1
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Corral D, Ansaldo E, Delaleu J, Pichler AC, Kabat J, Oguz C, Teijeiro A, Yong D, Abid M, Rivera CA, Link VM, Yang K, Chi L, Nie J, Kamenyeva O, Fan Y, Chan JKY, Ginhoux F, Bosselut R, Belkaid Y. Mammary intraepithelial lymphocytes promote lactogenesis and offspring fitness. Cell 2025; 188:1662-1680.e24. [PMID: 39954680 DOI: 10.1016/j.cell.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Breastfeeding is an obligatory requirement of mammalian survival. This fundamental process is associated with the adaptation of maternal physiology, including the transformation of the mammary gland into a milk-secreting organ. How maternal immunity contributes to mammary gland remodeling and function remains largely unknown. Here, we show that maternal adaptive immunity plays a critical role in shaping lactogenesis. Specifically, physiological adaptation during pregnancy is associated with thymic involution and a paradoxical enrichment in intraepithelial lymphocyte (IEL) precursors that no longer migrate to the gut but instead preferentially accumulate within the mammary gland. IEL precursors differentiate into T-bet-expressing unconventional CD8αα lymphocytes in an IL-15-dependent manner. Mammary IELs control milk production by favoring the differentiation and maturation of contractile and milk-secreting cells, thereby promoting offspring fitness. Altogether, this work uncovers a contribution of the maternal adaptive immune system in organismal remodeling during pregnancy that is associated with mammary gland development and function.
Collapse
Affiliation(s)
- Dan Corral
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Eduard Ansaldo
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jérémie Delaleu
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea C Pichler
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Teijeiro
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Yong
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnoor Abid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claudia A Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katharine Yang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597, Singapore; Obstetrics and Gynecology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Health System, Singapore 117597, Singapore; Obstetrics and Gynecology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Gustave Roussy, INSERM U1015, Villejuif, France
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Vickers R, Porter W. Immune Cell Contribution to Mammary Gland Development. J Mammary Gland Biol Neoplasia 2024; 29:16. [PMID: 39177859 PMCID: PMC11343902 DOI: 10.1007/s10911-024-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.
Collapse
Affiliation(s)
- Ramiah Vickers
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston Porter
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Wang L, Maharjan CK, Borcherding N, Master RP, Mo J, Tithi TI, Kim MC, Carelock ME, Master AP, Gibson-Corley KN, Kolb RH, Smith KA, Zhang W. Epithelial IL-2 is critical for NK cell-mediated cancer immunosurveillance in mammary glands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591178. [PMID: 38712046 PMCID: PMC11071474 DOI: 10.1101/2024.04.25.591178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.
Collapse
|
5
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
6
|
Sumbal J, Fre S, Sumbalova Koledova Z. Fibroblast-induced mammary epithelial branching depends on fibroblast contractility. PLoS Biol 2024; 22:e3002093. [PMID: 38198514 PMCID: PMC10805323 DOI: 10.1371/journal.pbio.3002093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/23/2024] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Epithelial branching morphogenesis is an essential process in living organisms, through which organ-specific epithelial shapes are created. Interactions between epithelial cells and their stromal microenvironment instruct branching morphogenesis but remain incompletely understood. Here, we employed fibroblast-organoid or fibroblast-spheroid co-culture systems and time-lapse imaging to reveal that physical contact between fibroblasts and epithelial cells and fibroblast contractility are required to induce mammary epithelial branching. Pharmacological inhibition of ROCK or non-muscle myosin II, or fibroblast-specific knock-out of Myh9 abrogate fibroblast-induced epithelial branching. The process of fibroblast-induced branching requires epithelial proliferation and is associated with distinctive epithelial patterning of yes associated protein (YAP) activity along organoid branches, which is dependent on fibroblast contractility. Moreover, we provide evidence for the in vivo existence of contractile fibroblasts specifically surrounding terminal end buds (TEBs) of pubertal murine mammary glands, advocating for an important role of fibroblast contractility in branching in vivo. Together, we identify fibroblast contractility as a novel stromal factor driving mammary epithelial morphogenesis. Our study contributes to comprehensive understanding of overlapping but divergent employment of mechanically active fibroblasts in developmental versus tumorigenic programs.
