal isolates representing eight clinically important genera (Absidia, Micromucor, Mortierella, Mucor, Rhizomucor, Rhizopus, Saksenaea and Syncephalastrum) were investigated. The efficiency with which fluvastatin inhibited growth in the presence of suramin (100 microg ml(-1)) was studied. The investigated compounds acted synergistically and additively on the growth when a strain was resistant to suramin and sensitive to fluvastatin; at the same time, antagonistic interactions were detected when strains were sensitive to both agents. In these cases, the growth inhibition effect of suramin was dominant.
Collapse
|
38
|
Galgóczy L, Vágvölgyi C. Antifungal peptides secreted by filamentous fungi as promising new agents in human therapy. Future Microbiol 2009; 4:261-263. [PMID: 19327111 DOI: 10.2217/fmb.09.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Barna B, Leiter E, Hegedus N, Bíró T, Pócsi I. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. J Basic Microbiol 2009; 48:516-20. [PMID: 18798177 DOI: 10.1002/jobm.200800197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The small molecular mass antifungal protein of Penicillium chrysogenum (PAF) inhibited the growths of two obligate biotrophic fungal pathogens, Blumeria graminis f. sp. hordei and Puccinia recondita f.sp. tritici and, hence, mitigated the symptoms of barley powdery mildew and wheat leaf rust infections, respectively. PAF also affected adversely the germination of B. graminis conidia and P. recondita uredospores causing degenerative branching of germ tubes. Since powdery mildews and rusts cause serious economic losses the potential applicability of PAF to control these plant diseases is promising.
Collapse
Affiliation(s)
- Balázs Barna
- Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
40
|
Park BT, Na KH, Jung EC, Park JW, Kim HH. Antifungal and Anticancer Activities of a Protein from the Mushroom Cordyceps militaris. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:49-54. [PMID: 19885026 DOI: 10.4196/kjpp.2009.13.1.49] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mushroom Cordyceps militaris has been used for a long time in eastern Asia as a nutraceutical and in traditional Chinese medicine as a treatment for cancer patients. In the present study, a cytotoxic antifungal protease was purified from the dried fruiting bodies of C. militaris using anion-exchange chromatography on a DEAE-Sepharose column. Electrophoretic analyses indicated that this protein, designated C. militaris protein (CMP), has a molecular mass of 12 kDa and a pI of 5.1. The optimum conditions for protease activity were a temperature of 37 and pH of 7.0~9.0. The enzyme activity was specifically inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride. Amino acid composition of intact CMP and amino acid sequences of three major peptides from a tryptic digest of CMP were determined. CMP exerted strong antifungal effect against the growth of the fungus Fusarium oxysporum, and exhibited cytotoxicity against human breast and bladder cancer cells. These results indicate that C. militaris represents a source of a novel protein that might be applied in diverse biological and medicinal applications.
Collapse
Affiliation(s)
- Byung Tae Park
- Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | |
Collapse
|
41
|
Galgóczy L, Papp T, Pócsi I, Hegedus N, Vágvölgyi C. In vitro activity of Penicillium chrysogenum antifungal protein (PAF) and its combination with fluconazole against different dermatophytes. Antonie Van Leeuwenhoek 2008; 94:463-470. [PMID: 18574706 DOI: 10.1007/s10482-008-9263-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/06/2008] [Indexed: 12/01/2022]
Abstract
Strains of five dermatophyte species (Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum and Trichophyton tonsurans) were selected for testing against Penicillium chrysogenum antifungal protein (PAF) and its combination with fluconazole (FCZ). Inhibition of microconidia germination and growth was detected with MICs of PAF ranging from 1.56 to 200 microg ml(-1) when it was used alone, or at constant concentration (100 microg ml(-1)) in combination with FCZ at from 0.25 to 32 microg ml(-1). The MICs for FCZ were found to be between 0.25 and 128 microg ml(-1). PAF caused a fungicidal effect at 200 microg ml(-1) and reduced growth at between 50 and 200 microg ml(-1). Total growth inhibition with fungistatic activity was detected at 64 microg ml(-1) of FCZ for M. gypseum, T. mentagrophytes, and T. tonsurans, and at 32 microg ml(-1) FCZ for M. canis and T. rubrum. PAF and FCZ acted synergistically and/or additively on all of the tested fungi except M. gypseum, where no interactions were detected.
