1
|
Fu Q, Yang J, Zhang K, Yin K, Xiang G, Yin X, Liu G, Xu Y. Plasmopara viticola effector PvCRN11 induces disease resistance to downy mildew in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:873-891. [PMID: 37950600 DOI: 10.1111/tpj.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.
Collapse
Affiliation(s)
- Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kaixin Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
2
|
Kongala SI, Mamidala P. Harpin-loaded chitosan nanoparticles induced defense responses in tobacco. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
3
|
Li Z, Liu J, Ma W, Li X. Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life (Basel) 2023; 13:life13020268. [PMID: 36836624 PMCID: PMC9960299 DOI: 10.3390/life13020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
In interactions between pathogens and plants, pathogens secrete many molecules that facilitate plant infection, and some of these compounds are recognized by plant pattern recognition receptors (PRRs), which induce immune responses. Molecules in both pathogens and plants that trigger immune responses in plants are termed elicitors. On the basis of their chemical content, elicitors can be classified into carbohydrates, lipopeptides, proteinaceous compounds and other types. Although many studies have focused on the involvement of elicitors in plants, especially on pathophysiological changes induced by elicitors in plants and the mechanisms mediating these changes, there is a lack of up-to-date reviews on the characteristics and functions of proteinaceous elicitors. In this mini-review, we provide an overview of the up-to-date knowledge on several important families of pathogenic proteinaceous elicitors (i.e., harpins, necrosis- and ethylene-inducing peptide 1 (nep1)-like proteins (NLPs) and elicitins), focusing mainly on their structures, characteristics and effects on plants, specifically on their roles in plant immune responses. A solid understanding of elicitors may be helpful to decrease the use of agrochemicals in agriculture and gardening, generate more resistant germplasms and increase crop yields.
Collapse
Affiliation(s)
- Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Correspondence:
| | - Junnan Liu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Wenting Ma
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Xiaofang Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
| |
Collapse
|
4
|
Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y, Yang S, Gong Z, Qi J. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. THE PLANT CELL 2021; 33:3675-3699. [PMID: 34469582 PMCID: PMC8643689 DOI: 10.1093/plcell/koab221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 05/30/2023]
Abstract
Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.
Collapse
Affiliation(s)
- Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingpeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA
| | - Guangxing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanhui Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengchang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Bian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Science, Hebei University, Baoding 071002, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Cai Z, Wang Z, Yue C, Sun A, Shen Y. Efficient expression and purification of soluble Harpin Ea protein by translation initiation region codon optimization. Protein Expr Purif 2021; 188:105970. [PMID: 34500070 DOI: 10.1016/j.pep.2021.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
HarpinEa protein can stimulate plants to produce defense responses to resist the attack of pathogens, improve plant immune resistance, and promote plant growth. This has extremely high application value in agriculture. To efficiently express soluble HarpinEa protein, in this study, we expressed HarpinEa protein with a 6× His-tag in Escherichia coli BL21 (DE3). Because of the low level of expression of HarpinEa protein in E. coli, three rounds of synonymous codon optimization were performed on the +53 bp of the translation initiation region (TIR) of HarpinEa. Soluble HarpinEa protein after optimization accounted for 50.3% of the total soluble cellular protein expressed. After purification using a Ni Bestarose Fast Flow column, the purity of HarpinEa protein exceeded 95%, and the yield reached 227.5 mg/L of culture medium. The purified HarpinEa protein was sensitive to proteases and exhibited thermal stability. It triggered visible hypersensitive responses after being injected into tobacco leaves for 48 h. Plants treated with HarpinEa showed obvious growth-promoting and resistance-improving performance. Thus, the use of TIR synonymous codon optimization successfully achieved the economical, efficient, and soluble production of HarpinEa protein.
Collapse
Affiliation(s)
- Zengying Cai
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Zhong Wang
- Shandong Shennong Ecological Technology Research Institute Co., Ltd., Shanghai Branch, Shanghai, 201114, China.
| | - Cheng Yue
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Chen X, Ma J, Wang X, Lu K, Liu Y, Zhang L, Peng J, Chen L, Yang M, Li Y, Cheng Z, Xiao S, Yu J, Zou S, Liang Y, Zhang M, Yang Y, Ding X, Dong H. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:330-346. [PMID: 34273211 DOI: 10.1111/tpj.15427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Plant aquaporins are a recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report the functional modulation of the rice (Oryza sativa) aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating worldwide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO2 -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by interaction of OsPIP1;3 with the bacterial protein Hpa1, an essential component of the Type III translocon that supports translocation of the bacterial Type III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO2 transport to effector translocation, aggravates bacterial virulence, and blocks rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. Blockage of the OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from effector translocation to CO2 transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to enhance photosynthesis by 29-30%, reduce bacterial disease by 58-75%, and increase grain yield by 11-34% in different rice varieties investigated in small-scale field trials conducted during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating the physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jinbiao Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xuan Wang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Jinfeng Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Minkai Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Zaiquan Cheng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Suqin Xiao
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yonghua Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| |
Collapse
|
7
|
Mitsopoulou N, Lakiotis K, Golia EE, Khah EM, Pavli OI. Response of hrpZ Psph-transgenic N. benthamiana plants under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3787-3796. [PMID: 32418109 DOI: 10.1007/s11356-020-09204-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The hrpZPsph gene from Pseudomonas syringae pv. phaseolicola, in its secretable form (SP/hrpZPsph), has previously proven capable of conferring resistance against rhizomania disease as well as abiotic stresses in Nicotiana benthamiana plants, while enhancing plant growth. This study aimed at investigating the response of SP/hrpZPsph-expressing plants under cadmium stress. Transgenic N. benthamiana lines, homozygous for the SP/hrpZPsph gene, and wild-type plants were exposed to Cd at different stress levels (0, 50, 100, 150 μΜ CdCl2). Plants' response to stress was assessed at germination and at the whole plant level on the basis of physiological and growth parameters, including seed germination percentage, shoot and root length, total chlorophyll content, fresh and dry root weight, as well as overall symptomatology, and Cd content in leaves and roots. At germination phase, significant differences were noted in germination rates and post-germination growth among stress levels, with Cd effects being in most cases analogous to the level applied but also among plant categories. Although seedling growth was adversely affected in all plant categories, especially at high stress level, lines #6 and #9 showed the lowest decrease in root and shoot length over control. The superiority of these lines was further manifested at the whole plant level by the absence of stress-attributed symptoms and the low or zero reduction in chlorophyll content. Interestingly, a differential tissue-specific Cd accumulation pattern was observed in wt- and hrpZPsph-plants, with the former showing an increased Cd content in leaves and the latter retaining Cd in the roots. These data are discussed in the context of possible mechanisms underlying the hrpZPsph-based Cd stress resistance.
Collapse
Affiliation(s)
- Nikoletta Mitsopoulou
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Kosmas Lakiotis
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Evangelia E Golia
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Ebrahim M Khah
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Ourania I Pavli
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece.
| |
Collapse
|
8
|
Ji ZL, Yu MH, Ding YY, Li J, Zhu F, He JX, Yang LN. Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes. Int J Mol Sci 2020; 22:E203. [PMID: 33379173 PMCID: PMC7795061 DOI: 10.3390/ijms22010203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Acting as a typical harpin protein, Hpa1 of Xanthomonas oryzae pv. oryzae is one of the pathogenic factors in hosts and can elicit hypersensitive responses (HR) in non-hosts. To further explain the underlying mechanisms of its induced resistance, we studied the function of the most stable and shortest three heptads in the N-terminal coiled-coil domain of Hpa1, named N21Hpa1. Proteins isolated from N21-transgenic tobacco elicited HR in Xanthi tobacco, which was consistent with the results using N21 and full-length Hpa1 proteins expressed in Escherichia coli. N21-expressing tobacco plants showed enhanced resistance to tobacco mosaic virus (TMV) and Pectobacterium carotovora subsp. carotovora (Pcc). Spraying of a synthesized N21 peptide solution delayed the disease symptoms caused by Botrytis cinerea and Monilinia fructicola and promoted the growth and drought tolerance of plants. Further analysis indicated that N21 upregulated the expression of multiple plant defense-related genes, such as genes mediated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling, and genes related to reactive oxygen species (ROS) biosynthesis. Further, the bioavailability of N21 peptide was better than that of full-length Hpa1Xoo. Our studies support the broad application prospects of N21 peptide as a promising succedaneum to biopesticide Messenger or Illite or other biological pharmaceutical products, and provide a basis for further development of biopesticides using proteins with similar structures.
