1
|
Maniates KA, Suryanarayanan S, Rumin A, Lewin M, Singson A, Wehman AM. Sperm activation for fertilization requires robust activity of the TAT-5 lipid flippase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641851. [PMID: 40093082 PMCID: PMC11908258 DOI: 10.1101/2025.03.06.641851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
During fertilization, sperm and egg membranes signal and fuse to form a zygote and begin embryonic development. Here, we investigated the role of lipid asymmetry in gametogenesis, fertilization, and embryogenesis. We find that phosphatidylethanolamine asymmetry is lost during meiosis prior to phosphatidylserine exposure. We show that TAT-5, the P4-ATPase that maintains phosphatidylethanolamine asymmetry, is required for both oocyte formation and sperm activation, albeit at different levels of flippase activity. Loss of TAT-5 significantly decreases fertility in both males and hermaphrodites and decreases sperm activation. TAT-5 localizes to the plasma membrane of primary spermatocytes but is sorted away from maturing spermatids during meiosis. Our findings demonstrate that phosphatidylethanolamine asymmetry plays key roles during gametogenesis and sperm activation, expanding the roles of lipid dynamics in developmental cell fusion.
Collapse
|
2
|
Ruiz-Valderrama L, Mendoza-Sánchez JE, Rodríguez-Tobón E, Arrieta-Cruz I, González-Márquez H, Salame-Méndez PA, Tarragó-Castellanos R, Cortés-Barberena E, Rodríguez-Tobón A, Arenas-Ríos E. High-Fat Diets Disturb Rat Epididymal Sperm Maturation. Int J Mol Sci 2025; 26:1850. [PMID: 40076475 PMCID: PMC11899043 DOI: 10.3390/ijms26051850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Infertility is increasingly recognized as being closely linked to obesity in humans. The successful production of fertile spermatozoa requires adequate spermatogenesis within the testis and proper spermatozoa maturation through the epididymis. This study aimed to evaluate the impact of body adiposity on male fertility, focusing on sperm parameters, epididymal sperm maturation, and sperm capacitation in Wistar rats. Male rats were randomized into three dietary groups over four weeks: a control group receiving less than 4% lard, regular chow, a 10% lard group, and a 60% lard group. Following dietary interventions, fertility tests were conducted across the groups. The epididymis was dissected into caput, corpus, and cauda regions to assess sperm concentration, vitality capacitation, carbohydrate distribution, tyrosine phosphorylation, and phosphatidylserine levels. Additionally, serum testosterone levels were measured to evaluate hormonal influences on fertility. The rats subjected to high-fat diets leading to overweight and obesity exhibited significant alterations in fertility. These changes were characterized by impaired epididymal sperm maturation, as evidenced by lower testosterone levels, decreased sperm viability, and capacitation. Furthermore, increased adiposity was associated with a lack of asymmetry in the plasma membrane, alteration in carbohydrate distribution, and changes in tyrosine phosphorylation. This study underscores the adverse effects of high-fat diets on male fertility, particularly through mechanisms affecting sperm maturation in the epididymis. The evidence suggests that obesity-induced alterations in sperm parameters and hormonal profiles may contribute to reduced fertility in male rats, which could have implications for understanding similar human processes.
Collapse
Affiliation(s)
- Lorena Ruiz-Valderrama
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - José Edwin Mendoza-Sánchez
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Ernesto Rodríguez-Tobón
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Magdalena Contreras, Ciudad de México 10200, Mexico
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Pablo Arturo Salame-Méndez
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Rosario Tarragó-Castellanos
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico
| | - Ahiezer Rodríguez-Tobón
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| | - Edith Arenas-Ríos
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09340, Mexico; (L.R.-V.)
| |
Collapse
|
3
|
Maitan P, Bromfield EG, Stout TAE, Gadella BM, Leemans B. A stallion spermatozoon's journey through the mare's genital tract: In vivo and in vitro aspects of sperm capacitation. Anim Reprod Sci 2022; 246:106848. [PMID: 34556396 DOI: 10.1016/j.anireprosci.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Conventional in vitro fertilization is not efficacious when working with equine gametes. Although stallion spermatozoa bind to the zona pellucida in vitro, these gametes fail to initiate the acrosome reaction in the vicinity of the oocyte and cannot, therefore, penetrate into the perivitelline space. Failure of sperm penetration most likely relates to the absence of optimized in vitro fertilization media containing molecules essential to support stallion sperm capacitation. In vivo, the female reproductive tract, especially the oviductal lumen, provides an environmental milieu that appropriately regulates interactions between the gametes and promotes fertilization. Identifying these 'fertilization supporting factors' would be a great contribution for development of equine in vitro fertilization media. In this review, a description of the current understanding of the interactions stallion spermatozoa undergo during passage through the female genital tract, and related specific molecular changes that occur at the sperm plasma membrane is provided. Understanding these molecular changes may hold essential clues to achieving successful in vitro fertilization with equine gametes.
Collapse
Affiliation(s)
- Paula Maitan
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Veterinary Sciences, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth G Bromfield
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Priority Research Centre for Reproductive Science, College of Engineering, Science and Environment, University of Newcastle, Australia
| | - Tom A E Stout
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Bart M Gadella
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Bart Leemans
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
4
|
Maitan PP, Bromfield EG, Hoogendijk R, Leung MR, Zeev-Ben-Mordehai T, van de Lest CH, Jansen JWA, Leemans B, Guimarães JD, Stout TAE, Gadella BM, Henning H. Bicarbonate-Stimulated Membrane Reorganization in Stallion Spermatozoa. Front Cell Dev Biol 2021; 9:772254. [PMID: 34869370 PMCID: PMC8635755 DOI: 10.3389/fcell.2021.772254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Classical in vitro fertilization (IVF) is still poorly successful in horses. This lack of success is thought to be due primarily to inadequate capacitation of stallion spermatozoa under in vitro conditions. In species in which IVF is successful, bicarbonate, calcium, and albumin are considered the key components that enable a gradual reorganization of the sperm plasma membrane that allows the spermatozoa to undergo an acrosome reaction and fertilize the oocyte. The aim of this work was to comprehensively examine contributors to stallion sperm capacitation by investigating bicarbonate-induced membrane remodelling steps, and elucidating the contribution of cAMP signalling to these events. In the presence of capacitating media containing bicarbonate, a significant increase in plasma membrane fluidity was readily detected using merocyanine 540 staining in the majority of viable spermatozoa within 15 min of bicarbonate exposure. Specific inhibition of soluble adenylyl cyclase (sAC) in the presence of bicarbonate by LRE1 significantly reduced the number of viable sperm with high membrane fluidity. This suggests a vital role for sAC-mediated cAMP production in the regulation of membrane fluidity. Cryo-electron tomography of viable cells with high membrane fluidity revealed a range of membrane remodelling intermediates, including destabilized membranes and zones with close apposition of the plasma membrane and the outer acrosomal membrane. However, lipidomic analysis of equivalent viable spermatozoa with high membrane fluidity demonstrated that this phenomenon was neither accompanied by a gross change in the phospholipid composition of stallion sperm membranes nor detectable sterol efflux (p > 0.05). After an early increase in membrane fluidity, a significant and cAMP-dependent increase in viable sperm with phosphatidylserine (PS), but not phosphatidylethanolamine (PE) exposure was noted. While the events observed partly resemble findings from the in vitro capacitation of sperm from other mammalian species, the lack of cholesterol removal appears to be an equine-specific phenomenon. This research will assist in the development of a defined medium for the capacitation of stallion sperm and will facilitate progress toward a functional IVF protocol for horse gametes.
