1
|
Tutt DAR, Guven-Ates G, Kwong WY, Simmons R, Sang F, Silvestri G, Canedo-Ribeiro C, Handyside AH, Labrecque R, Sirard MA, Emes RD, Griffin DK, Sinclair KD. Developmental, cytogenetic and epigenetic consequences of removing complex proteins and adding melatonin during in vitro maturation of bovine oocytes. Front Endocrinol (Lausanne) 2023; 14:1280847. [PMID: 38027209 PMCID: PMC10647927 DOI: 10.3389/fendo.2023.1280847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.
Collapse
Affiliation(s)
- Desmond A. R. Tutt
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Gizem Guven-Ates
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Rob Simmons
- Paragon Veterinary Group, Carlisle, United Kingdom
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Alan H. Handyside
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Marc-André Sirard
- CRDSI, Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, QC, Canada
| | - Richard D. Emes
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
2
|
Zareifard A, Beaudry F, Ndiaye K. Janus Kinase 3 phosphorylation and the JAK/STAT pathway are positively modulated by follicle-stimulating hormone (FSH) in bovine granulosa cells. BMC Mol Cell Biol 2023; 24:21. [PMID: 37337185 DOI: 10.1186/s12860-023-00482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
Janus kinase 3 (JAK3) is a member of the JAK family of tyrosine kinase proteins involved in cytokine receptor-mediated intracellular signal transduction through the JAK/STAT signaling pathway. JAK3 was previously shown as differentially expressed in granulosa cells (GC) of bovine pre-ovulatory follicles suggesting that JAK3 could modulate GC function and activation/inhibition of downstream targets. We used JANEX-1, a JAK3 inhibitor, and FSH treatments and analyzed proliferation markers, steroidogenic enzymes and phosphorylation of target proteins including STAT3, CDKN1B/p27Kip1 and MAPK8IP3/JIP3. Cultured GC were treated with or without FSH in the presence or not of JANEX-1. Expression of steroidogenic enzyme CYP11A1, but not CYP19A1, was upregulated in GC treated with FSH and both were significantly decreased when JAK3 was inhibited. Proliferation markers CCND2 and PCNA were reduced in JANEX-1-treated GC and upregulated by FSH. Western blots analyses showed that JANEX-1 treatment reduced pSTAT3 amounts while JAK3 overexpression increased pSTAT3. Similarly, FSH treatment increased pSTAT3 even in JANEX-1-treated GC. UHPLC-MS/MS analyses revealed phosphorylation of specific amino acid residues within JAK3 as well as CDKN1B and MAPK8IP3 suggesting possible activation or inhibition post-FSH or JANEX-1 treatments. We show that FSH activates JAK3 in GC, which could phosphorylate target proteins and likely modulate other signaling pathways involving CDKN1B and MAPK8IP3, therefore controlling GC proliferation and steroidogenic activity.
Collapse
Affiliation(s)
- Amir Zareifard
- Centre de Recherche en Reproduction Et Fertilité, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, CRRF, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, 3200, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, 3200, Canada
- Centre de Recherche Sur Le Cerveau Et L'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Kalidou Ndiaye
- Centre de Recherche en Reproduction Et Fertilité, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, CRRF, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, 3200, Canada.
| |
Collapse
|
3
|
Proteomic Differences Between the Ovulatory and Anovulatory Sides of the Mare's Follicular and Oviduct Fluid. J Equine Vet Sci 2023; 121:104207. [PMID: 36592664 DOI: 10.1016/j.jevs.2022.104207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The follicular fluid and oviduct fluid play major roles in oocyte maturation, sperm activation, and fertilization. To better understand the physiological environments for equine oocyte maturation and fertilization, here we conducted the proteome analysis and comparison on follicular fluids and oviduct fluids from the ovulatory side and the anovulatory side. The results showed that there is no significant difference between two side oviduct fluids, but a total of 71 differential abundance proteins (DAPs) were identified between two side follicular fluids, of which 9 are up-regulated and 62 are down-regulated in ovulatory side follicle fluid versus anovulatory side follicle fluid. As we expected, the function classification and enrichment results indicate that up- and down-regulated proteins are largely related to oocyte meiosis, maturation and ovulation. Noticeably, among 9 up-regulated DAPs in ovulatory side follicle fluid, as the DAP with the greatest fold change, PLA2G1B may be a newly discovered component that influences the efficacy of horse IVM/IVF. The current findings add to our knowledge of the in vivo conditions and regulation of equine reproduction, as well as the regulatory mechanism underpinning alternative ovulation.
Collapse
|
4
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Lu X, Arbab AAI, Abdalla IM, Liu D, Zhang Z, Xu T, Su G, Yang Z. Genetic Parameter Estimation and Genome-Wide Association Study-Based Loci Identification of Milk-Related Traits in Chinese Holstein. Front Genet 2022; 12:799664. [PMID: 35154251 PMCID: PMC8836289 DOI: 10.3389/fgene.2021.799664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Accurately estimating the genetic parameters and revealing more genetic variants underlying milk production and quality are conducive to the genetic improvement of dairy cows. In this study, we estimate the genetic parameters of five milk-related traits of cows-namely, milk yield (MY), milk fat percentage (MFP), milk fat yield (MFY), milk protein percentage (MPP), and milk protein yield (MPY)-based on a random regression test-day model. A total of 95,375 test-day records of 9,834 cows in the lower reaches of the Yangtze River were used for the estimation. In addition, genome-wide association studies (GWASs) for these traits were conducted, based on adjusted phenotypes. The heritability, as well as the standard errors, of MY, MFP, MFY, MPP, and MPY during lactation ranged from 0.22 ± 0.02 to 0.31 ± 0.04, 0.06 ± 0.02 to 0.15 ± 0.03, 0.09 ± 0.02 to 0.28 ± 0.04, 0.07 ± 0.01 to 0.16 ± 0.03, and 0.14 ± 0.02 to 0.27 ± 0.03, respectively, and the genetic correlations between different days in milk (DIM) within lactations decreased as the time interval increased. Two, six, four, six, and three single nucleotide polymorphisms (SNPs) were detected, which explained 5.44, 12.39, 8.89, 10.65, and 7.09% of the phenotypic variation in MY, MFP, MFY, MPP, and MPY, respectively. Ten Kyoto Encyclopedia of Genes and Genomes pathways and 25 Gene Ontology terms were enriched by analyzing the nearest genes and genes within 200 kb of the detected SNPs. Moreover, 17 genes in the enrichment results that may play roles in milk production and quality were selected as candidates, including CAMK2G, WNT3A, WNT9A, PLCB4, SMAD9, PLA2G4A, ARF1, OPLAH, MGST1, CLIP1, DGAT1, PRMT6, VPS28, HSF1, MAF1, TMEM98, and F7. We hope that this study will provide useful information for in-depth understanding of the genetic architecture of milk production and quality traits, as well as contribute to the genomic selection work of dairy cows in the lower reaches of the Yangtze River.
