1
|
Jiang YC, Che Q, Lu X, Liu M, Ye Y, Cao X, Li X, Zhan Y, Dong X, Cheng Y, O’Neill C. Follicular fluid and plasma lipidome profiling and associations towards embryonic development outcomes during ART treatment. Front Endocrinol (Lausanne) 2024; 15:1464171. [PMID: 39790287 PMCID: PMC11712041 DOI: 10.3389/fendo.2024.1464171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Introduction It is well acknowledged that lipids assume a critical role in oocyte maturation and early embryonic metabolism, this study aimed to evaluate the relationship between the lipid composition of plasma and follicular fluid (FF), and the consequences of embryonic development. This study compared the lipidomic profiles of paired plasma and FF samples obtained from sixty-five Chinese women who underwent assisted reproductive technology (ART) treatments. Methods Non-targeted lipidomics analysis. Result Results not only indicated similarities in lipid composition between these biofluids, but also revealed a number of unique differences. The biomatrix distinction was found to be primarily driven by lipids belonging to the lysophosphatidylcholines (LPC), phosphatidylethanolamines (PE), ether PE, and triglyceride (TG) classes. In addition, specific species from these subclasses were discovered to be correlated with embryo development outcomes during ART. Notably, the composition of the fatty acyl chains appeared to play a crucial role in these associations. Furthermore, thirteen plasma lipid variables were identified, represented by Phosphatidylcholine 18:014:0 and PE P-18:020:1, which correlated with successful blastocyst formation (BF). Discussion The present study demonstrated that FF has a distinctive lipid composition, setting it apart from plasma; and the association observed with embryonic development underscored an important role of lipid composition in the healthy development of oocytes.
Collapse
Affiliation(s)
- Yingxin Celia Jiang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Qi Che
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinmei Lu
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Liu
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Ye
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Cao
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xushuo Li
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Christopher O’Neill
- Woolcock Institute for Medical Research, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
2
|
Sakamoto R, Fujiwara T, Kawano Y, Aikawa S, Inazumi T, Nakayama O, Kawasaki-Shirata Y, Hashimoto-Iwasaki M, Sugimoto T, Tsuchiya S, Nakao S, Takeo T, Hirota Y, Sugimoto Y. Uterine prostaglandin DP receptor-induced upon implantation contributes to decidualization together with EP4 receptor. J Lipid Res 2024; 65:100636. [PMID: 39218218 PMCID: PMC11465058 DOI: 10.1016/j.jlr.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
To investigate the yet-unknown roles of prostaglandins (PGs) in the uterus, we analyzed the expression of various PG receptors in the uterus. We found that three types of Gs-coupled PG receptors, DP, EP2, and EP4, were expressed in luminal epithelial cells from the peri-implantation period to late pregnancy. DP expression was also induced in stromal cells within the mesometrial region, whereas EP4 was expressed in stromal cells within the anti-mesometrial region during the peri-implantation period. The timing of DP induction after embryo attachment correlated well with that of cyclooxygenase-2 (COX-2); however, COX-2-expressing stromal cells were located in the vicinity of the embryo, whereas DP-expressing stromal cells surrounded these cells on the mesometrial side. Specific [3H]PGD2-binding activity was detected in the decidua of uteri, with PGD2 synthesis comparable to that of PGE2 detected in the uteri during the peri-implantation period. Administration of the COX-2-specific inhibitor celecoxib caused adverse effects on decidualization, as demonstrated by the attenuated weight of the implantation sites, which was recovered by the simultaneous administration of a DP agonist. Such a rescuing effect of the DP agonist was mimicked by an EP4 agonist, but not an EP2 agonist. While the importance of DP signaling was shown pharmacologically, DP/EP2 double deficiency did not affect implantation and decidualization, suggesting the contribution of EP4 to these processes. Indeed, administration of an EP4 antagonist substantially affected decidualization in DP/EP2-deficient mice. These results suggest that COX-2-derived PGD2 and PGE2 contribute to decidualization via a coordinated pathway of DP and EP4 receptors.
Collapse
Affiliation(s)
- Risa Sakamoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuji Fujiwara
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuko Kawano
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - On Nakayama
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiko Kawasaki-Shirata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Miho Hashimoto-Iwasaki
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Ding Y, Jiang Y, Zhu M, Zhu Q, He Y, Lu Y, Wang Y, Qi J, Feng Y, Huang R, Yin H, Li S, Sun Y. Follicular fluid lipidomic profiling reveals potential biomarkers of polycystic ovary syndrome: A pilot study. Front Endocrinol (Lausanne) 2022; 13:960274. [PMID: 36176459 PMCID: PMC9513192 DOI: 10.3389/fendo.2022.960274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder associated with multiple metabolic conditions including obesity, insulin resistance, and dyslipidemia. PCOS is the most common cause of anovulatory infertility; however, the molecular diversity of the ovarian follicle microenvironment is not fully understood. This study aimed to investigate the follicular fluid (FF) lipidomic profiles in different phenotypes of PCOS and to explore novel lipid biomarkers. METHODS A total of 25 women with PCOS and 12 women without PCOS who underwent in vitro fertilization and embryo transfer were recruited, and their FF samples were collected for the lipidomic study. Liquid chromatography-tandem mass spectrometry was used to compare the differential abundance of FF lipids between patients with different PCOS phenotypes and controls. Subsequently, correlations between specific lipid concentrations in FF and high-quality embryo rate (HQER) were analyzed to further evaluate the potential interferences of lipid levels with oocyte quality in PCOS. Candidate biomarkers were then compared via receiver operating characteristic (ROC) curve analysis. RESULTS In total, 19 lipids were identified in ovarian FF. Of these, the concentrations of ceramide (Cer) and free fatty acids (FFA) in FF were significantly increased, whereas those of lysophosphatidylglycerol (LPG) were reduced in women with PCOS compared to controls, especially in obese and insulin-resistant groups. In addition, six subclasses of ceramide, FFA, and LPG were correlated with oocyte quality. Twenty-three lipid subclasses were identified as potential biomarkers of PCOS, and ROC analysis indicated the prognostic value of Cer,36:1;2, FFA C14:1, and LPG,18:0 on HQER in patients with PCOS. CONCLUSIONS Our study showed the unique lipidomic profiles in FF from women with PCOS. Moreover, it provided metabolic signatures as well as candidate biomarkers that help to better understand the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Ying Ding
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yihong Jiang
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yaqiong He
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yao Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yuan Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jia Qi
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yifan Feng
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Huang
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shengxian Li
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shengxian Li, ; Yun Sun,
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- *Correspondence: Shengxian Li, ; Yun Sun,
| |
Collapse
|
4
|
Anamthathmakula P, Winuthayanon W. Prostaglandin-Endoperoxide Synthase 2 (PTGS2) in the Oviduct: Roles in Fertilization and Early Embryo Development. Endocrinology 2021; 162:6128831. [PMID: 33539521 PMCID: PMC7901659 DOI: 10.1210/endocr/bqab025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/19/2022]
Abstract
The mammalian oviduct is a dynamic organ where important events such as final maturation of oocytes, transport of gametes, sperm capacitation, fertilization, embryo development, and transport take place. Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), is the rate-limiting enzyme in the production of prostaglandins (PGs) and plays an essential role during early pregnancy, including ovulation, fertilization, implantation, and decidualization. Even though the maternal-embryo communication originates in the oviduct, not many studies have systemically investigated PTGS2 signaling during early development. Most of the studies investigating implantation and decidualization processes in Ptgs2-/- mice employed embryo transfer into the uterus, thereby bypassing the mammalian oviduct. Consequently, an understanding of the mechanistic action as well as the regulation of PTGS2 and derived PGs in oviductal functions is far from complete. In this review, we aim to focus on the importance of PTGS2 and associated PGs signaling in the oviduct particularly in humans, farm animals, and laboratory rodents to provide a broad perspective to guide further research in this field. Specifically, we review the role of PTGS2-derived PGs in fertilization, embryo development, and transport. We focus on the actions of ovarian steroid hormones on PTGS2 regulation in the oviduct. Understanding of cellular PTGS2 function during early embryo development and transport in the oviduct will be an important step toward a better understanding of reproduction and may have potential implication in the assisted reproductive technology.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| |
Collapse
|
5
|
Yin Y, Mao Y, Liu A, Shu L, Yuan C, Cui Y, Hou Z, Liu J. Insufficient Cumulus Expansion and Poor Oocyte Retrieval in Endometriosis-Related Infertile Women. Reprod Sci 2021; 28:1412-1420. [PMID: 33409880 DOI: 10.1007/s43032-020-00410-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/22/2020] [Indexed: 11/25/2022]
Abstract
Endometriosis (EMs) is a common cause for female infertility, leading to the need for in vitro fertilization (IVF). In clinics, we found the operative oocyte retrieval to be more or less difficult in women with EMs. We hypothesized that EMs may be involved in the insufficient cumulus expansion that partially explained the lower oocyte retrieval in EMs-related infertile women undergoing assisted reproductive technology (ART). To explore whether the insufficient cumulus expansion exists in EMs-related infertile women and whether there is a possible relationship between the insufficient cumulus expansion and the clinical phenomenon of difficulty in oocyte retrieval. Those infertile women undergoing IVF recorded in our database between January 2013 and October 2017 were included. The expression levels of cumulus expansion-related genes (HAS2/PTGS2/PTX3/TNFAIP6) in the cumulus cells (CCs) from 19 infertile women with EMs and 24 controls were analyzed by real-time PCR. After that, 635 women with EMs-associated infertility (the EMs group) and 4634 women with male factor-associated infertility (the control group) were included in the retrospective analysis. The clinical outcomes were compared between the two groups. The relative mRNA levels of cumulus expansion-related genes were significantly decreased in the CCs from those infertile women with EMs when compared to the control group (all p < 0.05), especially the expression of PTGS2. The mean oocyte retrieval rates (proportion of obtained oocytes in punctured follicles) were (76.33 ± 2.58)% and (71.80 ± 0.58)% (p < 0.01). The mean numbers of flushing times per follicle were 1.11 ± 0.65 and 3.86 ± 1.53 (p < 0.001). The lower expression of cumulus expansion-related genes in CCs suggests the insufficient cumulus expansion in EMs-related infertile women, which partially explains a possible mechanism related to poor oocyte retrieval.
