1
|
Sze Y, Brunton PJ. How is prenatal stress transmitted from the mother to the fetus? J Exp Biol 2024; 227:jeb246073. [PMID: 38449331 DOI: 10.1242/jeb.246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Prenatal stress programmes long-lasting neuroendocrine and behavioural changes in the offspring. Often this programming is maladaptive and sex specific. For example, using a rat model of maternal social stress in late pregnancy, we have demonstrated that adult prenatally stressed male, but not prenatally stressed female offspring display heightened anxiety-like behaviour, whereas both sexes show hyperactive hypothalamo-pituitary-adrenal (HPA) axis responses to stress. Here, we review the current knowledge of the mechanisms underpinning dysregulated HPA axis responses, including evidence supporting a role for reduced neurosteroid-mediated GABAergic inhibitory signalling in the brains of prenatally stressed offspring. How maternal psychosocial stress is signalled from the mother to the fetuses is unclear. Direct transfer of maternal glucocorticoids to the fetuses is often considered to mediate the programming effects of maternal stress on the offspring. However, protective mechanisms including attenuated maternal stress responses and placental 11β-hydroxysteroid dehydrogenase-2 (which inactivates glucocorticoids) should limit materno-fetal glucocorticoid transfer during pregnancy. Moreover, a lack of correlation between maternal stress, circulating maternal glucocorticoid levels and circulating fetal glucocorticoid levels is reported in several studies and across different species. Therefore, here we interrogate the evidence for a role for maternal glucocorticoids in mediating the effects of maternal stress on the offspring and consider the evidence for alternative mechanisms, including an indirect role for glucocorticoids and the contribution of changes in the placenta in signalling the stress status of the mother to the fetus.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
- Zhejiang University-University of Edinburgh Joint Institute, Haining, Zhejiang 314400, P.R. China
| |
Collapse
|
2
|
Lin H, Su M, Wen C, Tang Y, Li H, Wu Y, Ge RS, Li XW, Lin H. Chalcones from plants cause toxicity by inhibiting human and rat 11β-hydroxysteroid dehydrogenase 2: 3D-quantitative structure-activity relationship (3D-QSAR) and in silico docking analysis. Food Chem Toxicol 2024; 184:114415. [PMID: 38141941 DOI: 10.1016/j.fct.2023.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Chalcones from licorice and its related plants have many pharmacological effects. However, the effects of chalcones on the activity of human and rat 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), and associated side effects remain unclear. The inhibition of 11 chalcones on human and rat 11β-HSD2 were evaluated in microsomes and a 3D-quantitative structure-activity relationship (3D-QSAR) was analyzed. Screening revealed that bavachalcone, echinatin, isobavachalcone, isobavachromene, isoliquiritigenin, licochalcone A, and licochalcone B significantly inhibited human 11β-HSD2 with IC50 values ranging from 15.62 (licochalcone A) to 38.33 (echinatin) μM. Screening showed that the above chemicals and 4-hydroxychalcone significantly inhibited rat 11β-HSD2 with IC50 values ranging from 6.82 (isobavachalcone) to 72.26 (4-hydroxychalcone) μM. These chalcones acted as noncompetitive/mixed inhibitors for both enzymes. Comparative analysis revealed that inhibition of 11β-HSD2 depended on the species. Most chemicals bind to the NAD+ binding site or both the NAD+ and substrate binding sites. Bivariate correlation analysis showed that lipophilicity and molecular weight determine inhibitory strength. Through our 3D-QSAR models, we identified that the hydrophobic region, hydrophobic aliphatic groups, and hydrogen bond acceptors are pivotal factors in inhibiting 11β-HSD2. In conclusion, many chalcones inhibit human and rat 11β-HSD2, possibly causing side effects and there is structure-dependent and species-dependent inhibition on 11β-HSD2.