Collapse
Affiliation(s)
- Paula Piccolo Maitan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elizabeth G Bromfield
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Romy Hoogendijk
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Chris H van de Lest
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jeroen W A Jansen
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart Leemans
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart M Gadella
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Population Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Heiko Henning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
López-Trinidad BP, Vigueras-Villaseñor RM, Konigsberg M, Ávalos-Rodríguez A, Rodríguez-Tobón A, Cortés-Barberena E, Arteaga-Silva M, Arenas-Ríos E. Alterations in epididymal sperm maturation caused by ageing. Reprod Fertil Dev 2021; 33:855-864. [PMID: 34844664 DOI: 10.1071/rd21081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The epididymis is an organ that performs all the biochemical changes responsible for sperm maturation. During ageing, histological alterations in the epididymis and decreased protein synthesis have been found. This might affect the sperm maturation process. The aim of this study was to determine if the changes in the epididymis during ageing might cause alterations in sperm maturation. Wistar rats of 3-4months old (young) and 18-21months old (old) were used. The testosterone concentration was determined and the epididymides were dissected and divided in three regions: caput, corpus, and cauda. The tissues were used for histological processing and sperm extraction. Testosterone concentration decreased 34% in the old animals compared to the young ones. The distribution of mannose, sialic acid, and N-acetylglucosamine in the glycocalyx of the sperm membrane of old animals was different from that of young animals. The same occurred with phosphatidylserine externalisation and protein phosphorylation at tyrosine residues. Epididymis histology in old animals showed tubular and cellular degeneration. Our results suggest that ageing affects maturational markers, likely due to alterations in the epididymis as a result of the testosterone decrease associated with ageing.
Collapse
Affiliation(s)
- B P López-Trinidad
- Doctorado en Biología Experimental. Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México; and Laboratorio de Morfofisiología y Bioquímica del Espermatozoide, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México
| | - R M Vigueras-Villaseñor
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Ciudad de México, México
| | - M Konigsberg
- Laboratorio de Bioenergética y envejecimiento Celular, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México
| | - A Ávalos-Rodríguez
- Laboratorio de Bioquímica de la Reproducción, Universidad Autónoma Metropolitana. Unidad Xochimilco. Ciudad de México, México
| | - A Rodríguez-Tobón
- Laboratorio de Ecología y Biología de Mamíferos, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México; and Laboratorio de Morfofisiología y Bioquímica del Espermatozoide, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México
| | - E Cortés-Barberena
- Laboratorio de Biología Celular y Citometría de Flujo, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México
| | - M Arteaga-Silva
- Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México
| | - E Arenas-Ríos
- Laboratorio de Morfofisiología y Bioquímica del Espermatozoide, Universidad Autónoma Metropolitana. Unidad Iztapalapa. Ciudad de México, México
| |
Collapse
|
6
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
7
|
Abstract
Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm-egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm-egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm-egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| |
Collapse
|
8
|
Upadhyay VR, Ramesh V, Dewry RK, Kumar G, Raval K, Patoliya P. Implications of cryopreservation on structural and functional attributes of bovine spermatozoa: An overview. Andrologia 2021; 53:e14154. [PMID: 34143907 DOI: 10.1111/and.14154] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023] Open
Abstract
Sperm cryopreservation is an important adjunct to assisted reproduction techniques (ART) for improving the reproductive efficiency of dairy cattle and buffaloes. Improved understanding of mechanisms and challenges of bovine semen cryopreservation is vital for artificial insemination on a commercial basis. Although cryopreservation of bovine spermatozoa is widely practiced and advanced beyond that of other species, there are still major gaps in the knowledge and technology. Upon cryopreservation, disruption of spermatozoal plasma membrane configuration due to alterations in metabolic pathways, enzymes and antioxidants activity add to lower efficiency with loss of sperm longevity and fertilising ability. Therefore, the effective amalgamation of cryo-variables like ambient temperature, cooling and thawing rates, nucleation temperature, type and concentration of the cryoprotectant, seminal plasma composition, free radicals and antioxidant status are required to optimise cryopreservation. Novel strategies like supplementation of cholesterol-loaded cyclodextrins (CLC), nanovesicles, osteopontin, antioxidants, etc., in an extender and recent techniques like nano-purification and modified packaging have to be optimised to ameliorate the cryodamage. This article is intended to describe the basic facts about the sperm cryopreservation process in bovine and the associated biochemical, biophysical, ultra-structural, molecular and functional alterations.
Collapse
Affiliation(s)
| | - Vikram Ramesh
- Animal Reproduction and Gynecology, ICAR-National Research Centre on Mithun, Medziphema, India
| | - Raju Kumar Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Gaurav Kumar
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, India
| | - Kathan Raval
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Priyanka Patoliya
- Division of Livestock Production Management, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
9
|
Doktorova M, Symons JL, Levental I. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat Chem Biol 2020; 16:1321-1330. [PMID: 33199908 PMCID: PMC7747298 DOI: 10.1038/s41589-020-00688-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Maintenance of lipid asymmetry across the two leaflets of the plasma membrane (PM) bilayer is a ubiquitous feature of eukaryotic cells. Loss of this asymmetry has been widely associated with cell death. However, increasing evidence points to the physiological importance of non-apoptotic, transient changes in PM asymmetry. Such transient scrambling events are associated with a range of biological functions, including intercellular communication and intracellular signaling. Thus, regulation of interleaflet lipid distribution in the PM is a broadly important but underappreciated cellular process with key physiological and structural consequences. Here, we compile the mounting evidence revealing multifaceted, functional roles of PM asymmetry and transient loss thereof. We discuss the consequences of reversible asymmetry on PM structure, biophysical properties and interleaflet coupling. We argue that despite widespread recognition of broad aspects of membrane asymmetry, its importance in cell biology demands more in-depth investigation of its features, regulation, and physiological and pathological implications.
Collapse
Affiliation(s)
| | - Jessica L Symons
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
10
|
Porcine oviductal extracellular vesicles interact with gametes and regulate sperm motility and survival. Theriogenology 2020; 155:240-255. [PMID: 32791377 DOI: 10.1016/j.theriogenology.2020.05.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Once in the female reproductive tract, spermatozoa undergo several modifications to acquire their complete fertilizing ability. Interactions between the oviductal fluid (OF) and gametes contribute to a successful fertilization. Recently, oviductal extracellular vesicles have been identified as an important part of the OF but their interactions with gametes are not fully understood. In the present study, we aim at determining the patterns of interactions between porcine oviductal extracellular vesicles (poEVs) and gametes (spermatozoa and oocytes). Moreover, we evaluate the effect of poEVs on sperm survival and motility to better understand the mechanisms by which poEVs modulate the processes leading to fertilization. Evaluation of poEVs uptake by spermatozoa showed that poEVs bind to spermatozoa in a time and dose dependent manner. Co-incubation of spermatozoa with poEVs (0.2 μg/μL) increased fresh and frozen sperm survival after 6 and 17 h, respectively. By contrast, poEVs supplementation reduced the total and progressive sperm motility after 2 h. Additionally, we demonstrated that poEVs interacted with the cumulus cells, zona pellucida (ZP) and oocyte, being able to cross the ZP. Besides, we showed that poEVs delivered their cargo into the oocyte, by the transfer of OVGP1 protein. In conclusion, our results demonstrated that poEVs are able to interact with both gametes. Besides, the findings from the present study showed that poEVs may participate in maintaining sperm viability and reducing motility, functions associated with the oviduct sperm reservoir. Although further investigations are needed, our results indicate that poEVs can be a potential tool to improve sperm life span during sperm handling and enhance IVF outcomes.