Collapse
Affiliation(s)
- Jakub Sumbal
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL Université Paris, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL Université Paris, Paris, France
| | - Zuzana Sumbalova Koledova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
| |
Collapse
|
7
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
8
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
Dawson CA, Visvader JE. The Cellular Organization of the Mammary Gland: Insights From Microscopy. J Mammary Gland Biol Neoplasia 2021; 26:71-85. [PMID: 33835387 DOI: 10.1007/s10911-021-09483-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Despite rapid advances in our knowledge of the cellular heterogeneity and molecular regulation of the mammary gland, how these relate to 3D cellular organization remains unclear. In addition to hormonal regulation, mammary gland development and function is directed by para- and juxtacrine signaling among diverse cell-types, particularly the immune and mesenchymal populations. Precise mapping of the cellular landscape of the breast will help to decipher this complex coordination. Imaging of thin tissue sections has provided foundational information about cell positioning in the mammary gland and now technological advances in tissue clearing and subcellular-resolution 3D imaging are painting a more complete picture. In particular, confocal, light-sheet and multiphoton microscopy applied to intact tissue can fully capture cell morphology, position and interactions, and have the power to identify spatially rare events. This review will summarize our current understanding of mammary gland cellular organization as revealed by microscopy. We focus on the mouse mammary gland and cover a broad range of immune and stromal cell types at major developmental stages and give insights into important tissue niches and cellular interactions.
Collapse
Affiliation(s)
- Caleb A Dawson
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia
| |
Collapse
|
10
|
Pubertal mammary gland development is a key determinant of adult mammographic density. Semin Cell Dev Biol 2020; 114:143-158. [PMID: 33309487 DOI: 10.1016/j.semcdb.2020.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Mammographic density refers to the radiological appearance of fibroglandular and adipose tissue on a mammogram of the breast. Women with relatively high mammographic density for their age and body mass index are at significantly higher risk for breast cancer. The association between mammographic density and breast cancer risk is well-established, however the molecular and cellular events that lead to the development of high mammographic density are yet to be elucidated. Puberty is a critical time for breast development, where endocrine and paracrine signalling drive development of the mammary gland epithelium, stroma, and adipose tissue. As the relative abundance of these cell types determines the radiological appearance of the adult breast, puberty should be considered as a key developmental stage in the establishment of mammographic density. Epidemiological studies have pointed to the significance of pubertal adipose tissue deposition, as well as timing of menarche and thelarche, on adult mammographic density and breast cancer risk. Activation of hypothalamic-pituitary axes during puberty combined with genetic and epigenetic molecular determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling factors in the mammary gland, act in concert to drive breast development and the relative abundance of different cell types in the adult breast. Here, we discuss the key cellular and molecular mechanisms through which pubertal mammary gland development may affect adult mammographic density and cancer risk.
Collapse
|
11
|
Role of the Microenvironment in Regulating Normal and Cancer Stem Cell Activity: Implications for Breast Cancer Progression and Therapy Response. Cancers (Basel) 2019; 11:cancers11091240. [PMID: 31450577 PMCID: PMC6770706 DOI: 10.3390/cancers11091240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial cells in an adult woman’s breast tissue are continuously replaced throughout their reproductive life during pregnancy and estrus cycles. Such extensive epithelial cell turnover is governed by the primitive mammary stem cells (MaSCs) that proliferate and differentiate into bipotential and lineage-restricted progenitors that ultimately generate the mature breast epithelial cells. These cellular processes are orchestrated by tightly-regulated paracrine signals and crosstalk between breast epithelial cells and their tissue microenvironment. However, current evidence suggests that alterations to the communication between MaSCs, epithelial progenitors and their microenvironment plays an important role in breast carcinogenesis. In this article, we review the current knowledge regarding the role of the breast tissue microenvironment in regulating the special functions of normal and cancer stem cells. Understanding the crosstalk between MaSCs and their microenvironment will provide new insights into how an altered breast tissue microenvironment could contribute to breast cancer development, progression and therapy response and the implications of this for the development of novel therapeutic strategies to target cancer stem cells.
Collapse
|
12
|
Abstract
Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.