Collapse
Affiliation(s)
- Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | | | | | - Dingding Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Sosa ASA, Ibrahim S, Mahmoud KGM, El-Baghdady YR, Nawito MF, Abdo MSS, Ayoub MM. Dynamic patterns of expressed genes in granulosa cells during follicular and luteal stages in Egyptian buffaloes. Trop Anim Health Prod 2021; 53:532. [PMID: 34738183 DOI: 10.1007/s11250-021-02977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
A better understanding of the molecular mechanisms in granulosa cells (GC) is warranted, during different follicular and luteal developmental stages in buffalo cows. We aimed to (I) study the expression of selected genes in GC during follicular and luteal phases, (II) evaluate correlations between GC gene expression and steroid concentrations {17-beta estradiol (E2) and progesterone (P4)} in follicular fluid (FF), and (III) study effect of ovarian status on follicular population as well as follicular size frequency. Ovaries were collected in pairs from buffaloes (n = 178). Ovaries bearing corpus luteum (CL) were subdivided into hemorrhagic, developing, mature, and albicans. Follicles from luteal groups were classified only into small (< 4 mm) and large (9-20 mm), while follicles from follicular groups were classified into three subgroups: small (< 4 mm), medium (5-8 mm), and large (9-20 mm). The FF and GC were collected for steroid concentrations measurement and gene expression, respectively. In the follicular phase, luteinizing hormone/choriogonadotropin receptor (LHCGR) and cytochrome P450 aromatase (CYP19) in small follicles decreased compared to medium ones. Large follicle showed an increase in LHCGR and CYP19 compared to medium ones. Follicle-stimulating hormone receptor (FSHR) decreased in large compared to medium size follicles. Proliferating cell nuclear antigen (PCNA) increased in small and large follicles. Meanwhile, anti-Mullerian hormone (AMH) and phospholipase A2 group III (PLA2G3) decreased in small and large follicles. The different stages of luteal phase had a profound impact on GC gene expression. There were strong (positive and/or negative) correlations between gene expression and steroid hormones. The different scenarios between expressed genes in GC and steroid concentrations are required for the proper growth and development of follicles and CL.
Collapse
Affiliation(s)
- Ahmed S A Sosa
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Karima Gh M Mahmoud
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - Yehia Rezk El-Baghdady
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M F Nawito
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - M S S Abdo
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M M Ayoub
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Du H, Zheng X, Zhao Q, Hu Z, Wang H, Zhou L, Liu JF. Analysis of Structural Variants Reveal Novel Selective Regions in the Genome of Meishan Pigs by Whole Genome Sequencing. Front Genet 2021; 12:550676. [PMID: 33613628 PMCID: PMC7890942 DOI: 10.3389/fgene.2021.550676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Structural variants (SVs) represent essential forms of genetic variation, and they are associated with various phenotypic traits in a wide range of important livestock species. However, the distribution of SVs in the pig genome has not been fully characterized, and the function of SVs in the economic traits of pig has rarely been studied, especially for most domestic pig breeds. Meishan pig is one of the most famous Chinese domestic pig breeds, with excellent reproductive performance. Here, to explore the genome characters of Meishan pig, we construct an SV map of porcine using whole-genome sequencing data and report 33,698 SVs in 305 individuals of 55 globally distributed pig breeds. We perform selective signature analysis using these SVs, and a number of candidate variants are successfully identified. Especially for the Meishan pig, 64 novel significant selection regions are detected in its genome. A 140-bp deletion in the Indoleamine 2,3-Dioxygenase 2 (IDO2) gene, is shown to be associated with reproduction traits in Meishan pig. In addition, we detect two duplications only existing in Meishan pig. Moreover, the two duplications are separately located in cytochrome P450 family 2 subfamily J member 2 (CYP2J2) gene and phospholipase A2 group IVA (PLA2G4A) gene, which are related to the reproduction trait. Our study provides new insights into the role of selection in SVs' evolution and how SVs contribute to phenotypic variation in pigs.
Collapse
Affiliation(s)
- Heng Du
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiqi Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Expression profiling of primary cultured buffalo granulosa cells from different follicular size in comparison with their in vivo counterpart. ZYGOTE 2020; 28:233-240. [PMID: 32151301 DOI: 10.1017/s0967199420000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to: (i) characterize cultured granulosa cells (GCs) from different follicle sizes morphologically and molecularly; and (ii) select a suitable model according to follicular size that maintained GC function during culture. Buffalo ovaries were collected from a slaughterhouse and follicles were classified morphologically into: first group ≤ 4 mm, second group 5-8 mm, third group 9-15 mm and fourth group 16-20 mm diameter. GC pellets were divided into two portions. The first portion served as the control fresh pellet, and the secondwas used for 1 week for GC culture. Total RNA was isolated, and qRT-PCR was performed to test for follicle-stimulating hormone receptor (FSHR), cytochrome P450 19 (CYP19), luteinizing hormone/choriogonadotropin receptor (LHCGR), proliferating cell nuclear antigen (PCNA), apoptosis-related cysteine peptidase (CASP3), anti-Müllerian hormone (AMH), and phospholipase A2 group III (PLA2G3) mRNAs. Estradiol (E2) and progesterone (P4) levels in the culture supernatant and in follicular fluids were measured using enzyme-linked immunosorbent assay (ELISA). Basic DMEM-F12 medium maintained the morphological appearance of cultured GCs. The relative abundance of FSHR, CYP19, and LHCGR mRNAs was 0.001 ≤ P ≤ 0.01 and decreased at the end of culture compared with the fresh pellet. There was a fine balance between expression patterns of the proliferation marker gene (PCNA) and the proapoptotic marker gene (CASP3). AMH mRNA was significantly increased (P < 0.001) in cultured GCs from small follicles, while cultured GCs from other three categories (5-8 mm, 9-15 mm and 16-20 mm) showed a clear reduction (P < 0.001). Interestingly, the relative abundance of PLA2G3 mRNA was significantly (P < 0.001) increased in all cultured GCs. E2 and P4 concentrations were significantly (P < 0.001) decreased in all cultured groups. Primary cultured GCs from small follicles could be a good model for better understanding follicular development in Egyptian buffaloes.
Collapse
|
9
|
Chen X, Zhu W, Du Y, Liu X, Geng Z. Genetic Parameters for Yolk Cholesterol and Transcriptional Evidence Indicate a Role of Lipoprotein Lipase in the Cholesterol Metabolism of the Chinese Wenchang Chicken. Front Genet 2019; 10:902. [PMID: 31632438 PMCID: PMC6786094 DOI: 10.3389/fgene.2019.00902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The yolk cholesterol has been reported to affect egg quality and breeding performance in chickens. However, the genetic parameters and molecular mechanisms regulating yolk cholesterol remain largely unknown. Here, we used the Wenchang chicken, a Chinese indigenous breed with a complete pedigree, as an experimental model, and we examined 24 sire families (24 males and 240 females) and their 362 daughters. First, egg quality and yolk cholesterol content were determined in 40-week-old chickens of two consecutive generations, and the heritability of these parameters was analyzed using the half-sib correlation method. Among first-generation individuals, the egg weight, egg shape index, shell strength, shell thickness, yolk weight, egg white height, Haugh unit, and cholesterol content were 45.36 ± 4.44 g, 0.81 ± 0.12, 3.07 ± 0.92 kg/cm2, 0.340 ± 0.032 mm, 15.57 ± 1.64 g, 3.36 ± 1.15 mm, 58.70 ± 12.33, and 274.3 ± 36.73 mg/egg, respectively. When these indexes were compared to those of the following generation, no statistically significant difference was detected. Although yolk cholesterol content was not associated with egg quality in females, an increase in yolk cholesterol content was correlated with increased yolk weight and albumin height in sire families (p < 0.05). Moreover, the heritability estimates for the yolk cholesterol content were 0.328 and 0.530 in female and sire families, respectively. Therefore, the yolk cholesterol content was more strongly associated with the sire family. Next, chickens with low and high yolk cholesterol contents were selected for follicular membrane collection. Total RNA was extracted from these samples and used as a template for transcriptional sequencing. In total, 375 down- and 578 upregulated genes were identified by comparing the RNA sequencing data of chickens with high and low yolk cholesterol contents. Furthermore, Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated the involvement of energy metabolism and immune-related pathways in yolk cholesterol deposition. Several genes participating in the regulation of the yolk cholesterol content were located on the sex chromosome Z, among which lipoprotein lipase (LPL) was associated with the peroxisome proliferator-activated receptor signaling pathway and the Gene Ontology term cellular component. Collectively, our data suggested that the ovarian steroidogenesis pathway and the downregulation of LPL played critical roles in the regulation of yolk cholesterol content.