Collapse
|
11
|
Marzano G, Chiriacò MS, Primiceri E, Dell’Aquila ME, Ramalho-Santos J, Zara V, Ferramosca A, Maruccio G. Sperm selection in assisted reproduction: A review of established methods and cutting-edge possibilities. Biotechnol Adv 2020; 40:107498. [DOI: 10.1016/j.biotechadv.2019.107498] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
|
12
|
Ezzati M, Shanehbandi D, Hamdi K, Rahbar S, Pashaiasl M. Influence of cryopreservation on structure and function of mammalian spermatozoa: an overview. Cell Tissue Bank 2019; 21:1-15. [DOI: 10.1007/s10561-019-09797-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
|
13
|
Rival CM, Xu W, Shankman LS, Morioka S, Arandjelovic S, Lee CS, Wheeler KM, Smith RP, Haney LB, Isakson BE, Purcell S, Lysiak JJ, Ravichandran KS. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat Commun 2019; 10:4456. [PMID: 31575859 PMCID: PMC6773685 DOI: 10.1038/s41467-019-12406-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Fertilization is essential for species survival. Although Izumo1 and Juno are critical for initial interaction between gametes, additional molecules necessary for sperm:egg fusion on both the sperm and the oocyte remain to be defined. Here, we show that phosphatidylserine (PtdSer) is exposed on the head region of viable and motile sperm, with PtdSer exposure progressively increasing during sperm transit through the epididymis. Functionally, masking phosphatidylserine on sperm via three different approaches inhibits fertilization. On the oocyte, phosphatidylserine recognition receptors BAI1, CD36, Tim-4, and Mer-TK contribute to fertilization. Further, oocytes lacking the cytoplasmic ELMO1, or functional disruption of RAC1 (both of which signal downstream of BAI1/BAI3), also affect sperm entry into oocytes. Intriguingly, mammalian sperm could fuse with skeletal myoblasts, requiring PtdSer on sperm and BAI1/3, ELMO2, RAC1 in myoblasts. Collectively, these data identify phosphatidylserine on viable sperm and PtdSer recognition receptors on oocytes as key players in sperm:egg fusion.
Collapse
Affiliation(s)
- Claudia M Rival
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Laura S Shankman
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sho Morioka
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sanja Arandjelovic
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Chang Sup Lee
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Karen M Wheeler
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Ryan P Smith
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Lisa B Haney
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Scott Purcell
- Reproductive Medicine and Surgery Center of Virginia, 595 Martha Jefferson Dr., Charlottesville, VA, 22911, USA
| | - Jeffrey J Lysiak
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
| | - Kodi S Ravichandran
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Biomedical Molecular Biology, Ghent University, and the UGent-VIB Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
14
|
Elsayed DH, El-Shamy AA, Abdelrazek HM, El-Badry D. Effect of genistein on semen quality, antioxidant capacity, caspase-3 expression and DNA integrity in cryopreserved ram spermatozoa. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Bernecic NC, Gadella BM, Leahy T, de Graaf SP. Novel methods to detect capacitation-related changes in spermatozoa. Theriogenology 2019; 137:56-66. [PMID: 31230703 DOI: 10.1016/j.theriogenology.2019.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prior to interaction with the oocyte, spermatozoa must undergo capacitation, which involves a series of physio-chemical transformations that occur in the female tract. As capacitation is a pre-requisite for successful fertilisation, it is a topic of great interest for sperm biologists, but the complexity of the numerous biochemical and biophysical processes involved make it difficult to measure. Capacitation is an extremely complex event that encompasses numerous integrated processes that can occur concurrently during this window of time. The identification of techniques to accurately assess and quantify capacitation is therefore crucial to gain a meaningful insight into this fascinating sperm maturation event. Whilst there are extensive reviews in the literature that focus on the functional changes to spermatozoa during capacitation, few have examined the methods required to measure these changes. The aim of this review is to highlight frequently used methods to quantify different stages of capacitation and identify promising novel techniques. Factors that are able to modulate various capacitation processes will also be discussed. The overall outcome is to provide researchers with a toolbox of methods that can be used to gain a deeper understanding of the intricacies of capacitation in spermatozoa.
Collapse
Affiliation(s)
- Naomi C Bernecic
- The University of Sydney, Faculty of Science, NSW, 2006, Australia.
| | - Bart M Gadella
- Department of Biochemistry & Cell Biology, Utrecht University, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Tamara Leahy
- The University of Sydney, Faculty of Science, NSW, 2006, Australia
| | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW, 2006, Australia
| |
Collapse
|
16
|
Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc Natl Acad Sci U S A 2019; 116:2907-2912. [PMID: 30718401 DOI: 10.1073/pnas.1820499116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The exposure of phosphatidylserine (PtdSer) to the cell surface is regulated by the down-regulation of flippases and the activation of scramblases. Xkr8 has been identified as a scramblase that is activated during apoptosis, but its exogenous expression in the mouse Ba/F3 pro B cell line induces constitutive PtdSer exposure. Here we found that this Xkr8-mediated PtdSer exposure occurred at 4 °C, but not at 20 °C, although its scramblase activity was observed at 20 °C. The Xkr8-mediated PtdSer exposure was inhibited by a kinase inhibitor and enhanced by phosphatase inhibitors. Phosphorylated Xkr8 was detected by Phos-tag PAGE, and a mass spectrometric and mutational analysis identified three phosphorylation sites. Their phosphomimic mutation rendered Xkr8 resistant to the kinase inhibitor for PtdSer exposure at 4 °C, but unlike phosphatase inhibitors, it did not induce constitutive PtdSer exposure at 20 °C. On the other hand, when the flippase genes were deleted, the Xkr8 induced constitutive PtdSer exposure at high temperature, indicating that the flippase activity normally counteracted Xkr8's ability to expose PtdSer. These results indicate that PtdSer exposure can be increased by the phosphorylation-mediated activation of Xkr8 scramblase and flippase down-regulation.
Collapse
|
17
|
Peña FJ, Ortiz Rodriguez JM, Gil MC, Ortega Ferrusola C. Flow cytometry analysis of spermatozoa: Is it time for flow spermetry? Reprod Domest Anim 2018; 53 Suppl 2:37-45. [DOI: 10.1111/rda.13261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | - Jose M. Ortiz Rodriguez
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | - María C. Gil
- Laboratory of Equine Reproduction and Spermatology; University of Extremadura; Cáceres Spain
| | | |
Collapse
|
18
|
Grunewald S, Fitzl G, Springsguth C. Induction of ultra-morphological features of apoptosis in mature and immature sperm. Asian J Androl 2018; 19:533-537. [PMID: 27270340 PMCID: PMC5566845 DOI: 10.4103/1008-682x.180974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
There is a fundamental body of evidence suggesting that activated apoptosis signaling in ejaculated human sperm negatively influences their fertilization potential. However, it is still controversial whether this apoptotic signaling is a relic of an abortive apoptosis related to spermatogenesis or if it should be regarded as a functional preformed pathway in mature sperm leading to stereotypical morphological changes reflecting nuclear disassembly. To address this question, apoptosis was induced using betulinic acid in mature and immature ejaculated human sperm enriched by density gradient centrifugation. Execution of apoptosis was monitored by observing ultra-morphological changes via transmission electron microscopy. Typical morphological signs of apoptosis in somatic cells include plasma membrane blebbing with the formation of apoptotic bodies, impaired mitochondrial integrity, defects of the nuclear envelope, and nuclear fragmentation; these morphologies have also been observed in human sperm. In addition, these apoptotic characteristics were more frequent in immature sperm compared to mature sperm. Following betulinic acid treatment, apoptosis-related morphological changes were induced in mature sperm from healthy donors. This effect was much less pronounced in immature sperm. Moreover, in both fractions, the betulinic acid treatment increased the percentage of acrosome-reacted sperm. The results of our ultra-morphological study prove the functional competence of apoptosis in mature ejaculated human sperm. The theory of a sole abortive process may be valid only for immature sperm. The induction of the acrosome reaction by stimulating apoptosis might shed light on the biological relevance of sperm apoptosis.