Collapse
Affiliation(s)
- Peter F Weller
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Lisa A Spencer
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
13
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
14
|
Abstract
Historically, eosinophils have been considered as end-stage cells involved in host protection against parasitic infection and in the mechanisms of hypersensitivity. However, later studies have shown that this multifunctional cell is also capable of producing immunoregulatory cytokines and soluble mediators and is involved in tissue homeostasis and modulation of innate and adaptive immune responses. In this review, we summarize the biology of eosinophils, including the function and molecular mechanisms of their granule proteins, cell surface markers, mediators, and pathways, and present comprehensive reviews of research updates on the genetics and epigenetics of eosinophils. We describe recent advances in the development of epigenetics of eosinophil-related diseases, especially in asthma. Likewise, recent studies have provided us with a more complete appreciation of how eosinophils contribute to the pathogenesis of various diseases, including hypereosinophilic syndrome (HES). Over the past decades, the definition and criteria of HES have been evolving with the progress of our understanding of the disease and some aspects of this disease still remain controversial. We also review recent updates on the genetic and molecular mechanisms of HES, which have spurred dramatic developments in the clinical strategies of diagnosis and treatment for this heterogeneous group of diseases. The conclusion from this review is that the biology of eosinophils provides significant insights as to their roles in health and disease and, furthermore, demonstrates that a better understanding of eosinophil will accelerate the development of new therapeutic strategies for patients.
Collapse
|
15
|
Peuhu E, Kaukonen R, Lerche M, Saari M, Guzmán C, Rantakari P, De Franceschi N, Wärri A, Georgiadou M, Jacquemet G, Mattila E, Virtakoivu R, Liu Y, Attieh Y, Silva KA, Betz T, Sundberg JP, Salmi M, Deugnier MA, Eliceiri KW, Ivaska J. SHARPIN regulates collagen architecture and ductal outgrowth in the developing mouse mammary gland. EMBO J 2016; 36:165-182. [PMID: 27974362 DOI: 10.15252/embj.201694387] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/09/2022] Open
Abstract
SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild-type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.
Collapse
Affiliation(s)
- Emilia Peuhu
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Riina Kaukonen
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Martina Lerche
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Markku Saari
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Camilo Guzmán
- Centre for Biotechnology, University of Turku, Turku, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | | | - Anni Wärri
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | - Elina Mattila
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | - Yuming Liu
- Department of Biomedical Engineering, Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin at Madison, Madison, WI, USA
| | - Youmna Attieh
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | | | - Timo Betz
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Center for Molecular Biology of Inflammation, Cells-in-Motion Cluster of Excellence, Institute of Cell Biology, Münster University, Münster, Germany
| | | | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Marie-Ange Deugnier
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut Curie, CNRS, UMR144, Paris, France
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin at Madison, Madison, WI, USA
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, Turku, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Need EF, Atashgaran V, Ingman WV, Dasari P. Hormonal regulation of the immune microenvironment in the mammary gland. J Mammary Gland Biol Neoplasia 2014; 19:229-39. [PMID: 24993978 DOI: 10.1007/s10911-014-9324-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
It is well established that the development and homeostasis of the mammary gland are highly dependent upon the actions of ovarian hormones progesterone and estrogen, as well as the availability of prolactin for the pregnant and lactating gland. More recently it has become apparent that immune system cells and cytokines play essential roles in both mammary gland development as well as breast cancer. Here, we review hormonal effects on mammary gland biology during puberty, menstrual cycling, pregnancy, lactation and involution, and dissect how hormonal control of the immune system may contribute to mammary development at each stage via cytokine secretion and recruitment of macrophages, eosinophils, mast cells and lymphocytes. Collectively, these alterations may create an immunotolerant or inflammatory immune environment at specific developmental stages or phases of the menstrual cycle. Of particular interest for further research is investigation of the combinatorial actions of progesterone and estrogen during the luteal phase of the menstrual cycle and key developmental points where the immune system may play an active role both in mammary development as well as in the creation of an immunotolerant environment, thereby affecting breast cancer risk.