Collapse
Affiliation(s)
- Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yundong Mao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Anthony Liu
- Life IVF Center, 3500 Barranca Pkwy, Suite 300, Irvine, CA, 92608, USA
| | - Li Shu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chun Yuan
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhen Hou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
De Los Reyes M, Palomino J, Araujo A, Flores J, Ramirez G, Parraguez VH, Aspee K. Cyclooxygenase 2 messenger RNA levels in canine follicular cells: interrelationship with GDF-9, BMP-15, and progesterone. Domest Anim Endocrinol 2021; 74:106529. [PMID: 32890884 DOI: 10.1016/j.domaniend.2020.106529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023]
Abstract
Cyclooxygenase 2 (COX-2) encoded by the Cox-2 gene within the periovulatory follicles is a critical mediator of oocyte development. Growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15) participate in the modulation of certain target genes in the ovary, possibly influencing the Cox-2 gene expression. However, this relationship has not been characterized in canines. This study aimed to examine the possible relationships among BMP-15, GDF-9, progesterone, and Cox-2 gene expression in granulosa-cumulus cells in dogs. Granulosa cells from antral follicles and their corresponding cumulus-oocyte complexes and follicular fluid (FF) were separately obtained from 56 ovaries collected from adult bitches at estrus (n = 15) and proestrus (n = 13) after ovariohysterectomy. Total RNA extraction was performed in follicular cells, and Cox-2 gene expression was assessed by quantitative PCR analysis. Progesterone, BMP-15, and GDF-9 were determined in the FF samples using ELISA assays. Cumulus-oocyte complexes were subjected to in vitro maturation (IVM) with or without (control) recombinant GDF-9 and BMP-15. After 72 h of culture, Cox-2 transcript analyses were performed in cumulus cells via quantitative PCR. Data were evaluated by ANOVA. An increase (P < 0.05) in Cox-2 messenger RNA levels was observed in follicular cells from follicles at estrus with respect to those at proestrus. However, the levels of BMP-15 and GDF-9 in FF decreased (P < 0.05), whereas progesterone increased (P < 0.05) from the proestrus phase to the estrus phase. The expression of Cox-2 gene in cumulus cells was 4-fold greater (P < 0.01) than that in the control when both growth factors were added to the IVM culture. In conclusion, although BMP-15 together with GDF-9 appears to upregulate the levels of Cox-2 transcripts during IVM, the inverse relationship of these paracrine factors with Cox-2 gene expression and the positive correlation of progesterone with Cox-2 transcripts suggest that the high progesterone levels could be more relevant in the local mechanisms regulating the Cox-2 gene expression.
Collapse
Affiliation(s)
- M De Los Reyes
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile.
| | - J Palomino
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - A Araujo
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - J Flores
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - G Ramirez
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - V H Parraguez
- Laboratory of Animal Physiology, Department of Biological Sciences, Faculty of Veterinary Sciences, University of Chile, Santa Rosa, 11735, La Pintana, Santiago, Chile
| | - K Aspee
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| |
Collapse
|
7
|
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors (COXibs) inhibit the progression of endometrial cancer, ovarian cancer and cervical cancer. However, concerning the adverse effects of NSAIDs and COXibs, it is still urgent and necessary to explore novel and specific anti-inflammation targets for potential chemoprevention. The signaling of cyclooxygenase 2-prostaglandin E2-prostaglandin E2 receptors (COX-2-PGE2-EPs) is the central inflammatory pathway involved in the gynecological carcinogenesis. METHODS Literature searches were performed to the function of COX-2-PGE2-EPs in gynecological malignancies. RESULTS This review provides an overview of the current knowledge of COX-2-PGE2-EPs signaling in endometrial cancer, ovarian cancer and cervical cancer. Many studies demonstrated the upregulated expression of the whole signaling pathway in gynecological malignancies and some focused on the function of COX-2 and cAMP-linked EP2/EP4 and EP3 signaling pathway in gynecological cancer. By contrast, roles of EP1 and the exact pathological mechanisms have not been completely clarified. The studies concerning EP receptors in gynecological cancers highlight the potential advantage of combining COX enzyme inhibitors with EP receptor antagonists as therapeutic agents in gynecological cancers. CONCLUSION EPs represent promising anti-inflammation biomarkers for gynecological cancer and may be novel treatment targets in the near future.
Collapse
|
8
|
Robker RL, Hennebold JD, Russell DL. Coordination of Ovulation and Oocyte Maturation: A Good Egg at the Right Time. Endocrinology 2018; 159:3209-3218. [PMID: 30010832 PMCID: PMC6456964 DOI: 10.1210/en.2018-00485] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022]
Abstract
Ovulation is the appropriately timed release of a mature, developmentally competent oocyte from the ovary into the oviduct, where fertilization occurs. Importantly, ovulation is tightly linked with oocyte maturation, demonstrating the interdependency of these two parallel processes, both essential for female fertility. Initiated by pituitary gonadotropins, the ovulatory process is mediated by intrafollicular paracrine factors from the theca, mural, and cumulus granulosa cells, as well as the oocyte itself. The result is the induction of cumulus expansion, proteolysis, angiogenesis, inflammation, and smooth muscle contraction, which are each required for follicular rupture. These complex intercellular communication networks and the essential ovulatory genes have been well defined in mouse models and are highly conserved in primates, including humans. Importantly, recent discoveries in regulation of ovulation highlight new areas of investigation.
Collapse
Affiliation(s)
- Rebecca L Robker
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
- Correspondence: Rebecca L. Robker, PhD, Robinson Research Institute, School of Medicine, University of Adelaide, South Australia 5005, Australia. E-mail:
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Darryl L Russell
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod Biol Endocrinol 2018; 16:43. [PMID: 29716588 PMCID: PMC5928575 DOI: 10.1186/s12958-018-0359-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Infertility in mammalian females has been a challenge in reproductive medicine. The causes of female infertility include anovulation, ovulated oocyte defects, abnormal fertilization, and insufficient luteal support for embryo development, as well as early implantation. Ovulation induction, in vitro fertilization and luteal support regimens have been performed for decades to increase fertility rates. The identification of proteins and biochemical factors involved in female reproduction is essential to further increase female fertility rates. Evidence has shown that prostaglandins (PGs) might be involved in the female reproductive process, mainly ovulation, fertilization, and implantation. However, only a few studies on individual PGs in female reproduction have been done so far. This review aimed to identify the pivotal role of prostaglandin E2 (PGE2), a predominant PG, in female reproduction to improve fertility, specifically ovulation, fertilization, embryo development and early implantation. RESULTS Prostaglandin E2 (PGE2) was shown to play a relevant role in the ovulatory cascade, including meiotic maturation, cumulus expansion and follicle rupture, through inducing ovulatory genes, such as Areg, Ereg, Has2 and Tnfaip6, as well as increasing intracellular cAMP levels. PGE2 reduces extracellular matrix viscosity and thereby optimizes the conditions for sperm penetration. PGE2 reduces the phagocytic activity of polymorphonuclear neutrophils (PMNs) against sperm. In the presence of PGE2, sperm function and binding capacity to oocytes are enhanced. PGE2 maintains luteal function for embryo development and early implantation. In addition, it induces chemokine expression for trophoblast apposition and adhesion to the decidua for implantation. CONCLUSION It has been shown that PGE2 positively affects different stages of female fertility. Therefore, PGE2 should be taken into consideration when optimizing reproduction in infertile females. We suggest that in clinical practice, the administration of non-steroidal anti-inflammatory drugs, which are PGE2 synthesis inhibitors, should be reasonable and limited in infertile women. Additionally, assessments of PGE2 protein and receptor expression levels should be taken into consideration.
Collapse
Affiliation(s)
- Jean Damascene Niringiyumukiza
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hongcai Cai
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wenpei Xiang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
10
|
Salustri A, Campagnolo L, Klinger FG, Camaioni A. Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biol 2018; 78-79:11-23. [PMID: 29408277 DOI: 10.1016/j.matbio.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Successful ovulation and oocyte fertilization are essential prerequisites for the beginning of life in sexually reproducing animals. In mammalian fertilization, the relevance of the protein coat surrounding the oocyte plasma membrane, known as zona pellucida, has been widely recognized, while, until not too long ago, the general belief was that the cumulus oophorus, consisting of follicle cells embedded in a hyaluronan rich extracellular matrix, was not essential. This opinion was based on in vitro fertilization procedures, in which a large number of sperms are normally utilized and the oocyte can be fertilized even if depleted of cumulus cells. Conversely, in vivo, only very few sperm cells reach the fertilization site, arguing against the possibility of a coincidental encounter with the oocyte. In the last two decades, proteins required for HA organization in the cumulus extracellular matrix have been identified and the study of fertility in mice deprived of the corresponding genes have provided compelling evidence that this jelly-like coat is critical for fertilization. This review focuses on the advances in understanding the molecular interactions making the cumulus environment suitable for oocyte and sperm encounter. Most of the studies on the molecular characterization of the cumulus extracellular matrix have been performed in the mouse and we will refer essentially to findings obtained in this animal model.