Collapse
Affiliation(s)
- Hang Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Chao Wen
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Yandan Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xing-Wang Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China.
| | - Han Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, 325027, China.
| |
Collapse
|
3
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Lin IH, Yang L, Dalley JW, Tsai TH. Trans-placental transfer of nicotine: Modulation by organic cation transporters. Biomed Pharmacother 2021; 145:112489. [PMID: 34915670 DOI: 10.1016/j.biopha.2021.112489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023] Open
Abstract
Nicotine is a highly addictive substance and harmful to the developing foetus. However, few studies have investigated the transporter mechanism responsible for regulating the transfer of nicotine across the blood-placental interface. A multiple in-vivo microdialysis system coupled to ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed to monitor simultaneously nicotine and cotinine in the blood, placenta, foetus, and amniotic fluid of pregnant rats. The pharmacological mechanism of nicotine transfer across the placenta was investigated by co-administering corticosterone, an inhibitor of organic cation transporters (OCTs) that partly mediate the exchange of nicotine across the placenta. The results revealed that intravenously administered nicotine (1 mg/kg) was rapidly metabolised to cotinine with a transformation ratio (AUCcotinine/AUCnicotine) of 0.67 ± 0.08, 0.21 ± 0.05, 0.25 ± 0.12, 0.31 ± 0.05 in maternal blood, placenta, amniotic fluid, and foetus, respectively. The tissue transformation ratios (AUCtissue/AUCblood) were 0.83 ± 0.16, 0.65 ± 0.17, 0.57 ± 0.13 for nicotine, and 0.25 ± 0.06, 0.24 ± 0.12, 0.26 ± 0.04 for cotinine at placenta, amniotic fluid and foetus, respectively. Following the co-administration of corticosterone (2 mg/kg), the tissue transformation ratio of nicotine was significantly reduced in the placenta but was significantly increased in the foetus. Levels of cotinine were not significantly altered by the administration of corticosterone. These findings implicate OCT in mediating the transfer of nicotine across the blood-placenta barrier. Understanding the mechanism of nicotine transfer through the placenta may inform therapeutic strategies to lessen the exposure of the developing foetus to nicotine in the maternal bloodstream.
Collapse
Affiliation(s)
- I-Hsin Lin
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ling Yang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
5
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Ge C, Xu D, Yu P, Fang M, Guo J, Xu D, Qiao Y, Chen S, Zhang Y, Wang H. P-gp expression inhibition mediates placental glucocorticoid barrier opening and fetal weight loss. BMC Med 2021; 19:311. [PMID: 34876109 PMCID: PMC8653610 DOI: 10.1186/s12916-021-02173-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prenatal adverse environments can cause fetal intrauterine growth retardation (IUGR) and higher susceptibility to multiple diseases after birth, related to multi-organ development programming changes mediated by intrauterine overexposure to maternal glucocorticoids. As a glucocorticoid barrier, P-glycoprotein (P-gp) is highly expressed in placental syncytiotrophoblasts; however, the effect of P-gp on the occurrence of IUGR remains unclear. METHODS Human placenta and fetal cord blood samples of IUGR fetuses were collected, and the related indexes were detected. Pregnant Wistar rats were administered with 30 mg/kg·d (low dose) and 120 mg/kg·d (high dose) caffeine from gestational day (GD) 9 to 20 to construct the rat IUGR model. Pregnant mice were administered with caffeine (120 mg/kg·d) separately or combined with sodium ferulate (50 mg/kg·d) from gestational day GD 9 to 18 to confirm the intervention target on fetal weight loss caused by prenatal caffeine exposure (PCE). The fetal serum/placental corticosterone level, placental P-gp expression, and related indicator changes were analyzed. In vitro, primary human trophoblasts and BeWo cells were used to confirm the effect of caffeine on P-gp and its mechanism. RESULTS The placental P-gp expression was significantly reduced, but the umbilical cord blood cortisol level was increased in clinical samples of the IUGR neonates, which were positively and negatively correlated with the neonatal birth weight, respectively. Meanwhile, in the PCE-induced IUGR rat model, the placental P-gp expression of IUGR rats was decreased while the corticosterone levels of the placentas/fetal blood were increased, which were positively and negatively correlated with the decreased placental/fetal weights, respectively. Combined with the PCE-induced IUGR rat model, in vitro caffeine-treated placental trophoblasts, we confirmed that caffeine decreased the histone acetylation and expression of P-gp via RYR/JNK/YB-1/P300 pathway, which inhibited placental and fetal development. We further demonstrated that P-gp inducer sodium ferulate could reverse the inhibitory effect of caffeine on the fetal body/placental weight. Finally, clinical specimens and other animal models of IUGR also confirmed that the JNK/YB-1 pathway is a co-regulatory mechanism of P-gp expression inhibition, among which the expression of YB-1 is the most stable. Therefore, we proposed that YB-1 could be used as the potential early warning target for the opening of the placental glucocorticoid barrier, the occurrence of IUGR, and the susceptibility of a variety of diseases. CONCLUSIONS This study, for the first time, clarified the critical role and epigenetic regulation mechanism of P-gp in mediating the opening mechanism of the placental glucocorticoid barrier, providing a novel idea for exploring the early warning, prevention, and treatment strategies of IUGR.