Collapse
Affiliation(s)
- László Galgóczy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, Hungary.
| | | | | | | | | |
Collapse
|
42
|
Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B. Identification and rational design of novel antimicrobial peptides for plant protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:273-301. [PMID: 18439131 DOI: 10.1146/annurev.phyto.121307.094843] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Peptides and small proteins exhibiting antimicrobial activity have been isolated from many organisms ranging from insects to humans, including plants. Their role in defense is established, and their use in agriculture was already being proposed shortly after their discovery. However, some natural peptides have undesirable properties that complicate their application. Advances in peptide synthesis and high-throughput activity screening have made possible the de novo and rational design of novel peptides with improved properties. This review summarizes findings in the identification and design of short antimicrobial peptides with activity against plant pathogens, and will discuss alternatives for their heterologous production suited to plant disease control. Recent studies suggest that peptide antimicrobial action is not due solely to microbe permeation as previously described, but that more subtle factors might account for the specificity and absence of toxicity of some peptides. The elucidation of the mode of action and interaction with microbes will assist the improvement of peptide design with a view to targeting specific problems in agriculture and providing new tools for plant protection.
Collapse
Affiliation(s)
- Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, 46100 Burjassot, Spain.
| | | | | | | | | |
Collapse
|
43
|
Musetti R, Polizzotto R, Vecchione A, Borselli S, Zulini L, D'Ambrosio M, di Toppi LS, Pertot I. Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola: An ultrastructural study. Micron 2007; 38:643-50. [PMID: 17071094 DOI: 10.1016/j.micron.2006.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 11/18/2022]
Abstract
Three dipeptides, belonging to the family of diketopiperazines (DKPs), were extracted from broth culture of the grapevine endophyte Alternaria alternata, and were tested against Plasmopara viticola on leaves of grapevine plants grown in greenhouse. DKPs, used at different concentrations (10(-3), 10(-4), 10(-5) and 10(-6)M) both singularly and in mixtures, demonstrated real effectiveness in inhibiting P. viticola sporulation when applied 2 or 24h after pathogen inoculation. Moreover, no necrotic lesions or other phytotoxicity symptoms were observed on DKP-treated grapevine leaf tissues. Ultrastructural analysis performed on grapevine leaf tissues revealed that the DKPs used singularly and in mixture, at above reported concentrations, did not cause leaf tissue damages. By contrast, hyphae of P. viticola exhibited marked structural changes, similar to those induced by the endophyte A. alternata. This demonstrates the involvement of these metabolites in the relationship of P. viticola and the endophyte. Further experimental trials will be carried out in the next future in order to test the effectiveness of these molecules also under field conditions, and to better understand the mechanism of action involved in the pathogen inhibition.
Collapse
Affiliation(s)
- R Musetti
- Dipartimento di Biologia Applicata alla Difesa delle Piante, Università di Udine, via delle Scienze 208, 33100 Udine, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Several diseases caused by viruses, bacteria and fungi affect plant crops, resulting in losses and decreasing the quality and safety of agricultural products. Plant disease control relies mainly on chemical pesticides that are currently subject to strong restrictions and regulatory requirements. Antimicrobial peptides are interesting compounds in plant health because there is a need for new products in plant protection that fit into the new regulations. Living organisms secrete a wide range of antimicrobial peptides produced through ribosomal (defensins and small bacteriocins) or non-ribosomal synthesis (peptaibols, cyclopeptides and pseudopeptides). Several antimicrobial peptides are the basis for the design of new synthetic analogues, have been expressed in transgenic plants to confer disease protection or are secreted by microorganisms that are active ingredients of commercial biopesticides.