Collapse
Affiliation(s)
- Antonietta Salustri
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
12
|
Heterodimerization of the prostaglandin E2 receptor EP2 and the calcitonin receptor CTR. PLoS One 2017; 12:e0187711. [PMID: 29095955 PMCID: PMC5667882 DOI: 10.1371/journal.pone.0187711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been found to form heterodimers and modulate or fine-tune the functions of GPCRs. However, the involvement of GPCR heterodimerization and its functional consequences in gonadal tissues, including granulosa cells, have been poorly investigated, mainly due to the lack of efficient method for identification of novel GPCR heterodimers. In this paper, we identified a novel GPCR heterodimer between prostaglandin E2 (PGE2) receptor 2 (EP2) and calcitonin (CT) receptor (CTR). High-resolution liquid chromatography (LC)-tandem mass spectrometry (MS/MS) of protease-digested EP2-coimmunoprecipitates detected protein fragments of CTR in an ovarian granulosa cell line, OV3121. Western blotting of EP2- and CTR-coimmunoprecipitates detected a specific band for EP2-CTR heterodimer. Specific heterodimerization between EP2 and CTR was also observed by fluorescence resonance energy transfer analysis in HEK293MSR cells expressing cyan- and yellow-fluorescent protein-fused EP2 and CTR, respectively. Collectively, these results provided evidence for heterodimerization between EP2 and CTR. Moreover, Ca2+ mobilization by CT was approximately 40% less potent in HEK293MSR cells expressing an EP2-CTR heterodimer, whereas cAMP production by EP2 or CT was not significantly altered compared with cells expressing EP2- or CTR alone. These functional analyses verified that CTR-mediated Ca2+ mobilization is specifically decreased via heterodimerization with EP2. Altogether, the present study suggests that a novel GPCR heterodimer, EP2-CTR, is involved in some functional regulation, and paves the way for investigation of novel biological roles of CTR and EP2 in various tissues.
Collapse
|
13
|
Kim SO, Duffy DM. Mapping PTGERs to the Ovulatory Follicle: Regional Responses to the Ovulatory PGE2 Signal. Biol Reprod 2016; 95:33. [PMID: 27307073 PMCID: PMC5029471 DOI: 10.1095/biolreprod.116.140574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key intrafollicular mediator of ovulation in many, if not all, mammalian species. PGE2 acts at follicular cells via four distinct PGE2 receptors (PTGERs). Within the ovulatory follicle, each cell type (e.g., oocyte, cumulus granulosa cell, mural granulosa cell, theca cell, endothelial cell) expresses a different subset of the four PTGERs. Expression of a subset of PTGERs has consequences for the generation of intracellular signals and ultimately the unique functions of follicular cells that respond to PGE2. Just as the ovulatory LH surge regulates PGE2 synthesis, the LH surge also regulates expression of the four PTGERs. The pattern of expression of the four PTGERs among follicular cells before and after the LH surge forms a spatial and temporal map of PGE2 responses. Differential PTGER expression, coupled with activation of cell-specific intracellular signals, may explain how a single paracrine mediator can have pleotropic actions within the ovulatory follicle. Understanding the role of each PTGER in ovulation may point to previously unappreciated opportunities to both promote and prevent fertility.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
14
|
Hu R, Xi L, Cao Q, Yang R, Liu Y, Sheng X, Han Y, Yuan Z, Guo Y, Weng Q, Xu M. The expression of prostaglandin-E2 and its receptor in the oviduct of Chinese brown frog (Rana dybowskii). Prostaglandins Other Lipid Mediat 2016; 124:9-15. [PMID: 27246901 DOI: 10.1016/j.prostaglandins.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
The Chinese brown frog (Rana dybowskii) has one special physiological phenomenon, which is that its oviduct expands prior to hibernation rather than in the breeding period. In this study, we investigated the immunolocalization and expression levels of prostaglandin-E2 (PGE2), cyclooxygenase (COX)-1 and COX-2, as well as one of its receptor subtypes 4 (EP4) in the oviduct of Rana dybowskii during the pre-hibernation and breeding period. PGE2, COX-1, COX-2 and EP4 have been observed in glandular and epithelial cells in the breeding period, whereas only in the epithelial cells during the pre-hibernation. Consistently, the protein levels of COX-2 and EP4 were higher in the pre-hibernation as compared to the breeding period, but the diversity of COX-1 was not obvious. In addition, oviductal PGE2 concentration was also significantly higher in the pre-hibernation. These results suggested that prostaglandin-E2 may play an important autocrine or paracrine role in oviductal cell proliferation and differentiation of Rana dybowskii during pre-hibernation.
Collapse
Affiliation(s)
- Ruiqi Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Liqin Xi
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qing Cao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Rui Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xia Sheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yan Guo
- College of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, PR China
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES, Wagoner J, Polyak SJ, Metz TO, Dey SK, Smith RD, Burnum-Johnson KE, Baker ES. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 2016; 141:1649-59. [PMID: 26734689 PMCID: PMC4764491 DOI: 10.1039/c5an02062j] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes.
Collapse
Affiliation(s)
- Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Xing Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Jeeyeon Cha
- Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Xiaofei Sun
- Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Erica S Lovelace
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Jessica Wagoner
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
16
|
Fontes P, Castilho A, Razza E, Ereno R, Satrapa R, Barros C. Prostaglandin receptors (EP2 and EP4) and angiotensin receptor (AGTR2) mRNA expression increases in the oviducts of Nelore cows submitted to ovarian superstimulation. Anim Reprod Sci 2014; 151:112-8. [DOI: 10.1016/j.anireprosci.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022]
|
17
|
Effect of α-linolenic acid on oocyte maturation and embryo development of prepubertal sheep oocytes. Theriogenology 2014; 82:686-96. [DOI: 10.1016/j.theriogenology.2014.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/05/2014] [Accepted: 05/27/2014] [Indexed: 11/16/2022]
|
18
|
Kim SO, Harris SM, Duffy DM. Prostaglandin E2 (EP) receptors mediate PGE2-specific events in ovulation and luteinization within primate ovarian follicles. Endocrinology 2014; 155:1466-75. [PMID: 24506073 PMCID: PMC3959600 DOI: 10.1210/en.2013-2096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostaglandin E2 (PGE2) is a key mediator of ovulation. All 4 PGE2 receptors (EP receptors) are expressed in the primate follicle, but the specific role of each EP receptor in ovulatory events is poorly understood. To examine the ovulatory events mediated via these EP receptors, preovulatory monkey follicles were injected with vehicle, the PG synthesis inhibitor indomethacin, or indomethacin plus PGE2. An ovulatory dose of human chorionic gonadotropin was administered; the injected ovary was collected 48 hours later and serially sectioned. Vehicle-injected follicles showed normal ovulatory events, including follicle rupture, absence of an oocyte, and thickening of the granulosa cell layer. Indomethacin-injected follicles did not rupture and contained oocytes surrounded by unexpanded cumulus; granulosa cell hypertrophy did not occur. Follicles injected with indomethacin plus PGE2 were similar to vehicle-injected ovaries, indicating that PGE2 restored the ovulatory changes inhibited by indomethacin. Additional follicles were injected with indomethacin plus an agonist for each EP receptor. EP1, EP2, and EP4 agonists each promoted aspects of follicle rupture, but no single EP agonist recapitulated normal follicle rupture as seen in follicles injected with either vehicle or indomethacin plus PGE2. Although EP4 agonist-injected follicles contained oocytes in unexpanded cumulus, the absence of oocytes in EP1 agonist- and EP2 agonist-injected follicles suggests that these EP receptors promote cumulus expansion. Surprisingly, the EP3 agonist did not stimulate any of these ovulatory changes, despite the high level of EP3 receptor expression in the monkey follicle. Therefore, agonists and antagonists selective for EP1 and EP2 receptors hold the most promise for control of ovulatory events in women.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | | | | |
Collapse
|
19
|
Ball B, Scoggin K, Troedsson M, Squires E. Characterization of prostaglandin E2 receptors (EP2, EP4) in the horse oviduct. Anim Reprod Sci 2013; 142:35-41. [DOI: 10.1016/j.anireprosci.2013.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
|
20
|
Smith ER, Yang WL, Yeasky T, Smedberg J, Cai KQ, Xu XX. Cyclooxygenase-1 inhibition prolongs postnatal ovarian follicle lifespan in mice. Biol Reprod 2013; 89:103. [PMID: 23966321 DOI: 10.1095/biolreprod.113.111070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Menopause is the permanent cessation of menstruation that results from depletion of ovarian germ cells and follicles. Although most animals experience reproductive senescence, the mechanisms differ from that in women, who may live more than one-third of their lives after menopause and consequently face the risk of a number of menopause-associated health problems. Understanding factors that influence ovarian aging may provide strategies to delay or alleviate physiological alterations that take place in postmenopausal women. The germ cell-deficient Wv mice recapitulate follicle loss, prolong postreproductive lifespan, and model many physiological changes that take place in postmenopausal women. Here, using genetic and pharmacological approaches, we found that inhibition of cyclooxygenase-1 but not cyclooxygenase-2 in Wv mice delays germ cell depletion and preserves ovarian follicles. Cyclooxygenase-1 inhibition slows down follicle maturation at the conversion of primary to secondary follicles and prolongs postnatal ovarian follicle lifespan. The current study suggests that inhibition of cyclooxygenase-1 may be able to delay ovarian aging and modulate menopausal timing.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | | |
Collapse
|
21
|
Kim SO, Dozier BL, Kerry JA, Duffy DM. EP3 receptor isoforms are differentially expressed in subpopulations of primate granulosa cells and couple to unique G-proteins. Reproduction 2013; 146:625-35. [PMID: 24062570 DOI: 10.1530/rep-13-0274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostaglandin E2 (PGE2) produced within the ovarian follicle is necessary for ovulation. PGE2 is recognized by four distinct G-protein-coupled receptors. Among them, PTGER3 (also known as EP3) is unique in that mRNA splicing generates multiple isoforms. Each isoform has a distinct amino acid composition in the C-terminal region, which is involved in G-protein coupling. To determine whether monkey EP3 isoforms couple to different G-proteins, each EP3 isoform was expressed in Chinese hamster ovary cells, and intracellular signals were examined after stimulation with the EP3 agonist sulprostone. Stimulation of EP3 isoform 5 (EP3-5) reduced cAMP in a pertussis toxin (PTX)-sensitive manner, indicating involvement of Gαi. Stimulation of EP3-9 increased cAMP, which was reduced by the general G-protein inhibitor GDP-β-S, and also increased intracellular calcium, which was reduced by PTX and GDP-β-S. So, EP3-9 likely couples to both Gαs and a PTX-sensitive G-protein to regulate intracellular signals. Stimulation of EP3-14 increased cAMP, which was further increased by PTX, so EP3-14 likely regulates cAMP via multiple G-proteins. Granulosa cell expression of all EP3 isoforms increased in response to an ovulatory dose of human chorionic gonadotropin. Two EP3 isoforms were differentially expressed in functional subpopulations of granulosa cells. EP3-5 was low in granulosa cells at the follicle apex while EP3-9 was high in cumulus granulosa cells. Differential expression of EP3 isoforms may yield different intracellular responses to PGE2 in granulosa cell subpopulations, contributing to the different roles played by granulosa cell subpopulations in the process of ovulation.