Collapse
Affiliation(s)
- Sonja Grunewald
- Department of Dermatology, Venerology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Guenther Fitzl
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Christopher Springsguth
- Department of Dermatology, Venerology and Allergology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
López-Úbeda R, García-Vázquez FA, Gadea J, Matás C. Oviductal epithelial cells selected boar sperm according to their functional characteristics. Asian J Androl 2018; 19:396-403. [PMID: 27232850 PMCID: PMC5507082 DOI: 10.4103/1008-682x.173936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The interaction of oviductal epithelial cells (OECs) with the spermatozoa has beneficial effects on the sperm functions. The aim of this study is to evaluate the in vitro fertilizing capacity of incubating spermatozoa previously selected by density gradient in OEC and determinate some sperm characteristics that could explain the results obtained. In this study, we assessed in vitro fertilization (IVF), tyrosine phosphorylation, phosphatidylserine translocation, nuclear DNA fragmentation, and chromatin decondensation. Three experimental sperm groups, previously selected by Percoll gradient, were established according to the origin of the sperm used for IVF: (i) W30 group: spermatozoa were incubated with oocytes in the absence of OEC; (ii) NB group: after sperm incubation in OEC, the unbound spermatozoa were incubated with oocytes, in the absence of OEC; and (iii) B group: after sperm incubation with OEC, the bound spermatozoa were incubated with oocytes in the OEC plates. The results showed that sperm from the NB group led to a lower IVF yield, accompanied by low penetration rates (NB: 19.6%, B: 94.9%, and W30: 62.9%; P < 0.001) and problems of nuclear decondensation. Moreover, higher levels of tyrosine phosphorylation were observed in the NB group compared with the W30 and B groups (NB: 58.7%, B: 2.5%, and W30: 4.5%; P < 0.01). A similar trend was observed in phosphatidylserine translocation (NB: 93.7%, B: 5.7%, and W30: 44.2%; P < 0.01). These results demonstrate that the OEC exerts a rigorous degree of sperm selection, even within an already highly selected population of spermatozoa, and can capture the best functional spermatozoa for fertilization.
Collapse
Affiliation(s)
- Rebeca López-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain
| | - Francisco A García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain.,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain.,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain.,IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| |
Collapse
|
20
|
Ushiyama A, Tajima A, Ishikawa N, Asano A. Modification of membrane cholesterol and desmosterol in chicken spermatozoa improves post-thaw survival and prevents impairment of sperm function after cryopreservation. Reprod Fertil Dev 2018; 30:591-599. [DOI: 10.1071/rd17076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023] Open
Abstract
During cryopreservation, spermatozoa are subjected to cryodamage that leads to a decline in fertilisation ability. Due to the complex nature of this process, the initial trigger for cryodamage remains unknown. Recently, we demonstrated that cryopreservation induces early apoptotic changes characterised by phosphatidylserine (PS) translocation via sterol loss from the plasma membrane of chicken spermatozoa. This led us to hypothesise that sterol incorporation into membranes minimises cryodamage, thereby improving the quality of cryopreserved chicken spermatozoa. In the present study, treating spermatozoa with 1.5 mg mL−1 cholesterol- and 3 mg mL−1 desmosterol-loaded cyclodextrin (CLC and DLC respectively) increased post-thaw survival and motility. These effects appeared to be highly dependent the amount of sterol loaded into the spermatozoa. Localisation experiments confirmed the incorporation of exogenous cholesterol into the sperm head region. Detection of PS translocation showed that elevation of these sterols inhibited early apoptotic changes, thereby enhancing post-thaw survival. Furthermore, CLC and DLC treatment suppressed spontaneous acrosome reaction after cryopreservation, preserving the ability of spermatozoa to undergo acrosome reactions in response to physiological stimulation. These results demonstrate that loading sterols into chicken spermatozoa before cryopreservation enhances their quality by inhibiting early apoptotic changes and spontaneous acrosome reactions. The present study provides new mechanistic insight into cryodamage in chicken spermatozoa.
Collapse
|
21
|
Prochowska S, Niżański W, Partyka A. Low levels of apoptotic-like changes in fresh and cryopreserved feline spermatozoa collected from the urethra and epididymis. Theriogenology 2017; 88:43-49. [DOI: 10.1016/j.theriogenology.2016.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 11/29/2022]
|
22
|
The Role of Oviductal Cells in Activating Stallion Spermatozoa. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Roca J, Parrilla I, Gil M, Cuello C, Martinez E, Rodriguez-Martinez H. Non-viable sperm in the ejaculate: Lethal escorts for contemporary viable sperm. Anim Reprod Sci 2016; 169:24-31. [DOI: 10.1016/j.anireprosci.2016.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/21/2022]
|
24
|
New insights about the evaluation of human sperm quality: the aromatase example. Folia Histochem Cytobiol 2016; 47:S13-7. [PMID: 20067884 DOI: 10.2478/v10042-009-0059-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Male contribution to the couple's infertility is at first evaluated by the routine examination of semen parameters upon optical microscopy providing valuable information for a rational initial diagnosis and for a clinical management of infertility. But the different forms of infertility defined according to the WHO criteria especially teratozoospermia are not always related to the chromatin structure or to the fertilization capacity. New investigations at the molecular level (transcript and protein) could be developed in order to understand the nature of sperm malformation responsible of human infertility and thus to evaluate the sperm quality. The profile analysis of spermatozoal transcripts could be considered as a fingerprint of the past spermatogenic events. The selection of representative transcripts of normal spermatozoa remains complex because a differential expression (increased, decreased or not modified levels) of specific transcripts has been revealed between immotile and motile sperm fractions issued from normozoospermic donors. Microarrays tests or real-time quantitative PCR could be helpful for the identification of factors involved in the male infertility. Differences in the expression of specific transcripts have been reported between normal and abnormal semen samples. With the aromatase example, we have noted a negative strong correlation between the amount of transcript and the percentage of abnormal forms especially in presence of head defects. Immunocytochemical procedures using fluorescent probes associated with either confocal microscopy or flow cytometry can be also helpful to proceed with further investigations about the localization of proteins in the compartmentalized spermatozoa or the acrosome reaction. The dual location of aromatase both in the equatorial segment, the mid-piece and the tail could explain the double role of this enzyme in acrosome reaction and motility.
Collapse
|
25
|
Nagata S, Suzuki J, Segawa K, Fujii T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ 2016; 23:952-61. [PMID: 26891692 DOI: 10.1038/cdd.2016.7] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylserine (PtdSer) is a phospholipid that is abundant in eukaryotic plasma membranes. An ATP-dependent enzyme called flippase normally keeps PtdSer inside the cell, but PtdSer is exposed by the action of scramblase on the cell's surface in biological processes such as apoptosis and platelet activation. Once exposed to the cell surface, PtdSer acts as an 'eat me' signal on dead cells, and creates a scaffold for blood-clotting factors on activated platelets. The molecular identities of the flippase and scramblase that work at plasma membranes have long eluded researchers. Indeed, their identity as well as the mechanism of the PtdSer exposure to the cell surface has only recently been revealed. Here, we describe how PtdSer is exposed in apoptotic cells and in activated platelets, and discuss PtdSer exposure in other biological processes.