Collapse
Affiliation(s)
- Zhao-Lin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Mei-Hui Yu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Ya-Yan Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jian Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Li-Na Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| |
Collapse
|
9
|
Wang Y, Wang C, Rajaofera MJN, Zhu L, Xu X, Liu W, Zheng F, Miao W. WY195, a New Inducible Promoter From the Rubber Powdery Mildew Pathogen, Can Be Used as an Excellent Tool for Genetic Engineering. Front Microbiol 2020; 11:610252. [PMID: 33424812 PMCID: PMC7793764 DOI: 10.3389/fmicb.2020.610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Until now, there are few studies and reports on the use of endogenous promoters of obligate biotrophic fungi. The WY195 promoter in the genome of Oidium heveae, the rubber powdery mildew pathogen, was predicted using PromoterScan and its promoter function was verified by the transient expression of the β-glucuronidase (GUS) gene. WY195 drove high levels of GUS expression in dicotyledons and monocotyledons. qRT-PCR indicated that GUS expression regulated by the WY195 promoter was 17.54-fold greater than that obtained using the CaMV 35S promoter in dicotyledons (Nicotiana tabacum), and 5.09-fold greater than that obtained using the ACT1 promoter in monocotyledons (Oryza sativa). Furthermore, WY195-regulated GUS gene expression was induced under high-temperature and drought conditions. Soluble proteins extracted from WY195-hpaXm transgenic tobacco was bioactive. Defensive micro-HR induced by the transgene expression of hpaXm was observed on transgenic tobacco leaves. Disease resistance bioassays showed that WY195-hpaXm transgenic tobacco enhanced the resistance to tobacco mosaic virus (TMV). WY195 has great potential for development as a new tool for genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms and the pathogenic mechanisms of O. heveae.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Chen Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Li Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Xinze Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Fucong Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
10
|
Mo X, Zhang L, Liu Y, Wang X, Bai J, Lu K, Zou S, Dong H, Chen L. Three Proteins (Hpa2, HrpF and XopN) Are Concomitant Type III Translocators in Bacterial Blight Pathogen of Rice. Front Microbiol 2020; 11:1601. [PMID: 32793141 PMCID: PMC7390958 DOI: 10.3389/fmicb.2020.01601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Type III (T3) proteic effectors occupy most of the virulence determinants in eukaryote-pathogenic Gram-negative bacteria. During infection, bacteria may deploy a nanomachinery called translocon to deliver T3 effectors into host cells, wherein the effectors fulfill their pathological functions. T3 translocon is hypothetically assembled by bacterial translocators, which have been identified as one hydrophilic and two hydrophobic proteins in animal-pathogenic bacteria but remain unclear in plant pathogens. Now we characterize Hpa2, HrpF, and XopN proteins as concomitant T3 translocators in rice bacterial blight pathogen by analyzing pathological consequences of single, double, and triple gene knockout or genetic complementation. Based on these genetic analyses, Hpa2, HrpF, and XopN accordingly contribute to 46.9, 60.3, and 69.8% proportions of bacterial virulence on a susceptible rice variety. Virulence performances of Hpa2, HrpF, and XopN were attributed to their functions in essentially mediating from-bacteria-into-rice-cell translocation of PthXo1, the bacterial T3 effector characteristic of transcription factors targeting plant genes. On average, 61, 62, and 71% of PthXo1 translocation are provided correspondingly by Hpa2, HrpF, and XopN, while they cooperate to support PthXo1 translocation at a greater-than-95% extent. As a result, rice disease-susceptibility gene SWEET11, which is the regulatory target of PthXo1, is activated to confer bacterial virulence and induce the leaf blight disease in rice. Furthermore, the three translocators also undergo translocation, but only XopN is highly translocated to suppress rice defense responses, suggesting that different components of a T3 translocon deploy distinct virulence mechanisms in addition to the common function in mediating bacterial effector translocation.
Collapse
Affiliation(s)
- Xuyan Mo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Yan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Crop Molecular Biology Research Group, State Key Laboratory of Crop Biology, Tai’an, China
| |
Collapse
|
11
|
Wang Y, Wang C, Rajaofera MJN, Zhu L, Liu W, Zheng F, Miao W. WY7 is a newly identified promoter from the rubber powdery mildew pathogen that regulates exogenous gene expression in both monocots and dicots. PLoS One 2020; 15:e0233911. [PMID: 32479550 PMCID: PMC7263610 DOI: 10.1371/journal.pone.0233911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Promoters are very important for transcriptional regulation and gene expression, and have become invaluable tools for genetic engineering. Owing to the characteristics of obligate biotrophs, molecular research into obligate biotrophic fungi is seriously lagging behind, and very few of their endogenous promoters have been developed. In this study, a WY7 fragment was predicted in the genome of Oidium heveae Steinmann using PromoterScan. Its promoter function was verified with transient transformations (Agrobacterium tumefaciens-mediated transformation, ATMT) in Nicotiana tabacum cv. Xanthi nc. The analysis of the transcription range showed that WY7 could regulate GUS expression in both monocots (Zea mays Linn and Oryza sativa L. spp. Japonica cv. Nipponbare) and dicots (N. tabacum and Hylocereus undulates Britt). The results of the quantitative detection showed that the GUS transient expression levels when regulated by WY7 was more than 11.7 times that of the CaMV 35S promoter in dicots (N. tabacum) and 5.13 times that of the ACT1 promoter in monocots (O. sativa). GUS staining was not detected in the T1 generation of the WY7-GUS transgenic N. tabacum. This showed that WY7 is an inducible promoter. The cis elements of WY7 were predicted using PlantCARE, and further experiments indicated that WY7 was a low temperature- and salt-inducible promoter. Soluble proteins produced by WY7-hpa1Xoo transgenic tobacco elicited hypersensitive responses (HR) in N. tabacum leaves. N. tabacum transformed with pBI121-WY7-hpa1Xoo exhibited enhanced resistance to the tobacco mosaic virus (TMV). The WY7 promoter has a lot of potential as a tool for plant genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms of O. heveae.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Chen Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Li Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Fucong Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
12
|
Wang D, Wang B, Wang J, Wang S, Wang W, Niu Y. Exogenous Application of Harpin Protein Hpa1 onto Pinellia ternata Induces Systemic Resistance Against Tobacco Mosaic Virus. PHYTOPATHOLOGY 2020; 110:1189-1198. [PMID: 32141384 DOI: 10.1094/phyto-12-19-0463-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml-1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.
Collapse
Affiliation(s)
- Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Baoxia Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jiangran Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Shuting Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Weiyu Wang
- Rongcheng Plant Protection Station, Rongcheng 264300, Shandong, China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
13
|
Liu Y, Zhou X, Liu W, Huang J, Liu Q, Sun J, Cai X, Miao W. HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis, acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth. BMC Microbiol 2020; 20:4. [PMID: 31906854 PMCID: PMC6945534 DOI: 10.1186/s12866-019-1691-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Harpins are proteins secreted by the type III secretion system of Gram-negative bacteria during pathogen-plant interactions that can act as elicitors, stimulating defense and plant growth in many types of non-host plants. Harpin-treated plants have higher resistance, quality and yields and, therefore, harpin proteins may potentially have many valuable agricultural applications. Harpins are characterized by high thermal stability at 100 °C. However, it is unknown whether harpins are still active at temperatures above 100 °C or whether different temperatures affect the activity of the harpin protein in different ways. The mechanism responsible for the heat stability of harpins is also unknown. RESULTS We identified a novel harpin, HpaXpm, from the cassava blight bacteria Xanthomonas phaseoli pv. manihotis HNHK. The predicted secondary structure and 3-D structure indicated that the HpaXpm protein has two β-strand domains and two major α-helical domains located at the N- and C-terminal regions, respectively. A phylogenetic tree generated using the maximum likelihood method grouped HpaXpm in clade I of the Hpa1 group along with harpins produced by other Xanthomonas spp. (i.e., HpaG-Xag, HpaG-Xcm, Hpa1-Xac, and Hpa1Xm). Phenotypic assays showed that HpaXpm induced the hypersensitive response (HR), defense responses, and growth promotion in non-host plants more effectively than Hp1Xoo (X. oryzae pv. oryzae). Quantitative real-time PCR analysis indicated that HpaXpm proteins subjected to heat treatments at 100 °C, 150 °C, or 200 °C were still able to stimulate the expression of function-related genes (i.e., the HR marker genes Hin1 and Hsr203J, the defense-related gene NPR1, and the plant growth enhancement-related gene NtEXP6); however, the ability of heat-treated HpaXpm to induce HR was different at different temperatures. CONCLUSIONS These findings add a new member to the harpin family. HpaXpm is heat-stable up to 200 °C and is able to stimulate powerful beneficial biological functions that could potentially be more valuable for agricultural applications than those stimulated by Hpa1Xoo. We hypothesize that the extreme heat resistance of HpaXpm is because the structure of harpin is very stable and, therefore, the HpaXpm structure is less affected by temperature.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xiaoyun Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Wenbo Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jiamin Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Qinghuan Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jianzhang Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xinfeng Cai
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Weiguo Miao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China.