Collapse
Affiliation(s)
- Emilio Montesinos
- Institute of Food and Agricultural Technology-CeRTA-CIDSAV, University of Girona, Girona, Spain.
| |
Collapse
|
45
|
Galgóczy L, Papp T, Lukács G, Leiter E, Pócsi I, Vágvölgyi C. Interactions between statins and Penicillium chrysogenum antifungal protein (PAF) to inhibit the germination of sporangiospores of different sensitive Zygomycetes. FEMS Microbiol Lett 2007; 270:109-115. [PMID: 17302920 DOI: 10.1111/j.1574-6968.2007.00661.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study reports on the antifungal activities of statins combined with an antifungal compound secreted by Penicillium chrysogenum, PAF. Several species belonging in the class Zygomycetes are considered to be agents of human or animal mycoses; other species have significance as postharvest plant pathogens. In the present work, four species (Rhizopus stolonifer, Mortierella wolfii, Syncephalastrum racemosum and Mycotypha africana) that exhibited different sensitivities to lovastatin and PAF in previous experiments were investigated. The efficiencies with which four statins (lovastatin, simvastatin, rosuvastatin and atorvastatin) inhibited sporangiospore germination in the absence or in the presence of a constant concentration of PAF were studied. PAF and lovastatin acted synergistically on the sporangiospore germination of Mycotypha africana, and similar effects of the combinations PAF-rosuvastatin and PAF-atorvastatin were observed on S. racemosum.
Collapse
Affiliation(s)
- László Galgóczy
- Department of Microbiology, Faculty of Sciences, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
46
|
Melki Ben Fredj S, Chebil S, Lebrihi A, Lasram S, Ghorbel A, Mliki A. Occurrence of pathogenic fungal species in Tunisian vineyards. Int J Food Microbiol 2007; 113:245-50. [PMID: 17014922 DOI: 10.1016/j.ijfoodmicro.2006.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 05/01/2006] [Accepted: 07/26/2006] [Indexed: 11/24/2022]
Abstract
Mycotoxins are secondary metabolites produced by filamentous fungi detected in food, such are grapes. OTA was evaluated in ten handle musts from different Tunisian vineyard. This mycotoxin was found at levels 1.1 mug/L to 4.3 mug/L. A survey was conducted to assess the contamination of the Tunisian vineyard with pathogenic fungal species, in particular those responsible of the OTA production. The results were evaluated for the first time in parcels cultivated in the North, in the Centre and in the South of the country. Italia Muscate and Superior Seedless varieties were concerned at three developmental stages of the berry, setting, veraison and maturity. Carigon variety was used as positive control for musts contaminating by OTA. The main fungal species isolated were Aspergillus spp. (33.32%), Botrytis cinerea (23.32%), Alternaria spp. (12.80%), Cladosporium spp. (10.59%) and Penicillium spp. (8.3%). The isolates of the Aspergillus genus were identified as Aspergillus niger aggregate (77%), Aspergillus carbonarius (15%) and Aspergillus flavus (8%). Their presence was characterized by a significant decrease in the Centre during the veraison and a slight increase in the North and the South during the maturity stage. Furthermore, when comparing Superior Seedless and Italia Muscate cultivated in the same area, the aspergilli were particularly less abundant at the setting stage in the case of Superior Seedless. There is no correlation between the OTA amount in musts and the contamination by Aspergillus species in different vineyards and for grape varieties studied.
Collapse
Affiliation(s)
- S Melki Ben Fredj
- Centre de Biothechnologie Borj Cedria, Laboratoire de Physiologie Moléculaire de la Vigne (LPMV), B.P. 901 Hammam-Lif 2050, Tunisia.
| | | | | | | | | | | |
Collapse
|
47
|
Muñoz A, Marcos JF. Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides. J Appl Microbiol 2006; 101:1199-207. [PMID: 17105549 DOI: 10.1111/j.1365-2672.2006.03089.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To evaluate the activity against fungal phytopathogens of two synthetic peptides derived from the protein bovine lactoferricin: the antibacterial active core of six amino acid residues (LfcinB(20-25)) and an extension of 15 amino acids (LfcinB(17-31)). METHODS AND RESULTS In vitro activity against fungal pathogens was determined and compared with that against model micro-organisms. Activity was demonstrated against fungi of agronomic relevance. Distinct antimicrobial properties in vitro were found for the two peptides. LfcinB(17-31) had growth inhibitory activity higher than LfcinB(20-25). However, LfcinB(17-31) was not fungicidal to quiescent conidia of Penicillium digitatum at the concentrations assayed, while LfcinB(20-25) killed conidia more efficiently. Microscopical observations showed that the mycelium of P. digitatum treated with LfcinB(17-31) developed alterations of growth, sporulation and chitin deposition, and permeation of hyphal cells. In experimental inoculations of mandarins, both peptides showed limited protective effect against the disease caused by P. digitatum. CONCLUSIONS LfcinB(20-25) and LfcinB(17-31) peptides were shown to have antimicrobial activity against plant pathogenic filamentous fungi, with distinct properties and mode of action. SIGNIFICANCE AND IMPACT OF THE STUDY LfcinB(20-25) and LfcinB(17-31) peptides offer novel alternatives to develop resistant plants by molecular breeding.
