1
|
Davenport BN, Williams A, Regnault TRH, Jones HN, Wilson RL. Placenta hIGF1 nanoparticle treatment in guinea pigs mitigates FGR-associated fetal sex-dependent effects on liver metabolism-related signaling pathways. Am J Physiol Endocrinol Metab 2025; 328:E395-E409. [PMID: 39907801 DOI: 10.1152/ajpendo.00440.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
Fetal development in an adverse in utero environment significantly increases the risk of developing metabolic diseases in later life, including dyslipidemia, nonalcoholic fatty liver diseases, and diabetes. The aim of this study was to determine whether improving the in utero fetal growth environment with a placental nanoparticle gene therapy would ameliorate fetal growth restriction (FGR)-associated dysregulation of fetal hepatic lipid and glucose metabolism-related signaling pathways. Using the guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, placenta efficiency and fetal weight were significantly improved following three administrations of a nonviral polymer-based nanoparticle gene therapy to the placenta from mid-pregnancy (gestational day 35) until gestational day 52. The nanoparticle gene therapy transiently increased expression of human insulin-like growth factor 1 (hIGF1) in placenta trophoblast. Fetal liver tissue was collected near-term at gestational day 60. Fetal sex-specific differences in liver gene and protein expression of profibrosis and glucose metabolism-related factors were demonstrated in sham-treated FGR fetuses but not observed in FGR fetuses who received placental hIGF1 nanoparticle treatment. Increased plasma bilirubin, an indirect measure of hepatic activity, was also demonstrated with placental hIGF1 nanoparticle treatment. We speculate that the changes in liver gene and protein expression and increased liver activity that result in similar expression profiles to appropriately growing control fetuses might confer protection against increased susceptibility to aberrant liver physiology in later life. Overall, this work opens avenues for future research assessing the translational prospect of mitigating FGR-induced metabolic derangements.NEW & NOTEWORTHY A placenta-specific nonviral polymer-based nanoparticle gene therapy that improves placenta nutrient transport and near-term fetal weight ameliorates growth restriction-associated changes to fetal liver activity, and cholesterol and glucose/nutrient homeostasis genes/proteins that might confer protection against increased susceptibility to aberrant liver physiology in later life. This knowledge may have implications toward removing predispositions that increase the risk of metabolic diseases, including diabetes, dyslipidemia, and nonalcoholic fatty liver disease in later life.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Alyssa Williams
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Timothy R H Regnault
- Departments of Obstetrics and Gynaecology, Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
2
|
Cho SKS, Darby JRT, Saini BS, Holman SL, Lock MC, Perumal SR, Williams GK, Macgowan CK, Seed M, Morrison JL. Late-gestation maternal undernutrition induces circulatory redistribution while preserving uteroplacental function independent of fetal glycaemic state. J Physiol 2024; 602:7065-7083. [PMID: 39549304 DOI: 10.1113/jp287171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Programming effects of maternal undernutrition on fetal metabolic and cardiovascular systems are well elucidated, yet a detailed characterization of maternal haemodynamics is not available. This study used comprehensive cardiovascular magnetic resonance (CMR) imaging to quantify maternal haemodynamics after 29 days (111-140 days) of late-gestation undernutrition (LGUN) in pregnant sheep. Control ewes received 100% of metabolizable energy requirements (MERs, n = 15), whereas LGUN ewes were globally nutrient restricted to 50% MER (n = 18), with a subset of fetuses undergoing continuous glucose infusion (LGUN + G, n = 6/18). Ewes underwent CMR (138-140 days' gestation), and placental tissue was collected the next day. Ewes in both LGUN groups had reduced body weight and mean blood glucose concentration across gestation. Ventricular dimensions were lower in both LGUN groups. Uterine artery blood flow (QUtA) was elevated in the LGUN group compared with controls, whereas peripheral blood flow was reduced and further diminished in LGUN + G. Maternal weight change correlated with all haemodynamic parameters across all groups. Uteroplacental oxygen and glucose delivery were increased in LGUN compared to control ewes, whereas uteroplacental oxygen consumption was preserved. LGUN did not impact placental or fetal weight, and markers of brain-sparing physiology were absent. Placental expression of insulin-like growth factors (IGF-1 and IGF-2) and their receptors, glucose, fatty acid (FA) or amino acid transporters and markers of angiogenesis was not impacted. FA transporter expression was positively correlated with QUtA, and FA binding protein correlated negatively with maternal weight change. Maternal cardiovascular adaptations in response to LGUN manifest as preservation of placental growth and function, thereby preserving fetal growth. KEY POINTS: Maternal undernutrition during pregnancy alters fetal metabolic and cardiovascular physiology, but little is known about alterations in maternal haemodynamics. Late-gestation undernutrition (LGUN) and LGUN + G redirected maternal blood flow from the periphery to the uteroplacental unit, concomitantly increasing the delivery of glucose and oxygen to the uteroplacental unit. Substrate transporter expression and uteroplacental oxygen consumption were preserved in LGUN and LGUN + G, suggesting prioritization of the placenta. This study is the first to report detailed maternal haemodynamics in the setting of maternal undernutrition, where placental growth and function were maintained, ultimately preserving fetal oxygen metabolism and growth.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara Rajan Perumal
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Georgia K Williams
- South Australian Health and Medical Research Institute, Preclinical, Imaging and Research Laboratories, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dimasi CG, Darby JRT, Cho SKS, Saini BS, Holman SL, Meakin AS, Wiese MD, Macgowan CK, Seed M, Morrison JL. Reduced in utero substrate supply decreases mitochondrial abundance and alters the expression of metabolic signalling molecules in the fetal sheep heart. J Physiol 2024; 602:5901-5922. [PMID: 37996982 DOI: 10.1113/jp285572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Babies born with fetal growth restriction (FGR) are at higher risk of developing cardiometabolic diseases across the life course. The reduction in substrate supply to the developing fetus that causes FGR not only alters cardiac growth and structure but may have deleterious effects on metabolism and function. Using a sheep model of placental restriction to induce FGR, we investigated key cardiac metabolic and functional markers that may be altered in FGR. We also employed phase-contrast magnetic resonance imaging MRI to assess left ventricular cardiac output (LVCO) as a measure of cardiac function. We hypothesized that signalling molecules involved in cardiac fatty acid utilisation and contractility would be impaired by FGR and that this would have a negative impact on LVCO in the late gestation fetus. Key glucose (GLUT4 protein) and fatty acid (FATP, CD36 gene expression) substrate transporters were significantly reduced in the hearts of FGR fetuses. We also found reduced mitochondrial numbers as well as abundance of electron transport chain complexes (complexes II and IV). These data suggest that FGR diminishes metabolic and mitochondrial capacity in the fetal heart; however, alterations were not correlated with fetal LVCO. Overall, these data show that FGR alters fetal cardiac metabolism in late gestation. If sustained ex utero, this altered metabolic profile may contribute to poor cardiac outcomes in FGR-born individuals after birth. KEY POINTS: Around the time of birth, substrate utilisation in the fetal heart switches from carbohydrates to fatty acids. However, the effect of fetal growth restriction (FGR) on this switch, and thus the ability of the fetal heart to effectively metabolise fatty acids, is not fully understood. Using a sheep model of early onset FGR, we observed significant downregulation in mRNA expression of fatty acid receptors CD36 and FABP in the fetal heart. FGR fetuses also had significantly lower cardiac mitochondrial abundance than controls. There was a reduction in abundance of complexes II and IV within the electron transport chain of the FGR fetal heart, suggesting altered ATP production. This indicates reduced fatty acid metabolism and mitochondrial function in the heart of the FGR fetus, which may have detrimental long-term implications and contribute to increased risk of cardiovascular disease later in life.
Collapse
Affiliation(s)
- Catherine G Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Steven K S Cho
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brahmdeep S Saini
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael D Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Darby JRT, Saini BS, Holman SL, Hammond SJ, Perumal SR, Macgowan CK, Seed M, Morrison JL. Acute-on-chronic: using magnetic resonance imaging to disentangle the haemodynamic responses to acute and chronic fetal hypoxaemia. Front Med (Lausanne) 2024; 11:1340012. [PMID: 38933113 PMCID: PMC11199546 DOI: 10.3389/fmed.2024.1340012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The fetal haemodynamic response to acute episodes of hypoxaemia are well characterised. However, how these responses change when the hypoxaemia becomes more chronic in nature such as that associated with fetal growth restriction (FGR), is less well understood. Herein, we utilised a combination of clinically relevant MRI techniques to comprehensively characterize and differentiate the haemodynamic responses occurring during acute and chronic periods of fetal hypoxaemia. Methods Prior to conception, carunclectomy surgery was performed on non-pregnant ewes to induce FGR. At 108-110 days (d) gestational age (GA), pregnant ewes bearing control (n = 12) and FGR (n = 9) fetuses underwent fetal catheterisation surgery. At 117-119 days GA, ewes underwent MRI sessions where phase-contrast (PC) and T2 oximetry were used to measure blood flow and oxygenation, respectively, throughout the fetal circulation during a normoxia and then an acute hypoxia state. Results Fetal oxygen delivery (DO2) was lower in FGR fetuses than controls during the normoxia state but cerebral DO2 remained similar between fetal groups. Acute hypoxia reduced both overall fetal and cerebral DO2. FGR increased ductus venosus (DV) and foramen ovale (FO) blood flow during both the normoxia and acute hypoxia states. Pulmonary blood flow (PBF) was lower in FGR fetuses during the normoxia state but similar to controls during the acute hypoxia state when PBF in controls was decreased. Conclusion Despite a prevailing level of chronic hypoxaemia, the FGR fetus upregulates the preferential streaming of oxygen-rich blood via the DV-FO pathway to maintain cerebral DO2. However, this upregulation is unable to maintain cerebral DO2 during further exposure to an acute episode of hypoxaemia. The haemodynamic alterations required at the level of the liver and lung to allow the DV-FO pathway to maintain cerebral DO2, may have lasting consequences on hepatic function and pulmonary vascular regulation after birth.
Collapse
Affiliation(s)
- Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Brahmdeep S. Saini
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarah J. Hammond
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Christopher K. Macgowan
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Mike Seed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Darby JR, Zhang S, Holman SL, Muhlhausler BS, McMillen IC, Morrison JL. Cardiac growth and metabolism of the fetal sheep are not vulnerable to a 10 day increase in fetal glucose and insulin concentrations during late gestation. Heliyon 2023; 9:e18292. [PMID: 37519661 PMCID: PMC10372399 DOI: 10.1016/j.heliyon.2023.e18292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Aims To evaluate the effects of fetal glucose infusion in late gestation on the mRNA expression and protein abundance of molecules involved in the regulation of cardiac growth and metabolism. Main methods Either saline or glucose was infused into fetal sheep from 130 to 140 days (d) gestation (term, 150 d). At 140 d gestation, left ventricle tissue samples were collected. Quantitative real-time RT-PCR and Western blot were used to determine the mRNA expression and protein abundance of key signalling molecules within the left ventricle of the fetal heart. Key findings Although intra-fetal glucose infusion increased fetal plasma glucose and insulin concentrations, there was no change in the expression of molecules within the signalling pathways that regulate proliferation, hypertrophy, apoptosis or fibrosis in the fetal heart. Cardiac Solute carrier family 2 member 1 (SLC2A1) mRNA expression was decreased by glucose infusion. Glucose infusion increased cardiac mRNA expression of both Peroxisome proliferator activated receptor alpha (PPARA) and peroxisome proliferator activated receptor gamma (PPARG). However, there was no change in the mRNA expression of PPAR cofactors or molecules with PPAR response elements. Furthermore, glucose infusion did not impact the protein abundance of the 5 oxidative phosphorylation complexes of the electron transport chain. Significance Despite a 10-day doubling of fetal plasma glucose and insulin concentrations, the present study suggests that within the fetal left ventricle, the mRNA and protein expression of the signalling molecules involved in cardiac growth, development and metabolism are relatively unaffected.
