1
|
Daskalova E, Pencheva M, Denev P. Black Chokeberry ( Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats. Curr Issues Mol Biol 2024; 46:4452-4470. [PMID: 38785538 PMCID: PMC11119763 DOI: 10.3390/cimb46050270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Spermatogenesis is a process that continues until the end of an individual's life, although with reduced activity with advancing age. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases observed in aged testes. The use of natural compounds with antioxidant and anti-inflammatory properties has a beneficial effect on the inflammatory and oxidative status of the aged testis. The aim of this study was to determine the effect of supplementation with antioxidant-rich black chokeberry (Aronia melanocarpa) juice on several markers of oxidative stress and aging in rat testis. In total, 24 male Wistar rats were divided into three experimental groups: young controls aged 2 months, old controls aged 27 months, and 27-month-old rats supplemented with black chokeberry juice at a dose of 10 mL/kg for 3 months. A. melanocarpa juice supplementation led to reduced oxidative stress, manifested by increased immunoexpression of nNOS, eNOS, and MAS1 in the seminiferous tubules and in the Leydig cells. The morphometrically determined tubule structure data showed no significant differences between the three groups. However, the intensity of the immunoreaction for TRK-C and NT3 in Leydig cells was demonstrably higher in the supplemented old animals compared with the old controls. There was a significantly higher number of blood vessels around the seminiferous tubules in the supplemented animals compared to the old controls. These data indicate that supplementation with A. melanocarpa juice slows down aging processes in the testis and preserves the functional activity of Leydig cells.
Collapse
Affiliation(s)
- Elena Daskalova
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Amarilla MS, Glienke L, Munduruca Pires T, Sobarzo CM, Oxilia HG, Fulco MF, Rodríguez Peña M, Maio MB, Ferrer Viñals D, Lustig L, Jacobo PV, Theas MS. Impaired Spermatogenesis in Infertile Patients with Orchitis and Experimental Autoimmune Orchitis in Rats. BIOLOGY 2024; 13:278. [PMID: 38666890 PMCID: PMC11048156 DOI: 10.3390/biology13040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Experimental autoimmune orchitis (EAO) is a well-established rodent model of organ-specific autoimmunity associated with infertility in which the testis immunohistopathology has been extensively studied. In contrast, analysis of testis biopsies from infertile patients associated with inflammation has been more limited. In this work, testicular biopsies from patients with idiopathic non-obstructive azoospermia diagnosed with hypospermatogenesis (HypoSp) [mild: n = 9, and severe: n = 11], with obstructive azoospermia and complete Sp (spermatogenesis) (control group, C, n = 9), and from Sertoli cell-only syndrome (SCOS, n = 9) were analyzed for the presence of immune cells, spermatogonia and Sertoli cell (SCs) alterations, and reproductive hormones levels. These parameters were compared with those obtained in rats with EAO. The presence of increased CD45+ cells in the seminiferous tubules (STs) wall and lumen in severe HypoSp is associated with increased numbers of apoptotic meiotic germ cells and decreased populations of undifferentiated and differentiated spermatogonia. The SCs showed an immature profile with the highest expression of AMH in patients with SCOS and severe HypoSp. In SCOS patients, the amount of SCs/ST and Ki67+ SCs/ST increased and correlated with high serum FSH levels and CD45+ cells. In the severe phase of EAO, immune cell infiltration and apoptosis of meiotic germ cells increased and the number of undifferentiated and differentiated spermatogonia was lowest, as previously reported. Here, we found that orchitis leads to reduced sperm number, viability, and motility. SCs were mature (AMH-) but increased in number, with Ki67+ observed in severely damaged STs and associated with the highest levels of FSH and inflammatory cells. Our findings demonstrate that in a scenario where a chronic inflammatory process is underway, FSH levels, immune cell infiltration, and immature phenotypes of SCs are associated with severe changes in spermatogenesis, leading to azoospermia. Furthermore, AMH and Ki67 expression in SCs is a distinctive marker of severe alterations of STs in human orchitis.
Collapse
Affiliation(s)
- María Sofía Amarilla
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Leilane Glienke
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Thaisy Munduruca Pires
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Cristian Marcelo Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Hernán Gustavo Oxilia
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
- Anatomía Patológica, Hospital General de Agudos Parmenio Piñero, Varela 1301, Ciudad Autónoma de Buenos Aires C1406ELA, Argentina
| | - María Florencia Fulco
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - Marcelo Rodríguez Peña
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - María Belén Maio
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Denisse Ferrer Viñals
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| |
Collapse
|
4
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
5
|
Yildirim OG, Guney C, Alcigir ME, Akar F. High-fructose consumption suppresses insulin signaling pathway accompanied by activation of macrophage and apoptotic markers in rat testis. Reprod Biol 2023; 23:100815. [PMID: 37839228 DOI: 10.1016/j.repbio.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Dietary high-fructose may cause metabolic disturbances; however, its effect on the reproductive system is little understood. The insulin signaling pathway is critical in testicular development, maintenance of microcirculation and spermatogenesis. Therefore, in this study, we aimed to investigate the impact of dietary high-fructose on insulin signaling pathway as well as macrophage and apoptotic markers in testicular tissue of rats. Fructose was administered to male Wistar rats as a 20% solution in drinking water for fifteen-week. Gene expression of ir-β, irs-1, irs-2, pi3k, akt, mtor, and enos in the testicular samples was determined by real-time PCR. Protein expression of IR, IRS-1, IRS-2, PI3K, Akt, phospho-Akt (p-Akt), mTOR, eNOS, phospho-eNOS (p-eNOS), and GLUT5 was established by analysis of Western Blot. Testicular expression of occludin, CD163, CD68, caspase-8, and caspase-3 was analyzed by using immunohistochemical assay. Testicular level of fructose was measured by colorimetric method. Dietary high-fructose decreased mRNA expressions of irs-1, irs-2, pi3k, and mtor in the testicular tissue of rats. Also, this dietary intervention impaired protein expressions of IR, IRS-1, IRS-2, PI3K, p-Akt, mTOR, eNOS, and p-eNOS as well as p-Akt/Akt and p-eNOS/eNOS ratios in the testis of rats. However, a high-fructose diet increased the expression of CD163, CD68, caspase-8 and caspase-3, but decreased that of occludin, in the testicular tissue of rats. The high-fructose consumption in rats suppresses testicular insulin signaling but activates macrophages-related factors and apoptotic markers. These changes induced by dietary fructose could be related to male reproductive dysfunction.
Collapse
Affiliation(s)
- Onur Gökhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Ceren Guney
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehmet Eray Alcigir
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
6
|
Zhang W, Chen SJ, Guo LY, Zhang Z, Zhang JB, Wang XM, Meng XB, Zhang MY, Zhang KK, Chen LL, Li YW, Wen Y, Wang L, Hu JH, Bai YY, Zhang XJ. Nitric oxide synthase and its function in animal reproduction: an update. Front Physiol 2023; 14:1288669. [PMID: 38028794 PMCID: PMC10662090 DOI: 10.3389/fphys.2023.1288669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various biological functions and physiological processes during animal reproduction. Recently, increasing evidence suggests that the biological role and chemical fate of NO is dependent on dynamic regulation of its biosynthetic enzyme, three distinct nitric oxide synthase (NOS) according to their structure, location and function. The impact of NOS isoforms on reproductive functions need to be timely elucidated. Here, we focus on and the basic background and latest studies on the development, structure, importance inhibitor, location pattern, complex functions. Moreover, we summarize the exactly mechanisms which involved some cell signal pathways in the regulation of NOS with cellular and molecular level in the animal reproduction. Therefore, this growing research area provides the new insight into the important role of NOS male and female reproduction system. It also provides the treatment evidence on targeting NOS of reproductive regulation and diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Su juan Chen
- Department of Life Science and Technology, Xinxiang Medical College, Xinxiang, Henan, China
| | - Li ya Guo
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jia bin Zhang
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Xiao meng Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiang bo Meng
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Min ying Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ke ke Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lin lin Chen
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Yi wei Li
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yuliang Wen
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lei Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jian he Hu
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yue yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, China
| | - Xiao jian Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
7
|
Silva SB, Ruiz TFR, Dos Santos FCA, Taboga SR, Vilamaior PSL. Impacts of heavy metal exposure on the prostate of murine models: Mechanisms of toxicity. Reprod Toxicol 2023; 120:108448. [PMID: 37490985 DOI: 10.1016/j.reprotox.2023.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Heavy metals are elements found into the environment mainly due to anthropogenic activities. Naturally occurring and higher released doses cause disorders in the prostate, which depends on appropriate hormonal regulation, and exposure to heavy metals may impair prostate homeostasis. The current work highlighted the main mechanisms of toxicity of different environmental heavy metal contaminants, such as aluminum, arsenic, cadmium, chromium, lead, mercury, and nickel, and their impacts found in the prostate morphophysiology of murine models. The repercussions triggered by heavy metals on the prostate include hormonal imbalance and oxidative damage, leading to morphological alterations, which can vary according to the chemical properties of each element, exposure time and concentration, and age. The information of altered biological pathways and its impacts on the prostate of exposed murines are related to human outcomes being useful in the real context of human exposure.