Collapse
Affiliation(s)
- Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuan Qiao
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
7
|
Arias A, Schander JA, Bariani MV, Correa F, Domínguez Rubio AP, Cella M, Cymeryng CB, Wolfson ML, Franchi AM, Aisemberg J. Dexamethasone-induced intrauterine growth restriction modulates expression of placental vascular growth factors and fetal and placental growth. Mol Hum Reprod 2021; 27:gaab006. [PMID: 33528567 DOI: 10.1093/molehr/gaab006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
Prenatal exposure to glucocorticoids (GC) is a central topic of interest in medicine since GCs are essential for the maturation of fetal organs and intrauterine growth. Synthetic glucocorticoids, which are used in obstetric practice, exert beneficial effects on the fetus, but have also been reported to lead to intrauterine growth retardation (IUGR). In this study, a model of growth restriction in mice was established through maternal administration of dexamethasone during late gestation. We hypothesised that GC overexposure may adversely affect placental angiogenesis and fetal and placental growth. Female BALB/c mice were randomly assigned to control or dexamethasone treatment, either left to give birth or euthanised on days 15, 16, 17 and 18 of gestation followed by collection of maternal and fetal tissue. The IUGR rate increased to 100% in the dexamethasone group (8 mg/kg body weight on gestational days 14 and 15) and pups had clinical features of symmetrical IUGR at birth. Dexamethasone administration significantly decreased maternal body weight gain and serum corticosterone levels. Moreover, prenatal dexamethasone treatment not only induced fetal growth retardation but also decreased placental weight. In IUGR placentas, VEGFA protein levels and mRNA expression of VEGF receptors were reduced and NOS activity was lower. Maternal dexamethasone administration also reduced placental expression of the GC receptor, αGR. We demonstrated that maternal dexamethasone administration causes fetal and placental growth restriction. Furthermore, we propose that the growth retardation induced by prenatal GC overexposure may be caused, at least partially, by an altered placental angiogenic profile.
Collapse
Affiliation(s)
- A Arias
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J A Schander
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M V Bariani
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F Correa
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A P Domínguez Rubio
- Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN-UBA-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Cella
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - C B Cymeryng
- Laboratorio de Endocrinología Molecular, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M L Wolfson
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A M Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J Aisemberg
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Astiz M, Oster H. Feto-Maternal Crosstalk in the Development of the Circadian Clock System. Front Neurosci 2021; 14:631687. [PMID: 33510617 PMCID: PMC7835637 DOI: 10.3389/fnins.2020.631687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
The circadian (24 h) clock system adapts physiology and behavior to daily recurring changes in the environment. Compared to the extensive knowledge assembled over the last decades on the circadian system in adults, its regulation and function during development is still largely obscure. It has been shown that environmental factors, such as stress or alterations in photoperiod, disrupt maternal neuroendocrine homeostasis and program the offspring’s circadian function. However, the process of circadian differentiation cannot be fully dependent on maternal rhythms alone, since circadian rhythms in offspring from mothers lacking a functional clock (due to SCN lesioning or genetic clock deletion) develop normally. This mini-review focuses on recent findings suggesting that the embryo/fetal molecular clock machinery is present and functional in several tissues early during gestation. It is entrained by maternal rhythmic signals crossing the placenta while itself controlling responsiveness to such external factors to certain times of the day. The elucidation of the molecular mechanisms through which maternal, placental and embryo/fetal clocks interact with each other, sense, integrate and coordinate signals from the early life environment is improving our understanding of how the circadian system emerges during development and how it affects physiological resilience against external perturbations during this critical time period.