Collapse
Affiliation(s)
| | | | | | | | | | - Janna L. Morrison
- Corresponding author. Australian Research Council Future Fellow, Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia,
| |
Collapse
|
6
|
Wilson RL, Stephens KK, Jones HN. Placental nanoparticle gene therapy normalizes gene expression changes in the fetal liver associated with fetal growth restriction in a fetal sex-specific manner. J Dev Orig Health Dis 2023; 14:325-332. [PMID: 36794386 PMCID: PMC10947591 DOI: 10.1017/s2040174423000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Fetal growth restriction (FGR) is associated with increased risk of developing non-communicable diseases. We have a placenta-specific nanoparticle gene therapy protocol that increases placental expression of human insulin-like growth factor 1 (hIGF1), for the treatment of FGR in utero. We aimed to characterize the effects of FGR on hepatic gluconeogenesis pathways during early stages of FGR establishment, and determine whether placental nanoparticle-mediated hIGF1 therapy treatment could resolve differences in the FGR fetus. Female Hartley guinea pigs (dams) were fed either a Control or Maternal Nutrient Restriction (MNR) diet using established protocols. At GD30-33, dams underwent ultrasound guided, transcutaneous, intraplacental injection of hIGF1 nanoparticle or PBS (sham) and were sacrificed 5 days post-injection. Fetal liver tissue was fixed and snap frozen for morphology and gene expression analysis. In female and male fetuses, liver weight as a percentage of body weight was reduced by MNR, and not changed with hIGF1 nanoparticle treatment. In female fetal livers, expression of hypoxia inducible factor 1 (Hif1α) and tumor necrosis factor (Tnfα) were increased in MNR compared to Control, but reduced in MNR + hIGF1 compared to MNR. In male fetal liver, MNR increased expression of Igf1 and decreased expression of Igf2 compared to Control. Igf1 and Igf2 expression was restored to Control levels in the MNR + hIGF1 group. This data provides further insight into the sex-specific mechanistic adaptations seen in FGR fetuses and demonstrates that disruption to fetal developmental mechanisms may be returned to normal by treatment of the placenta.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida 32610, USA
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Kendal K Stephens
- Department of Obstetrics and Gynecology, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida 32610, USA
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Ren J, Lock MC, Darby JRT, Orgeig S, Holman SL, Quinn M, Seed M, Muhlhausler BS, McMillen IC, Morrison JL. PPARγ activation in late gestation does not promote surfactant maturation in the fetal sheep lung. J Dev Orig Health Dis 2021; 12:963-974. [PMID: 33407953 DOI: 10.1017/s204017442000135x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Respiratory distress syndrome results from inadequate functional pulmonary surfactant and is a significant cause of mortality in preterm infants. Surfactant is essential for regulating alveolar interfacial surface tension, and its synthesis by Type II alveolar epithelial cells is stimulated by leptin produced by pulmonary lipofibroblasts upon activation by peroxisome proliferator-activated receptor γ (PPARγ). As it is unknown whether PPARγ stimulation or direct leptin administration can stimulate surfactant synthesis before birth, we examined the effect of continuous fetal administration of either the PPARγ agonist, rosiglitazone (RGZ; Study 1) or leptin (Study 2) on surfactant protein maturation in the late gestation fetal sheep lung. We measured mRNA expression of genes involved in surfactant maturation and showed that RGZ treatment reduced mRNA expression of LPCAT1 (surfactant phospholipid synthesis) and LAMP3 (marker for lamellar bodies), but did not alter mRNA expression of PPARγ, surfactant proteins (SFTP-A, -B, -C, and -D), PCYT1A (surfactant phospholipid synthesis), ABCA3 (phospholipid transportation), or the PPARγ target genes SPHK-1 and PAI-1. Leptin infusion significantly increased the expression of PPARγ and IGF2 and decreased the expression of SFTP-B. However, mRNA expression of the majority of genes involved in surfactant synthesis was not affected. These results suggest a potential decreased capacity for surfactant phospholipid and protein production in the fetal lung after RGZ and leptin administration, respectively. Therefore, targeting PPARγ may not be a feasible mechanistic approach to promote lung maturation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Hospital for Sick Children, Toronto, ON, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Cancer Research Institute, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Megan Quinn
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | | | - I Caroline McMillen
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
8
|
Identification of candidate genes from androgenic gland in Macrobrachium nipponense regulated by eyestalk ablation. Sci Rep 2021; 11:19855. [PMID: 34615913 PMCID: PMC8494903 DOI: 10.1038/s41598-021-99022-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
The eyestalk of crustaceans, such as Macrobrachium nipponense, contains many neurosecretory hormones affecting the process of reproduction, molting, metabolism of glucose, and other functions. In this study, important metabolic pathways and candidate genes involved in male sexual development were selected from M. nipponense. The methodology involved performing long-read and next generation transcriptome sequencing of genes from the androgenic gland after eyestalk ablation. qPCR analysis revealed that the mRNA expression of Mn-IAG was significantly increased after ablation of both the single-side (SS) and double-side (DS) eyestalk, compared with the control group (CG). The long-read transcriptome generated 49,840 non-redundant transcripts. A total of 1319, 2092 and 4351 differentially expressed genes (DEGs) were identified between CG versus SS, SS versus DS and CG versus DS, respectively. These data indicated that ablation of the double-sided eyestalk played stronger regulatory roles than the single-side ablation on male sexual development in M. nipponense. This was consistent with the qPCR analysis. Cell Cycle, Cellular Senescence, Oxidative Phosphorylation, Glycolysis/Gluconeogenesis and Steroid Hormone Biosynthesis were the primary enriched metabolic pathways in all three comparisons, and the important genes from these metabolic pathways were also selected. qPCR permitted secondary confirmation of ten DEGs identified through RNA-seq. RNAi-mediated silencing analyses of Hydroxysteroid dehydrogenase like 1 (HSDL1) revealed that HSDL1 has a positive regulatory effect on testes development. This study provides valuable insight into male sexual development in M. nipponense, including metabolic pathways and genes, paving the way for advanced studies on male sexual development in this species and in other crustaceans.
Collapse
|
9
|
Ren J, Darby JRT, Lock MC, Holman SL, Saini BS, Bradshaw EL, Orgeig S, Perumal SR, Wiese MD, Macgowan CK, Seed M, Morrison JL. Impact of maternal late gestation undernutrition on surfactant maturation, pulmonary blood flow and oxygen delivery measured by magnetic resonance imaging in the sheep fetus. J Physiol 2021; 599:4705-4724. [PMID: 34487347 DOI: 10.1113/jp281292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
Restriction of fetal substrate supply has an adverse effect on surfactant maturation in the lung and thus affects the transition from in utero placental oxygenation to pulmonary ventilation ex utero. The effects on surfactant maturation are mediated by alteration in mechanisms regulating surfactant protein and phospholipid synthesis. This study aimed to determine the effects of late gestation maternal undernutrition (LGUN) and LGUN plus fetal glucose infusion (LGUN+G) compared to Control on surfactant maturation and lung development, and the relationship with pulmonary blood flow and oxygen delivery ( D O 2 ) measured by magnetic resonance imaging (MRI) with molecules that regulate lung development. LGUN from 115 to 140 days' gestation significantly decreased fetal body weight, which was normalized by glucose infusion. LGUN and LGUN+G resulted in decreased fetal plasma glucose concentration, with no change in fetal arterial P O 2 compared to control. There was no effect of LGUN and LGUN+G on the mRNA expression of surfactant proteins (SFTP) and genes regulating surfactant maturation in the fetal lung. However, blood flow in the main pulmonary artery was significantly increased in LGUN, despite no change in blood flow in the left or right pulmonary artery and D O 2 to the fetal lung. There was a negative relationship between left pulmonary artery flow and D O 2 to the left lung with SFTP-B and GLUT1 mRNA expression, while their relationship with VEGFR2 was positive. These results suggest that increased pulmonary blood flow measured by MRI may have an adverse effect on surfactant maturation during fetal lung development. KEY POINTS: Maternal undernutrition during gestation alters fetal lung development by impacting surfactant maturation. However, the direction of change remains controversial. We examined the effects of maternal late gestation maternal undernutrition (LGUN) on maternal and fetal outcomes, signalling pathways involved in fetal lung development, pulmonary haemodynamics and oxygen delivery in sheep using a combination of molecular and magnetic resonance imaging (MRI) techniques. LGUN decreased fetal plasma glucose concentration without affecting arterial P O 2 . Surfactant maturation was not affected; however, main pulmonary artery blood flow was significantly increased in the LGUN fetuses. This is the first study to explore the relationship between in utero MRI measures of pulmonary haemodynamics and lung development. Across all treatment groups, left pulmonary artery blood flow and oxygen delivery were negatively correlated with surfactant protein B mRNA and protein expression in late gestation.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandra Orgeig
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara R Perumal
- Preclinical Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Michael D Wiese
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Mike Seed
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Lazniewska J, Darby JRT, Holman SL, Sorvina A, Plush SE, Massi M, Brooks DA, Morrison JL. In utero substrate restriction by placental insufficiency or maternal undernutrition decreases optical redox ratio in foetal perirenal fat. JOURNAL OF BIOPHOTONICS 2021; 14:e202000322. [PMID: 33389813 DOI: 10.1002/jbio.202000322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Intrauterine growth restriction (IUGR) can result from reduced delivery of substrates, including oxygen and glucose, during pregnancy and may be caused by either placental insufficiency or maternal undernutrition. As a consequence of IUGR, there is altered programming of adipose tissue and this can be associated with metabolic diseases later in life. We have utilised two sheep models of IUGR, placental restriction and late gestation undernutrition, to determine the metabolic effects of growth restriction on foetal perirenal adipose tissue (PAT). Two-photon microscopy was employed to obtain an optical redox ratio, which gives an indication of cell metabolism. PAT of IUGR foetuses exhibited higher metabolic activity, altered lipid droplet morphology, upregulation of cytochrome c oxidase subunit genes and decreased expression of genes involved in growth and differentiation. Our results indicate that there are adaptations in PAT of IUGR foetuses that might be protective and ensure survival in response to an IUGR insult.
Collapse
Affiliation(s)
- Joanna Lazniewska
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sally E Plush
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Massimiliano Massi
- Department of Chemistry, Curtin University, Perth, Western Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Doherty Lyons S, Blum JL, Hoffman-Budde C, Tijerina PB, Fiel MI, Conklin DJ, Gany F, Odin JA, Zelikoff JT. Prenatal Exposure to Gutkha, a Globally Relevant Smokeless Tobacco Product, Induces Hepatic Changes in Adult Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217895. [PMID: 33126512 PMCID: PMC7662769 DOI: 10.3390/ijerph17217895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Maternal exposures during pregnancy affect the onset and progression of adult diseases in the offspring. A prior mouse study indicated that maternal tobacco smoke exposure affects hepatic fibrosis in adult offspring. Gutkha, a broadly used smokeless tobacco (ST) product, is widely used by pregnant woman in many countries. The objective of this murine study was to evaluate whether oral maternal exposure to gutkha during pregnancy alters non-alcoholic fatty liver disease (NAFLD) in adult offspring: risk factors for the progression of NAFLD to cirrhosis in adults remain elusive. Buccal cavity 'painting' of pregnant mice with gutkha began on gestational days (GD) 2-4 and continued until parturition. Beginning at 12 weeks of age, a subset of offspring were transitioned to a high-fat diet (HFD). Results demonstrated that prenatal exposure to gutkha followed by an HFD in adulthood significantly increased the histologic evidence of fatty liver disease only in adult male offspring. Changes in hepatic fibrosis-related cytokines (interleukin (IL)-1b and IL-6) and in hepatic collagen mRNA expression were observed when comparing adult male offspring exposed to gutkha in utero to those not exposed. These findings indicate that maternal use of gutkha during pregnancy affects NAFLD in adult offspring in a sex-dependent manner.
Collapse
Affiliation(s)
- Shannon Doherty Lyons
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA; (S.D.L.); (J.L.B.); (C.H.-B.); (P.B.T.)
| | - Jason L. Blum
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA; (S.D.L.); (J.L.B.); (C.H.-B.); (P.B.T.)
- Product Safety Labs, Dayton, NJ 08810, USA
| | - Carol Hoffman-Budde
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA; (S.D.L.); (J.L.B.); (C.H.-B.); (P.B.T.)
| | - Pamela B. Tijerina
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA; (S.D.L.); (J.L.B.); (C.H.-B.); (P.B.T.)
| | - M. Isabel Fiel
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Daniel J. Conklin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Kentucky, KY 40202, USA;
| | - Francesca Gany
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| | - Joseph A. Odin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (J.A.O.); (J.T.Z.)
| | - Judith T. Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA; (S.D.L.); (J.L.B.); (C.H.-B.); (P.B.T.)