Collapse
|
22
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65:1010-52. [PMID: 23776144 DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)α-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)α, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
23
|
Toda K, Ono M, Yuhki KI, Ushikubi F, Saibara T. 17β-Estradiol is critical for the preovulatory induction of prostaglandin E(2) synthesis in mice. Mol Cell Endocrinol 2012; 362:176-82. [PMID: 22713853 DOI: 10.1016/j.mce.2012.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Aromatase-deficient (ArKO) mice are totally anovulatory due to insufficient estrogen production. However, sequential administrations of high doses of 17β-estradiol (E2) and gonadotropins were found to induce ovulation in these mice. Here, we examined how the ovulatory stimulation for ArKO mice alters the expressions of genes related to prostaglandin (PG) E(2) metabolism and ovarian contents of PGE(2), as PGE(2) is one of the critical mediators of ovulatory induction. The ovulatory stimulation significantly increased mRNA expressions of prostaglandin-endoperoxide synthase 2, PGE(2) receptor type 4 and sulfotransferase family 1E, member 1, in preovulatory ArKO ovaries. In contrast, it suppressed the mRNA expression of 15-hydroxyprostaglandin dehydrogenase. Furthermore, significant elevation in the PGE(2) contents was detected in the preovulatory ovaries of ArKO mice after stimulation with E2 plus ovulatory doses of gonadotropins. Thus, these analyses demonstrate a requirement of E2 for the preovulatory enhancement of PGE(2) synthesis, leading to future success in ovulation.
Collapse
Affiliation(s)
- Katsumi Toda
- Department of Biochemistry, Kochi University, School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|
24
|
Kotarska K, Lenartowicz M, Przybyło M, Gołas A, Styrna J. Increased prostaglandin E₂-EP2 signalling in cumulus cells of female mice sired by males with the Y-chromosome long-arm deletion. Reprod Fertil Dev 2012; 25:900-6. [PMID: 22953728 DOI: 10.1071/rd12086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/26/2012] [Indexed: 11/23/2022] Open
Abstract
Cumuli oophori surrounding ovulated oocytes of B10.BR(Y(del)) females (sired by males with the Y-chromosome long-arm deletion) are more resistant to hyaluronidase digestion than cumuli oophori around eggs of genetically identical females but sired by males with the intact Y chromosome (B10.BR). This has been interpreted as a result of differences in paternal genome imprinting, which females of both groups inherit from their fathers. The following study shows that it is not hyaluronan, but rather excessive protein concentration, that makes the cumulus extracellular matrix of B10.BR(Y(del)) oocytes more resistant to enzymatic treatment. It was revealed, additionally, that cumulus cells around ovulating oocytes of B10.BR(Y(del)) females display higher surface accumulation of prostaglandin EP2 subtype receptors and higher expression of the Ptgs2 gene (encoding a rate-limiting enzyme of prostaglandin E₂ synthesis) in relation to the cells of control B10.BR females. The expression levels of the prostaglandin-dependent Tnfaip6 and Ccl2 genes were also altered in B10.BR(Y(del)) cumulus cells in a manner indicating increased prostaglandin signalling. The study provides further evidence for the divergence in reproductive phenotypes between B10.BR and B10.BR(Y(del)) female mice. It supports the hypothesis that genes of the Y-chromosome long arm may be involved in establishment of epigenetic marks in X-bearing spermatozoa.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | | | | | | | | |
Collapse
|
25
|
Kwok AHY, Wang Y, Leung FC. Molecular characterization of prostaglandin F receptor (FP) and E receptor subtype 1 (EP₁) in zebrafish. Gen Comp Endocrinol 2012; 178:216-26. [PMID: 22617193 DOI: 10.1016/j.ygcen.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/29/2012] [Accepted: 05/10/2012] [Indexed: 11/21/2022]
Abstract
Prostaglandins E (PGE) and F (PGF) mediate diverse physiological functions via their cell surface receptors - prostaglandin E receptor (EP) subtypes 1, 2, 3 and 4 (EP(1); EP(2); EP(3); EP(4)) and F receptor (FP). In teleost fishes, PGE was implicated in gill epithelium ion transport, while both PGE and PGF were involved in oocyte maturation, follicular rupture and coordination of reproductive behaviors. However, little is known about the mechanisms behind their actions. In present study, we first identified the full-length ORF cDNA clones of three zebrafish prostaglandin E receptor subtype 1 (zEP(1)) isoforms - zEP(1a), zEP(1b) and zEP(1c) - and FP (zFP) from adult ovary. RT-PCR showed that zEP(1a), zEP(1b) and zFP are widely expressed in adult tissues, while zEP(1c) mRNA expression is mainly confined in brain and kidney. Using a pGL3-NFAT-RE luciferase reporter system, both zEP(1a) and zEP(1b) expressed in DF-1 cells were shown to be activated by PGE(2) potently while zEP(1c) and zFP were activated by PGF(2a) effectively, suggesting that the four receptors are functionally coupled to intracellular Ca(2+)-signaling pathway. Furthermore, EP1a and EP1b, but not EP1c were suggested to couple to cAMP-PKA signaling pathway using a pGL3-CRE luciferase reporter assay. Although zEP(1c) might originate as a paralog to zEP(1a) and zEP(1b), its functional coupling to PGF(2α) instead of PGE(2) suggested that zEP(1) isoforms might have sub-functionalized in their ligand binding and G protein coupling specificity, in addition to differential tissue distribution. Characterization of these receptors undoubtedly furthered our understanding on the diverse yet highly target-specific responses of prostaglandins in teleosts.
Collapse
Affiliation(s)
- Amy H Y Kwok
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | |
Collapse
|
26
|
Hobbs RJ, Howard J, Wildt DE, Comizzoli P. Absence of seasonal changes in FSHR gene expression in the cat cumulus-oocyte complex in vivo and in vitro. Reproduction 2012; 144:111-22. [PMID: 22596062 DOI: 10.1530/rep-12-0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Domestic cat oocytes are seasonally sensitive to FSH. Compared with those collected during the breeding season, oocytes from the nonbreeding (NB) season require more FSH during in vitro maturation to achieve comparable developmental competence. This study tested the hypothesis that this seasonal variation was due to altered expression of FSH receptors (FSHR) and/or FSH-induced genes. Relative expression levels of FSHR mRNA and FSH-enhanced gene estrogen receptor β (ESR2) were measured by qPCR in whole ovaries and immature cumulus-oocyte complexes (COCs) isolated from cat ovaries during the natural breeding vs NB seasons. Expression levels of FSH-induced genes prostaglandin-endoperoxide synthase 2 (PTGS2), early growth response protein-1 (EGR1), and epidermal growth factor receptor (EGFR) were examined in mature COCs from both seasons that were a) recovered in vivo or b) matured in vitro with conventional (1 μg/ml) or high (10 μg/ml) FSH concentrations. Overall, FSHR mRNA levels were lower in whole ovaries during the NB compared with breeding season but were similar in immature COCs, whereas ESR2 levels did not differ in either group between intervals. We observed changes in PTGS2, EGR1, and EGFR mRNA expression patterns across maturation in COCs within but not between the two seasons. The lack of seasonal differentiation in FSH-related genes was not consistent with the decreased developmental capacity of oocytes fertilized during the NB season. These findings reveal that the seasonal decrease in cat oocyte sensitivity to FSH occurs both in vivo and in vitro. Furthermore, this decline is unrelated to changes in expression of FSHR mRNA or mRNA of FSH-induced genes in COCs from antral follicles.