Collapse
Affiliation(s)
- Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Wenjun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yeye Du
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xue Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Tang H, Wang L, Chen Y, He J, Qu L, Guo Y, Liu Y, Liu X, Lin H. Ovulation is associated with the LH-dependent induction of pla2g4aa in zebrafish. Mol Cell Endocrinol 2018; 473:53-60. [PMID: 29326060 DOI: 10.1016/j.mce.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/17/2017] [Accepted: 01/07/2018] [Indexed: 01/14/2023]
Abstract
The effects of the preovulatory luteinizing hormone (LH) surge on the ovulatory process are mediated by prostaglandins (PGs), the synthesis of which involves prostaglandin synthetase and cytosolic phospholipase A2 (cPLA2). In our previous study, we systematically investigated the function of prostaglandin endoperoxide synthase (ptgs) genes on ovulation in zebrafish. However, the role of cPLA2 in ovulation was not determined in zebrafish. In this study, we investigated the function of cpla2α in PGs production and ovulation in periovulatory follicles. Our data showed that the expression of pla2g4aa increased during zebrafish folliculogenesis and the follicular layer was the primary region with expression of pla2g4aa. In addition, the expression of pla2g4aa was regulated by LH in vitro and in vivo. Furthermore, injection of AACOCF3, a specific inhibitor of cPLA2, significantly reduced ovarian PGs level and blocked hCG-induced ovulation. Collectively, these findings suggest that pla2g4aa is related to the ovulation process in zebrafish.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianan He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ling Qu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Dias FCF, Khan MIR, Sirard MA, Adams GP, Singh J. Transcriptome analysis of granulosa cells after conventional vs long FSH-induced superstimulation in cattle. BMC Genomics 2018; 19:258. [PMID: 29661134 PMCID: PMC5902934 DOI: 10.1186/s12864-018-4642-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolongation of superstimulatory treatment appears to be associated with a greater superovulatory response and with greater oocyte maturation in cattle. A genome-wide bovine oligo-microarray was used to compare the gene expression of granulosa cells collected from ovarian follicles after differing durations of the growing phase induced by exogenous FSH treatment. Cows were given a conventional (4-day) or long (7-day) superstimulatory treatment (25 mg FSH im at 12-h intervals; n = 6 per group), followed by prostaglandin treatment with last FSH and LH treatment 24 h later. Granulosa cells were harvested 24 h after LH treatment. RESULTS The expression of 416 genes was down-regulated and 615 genes was up-regulated in the long FSH group compared to the conventional FSH group. Quantification by RT-PCR of 7 genes (NTS, PTGS2, PTX3, RGS2, INHBA, CCND2 and LRP8) supported the microarrays data. Multigene bioinformatic analysis indicates that markers of fertility and follicle maturity were up-regulated in the long FSH group. CONCLUSION Using the large gene expression dataset generated by the genomic analysis and our previous associated with the growth phase and gene expression changes post LH, we can conclude that a prolonged FSH-induced growing phase is associated with transcriptomic characteristics of greater follicular maturity and may therefore be more appropriate for optimizing the superovulatory response and developmental competence of oocytes in cattle.
Collapse
Affiliation(s)
- F C F Dias
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - M I R Khan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.,Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - M A Sirard
- Departement des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Universite' Laval, Sainte-Foy, Quebec, G1K 7P4, Canada
| | - G P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - J Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
12
|
Yang F, Wang M, Zhang B, Xiang W, Zhang K, Chu M, Wang P. Identification of new progestogen-associated networks in mammalian ovulation using bioinformatics. BMC SYSTEMS BIOLOGY 2018; 12:36. [PMID: 29615037 PMCID: PMC5883354 DOI: 10.1186/s12918-018-0577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Background Progesterone plays an essential role in mammalian ovulation. Although much is known about this process, the gene networks involved in ovulation have yet to be established. When analyze the mechanisms of ovulation, we often need to determine key genes or pathways to investigate the reproduction features. However, traditional experimental methods have a number of limitations. Results Data, in this study, were acquired from GSE41836 and GSE54584 which provided different samples. They were analyzed with the GEO2R and 546 differentially expressed genes were obtained from two data sets using bioinformatics (absolute log2 FC > 1, P < 0.05). This study identified four genes (PGR, RELN, PDE10A and PLA2G4A) by protein-protein interaction networks and pathway analysis, and their functional enrichments were associated with ovulation. Then, the top 25 statistical pathway enrichments related to hCG treatment were analyzed. Furthermore, gene network analysis identified certain interconnected genes and pathways involved in progestogenic mechanisms, including progesterone-mediated oocyte maturation, the MAPK signaling pathway, the GnRH signaling pathway and focal adhesion, etc. Moreover, we explored the four target gene pathways. q-PCR analysis following hCG and RU486 treatments confirmed the certain novel progestogenic-associated genes (GNAI1, PRKCA, CAV1, EGFR, RHOA, ZYX, VCL, GRB2 and RAP1A). Conclusions The results suggested four key genes, nine predicted genes and eight pathways to be involved in progestogenic networks. These networks provide important regulatory genes and signaling pathways which are involved in ovulation. This study provides a fundamental basis for subsequent functional studies to investigate the regulation of mammalian ovulation. Electronic supplementary material The online version of this article (10.1186/s12918-018-0577-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Yang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Medical Molecular Biology Research Center, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Meng Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Baoyun Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wei Xiang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Ke Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Mingxin Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
13
|
Yu J, Chen J, Zhao H, Gao J, Li Y, Li Y, Xue J, Dahan A, Sun D, Zhang G, Zhang H. Integrative proteomics and metabolomics analysis reveals the toxicity of cationic liposomes to human normal hepatocyte cell line L02. Mol Omics 2018; 14:362-372. [PMID: 30247494 DOI: 10.1039/c8mo00132d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in the expression of proteins and profiles of metabolites in L02 cells were investigated after exposure to CLs based on the iTRAQ and UHPLC-Q-TOF/MS, and proteomics data were coupled with metabolomics data to comprehensively assess the potential toxicity mechanisms of CLs.
Collapse
|
14
|
Lussier JG, Diouf MN, Lévesque V, Sirois J, Ndiaye K. Gene expression profiling of upregulated mRNAs in granulosa cells of bovine ovulatory follicles following stimulation with hCG. Reprod Biol Endocrinol 2017; 15:88. [PMID: 29100496 PMCID: PMC5670713 DOI: 10.1186/s12958-017-0306-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovulation and luteinization of follicles are complex biological processes initiated by the preovulatory luteinizing hormone surge. The objective of this study was to identify genes that are differentially expressed in bovine granulosa cells (GC) of ovulatory follicles. METHODS Granulosa cells were collected during the first follicular wave of the bovine estrous cycle from dominant follicles (DF) and from ovulatory follicles (OF) obtained 24 h following injection of human chorionic gonadotropin (hCG). A granulosa cell subtracted cDNA library (OF-DF) was generated using suppression subtractive hybridization and screened. RESULTS Detection of genes known to be upregulated in bovine GC during ovulation, such as ADAMTS1, CAV1, EGR1, MMP1, PLAT, PLA2G4A, PTGES, PTGS2, RGS2, TIMP1, TNFAIP6 and VNN2 validated the physiological model and analytical techniques used. For a subset of genes that were identified for the first time, gene expression profiles were further compared by semiquantitative RT-PCR in follicles obtained at different developmental stages. Results confirmed an induction or upregulation of the respective mRNAs in GC of OF 24 h after hCG-injection compared with those of DF for the following genes: ADAMTS9, ARAF, CAPN2, CRISPLD2, FKBP5, GFPT2, KIT, KITLG, L3MBLT3, MRO, NUDT10, NUDT11, P4HA3, POSTN, PSAP, RBP1, SAT1, SDC4, TIMP2, TNC and USP53. In bovine GC, CRISPLD2 and POSTN mRNA were found as full-length transcript whereas L3MBLT3 mRNA was alternatively spliced resulting in a truncated protein missing the carboxy-terminal end amino acids, 774KNSHNEL780. Conversely, L3MBLT3 is expressed as a full-length mRNA in a bovine endometrial cell line. The 774KNSHNEL780 sequence is well conserved in all mammalian species and follows a SAM domain known to confer protein/protein interactions, which suggest a key function for these amino acids in the epigenetic control of gene expression. CONCLUSIONS We conclude that we have identified novel genes that are upregulated by hCG in bovine GC of OF, thereby providing novel insight into peri-ovulatory regulation of genes that contribute to ovulation and/or luteinization processes.