| |
Collapse
|
14
|
Miao XY, Qu HP, Han YL, He CF, Qiu DW, Cheng ZW. The protein elicitor Hrip1 enhances resistance to insects and early bolting and flowering in Arabidopsis thaliana. PLoS One 2019; 14:e0216082. [PMID: 31022256 PMCID: PMC6483360 DOI: 10.1371/journal.pone.0216082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022] Open
Abstract
The elicitor Hrip1 isolated from necrotrophic fungus Alternaria tenuissima, could induce systemic acquired resistance in tobacco to enhance resistance to tobacco mosaic virus. In the present study, we found that the transgenic lines of Hrip1-overexpression in wild type (WT) Arabidopsis thaliana were more resistant to Spodoptera exigua and were early bolting and flowering than the WT. A profiling of transcription assay using digital gene expression profiling was used for transgenic and WT Arabidopsis thaliana. Differentially expressed genes including 40 upregulated and three downregulated genes were identified. In transgenic lines of Hrip1-overexpression, three genes related to jasmonate (JA) biosynthesis were significantly upregulated, and the JA level was found to be higher than WT. Two GDSL family members (GLIP1 and GLIP4) and pathogen-related gene, which participated in pathogen defense action, were upregulated in the transgenic line of Hrip1-overexpression. Thus, Hrip1 is involved in affecting the flower bolting time and regulating endogenous JA biosynthesis and regulatory network to enhance resistance to insect.
Collapse
Affiliation(s)
- Xin-yue Miao
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - Hong-pan Qu
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - Ya-lei Han
- Aerospace Center Hospital, Cardiovascular Department, Beijing, China
| | - Cong-fen He
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - De-wen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-wei Cheng
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Niu L, Yang J, Zhang J, He H, Xing G, Zhao Q, Guo D, Sui L, Zhong X, Yang X. Introduction of the harpin Xooc-encoding gene hrf2 in soybean enhances resistance against the oomycete pathogen Phytophthora sojae. Transgenic Res 2019; 28:257-266. [PMID: 30830582 DOI: 10.1007/s11248-019-00119-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
Phytophthora root and stem rot (PRR) caused by an oomycete pathogen Phytophthora sojae is one of the most devastating and widespread diseases throughout soybean-producing regions worldwide. The diversity and variability of P. sojae races make effective control of the pathogen challenging. Here, we introduced an elicitor of plant defense response, the harpinXooc-encoding hrf2 gene from the rice bacterial pathogen Xanthomonas oryzae pv. oryzicola into soybean and evaluated resistance to P. sojae infection. Molecular analysis confirmed the integration and expression of hrf2 in the transgenic soybean. After inoculation with P. sojae, non-transformed control (NC) plants exhibited typical PRR symptoms, including necrotic and wilting leaves, and plant death, whereas most of the transgenic plants showed slightly chlorotic leaves and developed normally. Through T3 to T5 generations, the transgenic events displayed milder disease symptoms and had higher survival rates compared to NC plants, indicating enhanced and stable resistance to P. sojae infection, whereas without P. sojae inoculation, no significant differences in agronomic traits were observed between the transgenic and non-transformed plants. Moreover, after inoculation with P. sojae, significant upregulation of a set of plant defense-related genes, including salicylic acid- and jasmonic acid-dependent and hypersensitive response-related genes was observed in the transgenic plants. Our results indicate that hrf2 expression in transgenic soybean significantly enhanced resistance to P. sojae by eliciting multiple defense responses mediated by different signaling pathways. The potential functional role of the hrf2 gene in plant defense against P. sojae and other pathogens makes it a promising tool for broadening disease resistance in soybean.
Collapse
Affiliation(s)
- Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jinhua Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Li Sui
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
16
|
Zhou X, Liu Y, Huang J, Liu Q, Sun J, Cai X, Tang P, Liu W, Miao W. High temperatures affect the hypersensitive reaction, disease resistance and gene expression induced by a novel harpin HpaG-Xcm. Sci Rep 2019; 9:990. [PMID: 30700772 PMCID: PMC6353989 DOI: 10.1038/s41598-018-37886-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Abstract
Harpin proteins are produced by plant-pathogenic Gram-negative bacteria and regulate bacterial pathogenicity by inducing plant growth and defence responses in non-hosts. HpaG-Xcm, a novel harpin protein, was identified from Xanthomonas citri pv. mangiferaeindicae, which causes bacterial black spot of mango. Here, we describe the predicted structure and functions of HpaG-Xcm and investigate the mechanism of heat resistance. The HpaG-Xcm amino acid sequence contains seven motifs and two α-helices, in the N- and C-terminals, respectively. The N-terminal α-helical region contains two heptads, which form the coiled-coil (CC) structure. The CC region, which is on the surface of HpaG-Xcm, forms oligomeric aggregates by forming hydrophobic interactions between hydrophobic amino acids. Like other harpins, HpaG-Xcm was heat stable, promoted root growth and induced a hypersensitive response (HR) and systemic acquired resistance in non-host plants. Subjecting HpaG-Xcm to high temperatures altered the gene expression induced by HpaG-Xcm in tobacco leaves, probably due to changes in the spatial structure of HpaG-Xcm. Phenotypic tests revealed that the high-temperature treatments reduced the HR and disease resistance induced by HpaG-Xcm but had little effect on growth promotion. These findings indicate that the stability of interactions between CC and plants may be associated with thermal stability of HpaG-Xcm.
Collapse
Affiliation(s)
- Xiaoyun Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Yue Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Jiamin Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Qinghuan Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Jianzhang Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Xinfeng Cai
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Peng Tang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Wenbo Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Weiguo Miao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
17
|
Miao W, Wang J. Genetic Transformation of Cotton with the Harpin-Encoding Gene hpa Xoo of Xanthomonas oryzae pv. oryzae and Evaluation of Resistance Against Verticillium Wilt. Methods Mol Biol 2019; 1902:257-280. [PMID: 30543078 DOI: 10.1007/978-1-4939-8952-2_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The soilborne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae, and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Here, we describe the related research approach, such as Western blot, Southern blot, immuno-gold labeling, evaluation of resistance to Verticillium dahliae, and how to detect the micro-hypersensitive response and oxidative burst elicited by harpinXoo in plant tissue.
Collapse
Affiliation(s)
- Weiguo Miao
- College of Plant Protection, Hainan University, Haikou, People's Republic of China.
| | - Jingsheng Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Qiu A, Lei Y, Yang S, Wu J, Li J, Bao B, Cai Y, Wang S, Lin J, Wang Y, Shen L, Cai J, Guan D, He S. CaC3H14 encoding a tandem CCCH zinc finger protein is directly targeted by CaWRKY40 and positively regulates the response of pepper to inoculation by Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:2221-2235. [PMID: 29683552 PMCID: PMC6638151 DOI: 10.1111/mpp.12694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 05/10/2023]
Abstract
Tandem CCCH zinc finger (TZnF) proteins have been implicated in plant defence, but their role in pepper (Capsicum annuum) is unclear. In the present study, the role of CaC3H14, a pepper TZnF protein, in the immune response of pepper plants to Ralstonia solanacearum infection was characterized. When fused to the green fluorescent protein, CaC3H14 was localized exclusively to the nuclei in leaf cells of Nicotiana benthamiana plants transiently overexpressing CaC3H14. Transcript abundance of CaC3H14 was up-regulated by inoculation with R. solanacearum. Virus-induced silencing of CaC3H14 increased the susceptibility of the plants to R. solanacearum and down-regulated the genes associated with the hypersensitive response (HR), specifically HIR1 and salicylic acid (SA)-dependent PR1a. By contrast, silencing resulted in the up-regulation of jasmonic acid (JA)-dependent DEF1 and ethylene (ET) biosynthesis-associated ACO1. Transient overexpression of CaC3H14 in pepper triggered an intensive HR, indicated by cell death and hydrogen peroxide (H2 O2 ) accumulation, up-regulated PR1a and down-regulated DEF1 and ACO1. Ectopic overexpression of CaC3H14 in tobacco plants significantly decreased the susceptibility of tobacco plants to R. solanacearum. It also up-regulated HR-associated HSR515, immunity-associated GST1 and the SA-dependent marker genes NPR1 and PR2, but down-regulated JA-dependent PR1b and ET-dependent EFE26. The CaC3H14 promoter and was bound and its transcription was up-regulated by CaWRKY40. Collectively, these results indicate that CaC3H14 is transcriptionally targeted by CaWRKY40, is a modulator of the antagonistic interaction between SA and JA/ET signalling, and enhances the defence response of pepper plants to infection by R. solanacearum.