Collapse
Affiliation(s)
- Mariana Astiz
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Becaro AA, de Oliveira LP, de Castro VLS, Siqueira MC, Brandão HM, Correa DS, Ferreira MD. Effects of silver nanoparticles prenatal exposure on rat offspring development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103546. [PMID: 33186674 DOI: 10.1016/j.etap.2020.103546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Many types of nanocomposites employed in food packaging are based on silver nanoparticles (AgNP) because of their antibacterial properties, which can increase food shelf-life. As the commercialization of AgNP products has been expanding, the released of such nanoparticles in the environment has caused enormous concern, once they can pose potential risks to the environment and human beings. For instance, exposure of the maternal environment to nanomaterials during pregnancy may impact the health of the dam, fetus and offspring. In this context, here we investigated the effects of prenatal exposure of AgNP on the pregnancy outcomes of dams and postnatal development of their offspring. Pregnant Wistar rats were exposed to distinct AgNP concentrations (0, 1, 3 and 5 μg/kg/day) from beginning to the end of pregnancy. At parturition, newborns were observed regarding clinical signs of toxicity and survival rate. The offspring was examined by evaluating developmental endpoints. A delay in time for vaginal opening and testes descent were detected in the offspring exposed to AgNP during embryonic development. Our results indicate that prenatal exposure to AgNP can compromise neonatal rats' postnatal development, especially the reproductive features.
Collapse
Affiliation(s)
- Aline A Becaro
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil
| | - Luzia P de Oliveira
- Universidade Federal de São Paulo, Avenida Cesare Mansueto Giulio Lattes, 1201, 12247-014, São José dos Campos, SP, Brazil
| | - Vera L S de Castro
- EMBRAPA Meio Ambiente, Rodovia SP 340 Km 127.5, Postal Box 69, Jaguariúna, SP, 13918-110, Brazil
| | - Maria C Siqueira
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil
| | - Humberto M Brandão
- EMBRAPA Gado de Leite, Avenida Rádio Maia, 830 - Zona Rural, 79106-550, Campo Grande, MS, Brazil
| | - Daniel S Correa
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil
| | - Marcos David Ferreira
- Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, Fegert J, Ziegenhain U, Segal M. Experience-induced transgenerational (re-)programming of neuronal structure and functions: Impact of stress prior and during pregnancy. Neurosci Biobehav Rev 2020; 117:281-296. [DOI: 10.1016/j.neubiorev.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
|
11
|
Gatford KL, Kennaway DJ, Liu H, Schultz CG, Wooldridge AL, Kuchel TR, Varcoe TJ. Simulated shift work during pregnancy does not impair progeny metabolic outcomes in sheep. J Physiol 2020; 598:5807-5819. [PMID: 32918750 DOI: 10.1113/jp280341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Maternal shift work increases the risk of pregnancy complications, although its effects on progeny health after birth are not clear. We evaluated the impact of a simulated shift work protocol for one-third, two-thirds or all of pregnancy on the metabolic health of sheep progeny. Simulated shift work had no effect on growth, body size, body composition or glucose tolerance in pre-pubertal or young adult progeny. Glucose-stimulated insulin secretion was reduced in adult female progeny and insulin sensitivity was increased in adult female singleton progeny. The results of the present study do not support the hypothesis that maternal shift work exposure impairs metabolic health of progeny in altricial species. ABSTRACT Disrupted maternal circadian rhythms, such as those experienced during shift work, are associated with impaired progeny metabolism in rodents. The effects of disrupted maternal circadian rhythms on progeny metabolism have not been assessed in altricial, non-litter bearing species. We therefore assessed postnatal growth from birth to adulthood, as well as body composition, glucose tolerance, insulin secretion and insulin sensitivity, in pre-pubertal and young adult progeny of sheep exposed to control conditions (CON: 10 males, 10 females) or to a simulated shift work (SSW) protocol for the first one-third (SSW0-7: 11 males, 9 females), the first two-thirds (SSW0-14: 8 males, 11 females) or all (SSW0-21: 8 males, 13 females) of pregnancy. Progeny growth did not differ between maternal treatments. In pre-pubertal progeny (12-14 weeks of age), adiposity, glucose tolerance and insulin secretion during an i.v. glucose tolerance test and insulin sensitivity did not differ between maternal treatments. Similarly, in young adult progeny (12-14 months of age), food intake, adiposity and glucose tolerance did not differ between maternal treatments. At this age, however, insulin secretion in response to a glucose bolus was 30% lower in female progeny in the combined SSW groups compared to control females (P = 0.031), and insulin sensitivity of SSW0-21 singleton females was 236% compared to that of CON singleton female progeny (P = 0.025). At least in this model, maternal SSW does not impair progeny metabolic health, with some evidence of greater insulin action in female young adult progeny.