Collapse
Affiliation(s)
- Jacques G Lussier
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Mame N Diouf
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
- Institut Sénégalais de Recherches Agricoles (ISRA) Laboratoire National de l'Elevage et de Recherches Vétérinaires (LNERV), BP 2057, Dakar-Hann, Sénégal
| | - Valérie Lévesque
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Jean Sirois
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Kalidou Ndiaye
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada
| |
Collapse
|
15
|
Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients. Sci Rep 2016; 6:39638. [PMID: 28004769 PMCID: PMC5177934 DOI: 10.1038/srep39638] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women.
Collapse
|
16
|
Ndiaye K, Castonguay A, Benoit G, Silversides DW, Lussier JG. Differential regulation of Janus kinase 3 (JAK3) in bovine preovulatory follicles and identification of JAK3 interacting proteins in granulosa cells. J Ovarian Res 2016; 9:71. [PMID: 27793176 PMCID: PMC5086056 DOI: 10.1186/s13048-016-0280-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/17/2016] [Indexed: 11/11/2022] Open
Abstract
Background Janus kinase 3 (JAK3) is a member of the membrane-associated non-receptor tyrosine kinase protein family and is considered predominantly expressed in hematopoietic cells. We previously identified JAK3 as a differentially expressed gene in granulosa cells (GC) of bovine preovulatory follicles. The present study aimed to further investigate JAK3 regulation, to identify protein binding partners and better understand its mode of action in bovine reproductive cells. Results GC were obtained from small follicles (SF), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 h following hCG injection (OF). RT-PCR analyses showed greatest expression of JAK3 in GC of DF, while JAK3 expression was downregulated in OF (P < 0.0001). In addition, there was a 5- and 20-fold reduction of JAK3 steady-state mRNA levels in follicular walls, respectively at 12 and 24 hours post-hCG as compared to 0 h (P < 0.05). Similarly, JAK3 expression was downregulated by the endogenous LH surge. These results were confirmed in western blot analysis showing weakest JAK3 protein amounts in OF as compared to DF. Yeast two-hybrid screening of a DF-cDNA library resulted in the identification of JAK3 partners in GC that were confirmed by co-immunoprecipitation and included leptin receptor overlapping transcript-like 1 (LEPROTL1), inhibin beta A (INHBA) and cyclin-dependent kinase inhibitor 1B (CDKN1B). In functional studies using bovine endometrial cells, JAK3 increased phosphorylation of STAT3 and cell viability, while the addition of JANEX-1 inhibited JAK3 actions. Conclusion These results support a physiologically relevant role of JAK3 in follicular development and provide insights into the mode of action and function of JAK3 in reproductive tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0280-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalidou Ndiaye
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada. .,Faculté de médecine vétérinaire, Département de biomédecine vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Amélie Castonguay
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Gabriel Benoit
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - David W Silversides
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Jacques G Lussier
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Centre de recherche en reproduction animale (CRRA), Université de Montréal, P.O. Box 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
17
|
Lan CW, Chen MJ, Tai KY, Yu DC, Yang YC, Jan PS, Yang YS, Chen HF, Ho HN. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling. Sci Rep 2015; 5:14994. [PMID: 26459919 PMCID: PMC4602237 DOI: 10.1038/srep14994] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age. Although its aetiology and pathogenesis remain unclear, recent studies suggest that the dysfunction of granulosa cells may partly be responsible. This study aimed to use cDNA microarray technology to compare granulosa cell gene expression profiles in women with and without PCOS to identify genes that may be aetiologically implicated in the pathogenesis of PCOS. The study cohort included 12 women undergoing in vitro fertilization, six with PCOS and six without PCOS. Differential gene expression profiles were classified by post-analyses of microarray data, followed by western blot analyses to confirm the microarray data of selected genes. In total, 243 genes were differentially expressed (125 upregulated and 118 downregulated) between the PCOS and non-PCOS granulosa cells. These genes are involved in reproductive system development, amino acid metabolism and cellular development and proliferation. Comparative analysis revealed genes involved in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) signaling pathways. Western blot analyses confirmed that mitogen-activated protein kinase kinase kinase 4 and phospho-ERK1/2 were decreased in PCOS granulosa cells. This study identified candidate genes involved in MAPK/ERK signaling pathways that may influence the function of granulosa cells in PCOS.