Collapse
Affiliation(s)
- Eleanor F Need
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, DX465702, 28 Woodville Road, Woodville, SA, 5011, Australia
| | | | | | | |
Collapse
|
17
|
Abstract
Surprisingly, the role(s) of eosinophils in health and disease is often summarized by clinicians and basic research scientists as a pervasive consensus opinion first learned in medical/graduate school. Eosinophils are rare white blood cells whose activities are primarily destructive and are only relevant in parasitic infections and asthma. However, is this consensus correct? This review argues that the wealth of available studies investigating the role(s) of eosinophils in both health and disease demonstrates that the activities of these granulocytes are far more expansive and complex than previously appreciated. In turn, this greater understanding has led to the realization that eosinophils have significant contributory roles in a wide range of diseases. Furthermore, published studies even implicate eosinophil-mediated activities in otherwise healthy persons. We suggest that the collective reports in the literature showing a role for eosinophils in an ever-increasing number of novel settings highlight the true complexity and importance of this granulocyte. Indeed, discussions of eosinophils are no longer simple and more often than not now begin with the question/statement "Did you know …?"
Collapse
|
18
|
Masso-Welch PA, Merhige PM, Veeranki OLM, Kuo SM. Loss of IL-10 decreases mouse postpubertal mammary gland development in the absence of inflammation. Immunol Invest 2012; 41:521-37. [PMID: 22594921 DOI: 10.3109/08820139.2012.684193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IL-10 is a pleiotrophic anti-inflammatory cytokine. Decreased IL-10 expression is associated with an increased breast cancer risk but the mechanism is not clear. This study was designed to test the hypothesis that the loss of IL-10 alters mammary development, even in the absence of inflammation. Wild-type and IL-10-/- mouse littermates were similar in growth, development, and breeding success. Using whole-mounts and paraffin sections, mammary glands from pre-pubertal mice (d21) were found to not be affected by the IL-10 null genotype. However, after the onset of estrous cycling, ductal structure, but not lymph nodes or adipocytes, of IL-10 knockout mice were found to moderately decrease at day 55, 80, and 150 of age. This phenotype was not rescued by lactogenesis. At day 2 of lactation, IL-10 null mice had reduced lobular complexity and glandular area with the retention of adipocytes. These results support the hypothesis that absence of IL-10 reduces glandular development during postnatal development, at maturity, and during the early stages of lactation. Although our study cannot distinguish between a direct IL-10 effect on the epithelial cells and an indirect systemic effect, epithelial cell responses to IL-10 should be considered in the therapeutic applications of cytokines or cytokine ablation.
Collapse
Affiliation(s)
- Patricia A Masso-Welch
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
19
|
Willson CJ, Chandra SA, Kimbrough CL, Jordan HL. Effect of estrous cycle phase on clinical pathology values in beagle dogs. Vet Clin Pathol 2012; 41:71-6. [PMID: 22250946 DOI: 10.1111/j.1939-165x.2011.00392.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND In dogs, the diestrus phase is considerably longer than in most domestic animals, and is characterized by high circulating progesterone concentrations that may influence clinical pathology values. OBJECTIVE The objective of this retrospective study was to investigate differences in clinical pathology data in dogs in diestrus compared with data from dogs in all other phases of the estrous cycle. METHODS Phase of the estrous cycle was determined by histologic evaluation of reproductive tissues from 86 control female Beagles that had participated in 23 toxicity studies. Serum biochemical, hematologic, and urinalysis values from dogs in diestrus were compared with data from dogs in all other estrous cycle phases using a 2-tailed t-test. RESULTS In Beagles in diestrus (n = 38), serum cholesterol concentrations and eosinophil counts were 35% (P < .0001) and 45.8% (P = .0035) higher, respectively, than for Beagles in all other phases of the estrous cycle (n = 48). Furthermore, Beagles in diestrus had 14% lower AST activity (P = .0011), 1% lower chloride concentration (P = .0224), 7.8% lower hemoglobin concentration (P < .0001), 7.8% lower RBC count (P < .0001), and 7.6% lower hematocrit (P < .0001) compared with female dogs in all other phases of the estrous cycle. Urine values did not differ significantly between groups. CONCLUSIONS Differences in clinical pathology values between dogs in different phases of the estrous cycle could potentially confound interpretation of data in toxicity studies, which often have small group sizes. Interpretation of clinical pathology data in female dogs should be performed with due consideration given to the phase of the estrous cycle.