Collapse
Affiliation(s)
- Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Hong Liu
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Christopher G Schultz
- Department of Nuclear Medicine, PET and Bone Densitometry, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Amy L Wooldridge
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Timothy R Kuchel
- Preclinical Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, SA, Australia
| | - Tamara J Varcoe
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Justice and Society, University of South Australia, Magill, SA, Australia.,Basil Hetzel Research Institute for Translational Health Research, Adelaide, SA, Australia
| |
Collapse
|
12
|
Ruiz D, Padmanabhan V, Sargis RM. Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. J Endocr Soc 2020; 4:bvaa087. [PMID: 32734132 PMCID: PMC7382384 DOI: 10.1210/jendso/bvaa087] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can affect glucocorticoid receptor signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can affect sex-steroid-dependent developmental processes. Nonetheless, glucocorticoid sex-steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid sex-steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Jensen VFH, Mølck AM, Bøgh IB, Nowak J, Viuff BM, Rasmussen CLM, Pedersen L, Fels JJ, Madsen SH, McGuigan FE, Tveden-Nyborg P, Lykkesfeldt J, Akesson KE. Inner histopathologic changes and disproportionate zone volumes in foetal growth plates following gestational hypoglycaemia in rats. Sci Rep 2020; 10:5609. [PMID: 32221393 PMCID: PMC7101337 DOI: 10.1038/s41598-020-62554-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/16/2020] [Indexed: 11/12/2022] Open
Abstract
Maternal hypoglycaemia throughout gestation until gestation day (GD)20 delays foetal growth and skeletal development. While partially prevented by return to normoglycaemia after completed organogenesis (GD17), underlying mechanisms are not fully understood. Here, we investigated the pathogenesis of these changes and significance of maternal hypoglycaemia extending beyond organogenesis in non-diabetic rats. Pregnant rats received insulin-infusion until GD20 or GD17, with sacrifice on GD20. Hypoglycaemia throughout gestation increased maternal corticosterone levels, which correlated with foetal levels. Growth plates displayed central histopathologic changes comprising disrupted cellular organisation, hypertrophic chondrocytes, and decreased cellular density; expression of pro-angiogenic factors, HIF-1α and VEGF-A increased in surrounding areas. Disproportionately decreased growth plate zone volumes and lower expression of the structural protein MATN-3 were seen, while bone ossification parameters were normal. Ending maternal/foetal hypoglycaemia on GD17 reduced incidence and severity of histopathologic changes and with normal growth plate volume. Compromised foetal skeletal development following maternal hypoglycaemia throughout gestation is hypothesised to result from corticosterone-induced hypoxia in growth plates, where hypoxia disrupts chondrocyte maturation and growth plate structure and volume, decreasing long bone growth. Maternal/foetal hypoglycaemia lasting only until GD17 attenuated these changes, suggesting a pivotal role of glucose in growth plate development.
Collapse
Affiliation(s)
- Vivi F H Jensen
- Novo Nordisk A/S, Department of Toxicology, Safety Pharmacology and Pathology, Maaloev, Denmark. .,University of Copenhagen, Department of Veterinary and Animal Sciences, Section for Experimental Animal Models, Copenhagen, Denmark. .,Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Malmö, Sweden.