Collapse
Affiliation(s)
- Chen-Wei Lan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University Taipei, Taiwan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Mei-Jou Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University Taipei, Taiwan
| | - Danny Cw Yu
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Yu-Chieh Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Pey-Shynan Jan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Yu-Shih Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University Taipei, Taiwan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan university Taipei, Taiwan
| | - Hong-Nerng Ho
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University Taipei, Taiwan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan university Taipei, Taiwan
| |
Collapse
|
18
|
Duffy DM. Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway. Hum Reprod Update 2015; 21:652-70. [PMID: 26025453 DOI: 10.1093/humupd/dmv026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prostaglandin E2 (PGE2) is an essential intrafollicular regulator of ovulation. In contrast with the one-gene, one-protein concept for synthesis of peptide signaling molecules, production and metabolism of bioactive PGE2 requires controlled expression of many proteins, correct subcellular localization of enzymes, coordinated PGE2 synthesis and metabolism, and prostaglandin transport in and out of cells to facilitate PGE2 action and degradation. Elevated intrafollicular PGE2 is required for successful ovulation, so disruption of PGE2 synthesis, metabolism or transport may yield effective contraceptive strategies. METHODS This review summarizes case reports and studies on ovulation inhibition in women and macaques treated with cyclooxygenase inhibitors published from 1987 to 2014. These findings are discussed in the context of studies describing levels of mRNA, protein, and activity of prostaglandin synthesis and metabolic enzymes as well as prostaglandin transporters in ovarian cells. RESULTS The ovulatory surge of LH regulates the expression of each component of the PGE2 synthesis-metabolism-transport pathway within the ovulatory follicle. Data from primary ovarian cells and cancer cell lines suggest that enzymes and transporters can cooperate to optimize bioactive PGE2 levels. Elevated intrafollicular PGE2 mediates key ovulatory events including cumulus expansion, follicle rupture and oocyte release. Inhibitors of the prostaglandin-endoperoxide synthase 2 (PTGS2) enzyme (also known as cyclooxygenase-2 or COX2) reduce ovulation rates in women. Studies in macaques show that PTGS2 inhibitors can reduce the rates of cumulus expansion, oocyte release, follicle rupture, oocyte nuclear maturation and fertilization. A PTGS2 inhibitor reduced pregnancy rates in breeding macaques when administered to simulate emergency contraception. However, PTGS2 inhibition did not prevent pregnancy in monkeys when administered to simulate monthly contraceptive use. CONCLUSION PTGS2 inhibitors alone may be suitable for use as emergency contraceptives. However, drugs of this class are unlikely to be effective as monthly contraceptives. Inhibitors of additional PGE2 synthesis enzymes or modulation of PGE2 metabolism or transport also hold potential for reducing follicular PGE2 and preventing ovulation. Approaches which target multiple components of the PGE2 synthesis-metabolism-transport pathway may be required to effectively block ovulation and lead to the development of novel contraceptive options for women. Therapies which target PGE2 may also impact disorders of the uterus and could also have benefits for women's health in addition to contraception.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 Olney Road, Lewis Hall, Norfolk, VA 23507, USA
| |
Collapse
|
19
|
American ginseng regulates gene expression to protect against premature ovarian failure in rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:767124. [PMID: 25705687 PMCID: PMC4330957 DOI: 10.1155/2015/767124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
Abstract
Premature ovarian failure (POF) is defined as lost ovarian functions before the age of 40. Three possible molecular markers (PLA2G4A, miR-29a, and miR-144) have been identified in our previous study by integrated analysis of mRNA and miRNA expression profiles. The present study aimed to evaluate American ginseng root's protective potential against POF by studying transcriptional and protein variations between American ginseng treatments and controls in rats. 4-Vinylcyclohexene diepoxide (VCD) was administered to rats for 14 days to induce POF. Additionally, American ginseng was administered to POF rats for one month, and PLA2G4A, miR-29a, and miR-144 expressions were measured in rat ovaries by qRT-PCR. PLA2G4A protein expression was examined by Western Blot, and PGE2, LH, FSH, and E2 serum levels were detected by ELISA. PLA2G4A mRNA and protein were downregulated in American ginseng-treated rats, miR-29a and miR-144 levels increased, and PGE2 serum levels decreased, while LH, FSH, and E2 increased compared to POF induction alone. Analysis of transcriptional and protein variations suggested that American ginseng protects the ovary against POF by regulating prostaglandin biosynthesis, ovulation, and preventing ovarian aging. High hormone levels (PGE2, FSH, and LH) were reduced, and E2 secretion approached normal levels, leading to improved POF symptoms and abnormal ovulation.
Collapse
|
20
|
Porto-Neto LR, Lee SH, Sonstegard TS, Van Tassell CP, Lee HK, Gibson JP, Gondro C. Genome-wide detection of signatures of selection in Korean Hanwoo cattle. Anim Genet 2014; 45:180-90. [PMID: 24494817 DOI: 10.1111/age.12119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2013] [Indexed: 02/02/2023]
Abstract
The Korean Hanwoo cattle have been intensively selected for production traits, especially high intramuscular fat content. It is believed that ancient crossings between different breeds contributed to forming the Hanwoo, but little is known about the genomic differences and similarities between other cattle breeds and the Hanwoo. In this work, cattle breeds were grouped by origin into four types and used for comparisons: the Europeans (represented by six breeds), zebu (Nelore), African taurine (N'Dama) and Hanwoo. All animals had genotypes for around 680 000 SNPs after quality control of genotypes. Average heterozygosity was lower in Nelore and N'Dama (0.22 and 0.21 respectively) than in Europeans (0.26-0.31, with Shorthorn as outlier at 0.24) and Hanwoo (0.29). Pairwise FST analyses demonstrated that Hanwoo are more related to European cattle than to Nelore, with N'Dama in an intermediate position. This finding was corroborated by principal components and unsupervised hierarchical clustering. Using genome-wide smoothed FST , 55 genomic regions potentially under positive selection in Hanwoo were identified. Among these, 29 were regions also detected in previous studies. Twenty-four regions were exclusive to Hanwoo, and a number of other regions were shared with one or two of the other groups. These regions overlap a number of genes that are related to immune, reproduction and fatty acid metabolism pathways. Further analyses are needed to better characterize the ancestry of the Hanwoo cattle and to define the genes responsible to the identified selection peaks.
Collapse
Affiliation(s)
- L R Porto-Neto
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia; School of Veterinary Science, The University of Queensland, Gatton, QLD, 4345, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Sayasith K, Sirois J, Lussier JG. Expression, regulation, and promoter activation of vanin-2 (VNN2) in bovine follicles prior to ovulation. Biol Reprod 2013; 89:98. [PMID: 24006283 DOI: 10.1095/biolreprod.113.111849] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Vanin-2 (VNN2) is known to be involved in inflammation and leukocyte migration, but its regulation in follicles remains unknown. The objectives of this work were to study the regulation of VNN2 transcripts in bovine follicles prior to ovulation and to characterize the control of its expression in bovine granulosa cells. VNN2 expression was studied using total RNA extracted from granulosa cells of small follicles (2-4 mm in diameter), dominant follicles obtained on Day 5 of the estrous cycle, ovulatory follicles obtained 0-24 h after human chorionic gonadotropin (hCG), and corpora lutea on Day 5 of the cycle. The results from RT-PCR analyses showed that levels of VNN2 mRNA were high in ovulatory follicles 24 h post-hCG but low in the other tissues. In ovulatory follicles, levels of VNN2 mRNA were low at 0 h but significantly up-regulated 12-24 h post-hCG. To determine factors controlling VNN2 gene expression, established primary cultures of granulosa cells isolated from bovine dominant follicles were used. Treatment with forskolin elevated VNN2 mRNA expression as observed in vivo. Mutation studies identified the minimal region conferring basal and forskolin-stimulated VNN2 promoter activities, which were dependent on chicken ovalbumin upstream promoter-transcription factor (COUP-TF), GATA, and Ebox cis-elements. Electrophoretic mobility shift assays identified COUP-TF, GATA4, and upstream stimulating factor proteins as key factors interacting with these elements. Chromatin immunoprecipitation assays confirmed basal and forskolin-induced interactions between these proteins and the VNN2 promoter in bovine granulosa cell cultures. VNN2 promoter activity and mRNA expression were markedly stimulated by forskolin and overexpression of the catalytic subunit of PKA, but inhibited by PKA and ERK1/2 inhibitors. Collectively, the findings from this study describe for the first time the gonadotropin/forskolin-dependent up-regulation of VNN2 transcripts in granulosa cells of preovulatory follicles and provide insights into some of the molecular bases of VNN2 gene expression in follicular cells.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de recherche en reproduction animale and the département de biomedicine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | | |
Collapse
|
22
|
Sayasith K, Lussier J, Sirois J. Molecular characterization and transcriptional regulation of a disintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) in bovine preovulatory follicles. Endocrinology 2013; 154:2857-69. [PMID: 23751874 DOI: 10.1210/en.2013-1140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ovulatory process involves a complex remodeling of the extracellular matrix during which a desintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) is thought to play a key role, but its transcriptional regulation in bovine follicles remains largely unknown. The objectives of this study were to characterize the regulation of ADAMTS1 in bovine follicles before ovulation and to determine its transcriptional control in bovine granulosa cells. Regulation of ADAMTS1 was assessed using total RNA isolated from bovine preovulatory follicles obtained at various times after human chorionic gonadotropin treatment. Results from RT-PCR analyses showed that levels of ADAMTS1 mRNA were very low at 0 hours but increased at 6 to 24 hours after human chorionic gonadotropin in granulosa cells. To determine the regulatory mechanisms controlling ADAMTS1 gene expression in vitro, primary cultures of bovine granulosa cells were established, and treatment with forskolin up-regulated ADAMTS1 mRNA levels. Promoter activity assays, 5'-deletion, and site-directed mutagenesis identified a minimal region conferring full-length basal and forskolin-stimulated ADAMTS1 promoter activities, with both being dependent on Ebox cis-acting elements. EMSAs revealed upstream stimulating factor (USF) proteins as key trans-activating factors interacting with Ebox. Chromatin immunoprecipitation assays confirmed such interactions between USF and Ebox in vivo, and USF binding to Ebox elements was increased by forskolin treatment. ADAMTS1 promoter activity and mRNA expression were increased by forskolin and overexpression of the catalytic subunit of protein kinase A, but not by cotreatment with inhibitors of protein kinase A, ERK1/2, and epidermal growth factor receptor signaling pathways. Furthermore, treatment with a soluble epidermal growth factor induced ADAMTS1 mRNA expression in granulosa cells. Collectively, results from this study describe the gonadotropin/forskolin-dependent up-regulation of ADAMTS1 mRNA in granulosa cells of bovine preovulatory follicles in vivo and in vitro and identify for the first time some of the molecular mechanisms responsible for ADAMTS1 promoter activation in follicular cells of a large monoovulatory species.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de Recherche en Reproduction Animale and the Département de Biomédecine, Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada.