Collapse
Affiliation(s)
- S Nagata
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - J Suzuki
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - K Segawa
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Fujii
- Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Cohen R, Mukai C, Travis AJ. Lipid Regulation of Acrosome Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:107-27. [PMID: 27194352 DOI: 10.1007/978-3-319-30567-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipids are critical regulators of mammalian sperm function, first helping prevent premature acrosome exocytosis, then enabling sperm to become competent to fertilize at the right place/time through the process of capacitation, and ultimately triggering acrosome exocytosis. Yet because they do not fit neatly into the "DNA--RNA-protein" synthetic pathway, they are understudied and poorly understood. Here, we focus on three lipids or lipid classes-cholesterol, phospholipids, and the ganglioside G(M1)--in context of the modern paradigm of acrosome exocytosis. We describe how these various- species are precisely segregated into membrane macrodomains and microdomains, simultaneously preventing premature exocytosis while acting as foci for organizing regulatory and effector molecules that will enable exocytosis. Although the mechanisms responsible for these domains are poorly defined, there is substantial evidence for their composition and functions. We present diverse ways that lipids and lipid modifications regulate capacitation and acrosome exocytosis, describing in more detail how removal of cholesterol plays a master regulatory role in enabling exocytosis through at least two complementary pathways. First, cholesterol efflux leads to proteolytic activation of phospholipase B, which cleaves both phospholipid tails. The resultant changes in membrane curvature provide a mechanism for the point fusions now known to occur far before a sperm physically interacts with the zona pellucida. Cholesterol efflux also enables G(M1) to regulate the voltage-dependent cation channel, Ca(V)2.3, triggering focal calcium transients required for acrosome exocytosis in response to subsequent whole-cell calcium rises. We close with a model integrating functions for lipids in regulating acrosome exocytosis.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA. .,Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Del Olmo E, García-Álvarez O, Maroto-Morales A, Ramón M, Jiménez-Rabadán P, Iniesta-Cuerda M, Anel-Lopez L, Martinez-Pastor F, Soler A, Garde J, Fernández-Santos M. Estrous sheep serum enables in vitro capacitation of ram spermatozoa while preventing caspase activation. Theriogenology 2016; 85:351-60. [DOI: 10.1016/j.theriogenology.2015.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
|
28
|
Gadella BM, Boerke A. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization. Theriogenology 2015; 85:113-24. [PMID: 26320574 DOI: 10.1016/j.theriogenology.2015.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 11/17/2022]
Abstract
The fusion of a sperm with an oocyte to form new life is a highly regulated event. The activation-also termed capacitation-of the sperm cell is one of the key preparative steps required for this process. Ejaculated sperm has to make a journey through the female uterus and oviduct before it can approach the oocyte. The oocyte at that moment also has become prepared to facilitate monospermic fertilization and block immediately thereafter the chance for polyspermic fertilization. Interestingly, ejaculated sperm is not properly capacitated and consequently is not yet able to fertilize the oocyte. During the capacitation process, the formation of competent lipid-protein domains on the sperm head enables sperm-cumulus and zona pellucida interactions. This sperm binding allows the onset for a cascade reaction ultimately resulting in oocyte-sperm fusion. Many different lipids and proteins from the sperm surface are involved in this process. Sperm surface processing already starts when sperm are liberated from the seminiferous tubules and is followed by epididymal maturation where the sperm cell surface is modified and loaded with proteins to ensure it is prepared for its fertilization task. Although cauda epididymal sperm can fertilize the oocyte IVF, they are coated with so-called decapacitation factors during ejaculation. The seminal plasma-induced stabilization of the sperm surface permits the sperm transit through the cervix and uterus but prevents sperm capacitation and thus inhibits fertilization. For IVF purposes, sperm are washed out of seminal plasma and activated to get rid of decapacitation factors. Only after capacitation, the sperm can fertilize the oocyte. In recent years, IVF has become a widely used tool to achieve successful fertilization in both the veterinary field and human medicine. Although IVF procedures are very successful, scientific knowledge is still far from complete when identifying all the molecular players and processes during the first stages the fusion of two gametes into a new life. A concise overview in the current understanding of the process of capacitation and the sperm surface changes is provided. The gaps in knowledge of these prefertilization processes are critically discussed.
Collapse
Affiliation(s)
- B M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | - A Boerke
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
29
|
|
30
|
Buffone MG, Wertheimer EV, Visconti PE, Krapf D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2610-20. [PMID: 25066614 DOI: 10.1016/j.bbadis.2014.07.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cyclases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Mariano G Buffone
- Instituto de Biología y Medicina Experimental, National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Eva V Wertheimer
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, MA 01003, USA.
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET), UNR, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| |
Collapse
|
31
|
Hereng TH, Elgstøen KBP, Eide L, Rosendal KR, Skålhegg BS. Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa. Hum Reprod 2014; 29:918-30. [PMID: 24578478 DOI: 10.1093/humrep/deu028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
STUDY QUESTION Do the known capacitating agents HCO(3)(-) and serum albumin regulate the generation of ATP required for sperm motility and capacitation? SUMMARY ANSWER Serum albumin and HCO(3)(-) seem to regulate two separate pools of ATP by different mechanisms in human spermatozoa. WHAT IS KNOWN ALREADY Sperm capacitation is a maturation process that naturally occurs in the female reproductive tract preparing the sperm cell for fertilization. It is a highly energy-depending process as it involves hyperactive motility and substantial levels of protein phosphorylation. STUDY DESIGN, SIZE, DURATION Human sperm cells from four (motility experiments) and three (all other experiments) healthy donors were used. Untreated cells were compared with cells treated with HCO(3)(-) and serum albumin for up to 4 h. PARTICIPANTS/MATERIALS, SETTING, METHODS Changes in glycolysis and mitochondrial respiration rates upon treatment with serum albumin and HCO(3)(-) were analysed by metabolic tracing of (13)C-labelled substrates and respirometry studies, respectively. Levels of hyperactive spermatozoa and ATP content were measured during 4 h of incubation under capacitating conditions. MAIN RESULTS AND THE ROLE OF CHANCE We found that HCO(3)(-) significantly (P < 0.05) increased glycolytic flux by >3-folds via a cAMP/PKA sensitive pathway. This was accompanied by an increase in hyperactive motility. In contrast, serum albumin significantly increased endogenous ATP levels by 50% without stimulating hyperactive motility or glycolysis, indicating that this pool of ATP is separately located from the HCO(3)(-)-induced ATP. The increase in ATP induced by albumin could be mimicked by treatment with the cholesterol acceptors 2-hydroxypropyl- and methyl-β-cyclodextrin and counteracted by co-incubation with cholesterol sulphate to the level of the non-treated control (P < 0.05), pointing to cholesterol extraction from the sperm cell membrane as the main mechanism. However, the concentration of cyclodextrins needed to directly detect cholesterol extraction from the sperm cells was not compatible with maintenance of sperm viability. The increase in ATP seemed not to be dependent on the sperm-specific Ca(2+) channel CatSper. Finally, we demonstrated that neither HCO(3)(-) nor serum albumin stimulated mitochondrial respiration rates. However, serum albumin increased the respiratory capacity of mitochondria by >50%, an effect that was counteracted by HCO(3)(-). LIMITATIONS, REASONS FOR CAUTION Great variation in motility and capacitation is observed between sperm cells from different species. Hence, caution should be taken when extrapolating the findings in this work on human spermatozoa to sperm from other species. WIDER IMPLICATIONS OF THE FINDINGS It is already established that an efficient energy-generation is required to support sperm motility and capacitation. However, the mechanisms explaining how ATP production is regulated in spermatozoa are not fully understood. Our findings indicate that HCO(3)(-) stimulates hyperactive motility by increasing glycolytic flux and ATP production in a cAMP/PKA sensitive fashion. On the other hand, serum albumin seems to increase ATP concentration at a different location and by a mechanism different from glycolysis that involves extraction of cholesterol from the sperm cell membrane. These new insights into sperm metabolism may pave the way for both the development of new and improved male contraceptives and optimized assisted reproduction techniques. STUDY FUNDING The work was funded by Spermatech AS, The University of Oslo and the Research Council of Norway. COMPETING INTEREST(S) T.H.H. and K.R.R. are employees at Spermatech. B.S.S is a shareholder in Spermatech.