Collapse
Affiliation(s)
- Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yufen Lei
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Ji Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Bingjin Bao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yiting Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Song Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jinhui Lin
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Yuzhu Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Jinsen Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry UniversityFuzhouFujian 350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian 350002China
| |
Collapse
|
19
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
20
|
Du Q, Yang X, Zhang J, Zhong X, Kim KS, Yang J, Xing G, Li X, Jiang Z, Li Q, Dong Y, Pan H. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean. Transgenic Res 2018; 27:277-288. [PMID: 29728957 DOI: 10.1007/s11248-018-0071-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/04/2018] [Indexed: 11/25/2022]
Abstract
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T2-T4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.
Collapse
Affiliation(s)
- Qian Du
- College of Plant Science, Jilin University, Changchun, 130062, China
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangdong Yang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jinhua Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | | | - Jing Yang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaoyu Li
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Zhaoyuan Jiang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qiyun Li
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yingshan Dong
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
21
|
Functional regions of HpaXm as elicitors with specific heat tolerance induce the hypersensitive response or plant growth promotion in nonhost plants. PLoS One 2018; 13:e0188788. [PMID: 29298355 PMCID: PMC5751972 DOI: 10.1371/journal.pone.0188788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/12/2017] [Indexed: 11/26/2022] Open
Abstract
HpaXm produced by the cotton leaf blight bacterium Xanthomonas citri subsp. malvacearum is a novel harpin elicitor of the induced hypersensitive response (HR) in tobacco. We investigated whether fragments of HpaXm, compared with fragments of Hpa1Xoo, are sufficient for HR or plant growth promotion (PGP) elicitation using four synthetic peptides (HpaXm35-51, HpaXm10-39, Hpa1Xoo36-52 and Hpa1Xoo10-40). We also heated the fragments to determine the heat tolerance of the functional fragments. HpaXm35-51 and Hpa1Xoo36-52 induced hypersensitive response (HR). Bursts of reactive oxygen intermediates (ROI) induced by HpaXm35-51 and Hpa1Xoo36-52 were earlier and stronger than those induced by HpaXm and Hpa1Xoo. In plants treated with HpaXm35-51 or Hpa1Xoo36-52, the expression of the HR marker genes Hin1 and Hsr203J and the active oxygen metabolism related gene AOX were significantly upregulated. These findings suggest that the predicted α-helical structures of the HpaXm35-51 and Hpa1Xoo36-52 fragments are crucial for HR. PGP result by soaking seeds in unheated/heated HpaXm10-39 or Hpa1Xoo10-40 solution prior to transfer, which obviously enhances root growth and the aerial parts of plants. The PGP related gene NtEXP6 was greatly enhanced when plants were sprayed with a solution of HpaXm10-39 or Hpa1Xoo10-40; heated fragment treatments induced higher levels of NtEXP6 expression than unheated HpaXm fragments. In addition, HR marker genes induced by the heated fragments had lower expression levels than when induced with unheated HpaXm fragments. Moreover, the expression levels of HR marker genes and PGP related genes induced by treatment with Hpa1Xoo fragments before or after heating were the opposite of those induced by HpaXm fragments. Different functional fragments of harpin and different harpins with the same functional region have different degrees of heat tolerance. Therefore, the heat resistance of harpin is conservative, but the degree of heat tolerance of the functional fragments is specific.
Collapse
|
22
|
Aljaafri WAR, McNeece BT, Lawaju BR, Sharma K, Niruala PM, Pant SR, Long DH, Lawrence KS, Lawrence GW, Klink VP. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:161-175. [PMID: 29107936 DOI: 10.1016/j.plaphy.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes.
Collapse
Affiliation(s)
- Weasam A R Aljaafri
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Prakash M Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - David H Long
- Albaugh, LLC, 4060 Dawkins Farm Drive, Olive Branch, MS 38654, United States.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849, United States.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
23
|
Goupil P, Benouaret R, Richard C. Ethyl Gallate Displays Elicitor Activities in Tobacco Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9006-9012. [PMID: 28960978 DOI: 10.1021/acs.jafc.7b03051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alkyl gallates showed elicitor activities on tobacco in both whole plants and cell suspensions. Methyl gallate (MG), ethyl gallate (EG), and propyl gallate (PG) infiltration into tobacco leaves induced hypersensitive reaction-like lesions and topical production of autofluorescent compounds revealed under UV light. When sprayed on tobacco plants at 5 mM, EG promoted upregulation of defense-related genes such as the antimicrobial PR1, β-1,3-glucanase PR2, Chitinase PR3, and osmotin PR5 target genes. Tobacco BY-2 cells challenged with EG underwent cell death in 48 h, which was significantly reduced in the presence of the protease inhibitor aprotinin. The three alkyl gallates all caused alkalinization of the BY-2 extracellular medium, whereas gallic acid did not trigger any pH variation. Using EGTA or LaCl3, we showed that Ca2+ mobilization occurred in BY-2 cells elicited with EG. Overall, our findings are the first evidence of alkyl gallate elicitor properties with early perception events on the plasma membrane, potential hypersensitive reactions, and PR-related downstream defense responses in tobacco.
Collapse
Affiliation(s)
- Pascale Goupil
- UMR 547-UBP/INRA PIAF, Campus universitaire des Cézeaux, Université Clermont Auvergne , 8 avenue Blaise Pascal, 63178 Aubière cedex, France
- UMR 547 PIAF, INRA , 63000 Clermont-Ferrand, France
| | - Razik Benouaret
- UMR 547-UBP/INRA PIAF, Campus universitaire des Cézeaux, Université Clermont Auvergne , 8 avenue Blaise Pascal, 63178 Aubière cedex, France
- UMR 547 PIAF, INRA , 63000 Clermont-Ferrand, France
| | - Claire Richard
- CNRS, UMR 6296, Campus universitaire des Cézeaux, Institut de Chimie de Clermont-Ferrand (ICCF), Université Clermont Auvergne , 24 avenue Blaise Pascal, 63178 Aubière cedex, France
- Equipe Photochimie CNRS, UMR 6296, ICCF , 63178 Aubière, France
| |
Collapse
|
24
|
|
25
|
Wang Z, Han Q, Zi Q, Lv S, Qiu D, Zeng H. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae. PLoS One 2017; 12:e0175734. [PMID: 28419172 PMCID: PMC5395183 DOI: 10.1371/journal.pone.0175734] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023] Open
Abstract
Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.