| | | | | |
Collapse
|
23
|
Abstract
In Rhinella arenarum, progesterone is the physiological nuclear maturation inducer that interacts with the oocyte surface and starts a cascade of events that leads to germinal vesicle breakdown (GVBD). Polyunsaturated fatty acids and their metabolites produced through cyclooxygenase (COX) and lipoxygenase (LOX) pathways play an important role in reproductive processes. In amphibians, to date, the role of arachidonic acid (AA) metabolites in progesterone (P4)-induced oocyte maturation has not been clarified. In this work we studied the participation of three enzymes involved in AA metabolism - phospholipase A2 (PLA2), COX and LOX in Rhinella arenarum oocyte maturation. PLA2 activation induced maturation in Rhinella arenarum oocytes in a dose-dependent manner. Oocytes when treated with 0.08 μM melittin showed the highest response (78 ± 6% GVBD). In follicles, PLA2 activation did not significantly induce maturation at the assayed doses (12 ± 3% GVBD). PLA2 inhibition with quinacrine prevented melittin-induced GVBD in a dose-dependent manner, however PLA2 inactivation did not affect P4-induced maturation. This finding suggests that PLA2 is not the only phospholipase involved in P4-induced maturation in this species. P4-induced oocyte maturation was inhibited by the COX inhibitors indomethacin and rofecoxib (65 ± 3% and 63 ± 3% GVBD, respectively), although COX activity was never blocked by their addition. Follicles showed a similar response following the addition of these inhibitors. Participation of LOX metabolites in maturation seems to be correlated with seasonal variation in ovarian response to P4. During the February to June period (low P4 response), LOX inhibition by nordihydroguaiaretic acid or lysine clonixinate increased maturation by up to 70%. In contrast, during the July to January period (high P4 response), LOX inhibition had no effect on hormone-induced maturation.
Collapse
|
24
|
Kurusu S, Sapirstein A, Bonventre JV. Group IVA phospholipase A₂ optimizes ovulation and fertilization in rodents through induction of and metabolic coupling with prostaglandin endoperoxide synthase 2. FASEB J 2012; 26:3800-10. [PMID: 22673578 PMCID: PMC3425826 DOI: 10.1096/fj.12-203968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/14/2012] [Indexed: 12/12/2022]
Abstract
Female mice lacking group IVA phospholipase A(2) (Pla2g4a(-/-)) have a smaller litter size, which is due, in part, to defective implantation. We examined PLA(2)G4A dependence of the processes of ovulation and fertilization. Following induction of ovulation by equine chorionic gonadotropin (eCG)/human CG (hCG) treatment and mating, ovulation and fertilization rates were reduced significantly in Pla2g4a(-/-) mice as compared to wild-type littermates. Human CG triggered robust ovarian prostaglandin (PG) E(2) production in the preovulatory period that was significantly attenuated in Pla2g4a(-/-) mice. Human CG transiently enhanced ovarian expression of PLA(2)G4A and prostaglandin endoperoxide synthase 2 (PTGS2) in wild-type mice. This PTGS2 induction was decreased in Pla2g4a(-/-) mice and also in immature rats treated with the PLA(2)G4A inhibitor, archidonyl trifluoromethyl ketone. A close spatiotemporal association of PLA(2)G4A with PTGS2 was found in mouse and rat preovulatory follicles examined by immunohistochemistry. Less association was observed with 4 other forms of PLA(2). Our data strongly suggest that PLA(2)G4A amplifies hCG induction of PTGS2 and colocalizes with the induced PTGS2, thus contributing to robust PG production required for optimal ovulation and fertilization in rodents.
Collapse
Affiliation(s)
- Shiro Kurusu
- Department of Medicine and
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Adam Sapirstein
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, and
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and
| | - Joseph V. Bonventre
- Department of Medicine and
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Chourasia TK, Joy KP. Role of catecholestrogens on ovarian prostaglandin secretion in vitro in the catfish Heteropneustes fossilis and possible mechanism of regulation. Gen Comp Endocrinol 2012; 177:128-42. [PMID: 22429727 DOI: 10.1016/j.ygcen.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/23/2012] [Accepted: 03/01/2012] [Indexed: 11/28/2022]
Abstract
Seasonal, periovulatory and 2-hydroxyestradiol-17β (2-OHE(2))-induced changes on ovarian prostaglandin (PG) E(2) and F(2α) were investigated under in vivo or in vitro in the female catfish Heteropneustes fossilis. Both PGE(2) and PGF(2α) increased significantly during ovarian recrudescence with the peak levels in spawning phase. The PGs showed periovulatory changes with the peak levels at 16 h after the hCG treatment. Incubation of postvitellogenic ovary fragments with estradiol-17β (E(2)), 2-OHE(2) or 2-methoxyE(2) produced concentration-dependent increases in PG levels; 2-OHE(2) was more effective. In order to identify the receptor mechanism involved in the 2-OHE(2)-induced PG stimulation, the ovarian pieces were incubated with phentolamine (an α-adrenergic antagonist), propranolol (a β-adrenergic antagonist) or tamoxifen (an estrogen receptor blocker) alone or in combination with 2-OHE(2). The incubation of the tissues with the receptor blockers alone did not produce any significant effect on basal PG levels. However, co- and pre-incubation of the tissues with the blockers resulted in inhibition of the stimulatory effect of 2-OHE(2) on the PGs. Phentolamine was more effective than propranolol. The signal transduction pathway(s) involved in the 2-OHE(2)-induced PG secretion was investigated. The incubation of the ovarian pieces with 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor), chelerythrine (a protein kinase C inhibitor) and PD098059 (a mitogen-activated protein kinase inhibitor) significantly lowered the basal secretion of PGF(2α) and PGE(2). In contrast, H89 (a protein kinase A inhibitor) increased the basal secretion of PGs at 1 and 5 μM concentration and decreased it at 10 μM concentration. The co- or pre-incubation with IBMX, H89, chelerythrine and PD098059 significantly inhibited the stimulatory effect of 2-OHE(2) on PGF(2α) and PGE(2) levels. The inhibition was higher in the pre-incubation groups. Chelerythrine was the most effective followed by PD098059, IBMX and H89. The results suggest that 2-OHE(2) may employ both adrenergic and estrogen receptors, or a novel receptor mechanism having properties of both adrenergic and estrogen receptors.