Collapse
Affiliation(s)
- Rebecca J Hobbs
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, PO Box 37012, MRC 5502, Washington, District of Columbia 20013, USA.
| | | | | | | |
Collapse
|
27
|
Chourasia TK, Joy KP. Role of catecholestrogens on ovarian prostaglandin secretion in vitro in the catfish Heteropneustes fossilis and possible mechanism of regulation. Gen Comp Endocrinol 2012; 177:128-42. [PMID: 22429727 DOI: 10.1016/j.ygcen.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/23/2012] [Accepted: 03/01/2012] [Indexed: 11/28/2022]
Abstract
Seasonal, periovulatory and 2-hydroxyestradiol-17β (2-OHE(2))-induced changes on ovarian prostaglandin (PG) E(2) and F(2α) were investigated under in vivo or in vitro in the female catfish Heteropneustes fossilis. Both PGE(2) and PGF(2α) increased significantly during ovarian recrudescence with the peak levels in spawning phase. The PGs showed periovulatory changes with the peak levels at 16 h after the hCG treatment. Incubation of postvitellogenic ovary fragments with estradiol-17β (E(2)), 2-OHE(2) or 2-methoxyE(2) produced concentration-dependent increases in PG levels; 2-OHE(2) was more effective. In order to identify the receptor mechanism involved in the 2-OHE(2)-induced PG stimulation, the ovarian pieces were incubated with phentolamine (an α-adrenergic antagonist), propranolol (a β-adrenergic antagonist) or tamoxifen (an estrogen receptor blocker) alone or in combination with 2-OHE(2). The incubation of the tissues with the receptor blockers alone did not produce any significant effect on basal PG levels. However, co- and pre-incubation of the tissues with the blockers resulted in inhibition of the stimulatory effect of 2-OHE(2) on the PGs. Phentolamine was more effective than propranolol. The signal transduction pathway(s) involved in the 2-OHE(2)-induced PG secretion was investigated. The incubation of the ovarian pieces with 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor), chelerythrine (a protein kinase C inhibitor) and PD098059 (a mitogen-activated protein kinase inhibitor) significantly lowered the basal secretion of PGF(2α) and PGE(2). In contrast, H89 (a protein kinase A inhibitor) increased the basal secretion of PGs at 1 and 5 μM concentration and decreased it at 10 μM concentration. The co- or pre-incubation with IBMX, H89, chelerythrine and PD098059 significantly inhibited the stimulatory effect of 2-OHE(2) on PGF(2α) and PGE(2) levels. The inhibition was higher in the pre-incubation groups. Chelerythrine was the most effective followed by PD098059, IBMX and H89. The results suggest that 2-OHE(2) may employ both adrenergic and estrogen receptors, or a novel receptor mechanism having properties of both adrenergic and estrogen receptors.
Collapse
Affiliation(s)
- T K Chourasia
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
28
|
Ziecik AJ, Waclawik A, Kaczmarek MM, Blitek A, Jalali BM, Andronowska A. Mechanisms for the establishment of pregnancy in the pig. Reprod Domest Anim 2012; 46 Suppl 3:31-41. [PMID: 21854459 DOI: 10.1111/j.1439-0531.2011.01843.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Establishment of pregnancy in pigs requires continuous function of corpora lutea and endometrial preparation for embryo implantation. Progesterone regulates expression of many proteins necessary for endometrial remodelling and embryo-maternal communications. Attaining the uterine receptivity involves progesterone priming and loss of progesterone receptors in the uterine epithelium before days 10-12 after oestrus. Spermatozoa and oocytes in oviduct alter secretion of specific proteins that exert beneficial effect on gametes and embryos. Moreover, an appropriate leucocyte activation and maintenance of delicate cytokine balance within the oviduct and uterus are important for early pregnancy. This early local immune response is rather mediated by seminal plasma components. These components also influence prostaglandin (PG) synthesis in the oviduct that is important for gamete and embryo transport. Pregnancy establishment requires the biphasic pattern of oestrogen secretion by conceptuses on days 11-12 and 15-30. Conceptus affects lipid signalling system consisting of prostaglandins and lysophosphatic acid. PG synthesis is changed by conceptus signals in favour of luteoprotective PGE(2) . Additionally, existence of PGE(2) positive feedback loop in the endometrium contributes to increased PGE(2) /PGF(2α) ratio during the peri-implantation period. PGE(2) through endometrial PGE(2) receptor (PTGER2) elevates the expression of enzymes involved in PGE(2) synthesis. Higher PGE(2) secretion in uterine lumen coincides with the elevated expression of HOXA10 transcription factor critical for implantation. A stable adhesion between conceptus and endometrium requires reduction in mucin-1 on the apical surface of epithelium and integrin activation by extracellular matrix proteins. Furthermore, growth factors, cytokines and its receptors are involved in embryo-maternal interactions.
Collapse
Affiliation(s)
- A J Ziecik
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima, Olsztyn, Poland
| | | | | | | | | | | |
Collapse
|
29
|
Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS One 2011; 6:e27179. [PMID: 22087263 PMCID: PMC3210145 DOI: 10.1371/journal.pone.0027179] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022] Open
Abstract
The bi-directional communication between the oocyte and the surrounding cumulus cells (CCs) is crucial for the acquisition of oocyte competence. We investigated the transcriptomic profile of human CCs isolated from mature and immature oocytes under stimulated cycle. We used human Genome U133 Plus 2.0 microarrays to perform an extensive analysis of the genes expressed in human CCs obtained from patients undergoing intra-cytoplasmic sperm injection. CC samples were isolated from oocyte at germinal vesicle, stage metaphase I and stage metaphase II. For microarray analysis, we used eight chips for each CC category. Significance analysis of microarray multiclass was used to analyze the microarray data. Validation was performed by RT-qPCR using an independent cohort of CC samples. We identified differentially over-expressed genes between the three CC categories. This study revealed a specific signature of gene expression in CCs issued from MII oocyte compared with germinal vesicle and metaphase I. The CC gene expression profile, which is specific of MII mature oocyte, can be useful as predictors of oocyte quality.
Collapse
|
30
|
Yamashita Y, Okamoto M, Kawashima I, Okazaki T, Nishimura R, Gunji Y, Hishinuma M, Shimada M. Positive feedback loop between prostaglandin E2 and EGF-like factors is essential for sustainable activation of MAPK3/1 in cumulus cells during in vitro maturation of porcine cumulus oocyte complexes. Biol Reprod 2011; 85:1073-82. [PMID: 21778143 DOI: 10.1095/biolreprod.110.090092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During in vitro maturation of porcine cumulus-oocyte complexes (COCs), follicle-stimulating hormone (FSH) increases both prostaglandin E2 (PGE2) production and the expression levels of EGF-like factors. The ligands act on cumulus cells by the autocrine system due to their specific receptors, EP2, EP4, or EGF receptor. When each pathway is suppressed by inhibitors, complete cumulus expansion and oocyte maturation do not occur. In this study, we examined the relationship between both of these pathways in cumulus cells of porcine COCs. When COCs were cultured with FSH, Fshr mRNA expression was immediately decreased within 5 h, whereas Ptger2, Ptger4, and Ptgs2 expression levels were significantly increased in cumulus cells in the culture containing FSH for 5 or 10 h. The PTGS2 inhibitor NS398 significantly suppressed not only PGE2 secretion at any culture time point but also Areg, Ereg, and Tace/Adam17 expression in cumulus cells at 10 and 20 h but not at 1 or 5 h. During the early culture period, phosphorylation of MAPK3 and MAPK1 (MAPK3/1) was not affected by NS398; however, at 10 and 20 h, phosphorylation was suppressed by the drug. Furthermore, down-regulations of MAPK3/1 phosphorylation and expression of the target genes by NS398 was overcome by the addition of either PGE2 or EGF. FSH-induced cumulus expansion and meiotic progression to the MII stage were also suppressed by NS398, whereas these effects were also overcome by addition of either PGE2 or EGF. These results indicated that PGE2 is involved in the sustainable activation of MAPK3/1 in cumulus cells via the induction of EGF-like factor, which is required for cumulus expansion and meiotic maturation of porcine COCs.
Collapse
Affiliation(s)
- Yasuhisa Yamashita
- Laboratory of Animal Physiology, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Harris SM, Aschenbach LC, Skinner SM, Dozier BL, Duffy DM. Prostaglandin E2 receptors are differentially expressed in subpopulations of granulosa cells from primate periovulatory follicles. Biol Reprod 2011; 85:916-23. [PMID: 21753194 DOI: 10.1095/biolreprod.111.091306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prostaglandin E2 (PGE2) mediates many effects of the midcycle luteinizing hormone (LH) surge within the periovulatory follicle. Differential expression of the four PGE2 (EP) receptors may contribute to the specialized functions of each granulosa cell subpopulation. To determine if EP receptors are differentially expressed in granulosa cells, monkeys received gonadotropins to stimulate ovarian follicular development. Periovulatory events were initiated with human chorionic gonadotropin (hCG); granulosa cells and whole ovaries were collected before (0 h) and after (24-36 h) hCG to span the 40-h primate periovulatory interval. EP receptor mRNA and protein levels were quantified in granulosa cell subpopulations. Cumulus cells expressed higher levels of EP2 and EP3 mRNA compared with mural cells 36 h after hCG. Cumulus cell EP2 and EP3 protein levels also increased between 0 and 36 h after hCG. Overall, mural granulosa cells expressed low levels of EP1 protein at 0 h and higher levels 24-36 h after hCG. However, EP1 protein levels were higher in granulosa cells away from the follicle apex compared with apex cells 36 h after hCG. Higher levels of PAI-1 protein were measured in nonapex cells, consistent with a previous study showing EP1-stimulated PAI-1 protein expression in monkey granulosa cells. EP4 protein levels were low in all subpopulations. In summary, cumulus cells likely respond to PGE2 via EP2 and EP3, whereas PGE2 controls rupture of a specific region of the follicle via EP1. Therefore, differential expression of EP receptors may permit each granulosa cell subpopulation to generate a unique response to PGE2 during the process of ovulation.