Collapse
Affiliation(s)
- A Muñoz
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA) - CSIC, Valencia, Spain
| | | |
Collapse
|
48
|
Szappanos H, Szigeti GP, Pál B, Rusznák Z, Szucs G, Rajnavölgyi E, Balla J, Balla G, Nagy E, Leiter E, Pócsi I, Hagen S, Meyer V, Csernoch L. The antifungal protein AFP secreted by Aspergillus giganteus does not cause detrimental effects on certain mammalian cells. Peptides 2006; 27:1717-25. [PMID: 16500727 DOI: 10.1016/j.peptides.2006.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/15/2022]
Abstract
The antifungal protein AFP is a small, cystein-rich protein secreted by the imperfect ascomycete Aspergillus giganteus. The protein efficiently inhibits the growth of filamentous fungi, including a variety of serious human and plant pathogens mainly of the genera Aspergillus and Fusarium, whereas AFP does not affect the growth of yeast and bacteria. This restricted susceptibility range makes it very attractive for medical or biotechnological use to combat fungal infection and contamination. We, therefore, analyzed whether AFP affects the growth or function of a number of mammalian cells. Here we show that the protein neither provokes any cytotoxic effects on human endothelial cells isolated from the umbilical vein nor activates the immune system. Moreover, potassium currents of neurons and astrocytes do not change in the presence of AFP and neither excitatory processes nor the intracellular calcium homeostasis of cultured skeletal muscle myotubes are affected by AFP. Our data, therefore, suggest that AFP is indeed a promising candidate for the therapeutic or biotechnological use as a potential antifungal agent.
Collapse
Affiliation(s)
- Henrietta Szappanos
- Department of Physiology, RCMM, MHSC, University of Debrecen, 98 Nagyerdei krt., Debrecen 4012, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
. MDR, . HJK, . FA, . KH, . IZ, . MEM. In vitro and in vivo Evaluation of Individually Compost Fungi for Potato Fusarium Dry Rot Biocontrol. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/jbs.2006.572.580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Moreno AB, Martínez Del Pozo A, San Segundo B. Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol 2006; 72:883-95. [PMID: 16557374 DOI: 10.1007/s00253-006-0362-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/25/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
The mold Aspergillus giganteus produces a basic, low molecular weight protein showing antifungal properties against economically important plant pathogens, the AFP (Antifungal Protein). In this study, we investigated the mechanisms by which AFP exerts its antifungal activity against Magnaporthe grisea. M. grisea is the causal agent of rice blast, one of the most devastating diseases of cultivated rice worldwide. AFP was purified from the extracellular medium of A. giganteus cultures. The AFP protein was found to induce membrane permeabilization in M. grisea cells. Electron microscopy studies revealed severe cellular degradation and damage of plasma membranes in AFP-treated fungal cells. AFP however failed to induce membrane permeabilization on rice or human HeLa cells. Furthermore, AFP enters the fungal cell and targets to the nucleus, as revealed by co-localization experiments of Alexa-labeled AFP with the SYTOX Green dye. Finally, AFP binds to nucleic acids, including M. grisea DNA. Our results suggest that the combination of fungal cell permeabilization, cell-penetrating ability and nucleic acid-binding activity of AFP determines its potent antifungal activity against M. grisea. These results are discussed in relation to the potential of the AFP protein to enhance crop protection against fungal diseases.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Laboratorio de Genética Molecular Vegetal, Consorcio CSIC-IRTA, Departamento de Genética Molecular, Instituto de Biología Molecular de Barcelona, CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | | |
Collapse
|