- Correspondence: (J.A.O.); (J.T.Z.)
| |
Collapse
|
12
|
Schrauben EM, Darby JRT, Saini BS, Holman SL, Lock MC, Perumal SR, Seed M, Morrison JL, Macgowan CK. Technique for comprehensive fetal hepatic blood flow assessment in sheep using 4D flow MRI. J Physiol 2020; 598:3555-3567. [PMID: 32533704 DOI: 10.1113/jp279631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/04/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The comprehensive visualization and quantification of in vivo fetal hepatic haemodynamics, particularly the shunting of ductus venosus blood, has been elusive and is not yet fully understood. We introduce the combination of chronically instrumented fetal sheep and 4D flow MRI of the whole fetal liver, which allows retrospective blood flow measurement in all visible vessels as well as qualitative assessment. The applicability and usefulness of this technique is exhibited in normally grown fetal Merino sheep in mid- and late-gestation with detailed dynamic distribution of hepatic blood flow presented. The feasibility of this approach in clinical pathology is demonstrated in two growth-restricted fetuses at mid-gestation. Further exemplification of blood flow quantification is performed over major hepatic vessels. ABSTRACT Although the fetal vasculature has been demarcated and well understood for several decades, the corresponding haemodynamics permitting oxygen- and nutrient-rich blood delivery to the fetal organs has been comparatively difficult to study. We married two well-established methods: 4D flow MRI, a volumetric and dynamic blood-flow measurement technique, and chronically instrumented sheep to broadly assess fetal hepatic circulation. We performed this technique in mid- and late-gestation fetal Merino sheep under normoxemic conditions and major hepatic vasculature was segmented to quantify blood flow and related parameters. Dynamic blood flow was visualized, exhibiting an acceleration of umbilical vein blood through the ductus venosus as well as spiralling into the inferior vena cava where its stream remained separate from that of the hepatic veins and lower body. Ductus venosus changes from mid- to late-gestation included larger diameter (mid: 5.8 ± 0.9 vs. late: 7.1 ± 1.1 mm; P = 0.003) and cross-sectional area (mid: 27.1 ± 8.6 vs. late: 40.4 ± 11.8 mm2 ; P = 0.003), and lower velocity averaged over the cardiac cycle (mid: 15.7 ± 5.4 vs. late: 9.8 ± 7.0 cm s-1 ; P = 0.020). This resulted in higher magnitude blood flow (indexed to umbilical vein input) at mid-gestation in the ductus venosus (mid: 0.73 ± 0.21; late: 0.46 ± 0.21; P = 0.008). The visualization and quantification results support the further use of this technique to better understand regional blood flow changes during normal or abnormal fetal growth, as well as to observe acute haemodynamic responses to physiological challenges or drug interventions.
Collapse
Affiliation(s)
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia
| | - Brahmdeep S Saini
- Heart Centre, Hospital for Sick Children, Faculty of Medicine, Institute of Medical Science, University of Toronto
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia
| | - Sunthara R Perumal
- Preclinical Imaging and Research Laboratories, South Australian Health and Medical Research Institute
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, Department of Paediatrics, University of Toronto
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Department of Medical Biophysics, University of Toronto
| |
Collapse
|
13
|
Kong L, Liu G, Deng M, Lian Z, Han Y, Sun B, Guo Y, Liu D, Li Y. Growth retardation-responsive analysis of mRNAs and long noncoding RNAs in the liver tissue of Leiqiong cattle. Sci Rep 2020; 10:14254. [PMID: 32868811 PMCID: PMC7459292 DOI: 10.1038/s41598-020-71206-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
As an important type of non-coding RNA molecule, long non-coding RNAs (lncRNAs) have varied roles in many biological processes, and have been studied extensively over the past few years. However, little is known about lncRNA-mediated regulation during cattle growth and development. Therefore, in the present study, RNA sequencing was used to determine the expression level of mRNAs and lncRNAs in the liver of adult Leiqiong cattle under the condition of growth retardation and normal growth. We totally detected 1,124 and 24 differentially expressed mRNAs and lncRNAs, respectively. The differentially expressed mRNAs were mainly associated with growth factor binding, protein K63-linked ubiquitination and cellular protein metabolic process; additionally, they were significantly enriched in the growth and development related pathways, including PPAR signaling pathway, vitamin B6 metabolism, glyoxylate and dicarboxylate metabolism. Combined analysis showed that the co-located differentially expressed lncRNA Lnc_002583 might positively influence the expression of the corresponding genes IFI44 and IFI44L, exerting co-regulative effects on Leiqiong cattle growth and development. Thus, we made the hypothesis that Lnc_002583, IFI44 and IFI44L might function synergistically to regulate the growth of Leiqiong cattle. This study provides a catalog of Leiqiong cattle liver mRNAs and lncRNAs, and will contribute to a better understanding of the molecular mechanism underlying growth regulataion.
Collapse
Affiliation(s)
- Lingxuan Kong
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yinru Han
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, GD, China.
- National Local Joint Engineering Research Center of Livestock and Poutry, South China Agricultural University, Guangzhou, 510642, GD, China.
| |
Collapse
|
14
|
The impact of intrauterine growth restriction on cytochrome P450 enzyme expression and activity. Placenta 2020; 99:50-62. [PMID: 32755725 DOI: 10.1016/j.placenta.2020.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023]
Abstract
With the increased prevalence of non-communicable disease and availability of medications to treat these and other conditions, a pregnancy free from prescribed medication exposure is rare. Up to 99% of women take at least one medication during pregnancy. These medications can be divided into those used to improve maternal health and wellbeing (e.g., analgesics, antidepressants, antidiabetics, antiasthmatics), and those used to promote the baby's wellbeing in either fetal (e.g., anti-arrhythmics) or postnatal life (e.g., antenatal glucocorticoids). These medications are needed for pre-existing or coincidental illnesses in the mother, maternal conditions induced by the pregnancy itself through to conditions that arise in the fetus or that will be encountered by the newborn. Thus, medications administered to the mother may be used to treat the mother, the fetus or both. Metabolism of medications is regulated by a range of physiological processes that change during pregnancy. Other pathological processes such as placental insufficiency can in turn have both immediate and lifelong adverse health consequences for babies. Individuals born growth restricted are more likely to require medications but may also have an altered ability to metabolise these medications in fetal and postnatal life. This review aims to determine the effect of suboptimal fetal growth on the fetal expression of the drug metabolising enzymes (DMEs) that convert medications into active or inactive metabolites, and the transporters that remove both these medications and their metabolites from the fetal compartment.
Collapse
|
15
|
Dietary Supplementation of L-Arginine and N-Carbamylglutamate Attenuated the Hepatic Inflammatory Response and Apoptosis in Suckling Lambs with Intrauterine Growth Retardation. Mediators Inflamm 2020; 2020:2453537. [PMID: 32322162 PMCID: PMC7160735 DOI: 10.1155/2020/2453537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine (Arg) is a semiessential amino acid with several physiological functions. N-Carbamylglutamate (NCG) can promote the synthesis of endogenous Arg in mammals. However, the roles of Arg or NCG on hepatic inflammation and apoptosis in suckling lambs suffering from intrauterine growth restriction (IUGR) are still unclear. The current work is aimed at examining the effects of dietary Arg and NCG on inflammatory and hepatocyte apoptosis in IUGR suckling lambs. On day 7 after birth, 48 newborn Hu lambs were selected from a cohort of 432 twin lambs. Normal-birthweight and IUGR Hu lambs were allocated randomly (n = 12/group) to control (CON), IUGR, IUGR+1% Arg, or IUGR+0.1% NCG groups. Lambs were fed for 21 days from 7 to 28 days old. Compared with CON lambs, relative protein 53 (P53), apoptosis antigen 1 (Fas), Bcl-2-associated X protein (Bax), caspase-3, cytochrome C, tumor necrosis factor alpha (TNF-α), nuclear factor kappa-B (NF-κB) p65, and NF-κB pp65 protein levels were higher (P < 0.05) in liver from IUGR lambs, whereas those in liver from IUGR lambs under Arg or NCG treatment were lower than those in IUGR lambs. These findings indicated that supplementing Arg or NCG reduced the contents of proinflammatory cytokines at the same time when the apoptosis-related pathway was being suppressed, thus suppressing the IUGR-induced apoptosis of hepatic cells.
Collapse
|
16
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
17
|
Jin S, Hu Y, Fu H, Sun S, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100662. [PMID: 32114312 DOI: 10.1016/j.cbd.2020.100662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023]
Abstract
A better understanding of the mechanisms underlying the male sexual differentiation of Macrobrachium nipponense is urgently needed in order to maintain sustainable development of the M. nipponense industry. Environmental factors, especially temperature and illumination, have dramatic effects on gonadal development. The aim of the present study was to identify key genes and metabolites involved in the male sexual differentiation and development of M. nipponense through integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times. A total of 268 differentially abundant metabolites and 11,832 differentially expressed genes (DEGs) were identified. According to integrated metabolomics and transcriptome analyses, glycerophospholipid and sphingolipid metabolism was predicted to have dramatic effects on the male sexual differentiation and development of M. nipponense. According to the KEGG enrichment analysis of DEGs, oxidative phosphorylation, glycolysis/gluconeogenesis, the HIF-1 signaling pathway, the citrate cycle, steroid hormone synthesis, and the spliceosome complex were predicted to promote male differentiation and development by providing adenosine triphosphate, promoting the synthesis of steroid hormones, and providing correct gene products. Quantitative polymerase chain reaction analysis and in situ hybridization showed that the SDHB, PDE1, HSDL1, CYP81F2, SRSF, and SNRNP40 genes were differentially expressed, suggesting roles in the male sexual differentiation and development of M. nipponense. Strong candidate sex-related metabolic pathways and genes in M. nipponense were identified by integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times, as confirmed by PCR analysis and in situ hybridization.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
18
|
Tao S, Zhou T, Saelao P, Wang Y, Zhu Y, Li T, Zhou H, Wang J. Intrauterine Growth Restriction Alters the Genome-Wide DNA Methylation Profiles in Small Intestine, Liver and Longissimus Dorsi Muscle of Newborn Piglets. Curr Protein Pept Sci 2019; 20:713-726. [PMID: 30678618 DOI: 10.2174/1389203720666190124165243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 01/20/2023]
Abstract
Intrauterine growth restriction (IUGR) remains a major problem in swine production since the associated low birth weight leads to high rates of pre-weaning morbidity and mortality, and permanent retardation of growth and development. The underlying regulatory mechanisms from the aspects of epigenetic modification has received widespread attention. Studies explore the changes in genome wide methylation in small intestine (SI), liver and longissimus dorsi muscle (LDM) between IUGR and normal birth weight (NBW) newborn piglets using a methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) approach. The data demonstrated that methylated peaks were prominently distributed in distal intergenic regions and the quantities of peaks in IUGR piglets were more than that of NBW piglets. IUGR piglets had relatively high methylated level in promoters, introns and coding exons in all the three tissues. Through KEGG pathway analysis of differentially methylated genes found that 33, 54 and 5 differentially methylated genes in small intestine, liver and longissimus dorsi muscle between NBW and IUGR piglets, respectively, which are related to development and differentiation, carbohydrate and energy metabolism, lipid metabolism, protein turnover, immune response, detoxification, oxidative stress and apoptosis pathway. The objective of this review is to assess the impact of differentially methylation status on developmental delay, metabolic disorders and immune deficiency of IUGR piglets.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianjiao Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, United States
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Darby JRT, Saini BS, Soo JY, Lock MC, Holman SL, Bradshaw EL, McInnes SJP, Voelcker NH, Macgowan CK, Seed M, Wiese MD, Morrison JL. Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant ewe and increases fetal but not cardiac growth. J Physiol 2019; 597:5063-5077. [PMID: 31483497 DOI: 10.1113/jp278110] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Substrate restriction during critical developmental windows of gestation programmes offspring for a predisposition towards cardiovascular disease in adult life. This study aimed to determine the effect of maternal resveratrol (RSV) treatment in an animal model in which chronic fetal catheterisation is possible and the timing of organ maturation reflects that of the human. Maternal RSV treatment increased uterine artery blood flow, fetal oxygenation and fetal weight. RSV was not detectable in the fetal circulation, indicating that it may not cross the sheep placenta. This study highlights RSV as a possible intervention to restore fetal substrate supply in pregnancies affected by placental insufficiency. ABSTRACT Suboptimal in utero environments with reduced substrate supply during critical developmental windows of gestation predispose offspring to non-communicable diseases such as cardiovascular disease (CVD). Improving fetal substrate supply in these pregnancies may ameliorate the predisposition these offspring have toward adult-onset CVD. This study aimed to determine the effect of maternal resveratrol (RSV) supplementation on uterine artery blood flow and the direct effects of RSV on the fetal heart in a chronically catheterised sheep model of human pregnancy. Maternal RSV treatment significantly increased uterine artery blood flow as measured by phase contrast magnetic resonance imaging, mean gestational fetal P a O 2 and S a O 2 as well as fetal weight. RSV was not detectable in the fetal circulation, and mRNA and protein expression of the histone/protein deacetylase SIRT1 did not differ between treatment groups. No effect of maternal RSV supplementation on AKT/mTOR or CAMKII signalling in the fetal left ventricle was observed. Maternal RSV supplementation is capable of increasing fetal oxygenation and growth in an animal model in which cardiac development parallels that of the human.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Brahmdeep S Saini
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Steven J P McInnes
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia.,School of Engineering, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, Australia, 5095
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Mike Seed
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Wiese
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
20
|
Patel OV, Casey T, Plaut K. Profiling solute-carrier transporters in key metabolic tissues during the postpartum evolution of mammary epithelial cells from nonsecretory to secretory. Physiol Genomics 2019; 51:539-552. [PMID: 31545931 DOI: 10.1152/physiolgenomics.00058.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modifications in the abundance of solute-carrier (SLC) transcripts in tandem with adjustments in genes-associated with energy homeostasis during the postpartum transition of the mammary epithelial cells (MEC) from nonsecretory to secretory is pivotal for supporting milk synthesis. The goal of this study was to identify differentially expressed SLC genes across key metabolic tissues between late pregnancy and onset of lactation. Total RNA was isolated from the mammary, liver, and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured with Rat 230 2.0 Affymetrix GeneChips. LIMMA was utilized to identify the differential gene expression patterns between P20 and L1 tissues. Transcripts engaged in conveying anions, cations, carboxylates, sugars, amino acids, metals, nucleosides, vitamins, and fatty acids were significantly increased (P < 0.05) in MEC during the P20 to L1 shift. Downregulated (P < 0.05) genes in the mammary during the physiological transition included GLUT8 and SLC45a3. In the liver, SLC genes encoding for anion, carbonyl, and nucleotide sugar transporters were upregulated (P < 0.05) at L1. while genes facilitating transportation of anions and hexose were increased (P < 0.05), from P20 to L1 in the adipose tissue. GLUT1 and GLUT4 in the liver, along with GLUT4 and SGLT2 in the adipose tissue, were repressed (P < 0.05) at L1. Our results illustrate that MEC exhibit dynamic molecular plasticity during the nonsecretory to secretory transition and increase biosynthetic capacity through a coordinated tissue specific SLC transcriptome modification to facilitate substrate transfer.