Collapse
|
32
|
Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology 2014; 81:74-84. [DOI: 10.1016/j.theriogenology.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/07/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022]
|
33
|
Farstad W. Customizing semen preservation protocols for individual dogs and individual species: sperm preservation beyond the state of the art. Reprod Domest Anim 2013; 47 Suppl 6:269-73. [PMID: 23279516 DOI: 10.1111/rda.12020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sperm quality can be variable in morphometric and physiological attributes between males of different species, between males within species subtypes reared under different environmental conditions, between ejaculates of the same male or even between sperm populations within an ejaculate. Clinical semen evaluation is based on evaluation of whole ejaculates, which is not a chemically or physiologically well-defined entity, rather a collection of heterogeneous subpopulations giving different measurements and possessing different fertilizing potential. Identification of subpopulations with different motility patterns is important as well as characterizing the subtle structural changes underlying the motility differences observed. The ability to identify populations of sperm responding rapidly or failing to progress through the capacitation process may have clinical applications. Studies of lipid-phase fluidity of sperm membranes, mathematical modelling of membrane ion transport, role of modifying components and detergent-resistant microdomains are of particular interest. When customizing extenders to ejaculates from cryosensitive males or species, a thorough knowledge of species sperm membrane physiology and an assessment of the individual ejaculate's sperm populations are necessary. Structural differences have been found in sperm membranes between fox species with different cryosurvival potential of their spermatozoa. Supplementation of lipids and detergents in cryoextenders may influence membrane fluidity of the surviving spermatozoa in a species-dependent manner and influence capacitation. Immobilization of sperm prior to cryopreservation with subsequent slow release of sperm in the female genital tract may be a way to prolong the fertile life of sperm. In canids with a long oocyte maturation time, delayed capacitation may be beneficial.
Collapse
Affiliation(s)
- W Farstad
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway.
| |
Collapse
|
34
|
Curia CA, Ernesto JI, Stein P, Busso D, Schultz RM, Cuasnicu PS, Cohen DJ. Fertilization induces a transient exposure of phosphatidylserine in mouse eggs. PLoS One 2013; 8:e71995. [PMID: 23951277 PMCID: PMC3737209 DOI: 10.1371/journal.pone.0071995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/10/2013] [Indexed: 01/01/2023] Open
Abstract
Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis.
Collapse
Affiliation(s)
- Claudio A. Curia
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
| | - Juan I. Ernesto
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
| | - Paula Stein
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dolores Busso
- Department of Nutrition, Diabetes and Metabolism, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
35
|
Muratori M, Porazzi I, Luconi M, Marchiani S, Forti G, Baldi E. Annexin V Binding and Merocyanine Staining Fail to Detect Human Sperm Capacitation. ACTA ACUST UNITED AC 2013; 25:797-810. [PMID: 15292113 DOI: 10.1002/j.1939-4640.2004.tb02858.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The signaling pathways that characterize the process of capacitation of human spermatozoa are still largely unknown. Modifications in the lipid architecture of the sperm plasma membrane have been described in spermatozoa from different species, including translocation of phosphatidylserine (PS) from the inner to the outer leaflet and increased phospholipid disorder in the membrane. In human spermatozoa, however, results of PS exposure are controversial. In the present study, we used flow cytometry to investigate both membrane PS exposure by Annexin V (Ann V) binding and lipid disorder by merocyanine 540 (M540) staining, in swimup-selected live spermatozoa after incubation in conditions leading to capacitation. Our results indicate that neither probe is able to detect capacitation-related membrane modifications. Investigation of the nature of PS exposure and M540-positive live cells was then carried out. We found that M540 stains elements devoid of nuclei are present in seminal plasma. Live PS-exposing cells were mainly represented by damaged spermatozoa as revealed by the occurrence of a negative correlation between PS exposure and normal morphology and motility in unselected samples. The same cells were also positive for M540. These results demonstrate that Ann V and M540 binding in human sperm samples mainly detects cells with early membrane degeneration as well as dead cells, which is in agreement with findings obtained for somatic cells in which the two probes recognize cells with a damaged membrane due to the apoptotic process.
Collapse
Affiliation(s)
- Monica Muratori
- Department of Clinical Physiopathology, Andrology Unit, University of Florence, Viale Pieraccini, 6 50139 Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Redgrove KA, Anderson AL, McLaughlin EA, O'Bryan MK, Aitken RJ, Nixon B. Investigation of the mechanisms by which the molecular chaperone HSPA2 regulates the expression of sperm surface receptors involved in human sperm-oocyte recognition. Mol Hum Reprod 2012; 19:120-35. [PMID: 23247813 DOI: 10.1093/molehr/gas064] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A unique characteristic of mammalian spermatozoa is that, upon ejaculation, they are unable to recognize and bind to an ovulated oocyte. These functional attributes are only realized following the cells' ascent of the female reproductive tract whereupon they undergo a myriad of biochemical and biophysical changes collectively referred to as 'capacitation'. We have previously shown that this functional transformation is, in part, engineered by the modification of the sperm surface architecture leading to the assembly and/or presentation of multimeric sperm-oocyte receptor complexes. In this study, we have extended our findings through the characterization of one such complex containing arylsulfatase A (ARSA), sperm adhesion molecule 1 (SPAM1) and the molecular chaperone, heat shock 70kDa protein 2 (HSPA2). Through the application of flow cytometry we revealed that this complex undergoes a capacitation-associated translocation to facilitate the repositioning of ARSA to the apical region of the human sperm head, a location compatible with a role in the mediation of sperm-zona pellucida (ZP) interactions. Conversely, SPAM1 appears to reorient away from the sperm surface, possibly reflecting its primary role in cumulus matrix dispersal preceding sperm-ZP recognition. The dramatic relocation of the complex was completely abolished by incubation of capacitating spermatozoa in exogenous cholesterol or broad spectrum protein kinase A (PKA) and tyrosine kinase inhibitors suggesting that it may be driven by alterations in membrane fluidity characteristics and concurrently by the activation of a capacitation-associated signal transduction pathway. Collectively these data afford novel insights into the sub-cellular localization and potential functions of multimeric protein complexes in human spermatozoa.
Collapse
Affiliation(s)
- Kate A Redgrove
- Reproductive Science Group, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Silva-Neta HL, Torrezan E, de Araújo Leite JC, Santi-Gadelha T, Marques-Santos LF. Involvement of ABCB1 and ABCC1 transporters in sea urchin Echinometra lucunter fertilization. Mol Reprod Dev 2012; 79:861-9. [PMID: 23070745 DOI: 10.1002/mrd.22125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/09/2012] [Indexed: 12/11/2022]
Abstract
Fertilization is an ordered sequence of cellular interactions that promotes gamete fusion to form a new individual. Since the pioneering work of Oskar Hertwig conducted on sea urchins, echinoderms have contributed to the understanding of cellular and molecular aspects of the fertilization processes. Studies on sea urchin spermatozoa reported the involvement of a plasma membrane protein that belongs to the ABC proteins superfamily in the acrosome reaction. ABC transporters are expressed in membranes of eukaryotic and prokaryotic cells, and are associated with the transport of several compounds or ions across biomembranes. We aimed to investigate ABCB1 and ABCC1 transporter activity in sea urchin spermatozoa and their involvement in fertilization. Our results indicate that Echinometra lucunter spermatozoa exhibit a low intracellular calcein accumulation (18.5% stained cells); however, the ABC blockers reversin205, verapamil, and MK571 increased dye accumulation (93.0-96.6% stained cells). We also demonstrated that pharmacologically blocking ABCB1 and ABCC1 decreased spermatozoa fertilizing capacity (70% inhibition), and this phenotype was independent of extracellular calcium. These data suggest that functional spermatozoa ABCB1 and ABCC1 transporters are crucial for a successful fertilization. Additional studies must be performed to investigate the involvement of membrane lipid homeostasis in the fertilization process.