Collapse
Affiliation(s)
- Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Cristina Alcantara Dos Santos
- Department of Histology, Embryology and Cell Biology, Laboratory of Microscopy Applied to Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Akbari H, Elyasi L, Khaleghi AA, Mohammadi M. The effect of zinc supplementation on improving sperm parameters in infertile diabetic men. J Obstet Gynaecol India 2023; 73:316-321. [PMID: 37701089 PMCID: PMC10492728 DOI: 10.1007/s13224-023-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/30/2023] [Indexed: 09/14/2023] Open
Abstract
Background and aims Diabetes mellitus (DM) may have different adverse effects on the male reproductive system. Zinc (Zn) is one of the necessary elements in the human and mammalian diet that plays an important role in scavenging reactive oxygen species (ROS) by providing antioxidant and anti-apoptotic properties. The aim of this study was to determine the protective effects of zinc supplements on sperm chromatin and the evaluation of sperm deoxyribonucleic acid (DNA) integrity in diabetic men. Methods In this interventional study, 43 infertile Iranian men in diabetic and non-diabetic groups were included. They were then randomly divided into two subgroups: normal saline intake and zinc sulfate intake (25 mg orally for 64 days each). Different indices of sperm analysis (number, morphology and motility) and testosterone levels were evaluated in four groups. Protamine deficiency and DNA fragmentation were assessed using chromomycin A3 (CMA3) and sperm chromatin dispersion (SCD) methods, respectively. Results Zinc supplementation reduced the deformity of neck and head of sperms (p < 0.05), as well as deformity of sperm tail in infertile diabetic men. Zinc administration ameliorated sperm motility types A, B and C (p < 0.05). Moreover, zinc administration reduced abnormal morphology and DNA fragmentation of sperms, which increased the SCD1 and SCD2 and reduced the SCD3 and SCD4 in both treated groups. Conclusion Zinc supplementation, as a powerful complement, is able to balance the effect of diabetes on sperm parameters, sperm chromatin and DNA integrity. Consequently, zinc supplementation can probably be considered a supportive compound in the diet of diabetic infertile men.
Collapse
Affiliation(s)
- Hakimeh Akbari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Leila Elyasi
- Department of Anatomy, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Asghar Khaleghi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
9
|
Intake of Fluted Pumpkin Seeds Rebalances Oxidative Stress Parameters in the Aged Rat’s Testes. Andrologia 2023. [DOI: 10.1155/2023/6745770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effect of fluted pumpkin seeds (FPS) consumption on the antioxidant status of the testes of aged Wistar rats was evaluated in this study. Sixty (50 aged, 6 months old, and 10 young, 2 months old) rats were divided into six groups of 10 per each group. Testosterone (15 mg kg-1 body weight, once weekly for 40 days) was injected intraperitoneally and used as positive control. FPS intake (50, 100, and 200 mg kg-1 body weight) or vehicle control (corn oil) were administered orally, twice weekly for 40 days and compared with the untreated aged and young control rats. Changes in antioxidant status in the testis of the aged rats was reflected as increased superoxide dismutase and catalase activities and glutathione and decreased lipid peroxidation levels which were attenuated more efficiently by the lowest dose FPS (50 mg kg-1 body weight). Additionally, nitrite concentration that was found to be diminished in the aged rats was raised to the young control values after intake of the FPS (50 mg kg-1 body weight). As expected, testosterone injection increased endogenous testosterone concentration and also remained higher in the untreated aged animals than in young control and treated aged rats. In conclusion, compromised antioxidant defense system of the testes that is associated with ageing could be reversed to the status of the young control by the intake of FPS.
Collapse
|
10
|
Dutta S, Sengupta P, Das S, Slama P, Roychoudhury S. Reactive Nitrogen Species and Male Reproduction: Physiological and Pathological Aspects. Int J Mol Sci 2022; 23:ijms231810574. [PMID: 36142487 PMCID: PMC9506194 DOI: 10.3390/ijms231810574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive nitrogen species (RNS), like reactive oxygen species (ROS), are useful for sustaining reproductive processes such as cell signaling, the regulation of hormonal biosynthesis, sperm capacitation, hyperactivation, and acrosome reaction. However, endogenous levels of RNS beyond physiological limits can impair fertility by disrupting testicular functions, reducing gonadotropin production, and compromising semen quality. Excessive RNS levels cause a variety of abnormalities in germ cells and gametes, particularly in the membranes and deoxyribonucleic acid (DNA), and severely impair the maturation and fertilization processes. Cell fragmentation and developmental blockage, usually at the two-cell stage, are also connected with imbalanced redox status of the embryo during its early developmental stage. Since high RNS levels are closely linked to male infertility and conventional semen analyses are not reliable predictors of the assisted reproductive technology (ART) outcomes for such infertility cases, it is critical to develop novel ways of assessing and treating oxidative and/or nitrosative stress-mediated male infertility. This review aims to explicate the physiological and pathological roles of RNS and their relationship with male reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd., Selaiyur, Chennai 600073, India
| | - Pallav Sengupta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd., Selaiyur, Chennai 600073, India
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - Sanghamitra Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
- Correspondence: (P.S.); (S.R.)
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
- Correspondence: (P.S.); (S.R.)
| |
Collapse
|
11
|
Serafini S, O'Flaherty C. Redox Regulation to Modulate Phosphorylation Events in Human Spermatozoa. Antioxid Redox Signal 2022; 37:437-450. [PMID: 34714121 DOI: 10.1089/ars.2021.0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Significance: Spermatozoa are complex and compartmentalized cells that undergo capacitation, a series of biochemical and morphological changes to acquire the ability to fertilize oocytes. Reactive oxygen species (ROS) have a prominent dual role in capacitation. At physiological levels, ROS regulate numerous cellular processes, including increases of cyclic adenosine monophosphate, calcium, and activation of phosphorylation events needed for capacitation. On the contrary, at high concentrations that do not impair sperm viability, ROS can cause loss of motility and inhibition of capacitation. Higher ROS concentrations promote oxidation of lipids, proteins, and DNA leading to cell death, and these damages have been associated with male infertility. Critical Issues: When incubated under specific conditions, spermatozoa can produce low and controlled amounts of ROS that are not harmful but instead regulate numerous cellular processes, including the phosphorylation of tyrosine, serine, and threonine residues in critical proteins needed for sperm capacitation. Here, we outline the complex redox signaling in human spermatozoa needed to achieve fertility and the role of ROS as physiological mediators that trigger phosphorylation cascades. Moreover, we illustrate the importance of various phosphoproteins in spermatozoa capacitation, viability, and hyperactive motility. Future Directions: Further studies to elucidate the different phosphorylation players during sperm capacitation and acrosome reaction (the regulated exocytotic event that releases proteolytic enzymes allowing the spermatozoon to penetrate the zona pellucida and fertilize the oocyte) are essential to understand how the spermatozoon acquires the fertilizing ability to fertilize the oocyte. This knowledge will serve to develop novel diagnostic tools and therapy for male infertility. Antioxid. Redox Signal. 37, 437-450.