Collapse
Affiliation(s)
- T K Chourasia
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
26
|
Duffy DM. Prostaglandin dehydrogenase (PGDH) in granulosa cells of primate periovulatory follicles is regulated by the ovulatory gonadotropin surge via multiple G proteins. Mol Cell Endocrinol 2011; 333:119-26. [PMID: 21167905 PMCID: PMC3039104 DOI: 10.1016/j.mce.2010.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 02/01/2023]
Abstract
The ovulatory gonadotropin surge increases granulosa cell prostaglandin synthesis as well as prostaglandin dehydrogenase (PGDH), the key enzyme responsible for prostaglandin metabolism. To investigate gonadotropin regulation of PGDH in the primate follicle, monkey granulosa cells were obtained across the 40-h periovulatory interval. PGDH activity was low before the ovulatory hCG stimulus, peaked 12-24 h after hCG, and was low again 36 h after hCG administration. Granulosa cells maintained in vitro with hCG showed a similar temporal pattern of PGDH. The LH/CG receptor can utilize multiple signaling pathways to regulate intracellular events. Gonadotropin-stimulated cAMP appears to act primarily via the Epacs to increase PGDH mRNA, protein, and activity. In contrast, PLC activation of PKC likely decreases PGDH mRNA, protein, and activity late in the periovulatory interval. Increased, then decreased PGDH activity may delay accumulation of prostaglandins in the follicle until late in the periovulatory interval, contributing to timely ovulation in primates.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 Olney Road, Lewis Hall, Norfolk, VA 23507, United States.
| |
Collapse
|
27
|
Hayashi KG, Ushizawa K, Hosoe M, Takahashi T. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod Biol Endocrinol 2010; 8:11. [PMID: 20132558 PMCID: PMC2833166 DOI: 10.1186/1477-7827-8-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/05/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bovine follicular development is regulated by numerous molecular mechanisms and biological pathways. In this study, we tried to identify differentially expressed genes between largest (F1) and second-largest follicles (F2), and classify them by global gene expression profiling using a combination of microarray and quantitative real-time PCR (QPCR) analysis. The follicular status of F1 and F2 were further evaluated in terms of healthy and atretic conditions by investigating mRNA localization of identified genes. METHODS Global gene expression profiles of F1 (10.7 +/- 0.7 mm) and F2 (7.8 +/- 0.2 mm) were analyzed by hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol concentrations in follicular fluid. RESULTS Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed AMH, CYP19, FSHR, GPX3, PlGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and CYP19 were detected in granulosa cells (GC) of healthy as well as atretic follicles. PlGF was localized in GC and in the theca layer (TL) of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC. CONCLUSION We demonstrated that global gene expression profiling of F1 and F2 clearly reflected a difference in their follicular status. Expression of stage-specific genes in follicles may be closely associated with their growth or atresia. Several genes identified in this study will provide intriguing candidates for the determination of follicular growth.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| |
Collapse
|
28
|
Kurusu S, Tokunaga N, Yonezawa T, Kawaminami M. Group IVA phospholipase A(2) activity may mediate prostaglandin F(2alpha)-induced luteal regression in pseudopregnant rats. Prostaglandins Other Lipid Mediat 2009; 90:55-62. [PMID: 19703580 DOI: 10.1016/j.prostaglandins.2009.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 01/26/2023]
Abstract
We investigated role(s) of luteal group IVA phospholipase A(2) (GIVA PLA(2)) in prostaglandin (PG) F(2alpha)-induced regression in pseudopregnant rats. Prostaglandin F(2alpha) (PGF(2alpha)) treatment of day 6 pseudopregnant rats stimulated luteal PLA(2) activity, which was sensitive to inhibitors and associated with increased GIVA PLA(2) immunoreactivity. Intra-bursal treatment with the enzyme inhibitor (AACOCF3) prior to PGF(2alpha) failed to prevent the initial decline in progesterone but induced subsequently a persistent rise that was significantly higher than that of vehicle-treated group. TUNEL-positive signals in luteal cells of control group were reduced by AACOCF3 treatment. TUNEL-positive reaction induced in luteal cells in vitro by combined cytokines and agonistic anti-Fas were both reduced by AACOCF3 and another inhibitor pyrrophenone. Overall data show that luteal GIVA PLA(2) activity and expression increased following PGF(2alpha) administration and that acute chemical inhibition of this activity could reverse, at least partly, PGF(2alpha)-induced functional regression and prevent apoptosis induced by PGF(2alpha)in vivo and by cytokines in vitro.
Collapse
Affiliation(s)
- Shiro Kurusu
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan.
| | | | | | | |
Collapse
|
29
|
Lister AL, Van Der Kraak GJ. Regulation of prostaglandin synthesis in ovaries of sexually-mature zebrafish (Danio rerio). Mol Reprod Dev 2009; 76:1064-75. [DOI: 10.1002/mrd.21072] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Lister AL, Van Der Kraak G. An investigation into the role of prostaglandins in zebrafish oocyte maturation and ovulation. Gen Comp Endocrinol 2008; 159:46-57. [PMID: 18722378 DOI: 10.1016/j.ygcen.2008.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
This study explored the potential for ovarian-derived prostaglandins (PGs) to be involved in the regulation of oocyte maturation and ovulation in zebrafish. It was demonstrated that cultured vitellogenic follicles have the capacity to produce prostaglandin E(2) (PGE(2)) and PGF(2alpha) in response to arachidonic acid (AA) in a concentration-dependent manner, and that AA stimulates the in vitro production of 17beta-estradiol (E(2)). The production of AA-stimulated PGF(2alpha) was significantly reduced by treatment with the non-selective cyclooxygenase (COX) inhibitor, indomethacin (INDO). Treatment of full-grown follicles with AA did not induce oocyte maturation as assessed by germinal vesicle breakdown, but INDO significantly decreased the rate of spontaneous maturation. Using Real-Time PCR, it was shown that follicles of different developmental size classes (primary growth and pre-vitellogenic, early-vitellogenic, and mid- to full-grown vitellogenic) express enzymes that release (cytosolic phospholipase A(2) (cPLA(2)); phospholipase Cgamma1) or metabolize (COX-1, COX-2, and prostaglandin synthase-2) AA to PG metabolites. The expression of cPLA(2) was found to be significantly greater in full-grown follicles compared to follicles of the pre- and early-vitellogenic stages. In vivo studies demonstrated that breeding groups of zebrafish exposed to 100 microg/L INDO exhibited reduced spawning rates and clutch sizes compared with control and 1 microg/L INDO exposed fish. In other studies, it was shown that naturally spawning groups of females exhibit increased ovarian levels of PGF(2alpha), E(2), and 17alpha,20beta-dihydroxy-4-pregnen-3-one (a maturation-inducing hormone in zebrafish) near the time of ovulation compared with non-breeding females. Collectively, these experiments indicate that the AA pathway in zebrafish ovaries is involved in the regulation of oocyte maturation and ovulation and a non-selective inhibitor of COX disrupts these processes.