Collapse
Affiliation(s)
- Helena Lima Silva-Neta
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | | |
Collapse
|
38
|
Zhao M, Li Z. A single-step kit formulation for the (99m)Tc-labeling of HYNIC-Duramycin. Nucl Med Biol 2012; 39:1006-11. [PMID: 22858374 DOI: 10.1016/j.nucmedbio.2012.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 11/26/2022]
Abstract
INTRODUCTION (99m)Tc-Duramycin is a unique radiopharmaceutical that binds specifically to phosphatidylethanolamine (PE). The current effort is to develop a single-step kit formulation for the (99m)Tc labeling of HYNIC-Duramycin. METHODS A titration series of Tricine/TPPTS coligand systems were tested for an optimal formulation to produce (99m)Tc-Duramycin with high radiochemical purity and specific activity. The radiopharmaceutical prepared using the kit formulation was tested for PE binding specificity using polystyrene microbeads coated with different phospholipid species. Radiochemical performance of the kits was assessed after storage at -20°C, room temperature and 37°C. Biodistribution profile of kit-prepared (99m)Tc-Duramycin was characterized in healthy rats at 3, 10, 20, 60 and 180min after intravenous injection. Binding studies were performed using the rat aortic arch and a rat model of myocardial ischemia/reperfusion, which represent scenarios of physiological and pathological PE externalization. RESULTS A Tricine/TPPTS ratio of 10:1 led to a consistent production of (99m)Tc-Duramycin with high radiochemical purity (> 90%), whereas a higher ratio at 40:1 produced radiopharmaceuticals with incomplete substitution of Tricine coligand. (99m)Tc-Duramycin prepared using the single-step kit formulation retained PE-binding specificity. The kits are stable over long-term storage. The biodistribution profile of kit-prepared (99m)Tc-Duramycin is consistent with HPLC purified radiopharmaceutical from prior studies. Binding studies on a tissue level indicate that the radiopharmaceutical is suitable for studying biological processes that involve PE distribution and redistribution in various physiological and pathological conditions. CONCLUSION A single-step kit formulation is developed for (99m)Tc-labeling of HYNIC-Duramycin. The radiopharmaceutical has high radiochemical purity and specific activity, retained PE binding activities, amiable to long-term storage, and is injection-ready for in vivo applications.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
39
|
Tapia JA, Macias-Garcia B, Miro-Moran A, Ortega-Ferrusola C, Salido GM, Peña FJ, Aparicio IM. The Membrane of the Mammalian Spermatozoa: Much More Than an Inert Envelope. Reprod Domest Anim 2012; 47 Suppl 3:65-75. [DOI: 10.1111/j.1439-0531.2012.02046.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Escoffier J, Krapf D, Navarrete F, Darszon A, Visconti PE. Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation. J Cell Sci 2012; 125:473-85. [PMID: 22302997 DOI: 10.1242/jcs.093344] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian sperm require time in the female tract in order to be able to fertilize an egg. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sperm plasma membrane potential. Recently, we presented evidence showing that epithelial Na+ channels (ENaC) are present in mature sperm and that ENaCs are blocked during capacitation. In the present work, we used flow cytometry to analyze changes in intracellular Na+ concentration ([Na+](i)) during capacitation in individual cells. Our results indicate that capacitated sperm have lower Na+ concentrations. Using sperm with green fluorescent protein in their acrosomes, it was shown that the lower [Na+](i) concentration only occurs in sperm having intact acrosomes. ENaC inhibition has been shown in other cell types to depend on the activation of cystic fibrosis transmembrane conductance regulator (CFTR). In non-capacitated sperm, amiloride, an ENaC inhibitor, and genistein, a CFTR activator, caused a decrease in [Na+](i), suggesting that also in these cells [Na+](i) is dependent on the crosstalk between ENaC and CFTR. In addition, PKA inhibition blocked [Na+](i) decrease in capacitated sperm. Altogether, these data are consistent with the hypothesis that the capacitation-associated hyperpolarization involves a decrease in [Na+](i) mediated by inhibition of ENaC and regulated by PKA through activation of CFTR channels.
Collapse
Affiliation(s)
- Jessica Escoffier
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | |
Collapse
|
41
|
Stouffs K, Vandermaelen D, Massart A, Menten B, Vergult S, Tournaye H, Lissens W. Array comparative genomic hybridization in male infertility. Hum Reprod 2012; 27:921-9. [DOI: 10.1093/humrep/der440] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Density gradient centrifugation before or after magnetic-activated cell sorting: which technique is more useful for clinical sperm selection? J Assist Reprod Genet 2011; 29:31-8. [PMID: 22170231 DOI: 10.1007/s10815-011-9686-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/20/2011] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Although, at present, the selection of sperm prior to ICSI is based on motility and morphology, undetectable anomalies, and more importantly damaged DNA are overlooked. In this regard, novel sperm selection procedures have gained much interest. For instance, sperm has been selected by Magnetic-Activated Cell Sorting (MACS) based on early apoptotic marker, the externalization of phosphatidylserine (EPS). Review of the literature has revealed that the efficiency of this technique has been mainly evaluated post Density Gradient Centrifugation (DGC). Therefore, there is a need to prove the efficiency of this technique independent of DGC. In addition, considering the fact that DGC induces EPS due to capacitation and acrosome reaction, therefore, the role of MACS before DGC(MACS-DGC) and MACS after DGC (DGC-MACS) should be assessed. METHODS Semen samples from fifteen infertile men were divided into three separate fractions: control, DGC, and MACS. To carry out DGC-MACS, DGC samples were further divided into two fractions and MACS was carried on the second fractions. Similarly to carry out MACS-DGC, the MACS samples were further divided into two fractions and DGC was carried on the second fractions. Percentages of sperm with normal morphology, DNA fragmentation, protamine deficiency, EPS and caspase-3 activity were determined in each fraction. RESULTS DGC is more efficient than MACS in separating intact sperm only in terms of normal morphology, DNA and chromatin integrity but not for active caspase. However, a combination of these procedures was more efficient than a single procedure to separate intact sperm for the aforementioned parameters. Comparison of the combined procedures showed only higher efficiency to separate active caspase in the MACS-DGC group. CONCLUSION Based on these results, we propose MACS-DGC rather than DGC-MACS to be implemented in clinical settings.
Collapse
|
43
|
Leahy T, Gadella BM. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction 2011; 142:759-78. [DOI: 10.1530/rep-11-0310] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spermatozoa interact with their immediate environment and this contact remodels the sperm surface in preparation for fertilisation. These fundamental membrane changes will be critically covered in this review with special emphasis on the very specific surface destabilisation event, capacitation. This process involves very subtle and intricate modifications of the sperm membrane including removal of suppression (decapacitation) factors and changes in the lateral organisation of the proteins and lipids of the sperm surface. Processing of sperm for assisted reproduction (storage, sex-sorting, etc.) subjects spermatozoa to numerous stressors, and it is possible that this processing overrides such delicate processes resulting in sperm instability and cell damage. To improve sperm quality, novel mechanisms must be used to stabilise the sperm surface during handling. In this review, different types of membrane stress are considered, as well as novel surface manipulation methods to improve sperm stability.