Collapse
Affiliation(s)
- Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
21
|
Jones AK, Brown LD, Rozance PJ, Serkova NJ, Hay WW, Friedman JE, Wesolowski SR. Differential effects of intrauterine growth restriction and a hypersinsulinemic-isoglycemic clamp on metabolic pathways and insulin action in the fetal liver. Am J Physiol Regul Integr Comp Physiol 2019; 316:R427-R440. [PMID: 30758974 PMCID: PMC6589601 DOI: 10.1152/ajpregu.00359.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intrauterine growth-restricted (IUGR) fetal sheep have increased hepatic glucose production (HGP) that is resistant to suppression during a hyperinsulinemic-isoglycemic clamp (insulin clamp). We hypothesized that the IUGR fetal liver would have activation of metabolic and signaling pathways that support HGP and inhibition of insulin-signaling pathways. To test this, we used transcriptomic profiling with liver samples from control (CON) and IUGR fetuses receiving saline or an insulin clamp. The IUGR liver had upregulation of genes associated with gluconeogenesis/glycolysis, transcription factor regulation, and cytokine responses and downregulation of genes associated with cholesterol synthesis, amino acid degradation, and detoxification pathways. During the insulin clamp, genes associated with cholesterol synthesis and innate immune response were upregulated in CON and IUGR. There were 20-fold more genes differentially expressed during the insulin clamp in IUGR versus CON. These genes were associated with proteasome activation and decreased amino acid and lipid catabolism. We found increased TRB3, JUN, MYC, and SGK1 expression and decreased PTPRD expression as molecular targets for increased HGP in IUGR. As candidate genes for resistance to insulin's suppression of HGP, expression of JUN, MYC, and SGK1 increased more during the insulin clamp in CON compared with IUGR. Metabolites were measured with 1H-nuclear magnetic resonance and support increased amino acid concentrations, decreased mitochondria activity and energy state, and increased cell stress in the IUGR liver. These results demonstrate a robust response, beyond suppression of HGP, during the insulin clamp and coordinate responses in glucose, amino acid, and lipid metabolism in the IUGR fetus.
Collapse
Affiliation(s)
- Amanda K Jones
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Natalie J Serkova
- Department of Radiology, University of Colorado School of Medicine , Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Jacob E Friedman
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
22
|
Spiroski AM, Oliver MH, Jaquiery AL, Prickett TCR, Espiner EA, Harding JE, Bloomfield FH. Postnatal effects of intrauterine treatment of the growth-restricted ovine fetus with intra-amniotic insulin-like growth factor-1. J Physiol 2018; 596:5925-5945. [PMID: 29235113 PMCID: PMC6265545 DOI: 10.1113/jp274999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/22/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Fetal growth restriction increases the risk of fetal and neonatal mortality and morbidity, and contributes to increased risk of chronic disease later in life. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of the growth-restricted ovine fetus improves fetal growth, but postnatal effects are unknown. Here we report that intra-amniotic IGF1 treatment of the growth-restricted ovine fetus alters size at birth and mechanisms of early postnatal growth in a sex-specific manner. We also show that maternal plasma C-type natriuretic peptide (CNP) products are related to fetal oxygenation and size at birth, and hence may be useful for non-invasive monitoring of fetal growth restriction. Intrauterine IGF1 treatment in late gestation is a potentially clinically relevant intervention that may ameliorate the postnatal complications of fetal growth restriction. ABSTRACT Placental insufficiency-mediated fetal growth restriction (FGR) is associated with altered postnatal growth and metabolism, which are, in turn, associated with increased risk of adult disease. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of ovine FGR increases growth rate in late gestation, but the effects on postnatal growth and metabolism are unknown. We investigated the effects of intra-amniotic IGF1 administration to ovine fetuses with uteroplacental embolisation-induced FGR on phenotypical and physiological characteristics in the 2 weeks after birth. We measured early postnatal growth velocity, amino-terminal propeptide of C-type natriuretic peptide (NTproCNP), body composition, tissue-specific mRNA expression, and milk intake in singleton lambs treated weekly with 360 μg intra-amniotic IGF1 (FGRI; n = 13 females, 19 males) or saline (FGRS; n = 18 females, 12 males) during gestation, and in controls (CON; n = 15 females, 22 males). There was a strong positive correlation between maternal NTproCNP and fetal oxygenation, and size at birth in FGR lambs. FGR lambs were ∼20% lighter at birth and demonstrated accelerated postnatal growth velocity. IGF1 treatment did not alter perinatal mortality, partially abrogated the reduction in newborn size in females, but not males, and reduced accelerated growth in both sexes. IGF1-mediated upregulation of somatotrophic genes in males during the early postnatal period could suggest that treatment effects are associated with delayed axis maturation, whilst treatment outcomes in females may rely on the reprogramming of nutrient-dependent mechanisms of growth. These data suggest that the growth-restricted fetus is responsive to intra-amniotic intervention with IGF1, and that sex-specific somatotrophic effects persist in the early postnatal period.
Collapse
Affiliation(s)
- A. M. Spiroski
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - M. H. Oliver
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - A. L. Jaquiery
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | | | - E. A. Espiner
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - J. E. Harding
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | | |
Collapse
|
23
|
Jonker SS, Louey S, Roselli CE. Cardiac myocyte proliferation and maturation near term is inhibited by early gestation maternal testosterone exposure. Am J Physiol Heart Circ Physiol 2018; 315:H1393-H1401. [PMID: 30095996 PMCID: PMC6297822 DOI: 10.1152/ajpheart.00314.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Polycystic ovary syndrome is a complex and common disorder in women, and those affected experience an increased burden of cardiovascular disease. It is an intergenerational syndrome, as affected women with high androgen levels during pregnancy "program" fetal development, leading to a similar phenotype in their female offspring. The effect of excess maternal testosterone exposure on fetal cardiomyocyte growth and maturation is unknown. Pregnant ewes received biweekly injections of vehicle (control) or 100 mg testosterone propionate between 30 and 59 days of gestation (early T) or between 60 and 90 days of gestation (late T). Fetuses were delivered at ~135 days of gestation, and their hearts were enzymatically dissociated to measure cardiomyocyte growth (dimensional measurements), maturation (proportion binucleate), and proliferation (nuclear Ki-67 protein). Early T depressed serum insulin-like growth factor 1 and caused intrauterine growth restriction (IUGR; P < 0.0005). Hearts were smaller with early T ( P < 0.001) due to reduced cardiac myocyte maturation ( P < 0.0005) and proliferation ( P = 0.017). Maturation was also lower in male than female fetuses ( P = 0.004) independent of treatment. Late T did not affect cardiac growth. Early excess maternal testosterone exposure depresses circulating insulin-like growth factor 1 near term and causes IUGR in both female and male offspring. These fetuses have small, immature hearts with reduced proliferation, which may reduce cardiac myocyte endowment and predispose to adverse cardiac growth in postnatal life. While excess maternal testosterone exposure leads to polycystic ovary syndrome and cardiovascular disease in female offspring, it may also predispose to complications of IUGR and cardiovascular disease in male offspring. NEW & NOTEWORTHY Using measurements of cardiac myocyte growth and maturation in an ovine model of polycystic ovary syndrome, this study demonstrates that early gestation excess maternal testosterone exposure reduces near-term cardiomyocyte proliferation and maturation in intrauterine growth-restricted female and male fetuses. The effect of testosterone is restricted to exposure during a specific period early in pregnancy, and the effects appear mediated through reduced insulin-like growth factor 1 signaling. Furthermore, male fetuses, regardless of treatment, had fewer mature cardiomyocytes than female fetuses.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Samantha Louey
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Charles E Roselli
- Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
24
|
Mangwiro YTM, Cuffe JSM, Briffa JF, Mahizir D, Anevska K, Jefferies AJ, Hosseini S, Romano T, Moritz KM, Wlodek ME. Maternal exercise in rats upregulates the placental insulin-like growth factor system with diet- and sex-specific responses: minimal effects in mothers born growth restricted. J Physiol 2018; 596:5947-5964. [PMID: 29953638 DOI: 10.1113/jp275758] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The placental insulin-like growth factor (IGF) system is critical for normal fetoplacental growth, which is dysregulated following several pregnancy perturbations including uteroplacental insufficiency and maternal obesity. We report that the IGF system was altered in placentae of mothers born growth restricted compared to normal birth weight mothers, with maternal diet- and fetal sex-specific responses. Additionally, we report increased body weight and plasma IGF1 concentrations in fetuses from chow-fed normal birth weight mothers that exercised prior to and continued during pregnancy compared to sedentary mothers. Exercise initiated during pregnancy, on the other hand, resulted in placental morphological alterations and increased IGF1 and IGF1R protein expression, which may in part be modulated by reduced Let 7f-1 miRNA abundance. Growth restriction of mothers before birth and exercise differentially regulate the placental IGF system with diet- and sex-specific responses, probably as a means to improve fetoplacental growth and development, and hence neonatal survival. This increased neonatal survival may prevent adult disease onset. ABSTRACT The insulin-like growth factor (IGF) system regulates fetoplacental growth and plays a role in disease programming. Dysregulation of the IGF system is implicated in several pregnancy perturbations associated with altered fetal growth, including intrauterine growth restriction and maternal obesity. Limited human studies have demonstrated that maternal exercise enhances fetoplacental growth and decreases cord IGF ligands, which may restore the placental IGF system in complicated pregnancies. This study investigated the impact maternal exercise has on the placental IGF system in placentae from mothers born growth restricted and if these outcomes are dependent on maternal diet or fetal sex. Uteroplacental insufficiency (Restricted) or sham (Control) surgery was induced on embryonic day (E) 18 in Wistar-Kyoto rats. F1 offspring were fed a chow or high-fat diet from weaning, and at 16 weeks were randomly allocated an exercise protocol: Sedentary, Exercised prior to and during pregnancy (Exercise), or Exercised during pregnancy only (PregEx). Females were mated (20 weeks) with placentae associated with F2 fetuses collected at E20. The placental IGF system mRNA abundance and placental morphology was altered in mothers born growth restricted. Exercise increased fetal weight and Control plasma IGF1 concentrations, and decreased female placental weight. PregEx did not influence fetoplacental growth but increased placental IGF1 and IGF1R (potentially modulated by reduced Let 7f-1 miRNA) and decreased placental IGF2 protein. Importantly, these placental IGF system changes occurred with sex-specific responses. These data highlight that exercise differently influences fetoplacental growth and the placental IGF system depending on maternal exercise initiation, which may prevent the transgenerational transmission of deficits and dysfunction.