Collapse
Affiliation(s)
- A L Lister
- Department of Integrative Biology, University of Guelph, Guelph, Ont, Canada
| | | |
Collapse
|
31
|
Sayasith K, Brown KA, Sirois J. Gonadotropin-dependent regulation of bovine pituitary adenylate cyclase-activating polypeptide in ovarian follicles prior to ovulation. Reproduction 2007; 133:441-53. [PMID: 17307912 DOI: 10.1530/rep-06-0188] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To study the regulation of bovine pituitary adenylate cyclase-activating polypeptide (PACAP) in preovulatory follicles prior to ovulation, PACAP cDNA was isolated by RT-PCR. Its open reading frame (ORF) is composed of 531 bp, and encodes for a 176-amino acid protein that bears 76-90% identity with other PACAP homologs. Using bovine preovulatory follicles obtained between 0 and 24 h after human chorionic gonadotropin (hCG) and semiquantitative RT-PCR/Southern blot, we demonstrate that levels of PACAP mRNA were low at 0 h, markedly increased at 6 and 12 h (P<0.05), and declined 18 and 24 h after hCG. Levels of PACAP mRNA were high in the bovine pituitary, testis, intestine and uterus, but moderate to low in other tissues. Analyses performed on isolated preparations of granulosa and theca cells showed a significant increase of PACAP transcripts in both cell types after hCG, whereas primary granulosa cell cultures revealed high levels of PACAP as well as its receptors PAC-1 and VPAC-2 mRNA after forskolin treatment. Overexpression of the catalytic subunit of protein kinase A (PKA) in granulosa cells stimulated, but treatment with H89 or PKA inhibitor protein inhibited PACAP mRNA expression, whereas PACAP overexpression stimulated an increase in abundance of transcripts for PGHS-2, PGES, EP2 receptor, progesterone receptor, and ADAMTS-1, but not for P450-side chain cleavage and P450 aromatase. Thus, this study demonstrates the gonadotropin-dependent regulation of PACAP mRNA in bovine preovulatory follicles, the importance of PKA activation in the expression of PACAP in granulosa cells, and stimulating effect of PACAP on gene expression during the ovulatory process.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Centre de recherche en reproduction animale et Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, CP 5000, Saint-Hyacinthe, Québec, Canada J2S 7C6.
| | | | | |
Collapse
|
32
|
Fayad T, Lefebvre R, Nimpf J, Silversides DW, Lussier JG. Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8) Is Upregulated in Granulosa Cells of Bovine Dominant Follicle: Molecular Characterization and Spatio-Temporal Expression Studies1. Biol Reprod 2007; 76:466-75. [PMID: 17108332 DOI: 10.1095/biolreprod.106.057216] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a member of the LDL receptor family that participates in endocytosis and signal transduction. We cloned the full-length bovine LRP8 cDNA in granulosa cells (GC) of the dominant follicle (DF) as well as several LRP8 mRNA splicing variants, including a variant that contains a proline-rich cytoplasmic insert (A759-K817) that is involved in intracellular signaling. Expression of the A759-K817 variant was analyzed in the GC of follicles at different developmental stages: the small follicle (SF; 2-4 mm), the DF at Day 5 (D5) of the estrus cycle, ovulatory follicles (OF) 24 h after hCG injection, and corpora lutea (CL) at D5. RT-PCR analysis showed that expression was predominant in the GC of DF compared to other follicles and CL (P<0.0001), whereas the expression of other related receptors, such as LDLR and VLDLR, did not show differences. Temporal analyses of follicular walls from the OF following hCG treatment revealed a decrease in LRP8 mRNA expression starting 12 h post-hCG treatment (P<0.0001). LRP8 protein was exclusively localized to the GC, with higher levels in the DF than in the SF (P<0.05). RELN mRNA, which encodes an LRP8 ligand, was highly expressed in the theca of the DF as compared to the OF (P<0.004), whereas MAPK8IP1 mRNA, which encodes an LRP8 intracellular interacting partner, is expressed in the GC of the DF. These results demonstrate the differential expression patterns of LRP8, RELN, and MAPK8IP1 mRNAs during final follicular growth and ovulation, and suggest that a RELN/LRP8/MAPK8IP1 paracrine interaction regulates follicular growth.
Collapse
Affiliation(s)
- Tania Fayad
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | |
Collapse
|
33
|
Sayasith K, Bouchard N, Doré M, Sirois J. Cloning of equine prostaglandin dehydrogenase and its gonadotropin-dependent regulation in theca and mural granulosa cells of equine preovulatory follicles during the ovulatory process. Reproduction 2007; 133:455-66. [PMID: 17307913 DOI: 10.1530/rep-06-0210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mammalian ovulatory process is accompanied by a gonadotropin-dependent increase in follicular levels of prostaglandin E2 (PGE2) and PGF2α, which are metabolized by 15-hydroxy prostaglandin dehydrogenase (PGDH). Little is known about ovarian PGDH regulation in non-primate species. The objectives of this study were to characterize the structure of equine PGDH and its regulation in follicles during human chorionic gonadotropin (hCG)-induced ovulation. The full-length equine PGDH was obtained by RT-PCR, 5′- and 3′-rapid amplification of cDNA ends (RACE). Its open reading frame encodes a 266-amino acid protein that is 72–95% homologous to other species. Semi-quantitative RT-PCR/Southern blot were used to study PGDH regulation in follicles isolated 0–39 h post-hCG. Results showed that PGDH mRNA expression was low in follicles obtained at 0 h, increased at 12 and 24 h (P< 0.05), and decreased at 36-h post-hCG. This induction of expression was biphasic, with elevated abundance of transcripts at 12 and 33 h post-hCG (P< 0.05) in mural granulosa and theca cells. Immunohistochemistry and immunoblotting confirmed regulated expression of PGHD protein in both cell types of preovulatory follicles after hCG. High levels of PGDH mRNA were observed in corpus luteum and other non-ovarian tissues tested, except kidney, muscle, brain, and heart. Thus, this study is the first to report the gonadotropin-dependent regulation of PGDH during ovulation in a non-primate species. PGDH induction was biphasic in theca and mural granulosa cells differing from primates in which this induction was monophasic and limited to granulosa cells, suggesting species-specific differences in follicular control of PGDH expression during ovulation.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Centre de recherche en reproduction animale and Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, Canada J2S 7C6.
| | | | | | | |
Collapse
|
34
|
Diouf MN, Lefebvre R, Silversides DW, Sirois J, Lussier JG. Induction of alpha-caveolin-1 (αCAV1) expression in bovine granulosa cells in response to an ovulatory dose of human chorionic gonadotropin. Mol Reprod Dev 2006; 73:1353-60. [PMID: 16894547 DOI: 10.1002/mrd.20513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Caveolins are implicated in endocytosis, cholesterol trafficking and signal transduction. A cDNA fragment corresponding to caveolin-1 (CAV1) was identified in a mRNA profiling expression study in bovine granulosa cells (GC) following human chorionic gonadotropin (hCG)-induced ovulation. Thus, we have characterized CAV1 cDNA and studied its spatio-temporal expression pattern in bovine ovarian follicles. The full-length bovine alphaCAV1 cDNA was cloned and encodes a putative 22 kDa protein. Expression of alphaCAV1 was studied in bovine GC obtained from follicles at different developmental stages: small follicles (SF: 2-4 mm), dominant follicles (DF), ovulatory follicles (OF: 24 hr post-hCG), and corpus luteum (CL). Semiquantitative RT-PCR analysis showed a 6.5-fold increase in alphaCAV1 mRNA in GC of OF versus DF (P < 0.0001), whereas CAV2 mRNA was increased by only twofold (P < 0.0007). Temporal expression of alphaCAV1 mRNA from OF recovered at 0, 6, 12, 18, and 24 hr after hCG injection showed an 8.5-fold increase of alphaCAV1 mRNA after 24 hr compared to 0 hr (P < 0.0018) whereas no significant variation was detected for CAV2. Immunoblot demonstrated an initial increase in alphaCAV1 protein level 12 hr post-hCG, reaching a maximum at 24 hr. Immunohistochemical localization of CAV1 was observed in GC of OF isolated 18 and 24 hr after hCG injection, whereas no signal was detected in GC of DF and SF. The induction of alphaCAV1 in GC of OF suggests that alphaCAV1 likely contributes to control the increase in membrane signaling that occurs at the time of ovulation and luteinization.
Collapse
Affiliation(s)
- Mame Nahé Diouf
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | | | | | |
Collapse
|