Collapse
Affiliation(s)
- Steven Serafini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada
| | - Cristian O'Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada.,Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Canada.,The Research Institute, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
12
|
Xing J, Yu G, Xiang Y, Xu H, Liu Z, Bai Z. Effect of low energy shock wave on testicular microenvironment homeostasis in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113710. [PMID: 35679733 DOI: 10.1016/j.ecoenv.2022.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To further investigate whether two sets of low-energy extracorporeal shock waves (LESWs) impulse parameters, i.e., 0.02 mJ/mm2 for 500 impulses and 0.04 mJ/mm2 for 500 impulses, which have been shown to directly affect the testes, can promote testicular spermatogenesis or positively regulate homeostasis of the testicular microenvironment. METHODS (1) Twenty-four experimental rats were randomly divided into a 0.02 mJ/mm2 500 impulses group (L1 group), a 0.04 mJ/mm2 500 impulses group (M1 group), a sham intervention group (S group) and a blank control group (N group). The experiment period was 8 weeks. (2) Apoptosis of the spermatogenic cells in the left testicle was detected by the TUNEL method, VEGF and eNOs protein expression was detected by immunohistochemistry, and histomorphological changes were observed in PAS-stained sections. Moreover, the morphologies of the spermatogenic tubules and testicular stroma were quantitatively analyzed by stereological analysis. The right testicle was used for Western blot detection of the protein expression levels of Bax, Cytochrome C, Caspase-3, Bcl-2, VEGF and eNOs. RESULTS Compared with the other three groups, the rate of M1 testicular germ cell apoptosis induced by shock treatment was higher, the expression levels of proapoptotic proteins increased significantly while that of the antiapoptotic protein was lower, and the suppression of cell proliferation correlated with the protein expression levels. Additionally, with respect to the absolute volume of the seminiferous tubules, the absolute interstitial testicular volume notably increased, producing a series of biological effects working against testicular sperm production and function. However, there was no significant difference between the L1 group and the N and S groups. CONCLUSIONS LESWs treatment with impulse parameters of 0.02 mJ/mm2 for 500 impulses showed a better protective effect on testicular spermatic function in rats and has a positive regulatory biological effect.
Collapse
Affiliation(s)
- Jiansheng Xing
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China.
| | - Gang Yu
- Department of Urology, Renmin Hospital of Wuhan University Hubei General Hospital, Wuhan 430060, Hubei Province, China
| | - Yang Xiang
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Haixia Xu
- Department of Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Zhenxiang Liu
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Zhiming Bai
- Department of Urology and Pathology, Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China.
| |
Collapse
|
13
|
Kadlec M, Pintus E, Ros-Santaella JL. The Interaction of NO and H 2S in Boar Spermatozoa under Oxidative Stress. Animals (Basel) 2022; 12:ani12050602. [PMID: 35268171 PMCID: PMC8909797 DOI: 10.3390/ani12050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Various recent studies dedicated to the role of nitric oxide (NO) and hydrogen sulfide (H2S) in somatic cells provide evidence for an interaction of the two gasotransmitters. In the case of male gametes, only the action of a single donor of each gasotransmitter has been investigated up until today. It has been demonstrated that, at low concentrations, both gasotransmitters alone exert a positive effect on sperm quality parameters. Moreover, the activity of gaseous cellular messengers may be affected by the presence of oxidative stress, an underlying condition of several male reproductive disorders. In this study, we explored the effect of the combination of two donors SNP and NaHS (NO and H2S donors, respectively) on boar spermatozoa under oxidative stress. We applied NaHS, SNP, and their combination (DD) at 100 nM concentration in boar spermatozoa samples treated with Fe2+/ascorbate system. After 90 min of incubation at 38 °C, we have observed that progressive motility (PMot) and plasma membrane integrity (PMI) were improved (p < 0.05) in DD treatment compared to the Ctr sample under oxidative stress (CtrOX). Moreover, the PMot of DD treatment was higher (p < 0.05) than that of NaHS. Similar to NaHS, SNP treatment did not overcome the PMot and PMI of CtrOX. In conclusion, for the first time, we provide evidence that the combination of SNP and NaHS surmounts the effect of single-donor application in terms of PMot and PMI in porcine spermatozoa under oxidative stress.
Collapse
|
14
|
Atere TG, Akinloye OA, Ugbaja RN, Ojo DA. Standardized Extract of Costus Afer Ker. Gawl leaves Modulates Reproductive Toxicity Caused by FructoseStreptozotocin Administration in Type-2 Diabetic Rats Model. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Co-administration of streptozotocin and fructose is believed to induce type 2 diabetes as well as to cause reproductive toxicity and testicular damage via increasing oxidative stress in rats. Objectives: In this study, the potential protective effect of Costus afer leaves methanol extract (CAME) on andrological parameters and pituitary-gonadal axis hormones of type 2 diabetes (T2D) in rats treated with streptozotocin and fructose was investigated. Methods: A total of 35 rats were divided into five groups, each including seven rats. Group 1 received normal saline, whereas T2D was induced in rats from groups 2, 3, 4, and 5. Group 2 served as diabetic control; while groups 3, 4, and 5 were treated orally with 12 mg/kg body weight (BW) of metformin as well as 100 and 200 BW of CAME, respectively, for 4 weeks. Hypothalamic–pituitary–gonadal responses, andrological parameters, DNA fragmentation, and oxidative stress parameters of the reproductive organs were examined in all treatment groups. Results: Administration of CAME reduced the degenerative changes in testes, epididymis and improved pituitary-gonadal axis hormone concentrations, and sperm morphology occasioned by the treatments. Conclusion: It was concluded that the administration of CAME ameliorated reproductive abnormalities in T2D rat models treated with streptozotocin-fructose administration.
Collapse
Affiliation(s)
- Tope Gafar Atere
- Department of Medical Biochemistry, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| | - Regina Ngozi Ugbaja
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| | - David Ajiboye Ojo
- Department of Microbiology, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
15
|
Jalili C, Korani M, Pazhouhi M, Ghanbari A, Zhaleh M, Davoudi S, Rashidi I. Protective effect of gallic acid on nicotine-induced testicular toxicity in mice. Res Pharm Sci 2021; 16:414-424. [PMID: 34447449 PMCID: PMC8356720 DOI: 10.4103/1735-5362.319579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/07/2021] [Accepted: 06/19/2021] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Nicotine is an alkaloid found in many nutrients and tobacco that can cause infertility in men. Gallic acid is a powerful antioxidant that possesses antimutagenic and anticancer activities. This study aimed to determine the potential protective effect of gallic acid against nicotine-induced testicular toxicity in male mice. Experimental approach In this in vivo study, forty-eight mice were equally divided into eight groups intraperitoneally receiving normal saline (control), nicotine (0.6 mg/kg), gallic acid (5, 10, and 15 mg/kg), and gallic acid (5, 10, and 15 mg/kg) plus nicotine. Nicotine was injected intraperitoneally for 14 days and gallic acid was administered concomitantly with nicotine and continued for 7 days later. Then, body and testicular weights, the sperm parameters (viability, number, motility, and morphology of sperm), and testicular histology were evaluated. Also, serum levels of nitric oxide, total antioxidant, superoxide dismutase, malondialdehyde, and testosterone were measured. Findings/Results The results showed that the administration of nicotine significantly reduced testis and body weight, sperm count, viability, normal morphology and motility, seminiferous tubules diameter, testosterone levels, serum levels of total antioxidants, and superoxide dismutase compared to the control group (P < 0.05). It also significantly increased the level of nitric oxide and malondialdehyde (P < 0.05). Increasing the dose of gallic acid along with nicotine significantly increased body weight, sperm count, viability, normal morphology and motility, the diameter of seminiferous, testosterone concentration, total antioxidant levels (P < 0.05). This combination also significantly decreased malondialdehyde and nitric oxide levels compared to the nicotine-receiving group (P < 0.05). Conclusion and implications Gallic acid had a protective effect on nicotine-induced testicular toxicity in mice. It can neutralize the harmful effect of nicotine on male fertility in smokers.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mastaneh Korani
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mona Pazhouhi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Ali Ghanbari
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mohsen Zhaleh
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Samira Davoudi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Iraj Rashidi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
16
|
Mansouri S, Jalali M, Nikravesh MR, Soukhtanloo M. Down-regulation of CatSper 1 and CatSper 2 genes by methamphetamine. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1868007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Somaieh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Wei D, Wu D, Zeng W, Che L, Xu S, Fang Z, Feng B, Li J, Zhuo Y, Wu C, Zhang J, Lin Y. Arginine promotes testicular development in boars through nitric oxide and putrescine. J Anim Physiol Anim Nutr (Berl) 2021; 106:266-275. [PMID: 34212433 DOI: 10.1111/jpn.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022]
Abstract
The present work aimed to explore the influence and underlying mechanisms involving arginine in testicular development in boars. To this end, thirty 30-day-old male Duroc piglets (7.00 ± 0.30 kg) were randomly sorted into two groups, maintained on either a basal diet (CON, n = 15) or a diet supplemented with 0.8% arginine (ARG, n = 15). Blood and testicular samples were collected during the experimental period to analyse amino acid composition and arginine metabolite levels. The results showed that dietary supplementation with arginine increased number of spermatogonia and height of the seminiferous epithelium (p < 0.05). Sperm density, total number and effective number of sperm of the boars in the ARG group increased significantly compared with those in the CON group (p < 0.05). Although arginine supplementation did not affect plasma amino acid levels, testicular arginine levels in 150-day-old boars exhibited a significant increase (p < 0.05). The level of serum nitric oxide (NO) and activity of nitric oxide synthase (NOS) also increased in 150-day-old boars in the ARG group (p < 0.05). Interestingly, dietary supplementation with arginine increased testicular levels of putrescine in 150-day-old boars (p < 0.05). These results indicated that arginine supplementation increased serum NO levels and testicular arginine and putrescine abundance, thereby improving testicular development and semen quality in boars.