Collapse
Affiliation(s)
- Siabhon M Harris
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | | | | | | |
Collapse
|
32
|
Lee J, Ji K, Lim Kho Y, Kim P, Choi K. Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1216-1225. [PMID: 21489627 DOI: 10.1016/j.ecoenv.2011.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/15/2011] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
Consequences of long-term exposure to diclofenac up to 3 months were evaluated using freshwater crustaceans (Daphnia magna and Moina macrocopa) and a fish (Oryzias latipes). Marked decrease of reproduction was observed at 25 mg/L for D. magna, and at 50 mg/L for M. macrocopa. Three-month exposure of fish to 0.001-10 mg/L of diclofenac resulted in significant decreasing trend in hatching success and delay in hatch. The hatching of the eggs produced from the fish exposed to 10 mg/L was completely interfered, while fertility of the parent generation was not affected. Gonadosomatic index (GSI) of female fish was also affected at 10 mg/L. Predicted no effect concentration of diclofenac was estimated at 0.1 mg/L, which is a few orders of magnitude greater than those observed in ambient water. Therefore direct impact of diclofenac exposure is not expected. However its bioaccumulation potential through food web should warrant further evaluation.
Collapse
Affiliation(s)
- Jinyoung Lee
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Lee YS, VandeVoort CA, Gaughan JP, Midic U, Obradovic Z, Latham KE. Extensive effects of in vitro oocyte maturation on rhesus monkey cumulus cell transcriptome. Am J Physiol Endocrinol Metab 2011; 301:E196-209. [PMID: 21487073 PMCID: PMC3129840 DOI: 10.1152/ajpendo.00686.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elaboration of a quality oocyte is integrally linked to the correct developmental progression of cumulus cell phenotype. In humans and nonhuman primates, oocyte quality is diminished with in vitro maturation. To determine the changes in gene expression in rhesus monkey cumulus cells (CC) that occur during the final day prior to oocyte maturation and how these changes differ between in vitro (IVM) and in vivo maturation (VVM), we completed a detailed comparison of transcriptomes using the Affymetrix gene array. We observed a large number of genes differing in expression when comparing IVM-CC and VVM-CC directly but a much larger number of differences when comparing the transitions from the prematuration to the post-IVM and post-VVM states. We observed a truncation or delay in the normal pattern of gene regulation but also remarkable compensatory changes in gene expression during IVM. Among the genes affected by IVM are those that contribute to productive cell-cell interactions between cumulus cell and oocyte and between cumulus cells. Numerous genes involved in lipid metabolism are incorrectly regulated during IVM, and the synthesis of sex hormones appears not to be suppressed during IVM. We identified a panel of 24 marker genes, the expression of which should provide the foundation for understanding how IVM can be improved for monitoring IVM conditions and for diagnosing oocyte quality.
Collapse
Affiliation(s)
- Young S Lee
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
34
|
Inazumi T, Shirata N, Morimoto K, Takano H, Segi-Nishida E, Sugimoto Y. Prostaglandin E₂-EP4 signaling suppresses adipocyte differentiation in mouse embryonic fibroblasts via an autocrine mechanism. J Lipid Res 2011; 52:1500-8. [PMID: 21646392 DOI: 10.1194/jlr.m013615] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The prostaglandin (PG) receptors EP4 and FP have the potential to exert negative effects on adipogenesis, but the exact contribution of endogenous PG-driven receptor signaling to this process is not fully understood. In this study, we employed an adipocyte differentiation system from mouse embryonic fibroblasts (MEF) and compared the effects of each PG receptor-deficiency on adipocyte differentiation. In wild-type (WT) MEF cells, inhibition of endogenous PG synthesis by indomethacin augmented the differentiation, whereas exogenous PGE₂, as well as an FP agonist, reversed the effect of indomethacin. In EP4-deficient cells, basal differentiation was upregulated to the levels in indomethacin-treated WT cells, and indomethacin did not further enhance differentiation. Differentiation in FP-deficient cells was equivalent to WT and was still sensitive to indomethacin. PGE₂ or indomethacin treatment of WT MEF cells for the first two days was enough to suppress or enhance transcription of the Pparg2 gene as well as the subsequent differentiation, respectively. Differentiation stimuli induced COX-2 gene and protein expression, as well as PGE₂ production, in WT MEF cells. These results suggest that PGE₂-EP4 signaling suppresses adipocyte differentiation by affecting Pparg2 expression in an autocrine manner and that FP-mediated inhibition is not directly involved in adipocyte differentiation in the MEF system.
Collapse
Affiliation(s)
- Tomoaki Inazumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Nuttinck F, Gall L, Ruffini S, Laffont L, Clement L, Reinaud P, Adenot P, Grimard B, Charpigny G, Marquant-Le Guienne B. PTGS2-Related PGE2 Affects Oocyte MAPK Phosphorylation and Meiosis Progression in Cattle: Late Effects on Early Embryonic Development. Biol Reprod 2011; 84:1248-57. [DOI: 10.1095/biolreprod.110.088211] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
36
|
Shimada M, Yamashita Y. The Key Signaling Cascades in Granulosa Cells During Follicular Development and Ovulation Process. ACTA ACUST UNITED AC 2011. [DOI: 10.1274/jmor.28.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Arachidonic acid induces production of 17,20β-dihydroxy-4-pregnen-3-one (DHP) via a putative PGE2 receptor in fish follicles from the Eurasian perch. Lipids 2010; 46:179-87. [PMID: 21184198 DOI: 10.1007/s11745-010-3512-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
The effects of docosahexaenoic, eicosaenoic and arachidonic acids (DHA, EPA and ARA, respectively) on sex-steroid and prostaglandin (PG) production were investigated in Eurasian perch (Perca fluviatilis) follicles using an in- vitro incubation technique. Only ARA was able to induce the production of 17,20β-dihydroxy-4-pregnen-3-one (DHP), the hormone produced by vitellogenic follicles undergoing final meiotic maturation, as well as the production of PGE2 and PGF2α by the follicles. This work also investigated, using a preliminary pharmacological approach, the presence of a functional PGE2-like receptor in fish follicles. Exogenous PGE2 and butaprost (specific agonist of the EP2 receptor) stimulated DHP production. A second experiment assayed the cyclic adenosine monophosphate (cAMP) production by the follicles after 24 h of incubation with the agonist and antagonist of the EP2 receptor. As observed in mammals, we concluded that the cAMP produced in response to PGE2 was probably mediated by an intracellular mechanism via a PGE2-like receptor. This is the first pharmacological indication of this type of receptors in fish follicles. This study also indicates that ARA, and its derivatives, PGE2 and PGF2α, may act on final follicle maturation in Eurasian perch.
Collapse
|
38
|
Duffy DM, McGinnis LK, VandeVoort CA, Christenson LK. Mammalian oocytes are targets for prostaglandin E2 (PGE2) action. Reprod Biol Endocrinol 2010; 8:131. [PMID: 21040553 PMCID: PMC2988801 DOI: 10.1186/1477-7827-8-131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ovulatory gonadotropin surge increases synthesis of prostaglandin E2 (PGE2) by the periovulatory follicle. PGE2 actions on granulosa cells are essential for successful ovulation. The aim of the present study is to determine if PGE2 also acts directly at the oocyte to regulate periovulatory events. METHODS Oocytes were obtained from monkeys and mice after ovarian follicular stimulation and assessed for PGE2 receptor mRNA and proteins. Oocytes were cultured with vehicle or PGE2 and assessed for cAMP generation, resumption of meiosis, and in vitro fertilization. RESULTS Germinal vesicle intact (GV) oocytes from both monkeys and mice expressed mRNA for the PGE2 receptors EP2, EP3, and EP4. EP2 and EP4 proteins were detected by confocal microscopy in oocytes of both species. Monkey and mouse oocytes responded to PGE2 as well as agonists selective for EP2 and EP4 receptors with elevated cAMP, consistent with previous identification of EP2 and EP4 as Gαs/adenylyl cyclase coupled receptors. Incubation of mouse GV stage oocytes with PGE2 delayed oocyte nuclear maturation in vitro, but PGE2 treatment did not alter the percentage of mouse oocytes that fertilized successfully. PGE2 treatment also decreased the percentage of monkey oocytes that resumed meiosis in vitro. In contrast with mouse oocytes, the percentage of monkey oocytes which fertilized in vitro was lower after treatment with PGE2. Monkey oocytes with intact cumulus showed delayed nuclear maturation, but fertilization rate was not affected by PGE2 treatment. CONCLUSIONS Monkey and mouse oocytes express functional PGE2 receptors. PGE2 acts directly at mammalian oocytes to delay nuclear maturation. Surrounding cumulus cells modulate the effect of PGE2 to alter subsequent fertilization.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Lynda K McGinnis
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
39
|
Boyer A, Lapointe É, Zheng X, Cowan RG, Li H, Quirk SM, DeMayo FJ, Richards JS, Boerboom D. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J 2010; 24:3010-25. [PMID: 20371632 PMCID: PMC2909279 DOI: 10.1096/fj.09-145789] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 03/11/2010] [Indexed: 12/21/2022]
Abstract
To study the role of WNT4 in the postnatal ovary, a mouse strain bearing a floxed Wnt4 allele was created and mated to the Amhr2(tm3(cre)Bhr) strain to target deletion of Wnt4 to granulosa cells. Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had reduced ovary weights and produced smaller litters (P<0.05). Serial follicle counting demonstrated that Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice were born with a normal ovarian reserve and maintained normal numbers of small follicles until puberty but had only 25.2% of the normal number of healthy antral follicles. Some Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had no antral follicles or corpora lutea and underwent premature follicle depletion. RT-PCR analyses of Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) granulosa cells and cultured granulosa cells that overexpress WNT4 demonstrated that WNT4 regulates the expression of Star, Cyp11a1, and Cyp19, steroidogenic genes previously identified as downstream targets of the WNT signaling effector CTNNB1. Decreased serum progesterone levels were found in immature, gonadotropin-treated Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice (P<0.05). WNT4- and CTNNB1-overexpressing cultured granulosa cells were analyzed by microarray for alterations in gene expression, which showed that WNT4 regulates additional genes involved in late follicle development via the WNT/CTNNB1 signaling pathway. Together, these data indicate that WNT4 is required for normal antral follicle development and may act by regulating granulosa cell functions including steroidogenesis.