Collapse
|
44
|
Escoffier J, Pierre VJ, Jemel I, Munch L, Boudhraa Z, Ray PF, De Waard M, Lambeau G, Arnoult C. Group X secreted phospholipase A₂ specifically decreases sperm motility in mice. J Cell Physiol 2011; 226:2601-9. [PMID: 21792918 DOI: 10.1002/jcp.22606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Different mammalian secreted phospholipases A(2) (sPLA(2) s) are expressed in male reproductive organs and/or in sperm cells but their cellular functions are still not fully characterized. Because several reports indicate a link between cellular lipids and sperm motility, we have investigated the effect of mouse group IIA, IID, IIE, V, and X sPLA(2) s on sperm motility. Among these enzymes, only mouse group X sPLA(2) (mGX sPLA(2) ) acts as a potent inhibitor of sperm motility that decreases track speed (VCL) and lateral displacement of the head (ALH) of both noncapacitated and capacitated sperm. The inhibitory effect of mGX sPLA(2) is dependent on its enzymatic activity because (i) both the proenzyme form of mGX sPLA(2) (pro-mGX) and the H48Q mutant of mGX sPLA(2) have very weak enzymatic activity and are unable to modulate sperm motility and (ii) LY329722, a specific inhibitor of sPLA(2) s, blocks the inhibitory effect of mGX sPLA(2) . Moreover, mGX sPLA(2) exerts a gradual potency on sperm subpopulations with different velocities, an effect which may be linked to the heterogeneity of lipid composition in these sperm subpopulations. Finally, we found that endogenous mGX sPLA(2) released during spontaneous acrosome reaction modulates sperm motility of capacitated sperm. Together, our results suggest a new role of sPLA(2) in sperm physiology where the sPLA2 selects a sperm subpopulation for fertilization based on its effect on sperm motility.
Collapse
|
45
|
Molecular and cellular mechanisms of mammalian cell fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:33-64. [PMID: 21432013 DOI: 10.1007/978-94-007-0763-4_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fusion of one cell with another occurs in development, injury and disease. Despite the diversity of fusion events, five steps in sequence appear common. These steps include programming fusion-competent status, chemotaxis, membrane adhesion, membrane fusion, and post-fusion resetting. Recent advances in the field start to reveal the molecules involved in each step. This review focuses on some key molecules and cellular events of cell fusion in mammals. Increasing evidence demonstrates that membrane lipid rafts, adhesion proteins and actin rearrangement are critical in the final step of membrane fusion. Here we propose a new model for the formation and expansion of membrane fusion pores based on recent observations on myotube formation. In this model, membrane lipid rafts first recruit adhesion molecules and align with opposing membranes, with the help of a cortical actin "wall" as a rigid supportive platform. Second, the membrane adhesion proteins interact with each other and trigger actin rearrangement, which leads to rapid dispersion of lipid rafts and flow of a highly fluidic phospholipid bilayer into the site. Finally, the opposing phospholipid bilayers are then pushed into direct contact leading to the formation of fusion pores by the force generated through actin polymerization. The actin polymerization generated force also drives the expansion of the fusion pores. However, several key questions about the process of cell fusion still remain to be explored. The understanding of the mechanisms of cell fusion may provide new opportunities in correcting development disorders or regenerating damaged tissues by inhibiting or promoting molecular events associated with fusion.
Collapse
|
46
|
Aitken RJ. The Capacitation-Apoptosis Highway: Oxysterols and Mammalian Sperm Function. Biol Reprod 2011; 85:9-12. [DOI: 10.1095/biolreprod.111.092528] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Visconti PE, Krapf D, de la Vega-Beltrán JL, Acevedo JJ, Darszon A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 2011; 13:395-405. [PMID: 21540868 PMCID: PMC3739340 DOI: 10.1038/aja.2010.69] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/17/2022] Open
Abstract
Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.
Collapse
Affiliation(s)
- Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusets, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
48
|
Cheuquemán C, Bravo P, Treulén F, Giojalas L, Villegas J, Sánchez R, Risopatrón J. Sperm membrane functionality in the dog assessed by flow cytometry. Reprod Domest Anim 2011; 47:39-43. [PMID: 21535242 DOI: 10.1111/j.1439-0531.2011.01798.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective assessment of sperm function increases the chances of predicting the fertilizing capacity of a fresh semen sample or diagnosing infertility problems. In this study, the available flow cytometry technique was used to determine the membrane functional capacity of canine spermatozoa. The second fractions of ejaculates from six dogs were pooled, and samples (n = 26) processed to determine the variables: sperm viability and plasma membrane integrity by Sybr-14/Pi staining; phosphatidylserine (PS) translocation by Annexin-V-FITC/PI labelling; acrosome membrane integrity by FITC-conjugated Pisum sativum agglutinin/PI labelling; and mitochondrial membrane potential (ΔΨm) by staining with JC-1. Means for the 26 examined samples indicated that 82.66 ± 2.8% of the viable spermatozoa showed an intact plasma membrane, 8.4 ± 2.6% were moribund, 72.7 ± 16% had an intact acrosome, 80.9 ± 17% had high ΔΨm and 8.1 ± 11% had PS translocation with a PS translocation index of 2.1 ± 3%. Motility was only correlated with PS translocation (R = 0.3901; p = 0.0488), and acrosome membrane integrity was correlated with PS translocation (R = -0.5816; p = 0.0018). This study provides objective physiological data on the functional capacity of canine spermatozoa.
Collapse
Affiliation(s)
- C Cheuquemán
- Faculty of Medicine, University of La Frontera, Temuco, Chile
| | | | | | | | | | | | | |
Collapse
|
49
|
Reid AT, Redgrove K, Aitken RJ, Nixon B. Cellular mechanisms regulating sperm-zona pellucida interaction. Asian J Androl 2010; 13:88-96. [PMID: 21042304 DOI: 10.1038/aja.2010.74] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For mammalian spermatozoa to exhibit the ability to bind the zona pellucida (ZP) they must undergo three distinct phases of maturation, namely, spermatogenesis (testis), epididymal maturation (epididymis) and capacitation (female reproductive tract). An impressive array of spermatozoa surface remodeling events accompany these phases of maturation and appear critical for recognition and adhesion of the outer vestments of the oocyte, a structure known as the ZP. It is becoming increasingly apparent that species-specific zona adhesion is not mediated by a single receptor. Instead, compelling evidence now points toward models implicating a multiplicity of receptor-ligand interactions. This notion is in keeping with emerging research that has shown that there is a dynamic aggregation of proteins believed to be important in sperm-ZP recognition to the regions of sperm that mediate this binding event. Such remodeling may in turn facilitate the assembly of a multimeric zona recognition complex (MZRC). Though formation of MZRCs raises questions regarding the nature of the block to polyspermy, formation and assembly of such a structure would no doubt explain the strenuous maturation process that sperm endure on their sojourn to functional maturity.
Collapse
Affiliation(s)
- Andrew T Reid
- Reproductive Science Group, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
50
|
Falzone N, Huyser C, Franken DR, Leszczynski D. Mobile phone radiation does not induce pro-apoptosis effects in human spermatozoa. Radiat Res 2010; 174:169-76. [PMID: 20681783 DOI: 10.1667/rr2091.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Recent reports suggest that mobile phone radiation may diminish male fertility. However, the effects of this radiation on human spermatozoa are largely unknown. The present study examined effects of the radiation on induction of apoptosis-related properties in human spermatozoa. Ejaculated, density-purified, highly motile human spermatozoa were exposed to mobile phone radiation at specific absorption rates (SARs) of 2.0 and 5.7 W/kg. At various times after exposure, flow cytometry was used to examine caspase 3 activity, externalization of phosphatidylserine (PS), induction of DNA strand breaks, and generation of reactive oxygen species. Mobile phone radiation had no statistically significant effect on any of the parameters studied. This suggests that the impairment of fertility reported in some studies was not caused by the induction of apoptosis in spermatozoa.
Collapse
Affiliation(s)
- Nadia Falzone
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria, South Africa.
| | | | | | | |
Collapse
|