Collapse
Affiliation(s)
- Dongqin Wei
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Junjie Zhang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Falvo S, Rosati L, Di Fiore MM, Di Giacomo Russo F, Chieffi Baccari G, Santillo A. Proliferative and Apoptotic Pathways in the Testis of Quail Coturnix coturnix during the Seasonal Reproductive Cycle. Animals (Basel) 2021; 11:ani11061729. [PMID: 34207904 PMCID: PMC8226535 DOI: 10.3390/ani11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The quail Coturnix coturnix exhibits an annual cycle of testis size, sexual steroid production, and spermatogenesis. The testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, suggesting that estrogens act in synergy with the androgens for the initiation of spermatogenesis. Therefore, the present study aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasons, with a focus on the molecular pathways activated in both active and regressive quail testes. The results indicated that estrogens participated in the activation of mitotic and meiotic events during the reproductive period by activating the ERK1/2 and Akt-1 pathways. In the non-reproductive period, when the E2/ERα levels are low, ERK1/2 and Akt-1 pathways remain inactive and apoptotic events occur. Our results suggest that the activation or inhibition of these molecular pathways plays a crucial role in the physiological switch “on/off” of the testicular activity in male quail during the seasonal reproductive cycle. Abstract The quail Coturnix coturnix is a seasonal breeding species, with the annual reproductive cycle of its testes comprising an activation phase and a regression phase. Our previous results have proven that the testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, which led us to hypothesize that estrogens and androgens may act synergistically to initiate spermatogenesis. The present study was, therefore, aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasonality, with a focus on the molecular pathways elicited in both active and regressive quail testes. Western blotting and immunohistochemistry analysis revealed that the expression of ERα, which is the predominant form of estrogen receptors in quail testis, was correlated with E2 concentration, suggesting that increased levels of E2-induced ERα could play a key role in the resumption of spermatogenesis during the reproductive period, when both PCNA and SYCP3, the mitotic and meiotic markers, respectively, were also increased. In the reproductive period we also found the activation of the ERK1/2 and Akt-1 kinase pathways and an increase in second messengers cAMP and cGMP levels. In the non-reproductive phase, when the E2/ERα levels were low, the inactivation of ERK1/2 and Akt-1 pathways favored apoptotic events due to an increase in the levels of Bax and cytochrome C, with a consequent regression of the gonad.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80138 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Federica Di Giacomo Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
- Correspondence:
| |
Collapse
|
19
|
Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094600. [PMID: 33925645 PMCID: PMC8124305 DOI: 10.3390/ijms22094600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
S-nitrosylation is a selective and reversible post-translational modification of protein thiols by nitric oxide (NO), which is a bioactive signaling molecule, to exert a variety of effects. These effects include the modulation of protein conformation, activity, stability, and protein-protein interactions. S-nitrosylation plays a central role in propagating NO signals within a cell, tissue, and tissue microenvironment, as the nitrosyl moiety can rapidly be transferred from one protein to another upon contact. This modification has also been reported to confer either tumor-suppressing or tumor-promoting effects and is portrayed as a process involved in every stage of cancer progression. In particular, S-nitrosylation has recently been found as an essential regulator of the tumor microenvironment (TME), the environment around a tumor governing the disease pathogenesis. This review aims to outline the effects of S-nitrosylation on different resident cells in the TME and the diverse outcomes in a context-dependent manner. Furthermore, we will discuss the therapeutic potentials of modulating S-nitrosylation levels in tumors.
Collapse
|
20
|
Wang S, Chen Q, Zhang Y, Zheng F, Xue T, Ge X, Ma R, Li X, Wu R, Liang K, Qian Z, Ge Y, Ma J, Yao B. Omega-3 polyunsaturated fatty acids alleviate hydrogen sulfide-induced blood-testis barrier disruption in the testes of adult mice. Reprod Toxicol 2020; 98:233-241. [PMID: 33068716 DOI: 10.1016/j.reprotox.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a gaseous intracellular signal transducer, participates in multiple physiological and pathological conditions, including reproductive conditions, and disrupts spermatogenesis. The blood-testis barrier (BTB) plays a vital role in spermatogenesis. However, the effect of H2S on the BTB and the underlying mechanism remain unclear. Herein, we examined the effect of H2S and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on the BTB and testicular functions. ICR male mice were randomly divided into the following groups: control, H2S exposure, and H2S exposure with ω-3 PUFAs intervention. The sperm parameters (sperm concentration and sperm motility) declined in the H2S group and improved in the ω-3 intervention group. BTB integrity was severely disrupted by H2S, and the BTB-related gene levels (ZO-1, Occludin, Claudin 11) decreased; ω-3 supplementation could alleviate BTB disruption by upregulating BTB-related genes, and TM4 Sertoli cells had a similar trend in vitro. p38 MAPK phosphorylation was upregulated in the Na2S treatment group and downregulated after ω-3 cotreatment. These findings suggest that H2S can impair the BTB and that ω-3 PUFAs supplementation can attenuate H2S toxicity in the male reproductive system. Our study elucidated the relationship between a gasotransmitter (H2S) and the BTB and identified the potential therapeutic effect of ω-3 PUFAs.