Collapse
Affiliation(s)
- Alexandre Boyer
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Évelyne Lapointe
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Xiaofeng Zheng
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Robert G. Cowan
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Huaiguang Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Susan M. Quirk
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Derek Boerboom
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| |
Collapse
|
40
|
Tamba S, Yodoi R, Morimoto K, Inazumi T, Sukeno M, Segi-Nishida E, Okuno Y, Tsujimoto G, Narumiya S, Sugimoto Y. Expression profiling of cumulus cells reveals functional changes during ovulation and central roles of prostaglandin EP2 receptor in cAMP signaling. Biochimie 2010; 92:665-75. [PMID: 20399827 DOI: 10.1016/j.biochi.2010.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/13/2010] [Indexed: 11/28/2022]
Abstract
To understand the role of prostaglandin (PG) receptor EP2 (Ptger2) signaling in ovulation and fertilization, we investigated time-dependent expression profiles in wild-type (WT) and Ptger2(-/-) cumuli before and after ovulation by using microarrays. We prepared cumulus cells from mice just before and 3, 9 and 14 h after human chorionic gonadotropin injection. Key genes including cAMP-related and epidermal growth factor (EGF) genes, as well as extracellular matrix- (ECM-) related and chemokine genes were up-regulated in WT cumuli at 3 h and 14 h, respectively. Ptger2 deficiency differently affected the expression of many of the key genes at 3 h and 14 h. These results indicate that the gene expression profile of cumulus cells greatly differs before and after ovulation, and in each situation, PGE(2)-EP2 signaling plays a critical role in cAMP-regulated gene expression in the cumulus cells under physiological conditions.
Collapse
Affiliation(s)
- Shigero Tamba
- Department of Physiological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ichikawa A, Sugimoto Y, Tanaka S. Molecular biology of histidine decarboxylase and prostaglandin receptors. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:848-66. [PMID: 20948178 PMCID: PMC3037517 DOI: 10.2183/pjab.86.848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Histamine and prostaglandins (PGs) play a variety of physiological roles as autacoids, which function in the vicinity of their sources and maintain local homeostasis in the body. They stimulate target cells by acting on their specific receptors, which are coupled to trimeric G proteins. For the precise understanding of the physiological roles of histamine and PGs, it is necessary to clarify the molecular mechanisms involved in their synthesis as well as their receptor-mediated responses. We cloned the cDNAs for mouse L-histidine decarboxylase (HDC) and 6 mouse prostanoid receptors (4 PGE(2) receptors, PGF receptor, and PGI receptor). We then characterized the expression patterns and functions of these genes. Furthermore, we established gene-targeted mouse strains for HDC and PG receptors to explore the novel pathophysiological roles of histamine and PGs. We have here summarized our research, which should contribute to progress in the molecular biology of HDC and PG receptors.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA, Complementary/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Histamine/chemistry
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Homeostasis
- Humans
- Mice
- Models, Biological
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
Collapse
Affiliation(s)
- Atsushi Ichikawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
42
|
Kowalewski MP, Beceriklisoy HB, Pfarrer C, Aslan S, Kindahl H, Kücükaslan I, Hoffmann B. Canine placenta: a source of prepartal prostaglandins during normal and antiprogestin-induced parturition. Reproduction 2009; 139:655-64. [PMID: 19934344 DOI: 10.1530/rep-09-0140] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of cyclooxygenase 2 (COX2, now known as PTGS2), prostaglandin E2 synthase (PTGES, PGES), and prostaglandin F2alpha synthase (PGFS), of the respective receptors PTGFR (FP), PTGER2 (EP2), and PTGER4 (EP4) and of the progesterone receptor (PGR, PR) was assessed by real-time PCR, immunohistochemistry (IHC), or in situ hybridization (ISH) in utero/placental tissue samples collected from three to five bitches on days 8-12 (pre-implantation), 18-25 (post-implantation), and 35-40 (mid-gestation) of pregnancy and during the prepartal luteolysis. Additionally, ten mid-pregnant bitches were treated with the antiprogestin aglepristone (10 mg/kg bw (2x/24 h)); ovariohysterectomy was 24 and 72 h after the second treatment. Plasma progesterone and 15-ketodihydro-PGF2alpha (PGFM) concentrations were determined by RIA. Expression of the PGR was highest before implantation and primarily located to the endometrium; expression in the placenta was restricted to the decidual cells. PTGS2 was constantly low expressed until mid-gestation; a strong upregulation occurred at prepartal luteolysis concomitant with an increase in PGFM. PGFS was upregulated after implantation and significantly elevated through early and mid-gestation. PTGES showed a gradual increase and a strong prepartal upregulation. PTGFR, PTGER2, and PTGER4 were downregulated after implantation; a gradual upregulation of PTGFR and PTGER2 occurred towards parturition. ISH and IHC co-localized PGFS, PTGFR, PTGES, and PTGS2 in the trophoblast and endometrium. The changes following application of aglepristone were in the same direction as those observed from mid-gestation to prepartal luteolysis. These data suggest that the prepartal increase of PGF2alpha results from a strong upregulation of PTGS2 in the fetal trophoblast with the withdrawal of progesterone having a signalling function and the decidual cells playing a key role in the underlying cell-to-cell crosstalk.
Collapse
Affiliation(s)
- Mariusz Pawel Kowalewski
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kõks S, Velthut A, Sarapik A, Altmäe S, Reinmaa E, Schalkwyk LC, Fernandes C, Lad HV, Soomets U, Jaakma U, Salumets A. The differential transcriptome and ontology profiles of floating and cumulus granulosa cells in stimulated human antral follicles. Mol Hum Reprod 2009; 16:229-40. [PMID: 19933312 DOI: 10.1093/molehr/gap103] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Communication between various ovarian cell types is a prerequisite for folliculogenesis and ovulation. In antral follicles granulosa cells divide into two distinct populations of mural and cumulus granulosa cells (CGC), enveloping the antrum and surrounding the oocyte, respectively. Both cell types, with the mural compartment in excess, contribute to the floating granulosa cell (FGC) population in the follicular fluid. The aim of this study was to compare the transcriptomes of FGC and CGC in stimulated antral follicles obtained from 19 women undergoing IVF-ICSI procedure. FGC were obtained from follicular fluid during the follicle puncture procedure and CGC were acquired after oocyte denudation for micromanipulation. Gene expression analysis was conducted using the genome-wide Affymetrix transcriptome array. The expression profile of the two granulosa cell populations varied significantly. Out of 28 869 analysed transcripts 4480 were differentially expressed (q-value < 10(-4)) and 489 showed > or =2-fold difference in the expression level with 222 genes up-regulated in FGC and 267 in CGC. The transcriptome of FGC showed higher expression of genes involved in immune response, hematological system function and organismal injury, although CGC had genes involved in protein degradation and nervous system function up-regulated. Cell-to-cell signalling and interaction pathways were noted in both cell populations. Furthermore, numerous novel transcripts that have not been previously described in follicular physiology were identified. In conclusion, our results provide a solid basis for future studies in follicular biology that will help to identify molecular markers for oocyte and embryo viability in IVF.
Collapse
Affiliation(s)
- S Kõks
- Department of Physiology, University of Tartu, Tartu 50411, Estonia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Matsumura H, Kano K, Marín de Evsikova C, Young JA, Nishina PM, Naggert JK, Naito K. Transcriptome analysis reveals an unexpected role of a collagen tyrosine kinase receptor gene, Ddr2, as a regulator of ovarian function. Physiol Genomics 2009; 39:120-9. [PMID: 19671659 DOI: 10.1152/physiolgenomics.00073.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice homozygous for the smallie (slie) mutation lack a collagen receptor, discoidin domain receptor 2 (DDR2), and are dwarfed and infertile due to peripheral dysregulation of the endocrine system of unknown etiology. We used a systems biology approach to identify biological networks affected by Ddr2(slie/slie) mutation in ovaries using microarray analysis and validate findings using molecular, cellular, and functional biological assays. Transcriptome analysis indicated several altered gene categories in Ddr2(slie/slie) mutants, including gonadal development, ovulation, antiapoptosis, and steroid hormones. Subsequent biological experiments confirmed the transcriptome analysis predictions. For instance, a significant increase of TUNEL-positive follicles was found in Ddr2(slie/slie) mutants vs. wild type, which confirm the transcriptome prediction for decreased chromatin maintenance and antiapoptosis. Decreases in gene expression were confirmed by RT-PCR and/or qPCR; luteinizing hormone receptor and prostaglandin type E and F receptors in Ddr2(slie/slie) mutants, compared with wild type, confirm hormonal signaling pathways involved in ovulation. Furthermore, deficiencies in immunohistochemistry for DDR2 and luteinizing hormone receptor in the somatic cells, but not the oocytes, of Ddr2(slie/slie) mutant ovaries suggest against an intrinsic defect in germ cells. Indeed, Ddr2(slie/slie) mutants ovulated significantly fewer oocytes; their oocytes were competent to complete meiosis and fertilization in vitro. Taken together, our convergent data signify DDR2 as a novel critical player in ovarian function, which acts upon classical endocrine pathways in somatic, rather than germline, cells.