Collapse
Affiliation(s)
- Zhenzhen Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Zi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shun Lv
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Li L, Miao W, Liu W, Zhang S. The signal peptide-like segment of hpaXm is required for its association to the cell wall in transgenic tobacco plants. PLoS One 2017; 12:e0170931. [PMID: 28141855 PMCID: PMC5283683 DOI: 10.1371/journal.pone.0170931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022] Open
Abstract
Harpins, encoded by hrp (hypersensitive response and pathogenicity) genes of Gram-negative plant pathogens, are elicitors of hypersensitive response (HR). HpaXm is a novel harpin-like protein described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum-a synonym of X. campestris pv. malvacearum (Smith 1901-1978). A putative signal peptide (1-MNSLNTQIGANSSFL-15) of hpaXm was predicted in the nitroxyl-terminal (N-terminal)by SignalP (SignalP 3.0 server). Here, we explored the function of the N-terminal leader peptide like segment of hpaXm using transgenic tobacco (Nicotiana tabacum cv. Xanthi nc.). Transgenic tobacco lines expressing the full-length hpaXm and the signal peptide-like segment-deleted mutant hpaXmΔLP were developed using transformation mediated by Agrobacterium tumefaciens. The target genes were confirmed integrated into the tobacco genomes and expressed normally. Using immune colloidal-gold detection technique, hpaXm protein was found to be transferred to the cytoplasm, the cell membrane, and organelles such as chloroplasts, mitochondria, and nucleus, as well as the cell wall. However, the deletion mutant hpaXmΔLP expressed in transgenic tobacco was found unable to cross the membrane to reach the cell wall. Additionally, soluble proteins extracted from plants transformed with hpaXm and hpaXmΔLP were bio-active. Defensive micro-HR induced by the transgene expression of hpaXm and hpaXmΔLP were observed on transgenic tobacco leaves. Disease resistance bioassays to tobacco mosaic virus (TMV) showed that tobacco plants transformed with hpaXm and with hpaXmΔLP exhibited enhanced resistance to TMV. In summary, the N-terminal signal peptide-like segment (1-45 bp) in hpaXm sequence is not necessary for transgene expression, bioactivity of hpaXm and resistance to TMV in transgenic tobacco, but is required for the protein to be translocated to the cell wall.
Collapse
Affiliation(s)
- Le Li
- College of Environment and Plant Protection, Hainan University, Haikou, Hainan Province, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Haikou, Hainan Province, China
| | - Weiguo Miao
- College of Environment and Plant Protection, Hainan University, Haikou, Hainan Province, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Haikou, Hainan Province, China
| | - Wenbo Liu
- College of Environment and Plant Protection, Hainan University, Haikou, Hainan Province, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Haikou, Hainan Province, China
| | - Shujian Zhang
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, Florida, United States of America
| |
Collapse
|
27
|
Dong Y, Li P, Zhang C. Harpin Hpa1 promotes flower development in Impatiens and Parochetus plants. BOTANICAL STUDIES 2016; 57:22. [PMID: 28597432 PMCID: PMC5430589 DOI: 10.1186/s40529-016-0132-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing plant resistance to pathogens and insect pests. In these effects, the 10-40 residue fragment (Hpa110-42) isolated from the Hpa1 sequence is 1.3 to 7.5-fold more effective than the full length. RESULTS This study extends the beneficial effects of Hpa1 and Hpa110-42 to flower development in three species of the garden balsam Impatiens and the garden scoparius Parochetus communis plant. The external application of Hpa1 or Hpa110-42 to the four ornamental plants had three effects, i.e., promoting flower growth, retarding senescence of fully expanded flowers, and increasing anthocyanin concentrations in those flowers and therefore improving their ornamental visages. Based on quantitative comparisons, Hpa110-42 was at least 17 and 42 % more effective than Hpa1 to increase anthocyanin concentrations and to promote the growth of flowers or delay their senescence. CONCLUSION Our results suggest that Hpa1 and especially Hpa110-42 have a great potential of horticultural application to increase ornamental merits of the different garden plants.
Collapse
Affiliation(s)
- Yilan Dong
- Nanjing Foreign Language School, 30 East Beijing Road, Nanjing, 210008 China
| | - Ping Li
- College of Plant Protection, Nanjing Agricultural University, 1 Weigang Town, Nanjing, 210095 China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, 1 Weigang Town, Nanjing, 210095 China
| |
Collapse
|
28
|
Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF. Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 2016; 34:1073-1090. [PMID: 27396521 DOI: 10.1016/j.biotechadv.2016.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/15/2023]
Abstract
Cut flower markets are developing in many countries as the international demand for cut flowers is rapidly growing. Developing new varieties with modified characteristics is an important aim in floriculture. Production of transgenic ornamental plants can shorten the time required in the conventional breeding of a cultivar. Biotechnology tools in combination with conventional breeding methods have been used by cut flower breeders to change flower color, plant architecture, post-harvest traits, and disease resistance. In this review, we describe advances in genetic engineering that have led to the development of new cut flower varieties.
Collapse
Affiliation(s)
- Pejman Azadi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Hedayat Bagheri
- Department of Plant Biotechnology, Faculty of Agriculture Science, Buali Sina University, Hamedan, Iran
| | - Ayoub Molaahmad Nalousi
- Department of Horticultural Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| | - Farzad Nazari
- Department of Horticultural Science, College of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
29
|
Liu M, Khan NU, Wang N, Yang X, Qiu D. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis. Int J Biol Sci 2016; 12:931-43. [PMID: 27489497 PMCID: PMC4971732 DOI: 10.7150/ijbs.15447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca2+-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Najeeb Ullah Khan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ningbo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
30
|
Ge J, Li B, Shen D, Xie J, Long J, Dong H. Tobacco TTG2 regulates vegetative growth and seed production via the predominant role of ARF8 in cooperation with ARF17 and ARF19. BMC PLANT BIOLOGY 2016; 16:126. [PMID: 27255279 PMCID: PMC4890496 DOI: 10.1186/s12870-016-0815-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant TRANSPARENT TESTA GLABRA (TTG) proteins regulate various developmental activities via the auxin signaling pathway. Recently, we elucidated the developmental role of tobacco (Nicotiana tabacum L.) NtTTG2 in association with 12 genes that putatively encode AUXIN RESPONSIVE FACTOR (ARF) proteins, including NtARF8, NtARF17, and NtARF19. Here we show that NtTTG2 regulates tobacco growth and development by involving the NtARF8, NtARF17, and NtARF19 genes, with the NtARF8 gene playing a predominant contribution. RESULTS Independent silencing of the NtARF8 gene more strongly repressed tobacco growth than silencing the NtARF17 or NtARF19 gene and more effectively eradicated the growth enhancement effect of NtTTG2 overexpression. In contrast, plant growth was not affected by silencing additional nine NtTTG2-regulated NtARF genes. In double and triple gene silencing combinations, silencing the NtARF8 gene was more effective than silencing the NtARF17 or NtARF19 gene to repress growth as well as nullify growth enhancement. Therefore, the NtARF8 predominantly cooperated with the NtARF17 and NtAFR19 of the NtTTG2 functional pathway. NtARF8 also contributed to NtTTG2-regulated seed production as concurrent NtTTG2 and NtARF8 overexpression played a synergistic role in seed production quantity, whereas concurrent silencing of both genes caused more severe seed abortion than single gene silencing. In plant cells, the NtTTG2 protein facilitated the nuclear import of NtARF8 as well as increased its function as a transcription activator. CONCLUSIONS NtARF8 is an integral component of the NtTTG2 functional pathway, which regulates tobacco growth and development.
Collapse
Affiliation(s)
- Jun Ge
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoyan Li
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Dan Shen
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junyi Xie
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juying Long
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hansong Dong
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Zhang Z, Zhao J, Ding L, Zou L, Li Y, Chen G, Zhang T. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton. Sci Rep 2016; 6:20773. [PMID: 26856318 PMCID: PMC4746735 DOI: 10.1038/srep20773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium and Verticillium wilts, two of the most important diseases in cotton, pose serious threats to cotton production. Here we introduced a novel antimicrobial protein Hcm1, which comprised harpin protein from Xanthomonas oryzae pv. oryzicola (Xoc), and the chimeric protein, cecropin A-melittin, into cotton. The transgenic cotton lines with stable Hcm1 expression showed a higher resistance to Verticillium and Fusarium wilts both in greenhouse and field trials compared to controls. Hcm1 enabled the transgenic cotton to produced a microscopic hypersensitive response (micro-HR), reactive oxygen species (ROS) burst, and caused the activation of pathogenesis-related (PR) genes in response to biotic stress, indicating that the transgenic cotton was in a primed state and ready to protect the host from pathogenic infection. Simultaneously, Hcm1 protein inhibited the growth of Verticillium dahliae (V. dahliae) and Fusarium oxysporum (F. oxysporum) in vitro. The spread of fungal biomass was also inhibited in vivo since the V. dahliae biomass was decreased dramatically in transgenic cotton plants after inoculation with V. dahliae. Together, these results demonstrate that Hcm1 could activate innate immunity and inhibit the growth of V. dahliae and F. oxysporum to protect cotton against Verticillium and Fusarium wilts.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lingyun Ding
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Yurong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
32
|
Zhang H, Teng W, Liang J, Liu X, Zhang H, Zhang Z, Zheng X. MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpin(Xoo). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:131-41. [PMID: 26466663 DOI: 10.1093/jxb/erv448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MADS-box transcription factor genes are well known for their role in floral organ and seed development. In this study, a novel MADS-box-containing gene, designated NbMADS1, was isolated from leaves of Nicotiana benthamiana. The full-length cDNA was 666 bp and encoded a putative polypeptide of 221 aa with a mass of 24.3 kDa. To assess the role of NbMADS1 in the defence response to bacterial harpin(Xoo), an elicitor of the hypersensitive response, a loss-of-function experiment was performed in N. benthamiana plants using virus-induced gene silencing. Analyses of electrolyte leakage revealed more extensive cell death in the control plants than in NbMADS1-silenced plants. The NbMADS1-silenced plants showed impaired harpin(Xoo)-induced stomatal closure, decreased harpin(Xoo)-induced production of hydrogen peroxide (H2O2) and nitric oxide (NO) in guard cells, and reduced harpin(Xoo)-induced resistance to Phytophthora nicotianae. The compromised stomatal closure observed in the NbMADS1-silenced plants was inhibited by the application of H2O2 and sodium nitroprusside (an NO donor). Taken together, these results demonstrate that the NbMADS1-H2O2-NO pathway mediates multiple harpin(Xoo)-triggered responses, including stomatal closure, hypersensitive cell death, and defence-related gene expression, suggesting that NbMADS1 plays an important role in regulating the response to harpin(Xoo) in N. benthamiana plants.