Collapse
Affiliation(s)
- Shuxian Wang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qiwei Chen
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Yu Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Feng Zheng
- Model Animal Research Center of Nanjing University, Nanjing, 210002, China
| | - Tongmin Xue
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Rujun Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaoyan Li
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ronghua Wu
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Kuan Liang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Zhang Qian
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yifeng Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China; Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, 212000, China; Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, China.
| |
Collapse
|
21
|
Sai L, Li Y, Zhang Y, Zhang J, Qu B, Guo Q, Han M, Jia Q, Yu G, Li K, Bo C, Zhang Y, Shao H, Peng C. Distinct m 6A methylome profiles in poly(A) RNA from Xenopus laevis testis and that treated with atrazine. CHEMOSPHERE 2020; 245:125631. [PMID: 31877456 DOI: 10.1016/j.chemosphere.2019.125631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent discovery of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in mammals, plant and yeast revealed potential regulatory functions of this RNA modification. However, the role of the m6A methylomes in amphibious is still poorly understood. Here, we examined the m6A transcriptome-wide profile in testis tissues of Xenopus laevis (X. laevis) with and without treatment with 100 μg/L atrazine (AZ) through m6A sequencing analysis using the latest Illumina HiSeq sequencer. The results revealed that m6A is a highly conserved modification of mRNA in X. laevis. Distinct from that in mammals, m6A in X. laevisis enriched around the stop codon and start codon, as is reported in plant. We then investigated the differential expression m6A in testes of AZ-exposed X. laevis and compared that with the X. laevis in the control group by m6A sequencing. The results indicated that AZ leads to altered expression profile in 1380 m6A modification sites (696 upregulated and 684 downregulated). KEGG pathway analysis indicates that the "NOD-like receptors", "tight junction", "Peroxisome proliferator-activated receptors", "adherens junctions", "Glycerophospholipid metabolism" and "Fatty acid biosynthesis" signaling pathways may be associated with abnormal testis development of X. laevis due to exposure to AZ. Analysis results showed a positive correlation between m6A modification and mRNA abundance, suggesting a regulatory role of m6A in amphibious gene expression. Our first report of m6A transcriptome-wide map of an amphibian species X. laevis presented here provides a starting roadmap for uncovering m6A functions that may affect/control amphibian testis development.
Collapse
Affiliation(s)
- Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Yan Li
- Shandong Provincial Chest Hospital, Ji'nan, Shandong, China
| | - Yecui Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Binpeng Qu
- Shandong Medical College, Ji'nan, Shandong, China
| | - Qiming Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Kaili Li
- The NO.4 Hospital 1946 Jinan Shandong, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Ji'nan, Shandong, China
| |
Collapse
|
22
|
Kadlec M, Ros-Santaella JL, Pintus E. The Roles of NO and H 2S in Sperm Biology: Recent Advances and New Perspectives. Int J Mol Sci 2020; 21:E2174. [PMID: 32245265 PMCID: PMC7139502 DOI: 10.3390/ijms21062174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/24/2023] Open
Abstract
After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.
Collapse
Affiliation(s)
| | | | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.K.); (J.L.R.-S.)
| |
Collapse
|
23
|
Serrano R, Garrido N, Céspedes JA, González-Fernández L, García-Marín LJ, Bragado MJ. Molecular Mechanisms Involved in the Impairment of Boar Sperm Motility by Peroxynitrite-Induced Nitrosative Stress. Int J Mol Sci 2020; 21:E1208. [PMID: 32054116 PMCID: PMC7072751 DOI: 10.3390/ijms21041208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive levels of reactive nitrogen species (RNS) produce nitrosative stress. Among RNS is peroxynitrite, a highly reactive free radical generated when nitric oxide reacts with superoxide anion. Peroxynitrite effects have been mainly studied in somatic cells, and in spermatozoa the majority of studies are focused in humans. The aim of this study is to investigate the in vitro peroxynitrite effect on boar spermatozoa functions and the molecular mechanisms involved. Spermatozoa were exposed to the donor 3-morpholinosydnonimine (SIN-1) in non-capacitating or capacitating medium, motility was evaluated by CASA, functional parameters by flow cytometry and sperm protein phosphorylation by Western blotting. SIN-1 treatment, that significantly increases peroxynitrite levels in boar spermatozoa, potentiates the capacitating-stimulated phosphorylation of cAMP-dependent protein kinase 1 (PKA) substrates and GSK-3α. SIN-1 induced peroxynitrite does not decrease sperm viability, but significantly reduces sperm motility, progressive motility, velocities and motility coefficients. Concomitantly, peroxynitrite does not affect mitochondrial membrane potential, plasma membrane fluidity, or A23187-induced acrosome reaction. However, peroxynitrite significantly increases sperm lipid peroxidation in both media. In conclusion, peroxynitrite compromises boar sperm motility without affecting mitochondrial activity. Although peroxynitrite potentiates the phosphorylation of pathways leading to sperm motility, it also causes oxidative stress that might explain, at least partially, the motility impairment.
Collapse
Affiliation(s)
| | | | | | | | | | - María J. Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (Research Institute INBIO G+C), University of Extremadura, 10003 Cáceres, Spain; (R.S.); (N.G.); (J.A.C.); (L.G.-F.); (L.J.G.-M.)
| |
Collapse
|
24
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
25
|
Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Portincasa P, Gómez-Ambrosi J, Frühbeck G. Functional Relationship between Leptin and Nitric Oxide in Metabolism. Nutrients 2019; 11:2129. [PMID: 31500090 PMCID: PMC6769456 DOI: 10.3390/nu11092129] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022] Open
Abstract
Leptin, the product of the ob gene, was originally described as a satiety factor, playing a crucial role in the control of body weight. Nevertheless, the wide distribution of leptin receptors in peripheral tissues supports that leptin exerts pleiotropic biological effects, consisting of the modulation of numerous processes including thermogenesis, reproduction, angiogenesis, hematopoiesis, osteogenesis, neuroendocrine, and immune functions as well as arterial pressure control. Nitric oxide (NO) is a free radical synthesized from L-arginine by the action of the NO synthase (NOS) enzyme. Three NOS isoforms have been identified: the neuronal NOS (nNOS) and endothelial NOS (eNOS) constitutive isoforms, and the inducible NOS (iNOS). NO mediates multiple biological effects in a variety of physiological systems such as energy balance, blood pressure, reproduction, immune response, or reproduction. Leptin and NO on their own participate in multiple common physiological processes, with a functional relationship between both factors having been identified. The present review describes the functional relationship between leptin and NO in different physiological processes.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Medical Engineering Laboratory, University of Navarra, 31008 Pamplona, Spain.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Policlinico Hospital, 70124 Bari, Italy.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
26
|
Beer consumption negatively regulates hormonal reproductive status and reduces apoptosis in Leydig cells in peripubertal rats. Alcohol 2019; 78:21-31. [PMID: 30690073 DOI: 10.1016/j.alcohol.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 12/02/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Beer is one of the most popular alcoholic beverages consumed by young people. Ethanol intake is associated with harmful effects to the reproductive system. Bioactive compounds present in beer may diminish the toxics effect of ethanol. However, there is still little knowledge about the effect of beer consumption on hormonal regulation of male reproduction in organisms exposed to alcohol after the peripubertal age. Therefore, the aim of this study was to determine the influence of beer intake on plasma reproductive hormones, immunolocalization of cleaved caspase-3 (casp-3), and the level of the neuronal isoform of nitric oxide synthase (nNOS) in Leydig cells (LCs) in adolescent male Wistar rats. The animals, beginning at the age of 30 days, drank beer (10% ethanol; B2 group [2 weeks' exposure] and B4 group [4 weeks' exposure]), 10% ethanol solution (CE2 group [2 weeks' exposure] and CE4 group [4 weeks' exposure]), or water (C2 group [2 weeks' exposure] and C4 group [4 weeks' exposure]). Rats drinking beer for 4 weeks showed higher phenolic acid intake compared to rats drinking beer for 2 weeks. Rats exposed to beer for 4 weeks showed decreased plasma levels of follicle-stimulating hormone (FSH) and 17β-estradiol (E2) (3.173 ng/mL and 11.49 pg/mL, respectively), compared to the CE4 (5.293 ng/mL and 43.912 pg/mL, respectively) and the C4 groups (5.002 ng/mL and 41.121 pg mL, respectively). Expression of cleaved caspase-3 in LCs was lower in the B4 group rats, compared to the CE4 group rats (ID score: 1.676 vs. 2.190). No changes in nNOS expression were observed. Beer consumption revealed a similar negative effect on hormonal regulation of male reproductive function, but lower apoptosis in LCs may be beneficial for steroidogenic activity.