Collapse
Affiliation(s)
- Yeukai T M Mangwiro
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia.,Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,School of Medical Science and Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4215, Australia
| | - Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dayana Mahizir
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Andrew J Jefferies
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sogand Hosseini
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
25
|
Cogollos L, Garcia-Contreras C, Vazquez-Gomez M, Astiz S, Sanchez-Sanchez R, Gomez-Fidalgo E, Ovilo C, Isabel B, Gonzalez-Bulnes A. Effects of fetal genotype and sex on developmental response to maternal malnutrition. Reprod Fertil Dev 2018; 29:1155-1168. [PMID: 27184893 DOI: 10.1071/rd15385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to determine whether developmental patterns, adiposity level and fatty-acid composition of fetuses exposed to maternal malnutrition are driven by their sex or their genotype, or both, as these may modulate the adaptive response to the intrauterine environment independently of the maternal genotype. We used a single maternal genotype (purebred Iberian (IB) sows), which was inseminated with heterospermic semen (obtained by mixing semen from Iberian and Large White (LW) boars), to obtain four different subsets of fetuses (male and female, purebred (IB×IB) and crossbred (IB×LW)) in Iberian purebred sows. Analysis of fetal phenotypes indicated a better adaptive response of the female offspring, which was modulated by their genotype. When faced with prenatal undernutrition, females prioritised the growth of vital organs (brain, liver, lungs, kidneys and intestine) at the expense of bone and muscle. Moreover, the analysis of fat composition showed a higher availability of essential fatty acids in the female sex than in their male counterparts and also in the Iberian genotype than in crossbred fetuses. These results are of high translational value for understanding ethnic differences in prenatal programming of postnatal health and disease status, and show evidence that prenatal development and metabolic traits are primarily determined by fetal sex and strongly modulated by fetal genotype.
Collapse
Affiliation(s)
- Laura Cogollos
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | - Marta Vazquez-Gomez
- Faculty of Veterinary Sciences, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Susana Astiz
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Raul Sanchez-Sanchez
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ernesto Gomez-Fidalgo
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Cristina Ovilo
- Department of Animal Genetics, INIA, Ctra. De A Coruña Km. 7, 28040 Madrid, Spain
| | - Beatriz Isabel
- Faculty of Veterinary Sciences, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Antonio Gonzalez-Bulnes
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
26
|
Soo JY, Wiese MD, Berry MJ, McMillen IC, Morrison JL. Intrauterine growth restriction may reduce hepatic drug metabolism in the early neonatal period. Pharmacol Res 2018; 134:68-78. [PMID: 29890254 DOI: 10.1016/j.phrs.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 11/26/2022]
Abstract
The effects of intrauterine growth restriction (IUGR) extend well into postnatal life. IUGR is associated with an increased risk of adverse health outcomes, which often leads to greater medication usage. Many medications require hepatic metabolism for activation or clearance, but hepatic function may be altered in IUGR fetuses. Using a sheep model of IUGR, we determined the impact of IUGR on hepatic drug metabolism and drug transporter expression, both important mediators of fetal drug exposure, in late gestation and in neonatal life. In the late gestation fetus, IUGR decreased the gene expression of uptake drug transporter OATPC and increased P-glycoprotein protein expression in the liver, but there was no change in the activity of the drug metabolising enzymes CYP3A4 or CYP2D6. In contrast, at 3 weeks of age, CYP3A4 activity was reduced in the livers of lambs born with low birth weight (LBW), indicating that LBW results in changes to drug metabolising capacity in neonatal life. Together, these results suggest that IUGR may reduce hepatic drug metabolism in fetal and neonatal life through different mechanisms.
Collapse
Affiliation(s)
- Jia Yin Soo
- Early Origins of Adult Health Research Group, Adelaide, SA, 5001, Australia; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Michael D Wiese
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mary J Berry
- Centre for Translational Physiology, Wellington, New Zealand; Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, Adelaide, SA, 5001, Australia; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
27
|
Darby JRT, McMillen IC, Morrison JL. Maternal undernutrition in late gestation increases IGF2 signalling molecules and collagen deposition in the right ventricle of the fetal sheep heart. J Physiol 2018; 596:2345-2358. [PMID: 29604078 DOI: 10.1113/jp275806] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS This study investigates the impact of decreased fetal plasma glucose concentrations on the developing heart in late gestation, by subjecting pregnant ewes to a 50% global nutrient restriction. Late gestation undernutrition (LGUN) decreased fetal plasma glucose concentrations whilst maintaining a normoxemic blood gas status. LGUN increased the mRNA expression of IGF2 and IGF2R. Fetal plasma glucose concentrations, but not fetal blood pressure, were significantly correlated with IGF2 expression and the activation of CAMKII in the fetal right ventricle. LGUN increased interstitial collagen deposition and altered the protein abundance of phospho-PLB and phospho-troponin I, regulators of cardiac contractility and relaxation. This study shows that a decrease in fetal plasma glucose concentrations may play a role in the development of detrimental changes in the right ventricle in early life, highlighting CAMKII as a potential target for the development of intervention strategies. ABSTRACT Exposure of the fetus to a range of environmental stressors, including maternal undernutrition, is associated with an increased risk of death from cardiovascular disease in adult life. This study aimed to determine the effect of maternal nutrient restriction in late gestation on the molecular mechanisms that regulate cardiac growth and development of the fetal heart. Maternal undernutrition resulted in a decrease in fetal glucose concentrations across late gestation, whilst fetal arterial PO2 remained unchanged between the control and late gestation undernutrition (LGUN) groups. There was evidence of an up-regulation of IGF2/IGF2R signalling through the CAMKII pathway in the fetal right ventricle in the LGUN group, suggesting an increase in hypertrophic signalling. LGUN also resulted in an increased mRNA expression of COL1A, TIMP1 and TIMP3 in the right ventricle of the fetal heart. In addition, there was an inverse relationship between fetal glucose concentrations and COL1A expression. The presence of interstitial fibrosis in the heart of the LGUN group was confirmed through the quantification of picrosirius red-stained sections of the right ventricle. We have therefore shown that maternal undernutrition in late gestation may drive the onset of myocardial remodelling in the fetal right ventricle and thus has negative implications for right ventricle function and cardiac health in later life.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| |
Collapse
|
28
|
Ontogeny of Sex-Related Differences in Foetal Developmental Features, Lipid Availability and Fatty Acid Composition. Int J Mol Sci 2017; 18:ijms18061171. [PMID: 28561768 PMCID: PMC5485995 DOI: 10.3390/ijms18061171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Sex-related differences in lipid availability and fatty acid composition during swine foetal development were investigated. Plasma cholesterol and triglyceride concentrations in the mother were strongly related to the adequacy or inadequacy of foetal development and concomitant activation of protective growth in some organs (brain, heart, liver and spleen). Cholesterol and triglyceride availability was similar in male and female offspring, but female foetuses showed evidence of higher placental transfer of essential fatty acids and synthesis of non-essential fatty acids in muscle and liver. These sex-related differences affected primarily the neutral lipid fraction (triglycerides), which may lead to sex-related postnatal differences in energy partitioning. These results illustrate the strong influence of the maternal lipid profile on foetal development and homeorhesis, and they confirm and extend previous reports that female offspring show better adaptive responses to maternal malnutrition than male offspring. These findings may help guide dietary interventions to ensure adequate fatty acid availability for postnatal development.
Collapse
|
29
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
30
|
Wesolowski SR, Hay WW. Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Mol Cell Endocrinol 2016; 435:61-68. [PMID: 26723529 PMCID: PMC4921201 DOI: 10.1016/j.mce.2015.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Glucose is the major fuel for fetal oxidative metabolism. A positive maternal-fetal glucose gradient drives glucose across the placenta and is sufficient to meet the demands of the fetus, eliminating the need for endogenous hepatic glucose production (HGP). However, fetuses with intrauterine growth restriction (IUGR) from pregnancies complicated by placental insufficiency have an early activation of HGP. Furthermore, this activated HGP is resistant to suppression by insulin. Here, we present the data demonstrating the activation of HGP in animal models, mostly fetal sheep, and human pregnancies with IUGR. We also discuss potential mechanisms and pathways that may produce and support HGP and hepatic insulin resistance in IUGR fetuses.
Collapse
Affiliation(s)
- Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
32
|
González-Candia A, Veliz M, Araya C, Quezada S, Ebensperger G, Serón-Ferré M, Reyes RV, Llanos AJ, Herrera EA. Potential adverse effects of antenatal melatonin as a treatment for intrauterine growth restriction: findings in pregnant sheep. Am J Obstet Gynecol 2016; 215:245.e1-7. [PMID: 26902986 DOI: 10.1016/j.ajog.2016.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. OBJECTIVES The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. STUDY DESIGN High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). RESULTS Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. CONCLUSIONS Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans.
Collapse
|
33
|
Boylan JM, Sanders JA, Gruppuso PA. Regulation of fetal liver growth in a model of diet restriction in the pregnant rat. Am J Physiol Regul Integr Comp Physiol 2016; 311:R478-88. [PMID: 27357801 DOI: 10.1152/ajpregu.00138.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/23/2016] [Indexed: 12/16/2022]
Abstract
Limited nutrient availability is a cause of intrauterine growth restriction (IUGR), a condition that has important implications for the well being of the offspring. Using the established IUGR model of maternal fasting in the rat, we investigated mechanisms that control gene expression and mRNA translation in late-gestation fetal liver. Maternal fasting for 48 h during the last one-third of gestation was associated with a 10-15% reduction in fetal body weight and a disproportionate one-third reduction in total fetal liver protein. The fetal liver transcriptome showed only subtle changes consistent with reduced cell proliferation and enhanced differentiation in IUGR. Effects on the transcriptome could not be attributed to specific transcription factors. We purified translating polysomes to profile the population of mRNAs undergoing active translation. Microarray analysis of the fetal liver translatome indicated a global reduction of translation. The only targeted effect was enhanced translation of mitochondrial ribosomal proteins in IUGR, consistent with enhanced mitochondrial biogenesis. There was no evidence for attenuated signaling through the mammalian target of rapamycin (mTOR). Western blot analysis showed no changes in fetal liver mTOR signaling. However, eukaryotic initiation factor 2α (eIF2α) phosphorylation was increased in livers from IUGR fetuses, consistent with a role in global translation control. Our data indicate that IUGR-associated changes in hepatic gene expression and mRNA translation likely involve a network of complex regulatory mechanisms, some of which are novel and distinct from those that mediate the response of the liver to nutrient restriction in the adult rat.