Collapse
Affiliation(s)
- Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Wenjun Teng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Jingang Liang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, PR China
| |
Collapse
|
33
|
Wu L, Wu HJ, Qiao J, Gao X, Borriss R. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants. Front Microbiol 2015; 6:1395. [PMID: 26696998 PMCID: PMC4674565 DOI: 10.3389/fmicb.2015.01395] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of BC agents.
Collapse
Affiliation(s)
- Liming Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Hui-Jun Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Junqing Qiao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China ; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences Nanjing, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin Berlin, Germany ; Nord Reet UG Greifswald, Germany
| |
Collapse
|
34
|
Benouaret R, Goupil P. Grape Marc Extract-Induced Defense Reactions and Protection against Phytophthora parasitica Are Impaired in NahG Tobacco Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6653-9. [PMID: 26105078 DOI: 10.1021/acs.jafc.5b01740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Grape marc extract (GME) acts as an elicitor of plant defense responses. This study analyzed GME-induced plant defense reactions in NahG transgenic tobacco. Leaf infiltration of NahG leaves revealed HR-like reactions with reduced lesions and weak deployment of autofluorescent compounds in the surrounding infiltrated tissues. The β-1,3-glucanase PR2-, endochitinase PR3-, and osmotin PR5-target transcript levels were strongly lowered in NahG leaves, and the mutant failed to accumulate the antimicrobial PR1 transcripts. GME-induced protection against Phytophthora parasitica var. nicotianae (Ppn) was evaluated on tobacco leaves. The antimicrobial properties of GME against Ppn were evidenced using a range of in vitro tests. GME-sprayed wild-type leaves showed reduced infection areas, whereas GME failed to induce a protective effect against Ppn in NahG leaves. The results suggest that GME-induced plant defense reactions in tobacco plants was mediated by salicylic acid (SA) and that GME-induced protection against Ppn could be the combined result of antimicrobial and defense actions.
Collapse
Affiliation(s)
- Razik Benouaret
- †Clermont Université, Université Blaise Pascal, UMR 547 PIAF, B.P. 10448, Clermont-Ferrand, France
- ‡INRA, UMR 547 PIAF, Clermont-Ferrand, France
| | - Pascale Goupil
- †Clermont Université, Université Blaise Pascal, UMR 547 PIAF, B.P. 10448, Clermont-Ferrand, France
- ‡INRA, UMR 547 PIAF, Clermont-Ferrand, France
| |
Collapse
|
35
|
Ouyang Z, Li X, Huang L, Hong Y, Zhang Y, Zhang H, Li D, Song F. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato. MOLECULAR PLANT PATHOLOGY 2015; 16:238-50. [PMID: 25047132 PMCID: PMC6638515 DOI: 10.1111/mpp.12176] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The biocontrol agent Pythium oligandrum and its elicitin-like proteins oligandrins have been shown to induce disease resistance in a range of plants. In the present study, the ability of two oligandrins, Oli-D1 and Oli-D2, to induce an immune response and the possible molecular mechanism regulating the defence responses in Nicotiana benthamiana and tomato were investigated. Infiltration of recombinant Oli-D1 and Oli-D2 proteins induced a typical immune response in N. benthamiana including the induction of a hypersensitive response (HR), accumulation of reactive oxygen species and production of autofluorescence. Agrobacterium-mediated transient expression assays revealed that full-length Oli-D1 and Oli-D2 were required for full HR-inducing activity in N. benthamiana, and virus-induced gene silencing-mediated knockdown of some of the signalling regulatory genes demonstrated that NbSGT1 and NbNPR1 were required for Oli-D1 and Oli-D2 to induce HR in N. benthamiana. Subcellular localization analyses indicated that both Oli-D1 and Oli-D2 were targeted to the plasma membrane of N. benthamiana. When infiltrated or transiently expressed in leaves, Oli-D1 and Oli-D2 induced resistance against Botrytis cinerea in tomato and activated the expression of a set of genes involved in the jasmonic acid/ethylene (JA/ET)-mediated signalling pathway. Our results demonstrate that Oli-D1 and Oli-D2 are effective elicitors capable of inducing immune responses in plants, probably through the JA/ET-mediated signalling pathway, and that both Oli-D1 and Oli-D2 have potential for the development of bioactive formulae for crop disease control in practice.
Collapse
Affiliation(s)
- Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Burketova L, Trda L, Ott PG, Valentova O. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv 2015; 33:994-1004. [PMID: 25617476 DOI: 10.1016/j.biotechadv.2015.01.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
An increasing demand for environmentally acceptable alternative for traditional pesticides provides an impetus to conceive new bio-based strategies in crop protection. Employing induced resistance is one such strategy, consisting of boosting the natural plant immunity. Upon infections, plants defend themselves by activating their immune mechanisms. These are initiated after the recognition of an invading pathogen via the microbe-associated molecular patterns (MAMPs) or other microbe-derived molecules. Triggered responses inhibit pathogen spread from the infected site. Systemic signal transport even enables to prepare, i.e. prime, distal uninfected tissues for more rapid and enhanced response upon the consequent pathogen attack. Similar defense mechanisms can be triggered by purified MAMPs, pathogen-derived molecules, signal molecules involved in plant resistance to pathogens, such as salicylic and jasmonic acid, or a wide range of other chemical compounds. Induced resistance can be also conferred by plant-associated microorganisms, including beneficial bacteria or fungi. Treatment with resistance inducers or beneficial microorganisms provides long-lasting resistance for plants to a wide range of pathogens. This study surveys current knowledge on resistance and its mechanisms provided by microbe-, algae- and plant-derived elicitors in different crops. The main scope deals with bacterial substances and fungus-derived molecules chitin and chitosan and algae elicitors, including naturally sulphated polysaccharides such as ulvans, fucans or carageenans. Recent advances in the utilization of this strategy in practical crop protection are also discussed.
Collapse
Affiliation(s)
- Lenka Burketova
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02 Prague 6-Lysolaje, Czech Republic
| | - Lucie Trda
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02 Prague 6-Lysolaje, Czech Republic
| | - Peter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Otto Str. 15, H-1022 Budapest, Hungary
| | - Olga Valentova
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
37
|
Benouaret R, Goujon E, Trivella A, Richard C, Ledoigt G, Joubert JM, Mery-Bernardon A, Goupil P. Water extracts from winery by-products as tobacco defense inducers. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1574-81. [PMID: 25119448 DOI: 10.1007/s10646-014-1298-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Water extracts from winery by-products exhibited significant plant defense inducer properties. Experiments were conducted on three marc extracts containing various amounts of polyphenols and anthocyanins. Infiltration of red, white and seed grape marc extracts into tobacco leaves induced hypersensitive reaction-like lesions with cell death evidenced by Evans Blue staining. The infiltration zones and the surrounding areas revealed accumulation of autofluorescent compounds under UV light. Leaf infiltration of the three winery by-product extracts induced defense gene expression. The antimicrobial PR1, β-1,3-glucanase PR2, and chitinase PR3 target genes were upregulated locally in tobacco plants following grape marc extract treatments. The osmotin PR5 transcripts accumulated as well in red marc extract treated-tobacco leaves. Overall, the winery by-product extracts elicited an array of plant defense responses making the grape residues a potential use of high value compounds.