Collapse
Affiliation(s)
- Cynthia J Willson
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | |
Collapse
|
20
|
Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003285. [PMID: 21123394 DOI: 10.1101/cshperspect.a003285] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leukocytes, of both the innate and adaptive lineages, are normal cellular components of all tissues. These important cells not only are critical for regulating normal tissue homeostasis, but also are significant paracrine regulators of all physiologic and pathologic tissue repair processes. This article summarizes recent insights regarding the trophic roles of leukocytes at each stage of mammary gland development and during cancer development, with a focus on Murids and humans.
Collapse
Affiliation(s)
- Lisa M Coussens
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
21
|
Reed JR, Schwertfeger KL. Immune cell location and function during post-natal mammary gland development. J Mammary Gland Biol Neoplasia 2010; 15:329-39. [PMID: 20730636 PMCID: PMC4204476 DOI: 10.1007/s10911-010-9188-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/10/2010] [Indexed: 01/21/2023] Open
Abstract
Post-natal mammary gland development requires complex interactions between the epithelial cells and various cell types within the stroma. Recent studies have illustrated the importance of immune cells and their mediators during the various stages of mammary gland development. However, the mechanisms by which these immune cells functionally contribute to mammary gland development are only beginning to be understood. This review provides an overview of the localization of immune cells within the mammary gland during the various stages of post-natal mammary gland development. Furthermore, recent studies are summarized that illustrate the mechanisms by which these cells are recruited to the mammary gland and their functional roles in mammary gland development.
Collapse
|
22
|
Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol 2009; 337:124-33. [PMID: 19850030 DOI: 10.1016/j.ydbio.2009.10.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/22/2022]
Abstract
The stromal microenvironment regulates mammary gland branching morphogenesis. We have observed that mast cells are present in the mammary gland throughout its postnatal development and, in particular, are found around the terminal end buds and ductal epithelium of the pubertal gland. Mast cells contribute to allergy, inflammatory diseases, and cancer development but have not been implicated in normal development. Genetic and pharmacological disruption of mast cell function in the mammary gland revealed that mast cells are involved in rapid proliferation and normal duct branching during puberty, and this effect is independent of macrophage recruitment, which also regulates mammary gland development. For mast cells to exert their effects on normal morphogenesis required activation of their serine proteases and degranulation. Our observations reveal a novel role for mast cells during normal pubertal development in the mammary gland.
Collapse
|
23
|
Abstract
In this review, we aim to put in perspective the biology of a multifunctional leukocyte, the eosinophil, by placing it in the context of innate and adaptive immune responses. Eosinophils have a unique contribution in initiating inflammatory and adaptive responses, due to their bidirectional interactions with dendritic cells and T cells, as well as their large panel of secreted cytokines and soluble mediators. The mechanisms and consequences of eosinophil responses in experimental inflammatory models and human diseases are discussed.
Collapse
Affiliation(s)
- Carine Blanchard
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of medicine 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of medicine 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| |
Collapse
|
24
|
IL-5-overexpressing mice exhibit eosinophilia and altered wound healing through mechanisms involving prolonged inflammation. Immunol Cell Biol 2008; 87:131-40. [PMID: 18839016 DOI: 10.1038/icb.2008.72] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leucocytes are essential in healing wounds and are predominantly involved in the inflammatory and granulation stages of wound repair. Eosinophils are granulocytic leucocytes and are specifically regulated by interleukin-5 (IL-5), a cytokine produced by T helper 2 (Th2) cells. To characterize more clearly the role of the IL-5 and eosinophils in the wound healing process, IL-5-overexpressing and IL-5-deficient mice were used as models of eosinophilia and eosinophil depletion, respectively. Our results reveal a significantly altered inflammatory response between IL-5-overexpressing and IL-5 knockout mice post-wounding. Healing was significantly delayed in IL-5-overexpressing mice with wounds gaping wider and exhibiting impaired re-epithelialization. A delay in collagen deposition was observed suggesting a direct effect on matrix synthesis. A significant increase in inflammatory cell infiltration, particularly eosinophils and CD4(+) cells, one of the main cell types which secrete IL-5, was observed in IL-5-overexpressing mice wounds suggesting that one of the main roles of IL-5 in wound repair may be to promote the infiltration of eosinophils into healing wounds. Healing is delayed in IL-5-overexpressing mice and this corresponds to significantly increased levels of eosinophils and CD4(+) cells within the wound site that may contribute to and exacerbate the inflammatory response, resulting in detrimental wound repair.