Collapse
|
27
|
Yang JY, Zhang YF, Nie N, Feng WP, Bao JF, Meng XP, Qiao XL. Protective effects of l-arginine against testosterone synthesis decreased by T-2 toxin in mouse Leydig cells. Theriogenology 2019; 134:98-103. [DOI: 10.1016/j.theriogenology.2019.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 05/26/2019] [Indexed: 01/27/2023]
|
28
|
Ma Q, Shao H, Feng Y, Zhang L, Li P, Hu X, Ma Z, Lou H, Zeng X, Luo G. A new bioluminescent imaging technology for studying oxidative stress in the testis and its impacts on fertility. Free Radic Biol Med 2018; 124:51-60. [PMID: 29803806 DOI: 10.1016/j.freeradbiomed.2018.05.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/05/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Excessive oxidative stress (OS) leads to cellular dysfunctions and cell death and constitutes a major cause of male infertility. However, the etiologies of increased reactive oxygen species (ROS) in male infertility is not fully understood. One major limitation is the lack of an in vivo imaging system that can be used to effectively study the impact of excessive ROS in the testis. Recently, we discovered that the hepatocellular carcinoma reporter (HCR) mice previously generated in our laboratory also expressed luciferase in the spermatids of the testis. The goal of the current study is to use the HCR mice to detect OS in the testis and to investigate the potential use of this new system in studying OS-induced male infertility. EXPERIMENTAL DESIGN Bioluminescence imaging (BLI) was performed in HCR mice that were treated with peroxy caged luciferin-1 (PCL-1), an OS reporter, to establish a new mouse model for in vivo monitoring of the OS status inside the male reproductive tract. Subsequently, the effect of acetaminophen (APAP) overdose on the OS inside the testis and male fertility were determined. Lastly, APAP was co-administered with glutathione, an antioxidant reagent, to test if the HCR mice can serve as a model for the effective and rapid assessment of the potency of individual agents in modifying the OS inside the mouse testis. RESULTS The OS level in the testis in the HCR mice was readily detected by BLI. The use of this new model led to the discovery that APAP caused a sudden rise of OS in the testis and was a potent toxicant for the male reproductive system. Moreover, administration of glutathione was effective in preventing the APAP-induced elevation of OS and in ameliorating all of the OS-induced anomalies in the testis. CONCLUSIONS The HCR mice represent an excellent model for monitoring OS change in the mouse testis by real time BLI. APAP is a potent male reproductive toxicant and APAP-treated mice represent a valid model for OS-induced male infertility. This model can be used to study OS-induced damage in male reproductive tract and in assessing the effects of therapeutic agents on the relative levels of OS and male fertility.
Collapse
Affiliation(s)
- Qixiang Ma
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Haozhen Shao
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Yanyan Feng
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Linpeng Zhang
- Shandong Stroke Association, Affiliated Hospitals of Weifang Medical College, Shandong, China
| | - Pengshou Li
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Xiaowei Hu
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Zhitao Ma
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China
| | - Hua Lou
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xianwei Zeng
- Shandong Stroke Association, Affiliated Hospitals of Weifang Medical College, Shandong, China.
| | - Guangbin Luo
- School of Life Sciences, Centre for Translational Oncology, Beijing University of Chinese Medicine, Chaoyang, 100029 Beijing, China; Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Lara NLM, França LR. Neonatal hypothyroidism does not increase Sertoli cell proliferation in iNOS−/− mice. Reproduction 2017; 154:13-22. [DOI: 10.1530/rep-17-0111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 01/05/2023]
Abstract
Sertoli cell (SC) proliferation in mice occurs until two weeks after birth and is mainly regulated by FSH and thyroid hormones. Previous studies have shown that transient neonatal hypothyroidism in laboratory rodents is able to extend SC mitotic activity, leading ultimately to higher testis size and daily sperm production (DSP) in adult animals. Moreover, we have shown that due to higher SC proliferation and lower germ cell apoptosis, iNOS deficiency in mice also results in higher testis size and DSP. Although the cell size was smaller, the Leydig cells (LCs) number per testis also significantly increased in iNOS−/−mice. Our aims in the present study were to investigate if the combination of neonatal hypothyroidism and iNOS deficiency promotes additive effects in SC number, testis size and DSP. Hypothyroidism was induced in wild-type (WT) and iNOS−/−mice using 6-propyl-2-thiouracil (PTU) through the mother’s drinking water from 0 to 20 days of age, and were sacrificed at adulthood. Our results showed that, in contrast to the WT mice in which testis size, DSP and SC numbers increased significantly by 20, 40 and 70% respectively, after PTU treatment, no additive effects were observed for these parameters in treated iNOS−/−mice, as well as for LC. No alterations were observed in spermatogenesis in any group evaluated. Although we still do not have an explanation for these intriguing findings, we are currently investigating whether thyroid hormones influence iNOS levels and/or counterbalance physiological effects of iNOS deficiency in testis function and spermatogenesis.
Collapse
|
30
|
Singh VK, Lal B. Pro-steroidogenic and pro-spermatogenic actions of nitric oxide (NO) on the catfish, Clarias batrachus: An in vivo study. Gen Comp Endocrinol 2017; 242:1-10. [PMID: 27151877 DOI: 10.1016/j.ygcen.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/13/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
In an earlier study we have demonstrated reproductive-stage dependent, cell specific existence of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS)/NO system in testis of the catfish, Clarias batrachus. The present study is an extension to examine the role of NO in steroidogenesis and spermatogenesis through in vivo administration of a NO donor, sodium nitroprusside (SNP) and a NOS inhibitor, N-nitro-l-arginine methyl ester (l-NAME) during the quiescence and recrudescence phase of the reproductive cycle of the catfish. Effects of these chemicals were assessed on the gonadosomatic index (GSI), levels of circulating & testicular testosterone, NO, activities of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) in testis, expression of different NOS isoforms and testicular morphology in relation to spermatogenesis. SNP treatment increased the GSI, testicular and circulating testosterone & NO, activities of testicular 3β-HSD & 17β-HSD, and expression of NOS isoforms. It also increased the area and perimeters of interstitium and seminiferous tubules in the testis. It accelerated the spermatogenesis, as was evident from the large number of spermatids/spermatozoa in seminiferous tubules and very few spermatogonial cells/primary spermatocytes in comparison to the control testis. On the contrary, l-NAME significantly suppressed GSI, testosterone & NO levels in serum and testis, and activities of testicular 3β-HSD & 17β-HSD. It also suppressed the expression of NOSs in testis. Though l-NAME did not alter the spermatogonial mitotic proliferation with the advancement of testicular recrudescence, it halted the progression of spermatogenesis (meiotic division and spermatozoa formation) as was clear from the increase in spermatogonial cells and very few advanced germ cells in the seminiferous tubules in l-NAME treated testis, compared to the control testis. The above noted effects were highly pronounced in the recrudescing catfish. Their effects were very marginal and at a particular dose levels of SNP and l-NAME in the quiescent testis. This study distinctly provides evidence of pro-steroidogenic and pro-spermatogenic role of NO. This study also demonstrates the existence of eNOS in fish testis for the first time. The positive feedback control of expression of all isoform of NOS in testis by NO is also noteworthy.
Collapse
Affiliation(s)
- Vinay Kumar Singh
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
31
|
Ma S, Wang J, Liu L, Xia L, Tao R. Identification of temporal genes involved in the mechanisms of spinal cord injury. Spinal Cord 2017; 55:355-361. [PMID: 28071686 DOI: 10.1038/sc.2016.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/24/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVES As a high-cost neurological disability, spinal cord injury (SCI) can result in permanent paralysis and loss of sensation. To identify the temporal genes involved in the pathogenesis of SCI, we analysed the expression profile of GSE45006. METHODS GSE45006 was downloaded from Gene Expression Omnibus, including 20 SCI samples (samples at 1 day, 3 days, 1 week, 2 weeks and 8 weeks after injury, four repetitions for each time point) and 4 normal samples. The Bayesian Estimation of Temporal Regulation (BETR) and randomForest packages were used to screen the temporal genes and the top 100 temporal genes, respectively. Then, the gplots package and Pearson correlation analysis separately were used to perform hot map analysis and expression pattern clustering for the top 100 temporal genes. Using the clusterProfiler package and TargetMine tool, their potential functions were analysed by enrichment analyses. Moreover, interaction relationships between these temporal genes and pathways were investigated by pathway-gene crosslinking networks. RESULTS In total, 1907 temporal genes were identified. The top 100 temporal genes were obtained and divided into six clusters. Most of the gene functions were enriched in biological process categories. ARG1 and NOS3 in cluster 4 were enriched in biological process of arginine catabolic process. TGFβ2, TGFβ3, ALDH2 and ALDH3A2 were correlated with numerous pathways in the pathway-gene crosslinking network. Pathways related to TGFβ2 and TGFβ3 were connected to pathways related to ARG1 and NOS3 via ARG1. CONCLUSION Several temporal genes, including TGFβ2, TGFβ3, ALDH2, ALDH3A2, ARG1 and NOS3, might be involved in SCI.