Collapse
Affiliation(s)
- Joan M Boylan
- Division of Pediatric Endocrinology, Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Jennifer A Sanders
- Division of Pediatric Endocrinology, Rhode Island Hospital and Brown University, Providence, Rhode Island; Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island; and
| | - Philip A Gruppuso
- Division of Pediatric Endocrinology, Rhode Island Hospital and Brown University, Providence, Rhode Island; Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
34
|
Culpepper C, Wesolowski SR, Benjamin J, Bruce JL, Brown LD, Jonker SS, Wilkening RB, Hay WW, Rozance PJ. Chronic anemic hypoxemia increases plasma glucagon and hepatic PCK1 mRNA in late-gestation fetal sheep. Am J Physiol Regul Integr Comp Physiol 2016; 311:R200-8. [PMID: 27170658 DOI: 10.1152/ajpregu.00037.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 01/30/2023]
Abstract
Hepatic glucose production (HGP) normally begins just prior to birth. Prolonged fetal hypoglycemia, intrauterine growth restriction, and acute hypoxemia produce an early activation of fetal HGP. To test the hypothesis that prolonged hypoxemia increases factors which regulate HGP, studies were performed in fetuses that were bled to anemic conditions (anemic: n = 11) for 8.9 ± 0.4 days and compared with control fetuses (n = 7). Fetal arterial hematocrit and oxygen content were 32% and 50% lower, respectively, in anemic vs. controls (P < 0.005). Arterial plasma glucose was 15% higher in the anemic group (P < 0.05). Hepatic mRNA expression of phosphonenolpyruvate carboxykinase (PCK1) was twofold higher in the anemic group (P < 0.05). Arterial plasma glucagon concentrations were 70% higher in anemic fetuses compared with controls (P < 0.05), and they were positively associated with hepatic PCK1 mRNA expression (P < 0.05). Arterial plasma cortisol concentrations increased 90% in the anemic fetuses (P < 0.05), but fetal cortisol concentrations were not correlated with hepatic PCK1 mRNA expression. Hepatic glycogen content was 30% lower in anemic vs. control fetuses (P < 0.05) and was inversely correlated with fetal arterial plasma glucagon concentrations. In isolated primary fetal sheep hepatocytes, incubation in low oxygen (3%) increased PCK1 mRNA threefold compared with incubation in normal oxygen (21%). Together, these results demonstrate that glucagon and PCK1 may potentiate fetal HGP during chronic fetal anemic hypoxemia.
Collapse
Affiliation(s)
- Christine Culpepper
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Joshua Benjamin
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer L Bruce
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura D Brown
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Sonnet S Jonker
- Knight Cardiovascular Institute Center for Developmental Health, Oregon Health & Science University, Portland, Oregon
| | - Randall B Wilkening
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
35
|
McGillick EV, Orgeig S, Morrison JL. Structural and molecular regulation of lung maturation by intratracheal vascular endothelial growth factor administration in the normally grown and placentally restricted fetus. J Physiol 2015; 594:1399-420. [PMID: 26537782 DOI: 10.1113/jp271113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Inhibition of hypoxia signalling leads to respiratory distress syndrome (RDS), whereas administration of vascular endothelial growth factor (VEGF), the most widely characterized hypoxia responsive factor, protects from RDS. In the lung of the chronically hypoxaemic placentally restricted (PR) fetus, there is altered regulation of hypoxia signalling. This leads to reduced surfactant maturation in late gestation and provides evidence for the increased risk of RDS in growth restricted neonates at birth. We evaluated the effect of recombinant human VEGF administration with respect to bypassing the endogenous regulation of hypoxia signalling in the lung of the normally grown and PR sheep fetus. There was no effect of VEGF administration on fetal blood pressure or fetal breathing movements. We examined the effect on the expression of genes regulating VEGF signalling (FLT1 and KDR), angiogenesis (ANGPT1, AQP1, ADM), alveolarization (MMP2, MMP9, TIMP1, COL1A1, ELN), proliferation (IGF1, IGF2, IGF1R, MKI67, PCNA), inflammation (CCL2, CCL4, IL1B, TNFA, TGFB1, IL10) and surfactant maturation (SFTP-A, SFTP-B, SFTP-C, SFTP-D, PCYT1A, LPCAT, LAMP3, ABCA3). Despite the effects of PR on the expression of genes regulating airway remodelling, inflammatory signalling and surfactant maturation, there were very few effects of VEGF administration on gene expression in the lung of both the normally grown and PR fetus. There were, however, positive effects of VEGF administration on percentage tissue, air space and numerical density of SFTP-B positive alveolar epithelial cells in fetal lung tissue. These results provide evidence for the stimulatory effects of VEGF administration on structural maturation in the lung of both the normally grown and PR fetus.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group.,Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | | |
Collapse
|
36
|
Clifton VL, Moss TJM, Wooldridge AL, Gatford KL, Liravi B, Kim D, Muhlhausler BS, Morrison JL, Davies A, De Matteo R, Wallace MJ, Bischof RJ. Development of an experimental model of maternal allergic asthma during pregnancy. J Physiol 2015; 594:1311-25. [PMID: 26235954 DOI: 10.1113/jp270752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022] Open
Abstract
Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.
Collapse
Affiliation(s)
- Vicki L Clifton
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,Mater Medical Research Institute, University of Queensland, Brisbane, Qld, 4101, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Amy L Wooldridge
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kathryn L Gatford
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bahar Liravi
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Dasom Kim
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Beverly S Muhlhausler
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Andrew Davies
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia.,School of Biomedical Sciences, Peninsula Campus, Monash University, Frankston, VIC, 3199, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Robert J Bischof
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
37
|
Brown LD, Rozance PJ, Bruce JL, Friedman JE, Hay WW, Wesolowski SR. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26224688 DOI: 10.1152/ajpregu.00197.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrauterine growth-restricted (IUGR) fetal sheep, produced by placental insufficiency, have lower oxygen concentrations, higher lactate concentrations, and increased hepatic glucose production that is resistant to suppression by insulin. We hypothesized that increased lactate production in the IUGR fetus results from reduced glucose oxidation, during basal and maximal insulin-stimulated conditions, and is used to support glucose production. To test this, studies were performed in late-gestation control (CON) and IUGR fetal sheep under basal and hyperinsulinemic-clamp conditions. The basal glucose oxidation rate was similar and increased by 30-40% during insulin clamp in CON and IUGR fetuses (P < 0.005). However, the fraction of glucose oxidized was 15% lower in IUGR fetuses during basal and insulin-clamp periods (P = 0.05). IUGR fetuses also had four-fold higher lactate concentrations (P < 0.001) and lower lactate uptake rates (P < 0.05). In IUGR fetal muscle and liver, mRNA expression of pyruvate dehydrogenase kinase (PDK4), an inhibitor of glucose oxidation, was increased over fourfold. In IUGR fetal liver, but not skeletal muscle, mRNA expression of lactate dehydrogenase A (LDHA) was increased nearly fivefold. Hepatic expression of the gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK)1, and PCK2, was correlated with expression of PDK4 and LDHA. Collectively, these in vivo and tissue data support limited capacity for glucose oxidation in the IUGR fetus via increased PDK4 in skeletal muscle and liver. We speculate that lactate production also is increased, which may supply carbon for glucose production in the IUGR fetal liver.
Collapse
Affiliation(s)
- Laura D Brown
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer L Bruce
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jacob E Friedman
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
38
|
Orgeig S, McGillick EV, Botting KJ, Zhang S, McMillen IC, Morrison JL. Increased lung prolyl hydroxylase and decreased glucocorticoid receptor are related to decreased surfactant protein in the growth-restricted sheep fetus. Am J Physiol Lung Cell Mol Physiol 2015; 309:L84-97. [PMID: 25934670 DOI: 10.1152/ajplung.00275.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/24/2015] [Indexed: 11/22/2022] Open
Abstract
Experimental placental restriction (PR) by carunclectomy in fetal sheep results in intrauterine growth restriction (IUGR), chronic hypoxemia, increased plasma cortisol, and decreased lung surfactant protein (SP) expression. The mechanisms responsible for decreased SP expression are unknown but may involve decreased glucocorticoid (GC) action or changes in hypoxia signaling. Endometrial caruncles were removed from nonpregnant ewes to induce PR. Lungs were collected from control and PR fetuses at 130-135 (n = 19) and 139-145 (n = 28) days of gestation. qRT-PCR and Western blotting were used to quantify lung mRNA and protein expression, respectively, of molecular regulators and downstream targets of the GC and hypoxia-signaling pathways. We confirmed a decrease in SP-A, -B, and -C, but not SP-D, mRNA expression in PR fetuses at both ages. There was a net downregulation of GC signaling with a reduction in GC receptor (GR)-α and -β protein expression and a decrease in the cofactor, GATA-6. GC-responsive genes including transforming growth factor-β1, IL-1β, and β2-adrenergic receptor were not stimulated. Prolyl hydroxylase domain (PHD)2 mRNA and protein and PHD3 mRNA expression increased with a concomitant increase in hypoxia-inducible factor-1α (HIF-1α) and HIF-1β mRNA expression. There was an increase in mRNA expression of several, but not all, hypoxia-responsive genes. Hence, both GC and hypoxia signaling may contribute to reduced SP expression. Although acute hypoxia normally inactivates PHDs, chronic hypoxemia in the PR fetus increased PHD abundance, which normally prevents HIF signaling. This may represent a mechanism by which chronic hypoxemia contributes to the decrease in SP production in the IUGR fetal lung.
Collapse
Affiliation(s)
- Sandra Orgeig
- Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia;
| |
Collapse
|
39
|
Xu H, Bionaz M, Sloboda DM, Ehrlich L, Li S, Newnham JP, Dudenhausen JW, Henrich W, Plagemann A, Challis JR, Braun T. The dilution effect and the importance of selecting the right internal control genes for RT-qPCR: a paradigmatic approach in fetal sheep. BMC Res Notes 2015; 8:58. [PMID: 25881111 PMCID: PMC4352295 DOI: 10.1186/s13104-015-0973-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/31/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The key to understanding changes in gene expression levels using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) relies on the ability to rationalize the technique using internal control genes (ICGs). However, the use of ICGs has become increasingly problematic given that any genes, including housekeeping genes, thought to be stable across different tissue types, ages and treatment protocols, can be regulated at transcriptomic level. Our interest in prenatal glucocorticoid (GC) effects on fetal growth has resulted in our investigation of suitable ICGs relevant in this model. The usefulness of RNA18S, ACTB, HPRT1, RPLP0, PPIA and TUBB as ICGs was analyzed according to effects of early dexamethasone (DEX) treatment, gender, and gestational age by two approaches: (1) the classical approach where raw (i.e., not normalized) RT-qPCR data of tested ICGs were statistically analyzed and the best ICG selected based on absence of any significant effect; (2) used of published algorithms. For the latter the geNorm Visual Basic application was mainly used, but data were also analyzed by Normfinder and Bestkeeper. In order to account for confounding effects on the geNorm analysis due to co-regulation among ICGs tested, network analysis was performed using Ingenuity Pathway Analysis software. The expression of RNA18S, the most abundant transcript, and correlation of ICGs with RNA18S, total RNA, and liver-specific genes were also performed to assess potential dilution effect of raw RT-qPCR data. The effect of the two approaches used to select the best ICG(s) was compared by normalization of NR3C1 (glucocorticoid receptor) mRNA expression, as an example for a target gene. RESULTS Raw RT-qPCR data of all the tested ICGs was significantly reduced across gestation. TUBB was the only ICG that was affected by DEX treatment. Using approach (1) all tested ICGs would have been rejected because they would initially appear as not reliable for normalization. However, geNorm analysis (approach 2) of the ICGs indicated that the geometrical mean of PPIA, HPRT1, RNA18S and RPLPO can be considered a reliable approach for normalization of target genes in both control and DEX treated groups. Different subset of ICGs were tested for normalization of NR3C1 expression and, despite the overall pattern of the mean was not extremely different, the statistical analysis uncovered a significant influence of the use of different normalization approaches on the expression of the target gene. We observed a decrease of total RNA through gestation, a lower decrease in raw RT-qPCR data of the two rRNA measured compared to ICGs, and a positive correlation between raw RT-qPCR data of ICGs and total RNA. Based on the same amount of total RNA to performed RT-qPCR analysis, those data indicated that other mRNA might have had a large increase in expression and, as consequence, had artificially diluted the stably expressed genes, such as ICGs. This point was demonstrated by a significant negative correlation of raw RT-qPCR data between ICGs and liver-specific genes. CONCLUSION The study confirmed the necessity of assessing multiple ICGs using algorithms in order to obtain a reliable normalization of RT-qPCR data. Our data indicated that the use of the geometrical mean of PPIA, HPRT1, RNA18S and RPLPO can provide a reliable normalization for the proposed study. Furthermore, the dilution effect observed support the unreliability of the classical approach to test ICGs. Finally, the observed change in the composition of RNA species through time reveals the limitation of the use of ICGs to normalize RT-qPCR data, especially if absolute quantification is required.