Collapse
Affiliation(s)
- Razik Benouaret
- UMR 547 PIAF, Clermont Université, Université Blaise Pascal, 63000, Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li X, Han L, Zhao Y, You Z, Dong H, Zhang C. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J Biosci 2014; 39:127-37. [PMID: 24499797 DOI: 10.1007/s12038-013-9408-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.
Collapse
Affiliation(s)
- Xiaojie Li
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Jiangsu, 210095, China
| | | | | | | | | | | |
Collapse
|
39
|
Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis. Transgenic Res 2014; 24:135-45. [PMID: 25120219 DOI: 10.1007/s11248-014-9824-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Hrip1 is a novel hypersensitive response-inducing protein secreted by Alternaria tenuissima that activates defense responses and systemic acquired resistance in tobacco. This study investigates the role that Hrip1 plays in responses to abiotic and biotic stress using transgenic Arabidopsis thaliana expressing the Hrip1 gene under the control of the stress-inducible rd29A promoter or constitutive cauliflower mosaic virus 35S promoter. Bioassays showed that inducible Hrip1 expression in rd29A∷Hrip1 transgenic lines had a significantly higher effect on plant height, silique length, plant dry weight, seed germination and root length under salt and drought stress compared to expression in 35S∷Hrip1 lines and wild type plants. The level of enhancement of resistance to Botrytis cinerea by the 35S∷Hrip1 lines was higher than in the rd29A∷Hrip1 lines. Moreover, stress-related gene expression in the transgenic Arabidopsis lines was significantly increased by 200 mM NaCl and 200 mM mannitol treatments, and defense genes in the jasmonic acid and ethylene signaling pathway were significantly up-regulated after Botrytis inoculation in the Hrip1 transgenic plants. Furthermore, the activity of some antioxidant enzymes, such as peroxidase and catalase increased after salt and drought stress and Botrytis infection. These results suggested that the Hrip1 protein contributes to abiotic and biotic resistance in transgenic Arabidopsis and may be used as a useful gene for resistance breeding in crops. Although the constitutive expression of Hrip1 is suitable for biotic resistance, inducible Hrip1 expression is more responsive for abiotic resistance.
Collapse
|
40
|
Zhao Y, Li C, Ge J, Xu M, Zhu Q, Wu T, Guo A, Xie J, Dong H. Recessive mutation identifies auxin-repressed protein ARP1, which regulates growth and disease resistance in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:638-54. [PMID: 24875793 DOI: 10.1094/mpmi-08-13-0250-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To study the molecular mechanism that underpins crosstalk between plant growth and disease resistance, we performed a mutant screening on tobacco and created a recessive mutation that caused the phenotype of growth enhancement and resistance impairment (geri1). In the geri1 mutant, growth enhancement accompanies promoted expression of growth-promoting genes, whereas repressed expression of defense response genes is consistent with impaired resistance to diseases caused by viral, bacterial, and oomycete pathogens. The geri1 allele identifies a single genetic locus hypothetically containing the tagged GERI1 gene. The isolated GERI1 gene was predicted to encode auxin-repressed protein ARP1, which was determined to be 13.5 kDa in size. The ARP1/GERI1 gene was further characterized as a repressor of plant growth and an activator of disease resistance based on genetic complementation, gene silencing, and overexpression analyses. ARP1/GERI1 resembles pathogen-associated molecular patterns and is required for them to repress plant growth and activate plant immunity responses. ARP1/GERI1 represses growth by inhibiting the expression of AUXIN RESPONSE FACTOR gene ARF8, and ARP1/GERI1 recruits the NPR1 gene, which is essential for the salicylic-acid-mediated defense, to coregulate disease resistance. In conclusion, ARP1/GERI1 is an integral regulator for crosstalk between growth and disease resistance in the plant.
Collapse
|
41
|
Liu W, Zeng H, Liu Z, Yang X, Guo L, Qiu D. Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Microbiol Res 2014; 169:476-82. [PMID: 24080193 DOI: 10.1016/j.micres.2013.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/23/2013] [Accepted: 08/03/2013] [Indexed: 11/18/2022]
Abstract
In our previous study, PevD1 was characterized as a novel protein elicitor produced by Verticillium dahliae inducing hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco plants; however, the detailed mechanisms of PevD1's elicitor activity remain unclear. In this study, five mutant fragments of PevD1 were generated by polymerase chain reaction-based mutagenesis and the truncated proteins expressed in Escherichia coli were used to test their elicitor activities. Biological activity analysis showed that the N-terminal and C-terminal of PevD1 had distinct influence on HR and SAR elicitation. Fragment PevD1ΔN98, which spans the C-terminal 57 amino acids of PevD1, was critical for the induction of HR in tobacco plants. In contrast, fragment PevD1ΔC57, the N-terminal of 98 amino acids of PevD1, retained the ability to induce SAR against tobacco mosaic virus (TMV) but not induction of HR, suggesting that the induction of HR is not essential for SAR mediated by PevD1. Our results indicated that fragment PevD1ΔC57 could be a candidate peptide for plant protection against pathogens without causing negative effects.
Collapse
Affiliation(s)
- Wenxian Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Hongmei Zeng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Xiufen Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Lihua Guo
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China
| | - Dewen Qiu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12, Zhongguancun South Street, Beijing 100081, PR China.
| |
Collapse
|
42
|
Wang D, Wang Y, Fu M, Mu S, Han B, Ji H, Cai H, Dong H, Zhang C. Transgenic Expression of the Functional Fragment Hpa1 10-42 of the Harpin Protein Hpa1 Imparts Enhanced Resistance to Powdery Mildew in Wheat. PLANT DISEASE 2014; 98:448-455. [PMID: 30708731 DOI: 10.1094/pdis-07-13-0687-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Powdery mildew, one of devastating diseases of wheat worldwide, is caused by Erysiphe graminis f. sp. tritici, a fungal species with constant population changes, which often poses challenges in disease management with host resistance. Transgenic approaches that utilize broad-spectrum resistance may limit changes of pathogen populations and contribute to effective control of the disease. The harpin protein Hpa1, produced by the rice bacterial blight pathogen, can induce resistance to bacterial blight and blast in rice. The fragment comprising residues 10 through 42 of Hpa1, Hpa110-42, is reportedly three- to eightfold more effective than the full-length protein. This study evaluated the transgenic expression of the Hpa110-42 gene for resistance to powdery mildew in wheat caused by E. graminis f. sp. tritici. Nine Hpa110-42 transgenic wheat lines were generated. The genomic integration of Hpa110-42 was confirmed, and expression of the transgene was detected at different levels in the individual transgenic lines. Following inoculation with the E. graminis f. sp. tritici isolate Egt15 in the greenhouse, five transgenic lines had significantly higher levels of resistance to powdery mildew compared with nontransformed plants. Thus, transgenic expression of Hpa110-42 conferred resistance to one isolate of E. graminis f. sp. tritici in wheat in the greenhouse.
Collapse
Affiliation(s)
- Defu Wang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yajun Wang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Maoqiang Fu
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuyuan Mu
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bing Han
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hongtao Ji
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hongsheng Cai
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chunling Zhang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
43
|
Fu M, Xu M, Zhou T, Wang D, Tian S, Han L, Dong H, Zhang C. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1439-53. [PMID: 24676030 PMCID: PMC3967084 DOI: 10.1093/jxb/ert488] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10-40 residue fragment (Hpa1₁₀₋₄₂) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa1₁₀₋₄₂ under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa1₁₀₋₄₂ was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa1₁₀₋₄₂-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa1₁₀₋₄₂-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa1₁₀₋₄₂ can be integrated into the germplasm of this agriculturally significant crop.
Collapse
Affiliation(s)
- Maoqiang Fu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manyu Xu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Zhou
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Defu Wang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Tian
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Han
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hansong Dong
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunling Zhang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
44
|
Li X, Han B, Xu M, Han L, Zhao Y, Liu Z, Dong H, Zhang C. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1. PLANTA 2014; 239:831-46. [PMID: 24395199 PMCID: PMC3955481 DOI: 10.1007/s00425-013-2013-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/12/2013] [Indexed: 05/20/2023]
Abstract
The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.