Collapse
Affiliation(s)
- Hirokazu Matsumura
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Burnum KE, Cornett DS, Puolitaival SM, Milne SB, Myers DS, Tranguch S, Brown HA, Dey SK, Caprioli RM. Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 2009; 50:2290-8. [PMID: 19429885 DOI: 10.1194/jlr.m900100-jlr200] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular events involved in successful embryo implantation are not well understood. In this study, we used MALDI imaging mass spectrometry (IMS) technologies to characterize the spatial and temporal distribution of phospholipid species associated with mouse embryo implantation. Molecular images showing phospholipid distribution within implantation sites changed markedly between distinct cellular areas during days 4-8 of pregnancy. For example, by day 8, linoleate- and docosahexaenoate-containing phospholipids localized to regions destined to undergo cell death, whereas oleate-containing phospholipids localized to angiogenic regions. Arachidonate-containing phospholipids showed different segregation patterns depending on the lipid class, revealing a strong correlation of phosphatidylethanolamines and phosphatidylinositols with cytosolic phospholipase A(2alpha) and cyclooxygenase-2 during embryo implantation. LC-ESI-MS/MS was used to validate MALDI IMS phospholipid distribution patterns. Overall, molecular images revealed the dynamic complexity of lipid distributions in early pregnancy, signifying the importance of complex interplay of lipid molecules in uterine biology and implantation.
Collapse
Affiliation(s)
- Kristin E Burnum
- Departments of Biochemistry, Mass Spectrometry Research Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sayasith K, Bouchard N, Doré M, Sirois J. Gonadotropin-dependent regulation of the prostaglandin E2 receptor in equine preovulatory follicles during the ovulatory process in mares. Mol Reprod Dev 2009; 76:191-201. [PMID: 18543285 DOI: 10.1002/mrd.20941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objectives of the study were to clone the primary structure of the prostaglandin E2 receptor subtype 2 (PTGER2) cDNA and to characterize its regulation in equine follicles during gonadotropin-induced ovulation. Results from DNA isolation indicated that the equine PTGER2 cDNA encodes a predicted 353-amino acid protein, which is highly similar (76-85%) to known mammalian homologues. The regulation of PTGER2 was studied by semi-quantitative RT-PCR/Southern blot using preparations of theca interna and mural granulosa cells isolated from equine follicles 0-39 hr post-treatment with human chorionic gonadotropin (hCG). Results indicated that a significant increase of PTGER2 mRNA occurred at 24 and 39 hr post-hCG in granulosa cells, and 30 and 33 hr post-hCG in theca cells (P < 0.05). Immunohistochemical staining and immunoblotting performed on equine follicular samples showed a corresponding increase of PTGER2 protein in both cell types after treatment with hCG. Levels of PTGER2 mRNA were also high in uterus, thymus and spleen, but moderate to low in other tested tissues. In the ovary, the expression of PTGER4 mRNA was observed and predominantly occurred in granulosa cells, with highest abundance of transcripts observed at 12 and 39 hr post-hCG. Thus, this study reports for the first time in mares that the ovulatory process is accompanied by the gonadotropin-dependent up-regulation of PTGER2 and PTGER4, which may in turn regulate PGE2-mediated preovulatory effects.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction Animale Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| | | | | | | |
Collapse
|
47
|
Sena J, Liu Z. Expression of cyclooxygenase genes and production of prostaglandins during ovulation in the ovarian follicles of Xenopus laevis. Gen Comp Endocrinol 2008; 157:165-73. [PMID: 18555068 DOI: 10.1016/j.ygcen.2008.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/19/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
Abstract
Involvement of cyclooxygenase (COX) and prostaglandin (PG) synthesis during ovulation in Xenopus laevis ovarian follicles was investigated. X. laevis COX cDNAs were isolated from ovarian tissues by using reverse transcription-polymerase chain reaction (RT-PCR) followed by rapid amplification of cDNA ends (RACE). In X. laevis ovary, expression of COX-2 but not COX-1 mRNA was up-regulated during gonadotropin-induced oocyte maturation and ovulation in vitro. Elevation of PGF2* synthesis was directly correlated with the up-regulation of COX-2 mRNA. Synthesis of PGE(2) also increased during periovulatory period, however, the concentrations were much lower than those of PGF2*Progesterone (P4) also induced up-regulation of COX-2 mRNA as well as ovulation. Actinomycin D (ActD) blocked P4-induced ovulation. The inhibition of ovulation by Act D was rescued by co-treatment with exogenous PGF2* in a dose dependent manner. A non-selective COX inhibitor (indomethacin) and selective COX-2 inhibitor (NS398) strongly inhibited the hCG- and P4-dependent production of PGF2*. Inhibitory effects of selective COX-1 inhibitor (SC560) on PGF2* production were lower than that of other inhibitors. Indomethacin and NS398 blocked P4-induced ovulation. NS398 did not block hCG-induced ovulation although it strongly suppressed PGF2* production. These results suggest that (1) in Xenopus ovarian follicles, PGF2* is synthesized during periovulatory period, similar to that in mammals, (2) PGF2* synthesis is regulated by de novo transcription of COX-2 but not COX-1, (3) PGF2* is necessary for P4-induced ovulation but may not be essential for hCG-induced ovulation, and other factor(s) may be involved in the hCG-induced ovulation.
Collapse
Affiliation(s)
- Johnny Sena
- Department of Biology, Eastern New Mexico University, 1500 S. Ave K, Portales, NM 88130, USA
| | | |
Collapse
|
48
|
Kowalewski MP, Mutembei HM, Hoffmann B. Canine prostaglandin E2 synthase (PGES) and its receptors (EP2 and EP4): expression in the corpus luteum during dioestrus. Anim Reprod Sci 2007; 109:319-29. [PMID: 18280063 DOI: 10.1016/j.anireprosci.2007.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/29/2022]
Abstract
In the dog CL are the only source of the progesterone in cyclic and pregnant animals. From a high expression of cyclooxygenase 2 (Cox2) at the beginning of the dioestrus and a low one at the end it was suggested that prostanoids may play a role in the formation of the CL. This led to the hypothesis that also in the dog PGE2 of luteal origin might act as paracrine/autocrine factor. Hence, expression of the prostaglandin E2 synthase (PGES) and its receptors (EP2 and EP4) was determined during the course of dioestrus in canine CL from days 5, 15, 25, 35, 45, 65 after ovulation, following cloning of PGES using SMART RACE PCR, which revealed a high homology (82-94%) with other species. Real Time (TaqMan) PCR showed a high PGES and EP2 expression in the early CL-phase with a significant decrease thereafter. EP4 revealed a constant expression pattern throughout the life span of the CL. In situ hybridization co-localized PGES, EP2 and EP4 in the cytoplasm of the luteal cells only. In conclusion, our data suggest that in the dog PGE2 of luteal origin acts by autocrine mechanism as a luteotropic factor through its EP2 and EP4 receptors during the phase of CL-formation.
Collapse
Affiliation(s)
- Mariusz Pawel Kowalewski
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | |
Collapse
|
49
|
Abstract
Prostaglandin (PG) E(2) exerts its actions by acting on a group of G-protein-coupled receptors (GPCRs). There are four GPCRs responding to PGE(2) designated subtypes EP1, EP2, EP3, and EP4 and multiple splicing isoforms of the subtype EP3. The EP subtypes exhibit differences in signal transduction, tissue localization, and regulation of expression. This molecular and biochemical heterogeneity of PGE receptors leads to PGE(2) being the most versatile prostanoid. Studies on knock-out mice deficient in each EP subtype have defined PGE(2) actions mediated by each subtype and identified the role each EP subtype plays in various physiological and pathophysiological responses. Here we review recent advances in PGE receptor research.
Collapse
Affiliation(s)
- Yukihiko Sugimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
50
|
Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update 2007; 13:289-312. [PMID: 17242016 DOI: 10.1093/humupd/dml062] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Successful ovulation requires that developmentally competent oocytes are released with appropriate timing from the ovarian follicle. Somatic cells of the follicle sense the ovulatory stimulus and guide resumption of meiosis and release of the oocyte, as well as structural remodelling and luteinization of the follicle. Complex intercellular communication co-ordinates critical stages of oocyte maturation and links this process with release from the follicle. To achieve these outcomes, ovulation is controlled through multiple inputs, including endocrine hormones, immune and metabolic signals, as well as intrafollicular paracrine factors from the theca, mural and cumulus granulosa cells and the oocyte itself. This review focuses on the recent advances in understanding of molecular mechanisms that commence after the gonadotrophin surge and culminate with release of the oocyte. These mechanisms include intracellular signalling, gene regulation and remodelling of tissue structure in each of the distinct ovarian compartments. Most critical ovulatory mediators exert effects through the cumulus cell complex that surrounds and connects with the oocyte. The convergence of ovulatory signals through the cumulus complex co-ordinates the key mechanistic processes that mediate and control oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Darryl L Russell
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|