Collapse
Affiliation(s)
- Huaisheng Xu
- Departments of Obstetrics and Division of Experimental Obstetrics, Charité - University Berlin, Augustenburger Platz 1, Berlin, Germany. .,Departments of Obstetrics and Gynecology, Linyi People's Hospital, Shandong, China.
| | - Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, USA.
| | - Deborah M Sloboda
- Departments of Biochemistry and Biomedical Sciences, Obstetrics & Gynecology and Pediatrics, McMaster University, Hamilton, Canada.
| | - Loreen Ehrlich
- Departments of Obstetrics and Division of Experimental Obstetrics, Charité - University Berlin, Augustenburger Platz 1, Berlin, Germany.
| | - Shaofu Li
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, and Women and Infants Research Foundation of Western Australia, Perth, Australia.
| | - John P Newnham
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, and Women and Infants Research Foundation of Western Australia, Perth, Australia.
| | - Joachim W Dudenhausen
- Departments of Obstetrics and Division of Experimental Obstetrics, Charité - University Berlin, Augustenburger Platz 1, Berlin, Germany.
| | - Wolfgang Henrich
- Departments of Obstetrics and Division of Experimental Obstetrics, Charité - University Berlin, Augustenburger Platz 1, Berlin, Germany.
| | - Andreas Plagemann
- Departments of Obstetrics and Division of Experimental Obstetrics, Charité - University Berlin, Augustenburger Platz 1, Berlin, Germany.
| | - John Rg Challis
- Departments of Physiology, Obstetrics and Gynecology, University of Toronto, Toronto, Canada. .,Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada.
| | - Thorsten Braun
- Departments of Obstetrics and Division of Experimental Obstetrics, Charité - University Berlin, Augustenburger Platz 1, Berlin, Germany.
| |
Collapse
|
40
|
Poudel R, McMillen IC, Dunn SL, Zhang S, Morrison JL. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am J Physiol Regul Integr Comp Physiol 2015; 308:R151-62. [DOI: 10.1152/ajpregu.00036.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the fetus, there is a redistribution of cardiac output in response to acute hypoxemia, to maintain perfusion of key organs, including the brain, heart, and adrenal glands. There may be a similar redistribution of cardiac output in the chronically hypoxemic, intrauterine growth-restricted fetus. Surgical removal of uterine caruncles in nonpregnant ewe results in the restriction of placental growth (PR) and intrauterine growth. Vascular catheters were implanted in seven control and six PR fetal sheep, and blood flow to organs was determined using microspheres. Placental and fetal weight was significantly reduced in the PR group. Despite an increase in the relative brain weight in the PR group, there was no difference in blood flow to the brain between the groups, although PR fetuses had higher blood flow to the temporal lobe. Adrenal blood flow was significantly higher in PR fetuses, and there was a direct relationship between mean gestational PaO2 and blood flow to the adrenal gland. There was no change in blood flow, but a decrease in oxygen and glucose delivery to the heart in the PR fetuses. In another group, there was a decrease in femoral artery blood flow in the PR compared with the Control group, and this may support blood flow changes to the adrenal and temporal lobe. In contrast to the response to acute hypoxemia, these data show that there is a redistribution of blood flow to the adrenals and temporal lobe, but not the heart or whole brain, in chronically hypoxemic PR fetuses in late gestation.
Collapse
Affiliation(s)
- Rajan Poudel
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I. Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L. Dunn
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Abstract
Rodents, particularly rats, are used in the majority of intrauterine growth restriction (IUGR) research. An important tool that is lacking in this field is the ability to impose IUGR on transgenic mice. We therefore developed a novel mouse model of chronic IUGR using U-46619, a thromboxane A2 (TXA2) analog, infusion. TXA2 overproduction is prevalent in human pregnancies complicated by cigarette smoking, diabetes mellitus and preeclampsia. In this model, U-46619 micro-osmotic pump infusion in the last week of C57BL/6J mouse gestation caused maternal hypertension. IUGR pups weighed 15% less, had lighter brain, lung, liver and kidney weights, but had similar nose-to-anus lengths compared with sham pups at birth. Metabolically, IUGR pups showed increased essential branched-chain amino acids. They were normoglycemic yet hypoinsulinemic. They showed decreased hepatic mRNA levels of total insulin-like growth factor-1 and its variants, but increased level of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha. IUGR offspring were growth restricted from birth (P1) through postnatal day 21 (P21). IUGR males caught up with sham males in weight by P28, whereas IUGR females caught up with sham females by P77. IUGR males surpassed sham males in weight by P238. In summary, we have a non-brain sparing IUGR mouse model that has a relative ease of surgical IUGR induction and exhibits features similar to the chronic IUGR offspring of humans and other animal models. As transgenic technology predominates in mice, this model now permits the imposition of IUGR on transgenic mice to interrogate mechanisms of fetal origins of adult disease.
Collapse
|
42
|
Botting KJ, McMillen IC, Forbes H, Nyengaard JR, Morrison JL. Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes. J Am Heart Assoc 2014; 3:jah3613. [PMID: 25085511 PMCID: PMC4310356 DOI: 10.1161/jaha.113.000531] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Placental insufficiency is the leading cause of intrauterine growth restriction in the developed world and results in chronic hypoxemia in the fetus. Oxygen is essential for fetal heart development, but a hypoxemic environment in utero can permanently alter development of cardiomyocytes. The present study aimed to investigate the effect of placental restriction and chronic hypoxemia on total number of cardiomyocytes, cardiomyocyte apoptosis, total length of coronary capillaries, and expression of genes regulated by hypoxia. Methods and Results We induced experimental placental restriction from conception, which resulted in fetal growth restriction and chronic hypoxemia. Fetal hearts in the placental restriction group had fewer cardiomyocytes, but interestingly, there was no difference in the percentage of apoptotic cardiomyocytes; the abundance of the transcription factor that mediates hypoxia‐induced apoptosis, p53; or expression of apoptotic genes Bax and Bcl2. Likewise, there was no difference in the abundance of autophagy regulator beclin 1 or expression of autophagic genes BECN1, BNIP3, LAMP1, and MAP1LC3B. Furthermore, fetuses exposed to normoxemia (control) or chronic hypoxemia (placental restriction) had similar mRNA expression of a suite of hypoxia‐inducible factor target genes, which are essential for angiogenesis (VEGF, Flt1, Ang1, Ang2, and Tie2), vasodilation (iNOS and Adm), and glycolysis (GLUT1 and GLUT3). In addition, there was no change in the expression of PKC‐ε, a cardioprotective gene with transcription regulated by hypoxia in a manner independent of hypoxia‐inducible factors. There was an increased capillary length density but no difference in the total length of capillaries in the hearts of the chronically hypoxemic fetuses. Conclusion The lack of upregulation of hypoxia target genes in response to chronic hypoxemia in the fetal heart in late gestation may be due to a decrease in the number of cardiomyocytes (decreased oxygen demand) and the maintenance of the total length of capillaries. Consequently, these adaptive responses in the fetal heart may maintain a normal oxygen tension within the cardiomyocyte of the chronically hypoxemic fetus in late gestation.
Collapse
Affiliation(s)
- Kimberley J. Botting
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia (K.J.B., C.M.M., H.F., J.L.M.)
- Discipline of Physiology, School of Medical Science, The University of Adelaide, Adelaide, South Australia, Australia (K.J.B., C.M.M., J.L.M.)
| | - I. Caroline McMillen
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia (K.J.B., C.M.M., H.F., J.L.M.)
- Discipline of Physiology, School of Medical Science, The University of Adelaide, Adelaide, South Australia, Australia (K.J.B., C.M.M., J.L.M.)
| | - Heather Forbes
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia (K.J.B., C.M.M., H.F., J.L.M.)
| | - Jens R. Nyengaard
- Stereology and EM Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, University of Aarhus, Denmark (J.R.N.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia (K.J.B., C.M.M., H.F., J.L.M.)
- Discipline of Physiology, School of Medical Science, The University of Adelaide, Adelaide, South Australia, Australia (K.J.B., C.M.M., J.L.M.)
| |
Collapse
|
43
|
Braun T, Meng W, Shang H, Li S, Sloboda DM, Ehrlich L, Lange K, Xu H, Henrich W, Dudenhausen JW, Plagemann A, Newnham JP, Challis JRG. Early dexamethasone treatment induces placental apoptosis in sheep. Reprod Sci 2014; 22:47-59. [PMID: 25063551 DOI: 10.1177/1933719114542028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucocorticoid treatment given in late pregnancy in sheep resulted in altered placental development and function. An imbalance of placental survival and apoptotic factors resulting in an increased rate of apoptosis may be involved. We have now investigated the effects of dexamethasone (DEX) in early pregnancy on binucleate cells (BNCs), placental apoptosis, and fetal sex as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 105) were randomized to control (n = 56, 2 mL saline/ewe) or DEX treatment (n = 49, intramuscular injections of 0.14 mg/kg ewe weight per 12 hours over 48 hours) at 40 to 41 days of gestation (dG). Placentomes were collected at 50, 100, 125, and 140 dG. At 100 dG, DEX in females reduced BNC numbers, placental antiapoptotic (proliferating cell nuclear antigen), and increased proapoptotic factors (Bax, p53), associated with a temporarily decrease in fetal growth. At 125 dG, BNC numbers and apoptotic markers were restored to normal. In males, ovine placental lactogen-protein levels after DEX were increased at 50 dG, but at 100 and 140 dG significantly decreased compared to controls. In contrast to females, these changes were independent of altered BNC numbers or apoptotic markers. Early DEX was associated with sex-specific, transient alterations in BNC numbers, which may contribute to changes in placental and fetal development. Furthermore, in females, altered placental apoptosis markers may be involved.
Collapse
Affiliation(s)
- Thorsten Braun
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Wenbin Meng
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Hongkai Shang
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, Hangzhou First People's Hospital, Zhejiang, China
| | - Shaofu Li
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Western Australia, Australia
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Loreen Ehrlich
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Karolin Lange
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Huaisheng Xu
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany Department of Obstetrics and Gynecology, Linyi People's Hospital, Lanshan, China
| | - Wolfgang Henrich
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Joachim W Dudenhausen
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - Andreas Plagemann
- Division of Experimental Obstetrics, Department of Obstetrics, Study Group Perinatal Programming, Campus Virchow, Berlin, Germany
| | - John P Newnham
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Western Australia, Australia
| | - John R G Challis
- School of Women's and Infants' Health, King Edward Memorial Hospital, The University of Western Australia, Crawley, Western Australia, Australia Department of Physiology Obstetrics and Gynecology, at the University of Toronto, Toronto, Canada Faculty of Health Sciences, Simon Fraser University Vancouver, Vancouver, Canada
| |
Collapse
|
44
|
Li W, Zhong X, Zhang L, Wang Y, Wang T. Heat Shock Protein 70 Expression is Increased in the Liver of Neonatal Intrauterine Growth Retardation Piglets. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1096-101. [PMID: 25049668 PMCID: PMC4092995 DOI: 10.5713/ajas.2012.12058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/24/2012] [Accepted: 04/26/2012] [Indexed: 12/19/2022]
Abstract
Intrauterine growth retardation (IUGR) leads to the dysfunction in digestive system, as well as the alteration in the expression of some functional proteins. Heat shock protein 70 (Hsp70) could be induced by various stress factors, but whether Hsp70 expression is changed in neonatal IUGR infants has not been demonstrated. This study was conducted to explore the expression of Hsp70 in the liver by using the IUGR piglet model. Liver and plasma samples were obtained from IUGR and normal birth weight (NBW) piglets at birth. The neonatal IUGR piglets had significantly lower liver weight than their counterparts. The activities of aspartate aminotransferase and alanine aminotransferase in serum were enhanced significantly in IUGR indicating liver dysfunction. The activities of superoxide dismutase (p<0.01), glutathione peroxidase (p<0.01) and catalase (p>0.05) were lower and the level of malondialdehybe was higher (p<0.05) in IUGR liver compared with in NBW. According to the results of histological tests, fatty hepatic infiltrates and cytoplasmic vacuolization were present in the liver of IUGR piglets, but not in NBW liver. The expression of Hsp70 protein was significantly higher (p<0.05) in IUGR piglet liver than in NBW. Similar to where the hepatic injuries were observed, location of Hsp70 was mostly in the midzonal hepatic lobule indicating that oxidative stress might be responsible for the increased expression of Hsp70.