Collapse
Affiliation(s)
- S Ma
- Department of Pain Management, Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - J Wang
- Department of Pain Management, Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - L Liu
- Department of Pain Management, Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - L Xia
- Department of Pain Management, Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - R Tao
- Department of Pain Management, Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Jalili C, Ahmadi S, Roshankhah S, Salahshoor M. Effect of Genistein on reproductive parameter and serum nitric oxide levels in morphine-treated mice. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.2.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
33
|
Mechanism of Thiol-Induced Nitrogen(II) Oxide Donation by Furoxans: a Quantum-Chemical Study. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1804-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Thangapandiyan S, Miltonprabu S. Epigallocatechin gallate exacerbates fluoride-induced oxidative stress mediated testicular toxicity in rats through the activation of Nrf2 signaling pathway. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/j.apjr.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Taurine increases testicular function in aged rats by inhibiting oxidative stress and apoptosis. Amino Acids 2015; 47:1549-58. [DOI: 10.1007/s00726-015-1995-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/22/2015] [Indexed: 01/10/2023]
|
36
|
Yan L, Guo W, Wu S, Liu J, Zhang S, Shi L, Ji G, Gu A. Genetic variants in nitric oxide synthase genes and the risk of male infertility in a Chinese population: a case-control study. PLoS One 2014; 9:e115190. [PMID: 25517965 PMCID: PMC4269448 DOI: 10.1371/journal.pone.0115190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/19/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In recent years, oxidative stress has been studied extensively as a main contributing factor to male infertility. Nitric Oxide, a highly reactive free radical gas, is potentially detrimental to sperm function and sperm DNA integrity at high levels. Thus, the aim of this study was to investigate the associations between five polymorphisms in nitric oxide synthase genes (NOSs) and the risk of male infertility and sperm DNA damage as well. METHODS Genotypes were determined by the OpenArray platform. Sperm DNA fragmentation was detected using the Tdt-mediated dUTP nick-end labeling assay, and the level of 8-hydroxydeoxyguanosine (8-OHdG) in sperm DNA was measured using immunofluorescence. The adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated using unconditional logistic regression. RESULTS Our results revealed a statistically significant difference between the cases and controls in both genotypic distribution (P<0.001) and allelic frequency (P = 0.021) only for the NOS3 rs1799983 SNP. Multivariate logistic regression analyses revealed that rs1799983 was associated with a borderline significantly increased risk of male infertility (GT vs. GG: adjusted OR = 1.30, 95% CI: 1.00-1.70; GT+TT vs. GG: adjusted OR = 1.34, 95% CI: 1.03-1.74; P trend = 0.020). Moreover, NOS3 rs1799983 was positively associated with higher levels of sperm DNA fragmentation (β = 0.223, P = 0.044). However, the other 4 polymorphisms (NOS1 rs2682826, NOS1 rs1047735, NOS2 rs2297518, and NOS2 rs10459953) were not found to have any apparent relationships with male infertility risk. CONCLUSIONS Of five NOS gene polymorphisms investigated in the present study, we found NOS3 rs1799983 might cause oxidative sperm DNA damage, thereby contributing to male infertility.
Collapse
Affiliation(s)
- Lifeng Yan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology/Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenhui Guo
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, China
| | - Jining Liu
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology/Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Protective effects of Big-leaf mulberry and physiological roles of nitric oxide synthases in the testis of mice following water immersion and restraint stress. Acta Histochem 2014; 116:1323-30. [PMID: 25183664 DOI: 10.1016/j.acthis.2014.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 12/17/2022]
Abstract
Big-leaf mulberry is a new hybrid plant from the application of cell engineering technology, but its effect in stress-induced testicular dysfunction is unknown. Nitric oxide (NO) is a tiny, highly reactive lipophilic molecule produced by nitric oxide synthases (NOS). Three isoforms of NOS (neuronal NOS, inducible NOS and endothelial NOS) have been identified. Our aim was to investigate the effect of water immersion and restraint stress (WIRS) on NOS in the testis, and the effect of Big-leaf mulberry to protect against WIRS. The activity and expression of NOS, and total antioxidant capacity (T-AOC) in the mouse testis of different treatment groups (non-WIRS, 3 h-WIRS, WIRS-recovery) were examined. Histological analysis of WIRS-induced testicular damage and immunohistochemical staining of NOS were also analyzed. Results demonstrated that WIRS-exposed mice produced several injuries and showed an increased iNOS and eNOS mRNA expression in testes, whereas pretreatment with Big-leaf mulberry down-regulated iNOS and eNOS mRNA expressions and up-regulated T-AOC activities. Immunohistochemical studies showed that both iNOS and eNOS were localized in germ cells, spermatozoa and blood vessels in addition to Leydig cells and Sertoli cells, but nNOS was not present in these areas. In conclusion, our results suggested that Big-leaf mulberry exerted a protective effect on WIRS-induced testicular dysfunction, and iNOS and eNOS appeared to exert an important action in mouse testes exposed to WIRS.
Collapse
|
38
|
Liman N, Alan E, Beyaz F, Gürbulak K. Endothelial and inducible nitric oxide synthase (NOS) immunoreactivity and NOS-associated NADPH-diaphorase histochemistry in the domestic cat (Felis catus) testis. Theriogenology 2013; 80:1017-32. [DOI: 10.1016/j.theriogenology.2013.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 12/18/2022]
|
39
|
Modulation of redox homeostasis by Lamiaceae herbs in seminal vesicles of Lumbricus terrestris. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.fra.2013.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T, Gao H, Yang L, Chen Y, Wu X, Zhang X, Cui Y, Yu L, Wang Z, Wang A. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol 2013; 271:206-15. [DOI: 10.1016/j.taap.2013.04.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/31/2013] [Accepted: 04/19/2013] [Indexed: 01/01/2023]
|
41
|
Salomon TB, Hackenhaar FS, Almeida AC, Schüller AK, Gil Alabarse PV, Ehrenbrink G, Benfato MS. Oxidative stress in testis of animals during aging with and without reproductive activity. Exp Gerontol 2013; 48:940-6. [PMID: 23834967 DOI: 10.1016/j.exger.2013.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
Abstract
The free radical theory of aging postulates that an imbalance between reactive oxygen species (ROS) and reactive nitrogen species (RNS) and antioxidant defenses is important in senescence. To address this issue and gain insight into the aging process, we have evaluated the antioxidant defenses and have assessed oxidative damage in testis tissues in aging male rats. In order to relate aging and reproduction, animals with and without reproductive activity were studied. In reproductive animals the results showed a progressive increase in antioxidant enzyme activity until 12 months of age followed by an abrupt fall at 24 months. In non-reproductive animals, antioxidant activity was stable through 12 months of age, but again, fell abruptly at 24 months of age. In addition, increased aconitase activity and increased testosterone levels were found among reproductively active animals. The data demonstrate the existence of metabolic differences in testis of reproductively experienced animals and reproductively naïve animals.
Collapse
Affiliation(s)
- Tiago Boeira Salomon
- Laboratório de Estresse Oxidativo, Departamento de Biofísica-IB-UFRGS, Av. Bento Gonçalves, Porto Alegre, Rio Grande do Sul State, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Lal B, Dubey N. Existence of a nitric oxide synthase/nitric oxide system in fish testis and its role in modulation of androgenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:65-69. [PMID: 22565666 DOI: 10.1007/s10695-012-9648-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/19/2012] [Indexed: 05/31/2023]
Abstract
Fish testis is equipped with different isoforms of nitric oxide synthase (NOSs) and is capable of producing nitric oxide (NO). Cellular sources of NO in the catfish testis are germ cells, Leydig cells, and macrophages. Production of testicular NO is under endocrine inhibitory control. Expression of NOSs exhibits seasonality and that depends on the reproductive status of fish. Leydig cells are highly sensitive to chemical as well as biological NO. NO inhibits testosterone production by the testis in vivo as well as by the isolated Leydig cells in vitro.