Collapse
Affiliation(s)
- Xiaojie Li
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
- Tobacco Research Institute, Henan Provincial Academy of Agricultural Sciences, Xuchang, 461000 China
| | - Bing Han
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Manyu Xu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Han
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanying Zhao
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhilan Liu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chunling Zhang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
45
|
Zhu Q, Li B, Mu S, Han B, Cui R, Xu M, You Z, Dong H. TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco. BMC Genomics 2013; 14:806. [PMID: 24252253 PMCID: PMC4046668 DOI: 10.1186/1471-2164-14-806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The phytohormone auxin mediates a stunning array of plant development through the functions of AUXIN RESPONSE FACTORs (ARFs), which belong to transcription factors and are present as a protein family comprising 10-43 members so far identified in different plant species. Plant development is also subject to regulation by TRANSPARENT TESTA GLABRA (TTG) proteins, such as NtTTG2 that we recently characterized in tobacco Nicotiana tabacum. To find the functional linkage between TTG and auxin in the regulation of plant development, we performed de novo assembly of the tobacco transcriptome to identify candidates of NtTTG2-regulated ARF genes. RESULTS The role of NtTTG2 in tobacco growth and development was studied by analyzing the biological effects of gene silencing and overexpression. The NtTTG2 gene silencing causes repressive effects on vegetative growth, floral anthocyanin synthesis, flower colorization, and seed production. By contrast, the plant growth and development processes are promoted by NtTTG2 overexpression. The growth/developmental function of NtTTG2 associates with differential expression of putative ARF genes identified by de novo assembly of the tobacco transcriptome. The transcriptome contains a total of 54,906 unigenes, including 30,124 unigenes (54.86%) with annotated functions and at least 8,024 unigenes (14.61%) assigned to plant growth and development. The transcriptome also contains 455 unigenes (0.83%) related to auxin responses, including 40 putative ARF genes. Based on quantitative analyses, the expression of the putative genes is either promoted or inhibited by NtTTG2. CONCLUSIONS The biological effects of the NtTTG2 gene silencing and overexpression suggest that NtTTG2 is an essential regulator of growth and development in tobacco. The effects of the altered NtTTG2 expression on expression levels of putative ARF genes identified in the transcriptome suggest that NtTTG2 functions in relation to ARF transcription factors.
Collapse
Affiliation(s)
- Qian Zhu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Baoyan Li
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
- />Yantai Academy of Agricultural Sciences, Yantai, 265500 China
| | - Shuyuan Mu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bing Han
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Runzhi Cui
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Manyu Xu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhenzhen You
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
46
|
Lee JR, Boltz KA, Lee SY. Molecular chaperone function of Arabidopsis thaliana phloem protein 2-A1, encodes a protein similar to phloem lectin. Biochem Biophys Res Commun 2013; 443:18-21. [PMID: 24269669 DOI: 10.1016/j.bbrc.2013.11.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
Abstract
Although several phloem sap proteins have been identified from protein extracts of heat-treated Arabidopsis seedlings using FPLC gel filtration columns, many of the physiological roles played by these proteins remain to be elucidated. We functionally characterized a phloem protein 2-A1, which encodes a protein similar to phloem lectin. Using a bacterially expressed recombinant protein of AtPP2-A1, we found that it performs dual functions, showing both molecular chaperone activity and antifungal activity. mRNA expression of the AtPP2-1 gene was induced by diverse external stresses such as pathogens, and other signaling molecules, such as ethylene. These results suggest that the AtPP2-A1 molecular chaperone protein plays a critical role in the Arabidopsis defense system against diverse external stresses including fungal pathogenic attack and heat shock.
Collapse
Affiliation(s)
- Jung Ro Lee
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Division of Applied Life Sciences and PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Kara A Boltz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sang Yeol Lee
- Division of Applied Life Sciences and PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
47
|
Choi MS, Kim W, Lee C, Oh CS. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1115-22. [PMID: 23745678 DOI: 10.1094/mpmi-02-13-0050-cr] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Harpins are glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria. Many studies show that these proteins are mostly targeted to the extracellular space of plant tissues, unlike bacterial effector proteins that act inside the plant cells. Over the two decades since the first harpin of pathogen origin, HrpN of Erwinia amylovora, was reported in 1992 as a cell-free elicitor of hypersensitive response (HR), diverse functional aspects of harpins have been determined. Some harpins were shown to have virulence activity, probably because of their involvement in the translocation of effector proteins into plant cytoplasm. Based on this function, harpins are now considered to be translocators. Their abilities of pore formation in the artificial membrane, binding to lipid components, and oligomerization are consistent with this idea. When harpins are applied to plants directly or expressed in plant cells, these proteins trigger diverse beneficial responses such as induction of defense responses against diverse pathogens and insects and enhancement of plant growth. Therefore, in this review, we will summarize the functions of harpins as virulence factors (or translocators) of bacterial pathogens, elicitors of HR and immune responses, and plant growth enhancers.
Collapse
|
48
|
Miao W, Wang J. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against Verticillium dahliae Kleb. Methods Mol Biol 2013; 958:223-46. [PMID: 23143497 DOI: 10.1007/978-1-62703-212-4_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Here, we describe the related research approach, such as Western blot, Southern blot, immuno-gold labeling, evaluation of resistance to Verticillium dahliae, and how to detect the micro-hypersensitive response and oxidative burst elicited by harpin(Xoo) in plant tissue.
Collapse
Affiliation(s)
- Weiguo Miao
- College of Environment and Plant Protection, Hainan University, Haikou, People's Republic of China.
| | | |
Collapse
|
49
|
Sgro GG, Ficarra FA, Dunger G, Scarpeci TE, Valle EM, Cortadi A, Orellano EG, Gottig N, Ottado J. Contribution of a harpin protein from Xanthomonas axonopodis pv. citri to pathogen virulence. MOLECULAR PLANT PATHOLOGY 2012; 13:1047-59. [PMID: 22788999 PMCID: PMC6638867 DOI: 10.1111/j.1364-3703.2012.00814.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co-infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N-terminal and C-terminal regions and found that, although both regions elicited HR in nonhost plants, only the N-terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain.
Collapse
Affiliation(s)
- Germán G Sgro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li B, Gao R, Cui R, Lü B, Li X, Zhao Y, You Z, Tian S, Dong H. Tobacco TTG2 suppresses resistance to pathogens by sequestering NPR1 from the nucleus. J Cell Sci 2012; 125:4913-22. [PMID: 22797922 DOI: 10.1242/jcs.111922] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
TRANSPARENT TESTA GLABRA (TTG) proteins that contain the WD40 protein interaction domain are implicated in many signalling pathways in plants. The salicylic acid (SA) signalling pathway regulates the resistance of plants to pathogens through defence responses involving pathogenesis-related (PR) gene transcription, activated by the NPR1 (nonexpresser of PR genes 1) protein, which contains WD40-binding domains. We report that tobacco (Nicotiana tabacum) NtTTG2 suppresses the resistance to viral and bacterial pathogens by repressing the nuclear localisation of NPR1 and SA/NPR1-regulated defence in plants. Prevention of NtTTG2 protein production by silencing of the NtTTG2 gene resulted in the enhancement of resistance and PR gene expression, but NtTTG2 overexpression or NtTTG2 protein overproduction caused the opposite effects. Concurrent NtTTG2 and NPR1 gene silencing or NtTTG2 silencing in the absence of SA accumulation compensated for the compromised defence as a result of the NPR1 single-gene silencing or the absence of SA. However, NtTTG2 did not interact with NPR1 but was able to modulate the subcellular localisation of the NPR1 protein. In the absence of NtTTG2 production NPR1 was found predominantly in the nucleus and the PR genes were expressed. By contrast, when NtTTG2 accumulated in transgenic plants, a large proportion of NPR1 was retained in the cytoplasm and the PR genes were not expressed. These results suggest that NtTTG2 represses SA/NPR1-regulated defence by sequestering NPR1 from the nucleus and the transcriptional activation of the defence-response genes.
Collapse
Affiliation(s)
- Baoyan Li
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pests, Nanjing Agricultural University, China
| | | | | | | | | | | | | | | | | |
Collapse
|