Collapse
|
45
|
McGillick EV, Morrison JL, McMillen IC, Orgeig S. Intrafetal glucose infusion alters glucocorticoid signaling and reduces surfactant protein mRNA expression in the lung of the late-gestation sheep fetus. Am J Physiol Regul Integr Comp Physiol 2014; 307:R538-45. [PMID: 24990855 DOI: 10.1152/ajpregu.00053.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Increased circulating fetal glucose and insulin concentrations are potential inhibitors of fetal lung maturation and may contribute to the pathogenesis of respiratory distress syndrome (RDS) in infants of diabetic mothers. In this study, we examined the effect of intrafetal glucose infusion on mRNA expression of glucose transporters, insulin-like growth factor signaling, glucocorticoid regulatory genes, and surfactant proteins in the lung of the late-gestation sheep fetus. The numerical density of the cells responsible for producing surfactant was determined using immunohistochemistry. Glucose infusion for 10 days did not affect mRNA expression of glucose transporters or IGFs but did decrease IGF-1R expression. There was reduced mRNA expression of the glucocorticoid-converting enzyme HSD11B-1 and the glucocorticoid receptor, potentially reducing glucocorticoid responsiveness in the fetal lung. Furthermore, surfactant protein (SFTP) mRNA expression was reduced in the lung following glucose infusion, while the number of SFTP-B-positive cells remained unchanged. These findings suggest the presence of a glucocorticoid-mediated mechanism regulating delayed maturation of the surfactant system in the sheep fetus following glucose infusion and provide evidence for the link between abnormal glycemic control during pregnancy and the increased risk of RDS in infants of uncontrolled diabetic mothers.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Sandra Orgeig
- Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Rattanatray L, Muhlhausler BS, Nicholas LM, Morrison JL, McMillen IC. Impact of maternal overnutrition on gluconeogenic factors and methylation of the phosphoenolpyruvate carboxykinase promoter in the fetal and postnatal liver. Pediatr Res 2014; 75:14-21. [PMID: 24452591 DOI: 10.1038/pr.2013.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/03/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Exposure to maternal obesity or hyperglycemia increases the risk of obesity and poor glucose tolerance in the offspring. We hypothesized that maternal overnutrition in late pregnancy would result in (i) lower methylation in the promoter region of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C; PCK1) and (ii) higher expression of hepatic gluconeogenic factors in the fetal and postnatal lamb. METHODS Ewes were fed 100% (n = 18) or ~155% (n = 17) of energy requirements from 115 d gestation, and livers were collected at ~140 d gestation or 30 d postnatal age. RESULTS Maternal overnutrition resulted in a decrease in hepatic expression of the mitochondrial form of PEPCK (PEPCK-M; PCK2) but not of PEPCK-C or glucose-6-phosphatase (G6PHOS) before and after birth. Hepatic expression of peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1), peroxisome proliferator-activated receptor α (PPARα), PEPCK-C, G6PHOS, and 11β hydroxysteroid dehydrogenase type 1 (11βHSD1), but not PEPCK-M, was higher in the postnatal lamb compared with that in the fetal lamb. The level of PCK1 methylation was paradoxically approximately twofold higher in the postnatal liver compared with that in the fetal liver. CONCLUSION Maternal overnutrition programs a decrease in hepatic PEPCK-M in the offspring and as ~50% of total hepatic PEPCK is PEPCK-M, the longer-term consequences of this decrease may be significant.
Collapse
Affiliation(s)
- Leewen Rattanatray
- 1] School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia [2] Discipline of Physiology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Beverly S Muhlhausler
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Lisa M Nicholas
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
47
|
Goyal R, Van Wickle J, Goyal D, Matei N, Longo LD. Antenatal maternal long-term hypoxia: acclimatization responses with altered gene expression in ovine fetal carotid arteries. PLoS One 2013; 8:e82200. [PMID: 24367503 PMCID: PMC3867347 DOI: 10.1371/journal.pone.0082200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022] Open
Abstract
In humans and other species, long-term hypoxia (LTH) during pregnancy can lead to intrauterine growth restriction with reduced body/brain weight, dysregulation of cerebral blood flow (CBF), and other problems. To identify the signal transduction pathways and critical molecules, which may be involved in acclimatization to high altitude LTH, we conducted microarray with advanced bioinformatic analysis on carotid arteries (CA) from the normoxic near-term ovine fetus at sea-level and those acclimatized to high altitude for 110+ days during gestation. In response to LTH acclimatization, in fetal CA we identified mRNA from 38 genes upregulated >2 fold (P<0.05) and 9 genes downregulated >2-fold (P<0.05). The major genes with upregulated mRNA were SLC1A3, Insulin-like growth factor (IGF) binding protein 3, IGF type 2 receptor, transforming growth factor (TGF) Beta-3, and genes involved in the AKT and BCL2 signal transduction networks. Most genes with upregulated mRNA have a common motif for Pbx/Knotted homeobox in the promoter region, and Sox family binding sites in the 3′ un translated region (UTR). Genes with downregulated mRNA included those involved in the P53 pathway and 5-lipoxygenase activating proteins. The promoter region of all genes with downregulated mRNA, had a common 49 bp region with a binding site for DOT6 and TOD6, components of the RPD3 histone deacetylase complex RPD3C(L). We also identified miRNA complementary to a number of the altered genes. Thus, the present study identified molecules in the ovine fetus, which may play a role in the acclimatization response to high-altitude associated LTH.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Jonathan Van Wickle
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Dipali Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Nathanael Matei
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Lawrence D. Longo
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
48
|
McGillick EV, Orgeig S, McMillen IC, Morrison JL. The fetal sheep lung does not respond to cortisol infusion during the late canalicular phase of development. Physiol Rep 2013; 1:e00130. [PMID: 24400136 PMCID: PMC3871449 DOI: 10.1002/phy2.130] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022] Open
Abstract
The prepartum surge in plasma cortisol concentrations in humans and sheep promotes fetal lung and surfactant system maturation in the support of air breathing after birth. This physiological process has been used to enhance lung maturation in the preterm fetus using maternal administration of betamethasone in the clinical setting in fetuses as young as 24 weeks gestation (term = 40 weeks). Here, we have investigated the impact of fetal intravenous cortisol infusion during the canalicular phase of lung development (from 109- to 116-days gestation, term = 150 ± 3 days) on the expression of genes regulating glucocorticoid (GC) activity, lung liquid reabsorption, and surfactant maturation in the very preterm sheep fetus and compared this to their expression near term. Cortisol infusion had no impact on mRNA expression of the corticosteroid receptors (GC receptor and mineralocorticoid receptor) or HSD11B-2, however, there was increased expression of HSD11B-1 in the fetal lung. Despite this, cortisol infusion had no effect on the expression of genes involved in lung sodium (epithelial sodium channel -α, -β, or -γ subunits and sodium–potassium ATPase-β1 subunit) or water (aquaporin 1, 3, and 5) reabsorption when compared to the level of expression during exposure to the normal prepartum cortisol surge. Furthermore, in comparison to late gestation, cortisol infusion does not increase mRNA expression of surfactant proteins (SFTP-A, -B, and -C) or the number of SFTP-B-positive cells present in the alveolar epithelium, the cells that produce pulmonary surfactant. These data suggest that there may be an age before which the lung is unable to respond biochemically to an increase in fetal plasma cortisol concentrations.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001 ; Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, South Australia, Australia, 5001
| |
Collapse
|
49
|
Wang KCW, Lim CH, McMillen IC, Duffield JA, Brooks DA, Morrison JL. Alteration of cardiac glucose metabolism in association to low birth weight: experimental evidence in lambs with left ventricular hypertrophy. Metabolism 2013; 62:1662-72. [PMID: 23928106 DOI: 10.1016/j.metabol.2013.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 06/24/2013] [Accepted: 06/29/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Intrauterine growth restriction that results in low birth weight (LBW) has been linked to the onset of pathological cardiac hypertrophy. An altered transition from a fetal to an adult energy metabolism phenotype, with increased reliance on glucose rather than fatty acids for energy production, could help explain this connection. We have therefore investigated cardiac metabolism in relation to left ventricular hypertrophy in LBW lambs, at 21days after birth. MATERIALS/METHODS The expression of regulatory molecules involved in cardiac glucose and fatty acid metabolism was measured using real-time PCR and Western blotting. A section of the left ventricle was fixed for Periodic Acid Schiff staining to determine tissue glycogen content. RESULTS There was increased abundance of insulin signalling pathway proteins (phospho-insulin receptor, insulin receptor and phospho-Akt) and the glucose transporter (GLUT)-1, but no change in GLUT-4 or glycogen content in the heart of LBW compared to ABW lambs. There was, however, increased abundance of cardiac pyruvate dehydrogenase kinase 4 (PDK-4) in LBW compared to ABW lambs. There were no significant changes in the mRNA expression of components of the peroxisome proliferator activated receptor regulatory complex or proteins involved in fatty acid metabolism. CONCLUSION We concluded that LBW induced left ventricular hypertrophy was associated with increased GLUT-1 and PDK-4, suggesting increased glucose uptake, but decreased efficacy for the conversion of glucose to ATP. A reduced capacity for energy conversion could have significant implications for vulnerability to cardiovascular disease in adults who are born LBW.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Eme J, Rhen T, Tate KB, Gruchalla K, Kohl ZF, Slay CE, Crossley DA. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression. Am J Physiol Regul Integr Comp Physiol 2013; 304:R966-79. [PMID: 23552497 DOI: 10.1152/ajpregu.00595.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reptile embryos tolerate large decreases in the concentration of ambient oxygen. However, we do not fully understand the mechanisms that underlie embryonic cardiovascular short- or long-term responses to hypoxia in most species. We therefore measured cardiac growth and function in snapping turtle embryos incubated under normoxic (N21; 21% O₂) or chronic hypoxic conditions (H10; 10% O₂). We determined heart rate (fH) and mean arterial pressure (Pm) in acute normoxic (21% O₂) and acute hypoxic (10% O₂) conditions, as well as embryonic responses to cholinergic, adrenergic, and ganglionic pharmacological blockade. Compared with N21 embryos, chronic H10 embryos had smaller bodies and relatively larger hearts and were hypotensive, tachycardic, and following autonomic neural blockade showed reduced intrinsic fH at 90% of incubation. Unlike other reptile embryos, cholinergic and ganglionic receptor blockade both increased fH. β-Adrenergic receptor blockade with propranolol decreased fH, and α-adrenergic blockade with phentolamine decreased Pm. We also measured cardiac mRNA expression. Cholinergic tone was reduced in H10 embryos, but cholinergic receptor (Chrm2) mRNA levels were unchanged. However, expression of adrenergic receptor mRNA (Adrb1, Adra1a, Adra2c) and growth factor mRNA (Igf1, Igf2, Igf2r, Pdgfb) was lowered in H10 embryos. Hypoxia altered the balance between cholinergic receptors, α-adrenoreceptor and β-adrenoreceptor function, which was reflected in altered intrinsic fH and adrenergic receptor mRNA levels. This is the first study to link gene expression with morphological and cardioregulatory plasticity in a developing reptile embryo.
Collapse
Affiliation(s)
- John Eme
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | | | | | | | | | | |
Collapse
|