Collapse
Affiliation(s)
- B Lal
- Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India.
| | | |
Collapse
|
43
|
Lee NP. The Blood-Biliary Barrier, Tight Junctions and Human Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:171-85. [DOI: 10.1007/978-1-4614-4711-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Doshi SB, Khullar K, Sharma RK, Agarwal A. Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol 2012; 10:109. [PMID: 23241221 PMCID: PMC3558381 DOI: 10.1186/1477-7827-10-109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022] Open
Abstract
Reactive nitrogen species (RNS) is a subset of free oxygen radicals called reactive oxygen species (ROS). Physiological levels of ROS are necessary to maintain the reproductive functions such as cell signaling, tight junction regulation, production of hormones, capacitation, acrosomal reaction, sperm motility, and zona pellucida binding. However, an excess of RNS can adversely affect reproductive potential by causing testicular dysfunction, decreased gonadotropin secretion, and abnormal semen parameters. Because such levels of RNS have been demonstrated in males with fertility problems and routine semen analysis has not been able to accurately predict IVF outcomes, it is imperative that novel strategies be developed in order to both assess and treat oxidative stress. This article describes both physiological and pathological roles of this unique subset of ROS.
Collapse
Affiliation(s)
- Sejal B Doshi
- Center for Reproductive Medicine, Cleveland Clinic, Euclid Avenue, Cleveland, OH, USA
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Kiran Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Deepika Jaiswal
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Auharek SA, Lara NLM, Avelar GF, Sharpe RM, França LR. Effects of inducible nitric oxide synthase (iNOS) deficiency in mice on Sertoli cell proliferation and perinatal testis development. ACTA ACUST UNITED AC 2012; 35:741-51. [DOI: 10.1111/j.1365-2605.2012.01264.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Ibrahim W, Tousson E, Ali EMM, Mansour MA. Folic acid alleviates oxidative stress and hyperhomocysteinemia involved in testicular dysfunction of hypothyroid rats. Gen Comp Endocrinol 2011; 174:143-9. [PMID: 21875590 DOI: 10.1016/j.ygcen.2011.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/21/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022]
Abstract
Although there is general agreement that thyroid hormone is an important hormonal regulator of testis physiology during development period, its role in the post-pubertal and adult testes is still controversial. Furthermore, most experimental studies to date have focused on thyroid hormone effects on the developing testes and only limited data are available on its role in spermatogenesis. This study evaluated some biochemical alterations in post-pubertal hypothyroidism and its impact on testicular function. Additionally, the ameliorating role of folic acid supplementation was investigated. Fifty male albino rats were randomly divided into five groups (group I, control; group II, folic acid; group III, 0.05% propylthiouracil-induced hypothyroid rats; group IV, co-treatment; group V, post-treatment). Plasma total homocysteine, total NO metabolites, malondialdehyde and GSSG/GSH ratio quantified by HPLC significantly (P<0.05) increased in hypothyroid rats as compared to controls. These biochemical alterations at least in part disrupted spermatogenesis in these experimental models. Folic acid supplemented after restoration of the euthyroid state (group V) presented better amelioration to spermatogenesis over its concurrent supplementation (group IV). This postulates an indirect negative impact of post-pubertal hypothyroidism on testicular function through development of these alterations. This is plus the observed role of folic acid supplementation in enhancing spermatogenesis, boosting sperm concentration and building up the antioxidant status against the oxidants in the present study. If confirmed in human beings, our results could propose that folic acid can be used as an adjuvant therapy in hypothyroidism disorders with thyroxin replacement therapy.
Collapse
Affiliation(s)
- Wafaa Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt
| | | | | | | |
Collapse
|
48
|
Fan D, Gu YT, Lv H, Tang T, Xu ZH, Song ZQ, Tong XJ. The protective mechanism for the blood-brain barrier induced by aminoguanidine in surgical brain injury in rats. Cell Mol Neurobiol 2011; 31:1213-9. [PMID: 21688124 PMCID: PMC11498514 DOI: 10.1007/s10571-011-9723-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
This study was performed to investigate the mechanism of blood-brain barrier (BBB) permeability change, which was induced by aminoguanidine (AG) after surgical brain injury (SBI) in rats. Compared to control group, AG (150 mg/kg, i.p.) significantly reduced Evans blue extravasation into brain tissue at 24 h after surgical resection, it also induced a 32% decrease of malondialdehyde (MDA) values and a 1.1-fold increase of the glutathione (GSH) levels at 12 h after injury. The expression of inducible nitric oxide synthase (iNOS) reached the peak value at 24 h after SBI, which was significantly attenuated after AG treatment. In addition, ZO-1 protein was up-regulated by AG (150 mg/kg) treatment at 24 h after SBI. Our results indicated that AG could protect the BBB after SBI, which could be correlated with antioxidative property, the down-regulation of iNOS and up-regulation of tight junction protein expression.
Collapse
Affiliation(s)
- Di Fan
- Department of Anatomy, College Basic of Medical Sciences, China Medical University, Shenyang, 110001 Liaoning Province People’s Republic of China
- Department of Neurosurgery, The General Hospital of Shenyang Military Region, Shenyang, 110016 Liaoning Province People’s Republic of China
| | - Yan-ting Gu
- Department of Physiology, Life Science and Biology Pharmacopedia Institution, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning Province People’s Republic of China
| | - Hui Lv
- Department of Prosthodontics, Shenyang Stomatology Hospital, Shenyang, 110001 Liaoning Province People’s Republic of China
| | - Tao Tang
- Department of Neurosurgery, The General Hospital of Shenyang Military Region, Shenyang, 110016 Liaoning Province People’s Republic of China
| | - Zai-hua Xu
- Department of Neurosurgery, The General Hospital of Shenyang Military Region, Shenyang, 110016 Liaoning Province People’s Republic of China
| | - Zhen-quan Song
- Department of Neurosurgery, The General Hospital of Shenyang Military Region, Shenyang, 110016 Liaoning Province People’s Republic of China
| | - Xiao-jie Tong
- Department of Anatomy, College Basic of Medical Sciences, China Medical University, Shenyang, 110001 Liaoning Province People’s Republic of China
| |
Collapse
|
49
|
Kojić Z, Scepanovic LJ, Kostić T. Immobilization stress reduces oxygen consumption of the isolated interstitial rats' testes cells. ACTA ACUST UNITED AC 2011; 98:45-50. [PMID: 21388930 DOI: 10.1556/aphysiol.98.2011.1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effects of acute and repeated immobilization stress on oxygen consumption (QO2) of the isolated interstitial rats' testes cells (ISC). The oxygen consumption by ISC testes was measured in vitro with a Clark-type oxygen electrode. Acute immobilization stress (2 h) induced decrease in QO2 (-49% V4, -31% V3) which was statistically significant (p<0.01). Repeated immobilization stress (2 hours daily for 10 consecutive days) induced a fall in QO2 (-10% V4, -4% V3) but this inhibition of respiration was not statistically significant (p>0.05). The mechanisms by which immobilization stress induces mitochondrial dysfunction as well as mechanisms which develop an adaptive response to repeated immobilization remain unclear, so that further investigations of this mechanisms are required.
Collapse
Affiliation(s)
- Zvezdana Kojić
- University of Belgrade, Institute of Physiology, School of Medicine, Belgrade, Serbia.
| | | | | |
Collapse
|
50
|
Lee NPY, Cheng CY. Nitric oxide and cyclic nucleotides: their roles in junction dynamics and spermatogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:25-32. [PMID: 19794905 PMCID: PMC2715196 DOI: 10.4161/oxim.1.1.6856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Department of Medicine/Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | |
Collapse
|