Collapse
|
25
|
Howlin J, McBryan J, Martin F. Pubertal mammary gland development: insights from mouse models. J Mammary Gland Biol Neoplasia 2006; 11:283-97. [PMID: 17089203 DOI: 10.1007/s10911-006-9024-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During puberty the mammary gland develops from a rudimentary tree to a branched epithelial network of ducts which can support alveolar development and subsequent milk production during pregnancy and lactation. This process involves growth, proliferation, migration, branching, invasion, apoptosis and above all, tight regulation which allows these processes to take place simultaneously during the course of just a few weeks to create an adult gland. The process is under hormonal control and is thus coordinated with reproductive development. Mouse models, with overexpressed or knocked-out genes, have highlighted a number of pubertal mammary gland phenotypes and given significant insight into the regulatory mechanisms controlling this period of development. Here we review the published findings of the wide range of gene-manipulated mammary mouse models, documenting the common pubertal mammary gland phenotypes observed, and summarizing their contribution to our current understanding of how pubertal mammary gland development occurs.
Collapse
Affiliation(s)
- Jillian Howlin
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland, and Department of Laboratory Medicine, Malmo University Hospital, Sweden
| | | | | |
Collapse
|
26
|
Abstract
Eosinophils have been considered end-stage cells involved in host protection against parasites. However, numerous lines of evidence have now changed this perspective by showing that eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, we summarize the biology of eosinophils, focusing on the growing properties of eosinophil-derived products, including the constituents of their granules as well as the mechanisms by which they release their pleiotropic mediators. We examine new views on the role of eosinophils in homeostatic function, including developmental biology and innate and adaptive immunity (as well as interaction with mast cells and T cells). The molecular steps involved in eosinophil development and trafficking are described, with special attention to the important role of the transcription factor GATA-1, the eosinophil-selective cytokine IL-5, and the eotaxin subfamily of chemokines. We also review the role of eosinophils in disease processes, including infections, asthma, and gastrointestinal disorders, and new data concerning genetically engineered eosinophil-deficient mice. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
Collapse
Affiliation(s)
- Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | |
Collapse
|
27
|
Schofield G, Kimber SJ. Leukocyte Subpopulations in the Uteri of Leukemia Inhibitory Factor Knockout Mice During Early Pregnancy1. Biol Reprod 2005; 72:872-8. [PMID: 15576827 DOI: 10.1095/biolreprod.104.034876] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is transiently expressed on Day (D) 1 of pregnancy by the uterine epithelium and on D4 specifically by the glandular epithelium. The Lif knockout female mice are infertile because of uterine defects that affect embryo implantation, but pregnancy can be rescued in these mice by injections of LIF on D4 of pregnancy. Many of the specific actions of LIF in the uterus are unknown, especially with regard to uterine cell biology. Leukocytes, such as macrophages, natural killer (NK) cells, and eosinophils, are present in the pregnant uterus and are thought to be beneficial, because alterations in their proportions can adversely affect pregnancy. Immunocytochemistry and cell counting were used to compare the distributions and dynamics of leukocyte subpopulations in wild-type and Lif knockout mice. The percentage of macrophages was reduced by more than half in the Lif knockout mice on D3 of pregnancy, and their distribution was disrupted, suggesting that LIF is a chemokine for these cells. The NK cells were detected as early as D3 of pregnancy, but the Lif knockout mice had double the percentage of NK cells compared to wild-type mice at this time, indicating that LIF restricts the migration of NK cells to the uterus. The Lif knockout mice also had significantly higher percentages of eosinophils in the outer stroma on D3, and in the midstroma on D4, of pregnancy, suggesting that LIF also may restrict eosinophil migration to the uterus. These alterations of the uterine leukocyte subpopulations in Lif knockout mice may disrupt pregnancy and contribute to failure of implantation.
Collapse
Affiliation(s)
- Gemma Schofield
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|