| | - Anne-Marie Mølck
- Novo Nordisk A/S, Department of Toxicology, Safety Pharmacology and Pathology, Maaloev, Denmark
| | - Ingrid B Bøgh
- Novo Nordisk A/S, Department of Toxicology, Safety Pharmacology and Pathology, Maaloev, Denmark
| | - Jette Nowak
- Novo Nordisk A/S, Department of Toxicology, Safety Pharmacology and Pathology, Maaloev, Denmark
| | - Birgitte M Viuff
- Novo Nordisk A/S, Department of Toxicology, Safety Pharmacology and Pathology, Maaloev, Denmark
| | - Charlotte L M Rasmussen
- University of Copenhagen, Department of Veterinary and Animal Sciences, Section for Experimental Animal Models, Copenhagen, Denmark
| | - Louise Pedersen
- University of Copenhagen, Department of Veterinary and Animal Sciences, Section for Experimental Animal Models, Copenhagen, Denmark
| | - Johannes J Fels
- Novo Nordisk A/S, Department of Research Bioanalysis, Maaloev, Denmark
| | - Suzi H Madsen
- Novo Nordisk A/S, Department of Research Bioanalysis, Maaloev, Denmark
| | - Fiona E McGuigan
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Malmö, Sweden
| | - Pernille Tveden-Nyborg
- University of Copenhagen, Department of Veterinary and Animal Sciences, Section for Experimental Animal Models, Copenhagen, Denmark
| | - Jens Lykkesfeldt
- University of Copenhagen, Department of Veterinary and Animal Sciences, Section for Experimental Animal Models, Copenhagen, Denmark
| | - Kristina E Akesson
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Malmö, Sweden
| |
Collapse
|
14
|
Bicker J, Alves G, Falcão A, Fortuna A. Timing in drug absorption and disposition: The past, present, and future of chronopharmacokinetics. Br J Pharmacol 2020; 177:2215-2239. [PMID: 32056195 DOI: 10.1111/bph.15017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The importance of drug dosing time in pharmacokinetics, pharmacodynamics, and toxicity is receiving increasing attention from the scientific community. In spite of mounting evidence that circadian oscillations affect drug absorption, distribution, metabolism, and excretion (ADME), there remain many unanswered questions in this field and, occasionally, conflicting experimental results. Such data arise not only from translational difficulties caused by interspecies differences but also from variability in study design and a lack of understanding of how the circadian clock affects physiological factors that strongly influence ADME, namely, the expression and activity of drug transporters. Hence, the main goal of this review is to provide an updated analysis of the role of the circadian rhythm in drug absorption, distribution across blood-tissue barriers, metabolism in hepatic and extra-hepatic tissues, and hepatobiliary and renal excretion. It is expected that the research suggestions proposed here will contribute to a tissue-targeted and time-targeted pharmacotherapy.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
16
|
Nowak M, Rehrauer H, Ay SS, Findik M, Boos A, Kautz E, Kowalewski MP. Gene expression profiling of the canine placenta during normal and antigestagen-induced luteolysis. Gen Comp Endocrinol 2019; 282:113194. [PMID: 31145892 DOI: 10.1016/j.ygcen.2019.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
Abstract
The domestic dog is the only domestic animal species that does not produce steroids in the placenta and instead relies on luteal steroids throughout pregnancy. Nevertheless, the canine placenta is highly responsive to steroids, and withdrawal of progesterone (P4) affects the feto-maternal unit, initializing the parturition cascade. Similar effects can be observed during antigestagen-induced abortion. Here, aiming to provide new insights into mechanisms involved in the termination of canine pregnancy, next generation sequencing (NGS, RNA-seq) was applied. Placental transcriptomes derived from natural prepartum and antigestagen-induced abortions were analyzed and compared with fully developed mid-gestation placentas. The contrast "prepartum luteolysis over mid-gestation" revealed 1973 differentially expressed genes (DEG). Terms associated with apoptosis, impairment of vascular function and activation of signaling of several cytokines (e.g., IL-8, IL-3, TGF-β) were overrepresented at natural luteolysis. When compared with mid-term, antigestagen treatment revealed 135 highly regulated DEG that were involved in the induced luteolysis and showed similar associations with functional terms and expression patterns as during natural luteolysis. The contrast "antigestagen-induced luteolysis over prepartum luteolysis" revealed that, although similar changes occur in both conditions, they are more pronounced during natural prepartum. Among P4-regulated DEG were those related to immune system and cortisol metabolism. It appears that, besides inducing placental PGF2α output, both natural and induced P4 withdrawal is associated with disruption of the feto-maternal interface, leading to impaired vascular functions, apoptosis and controlled modulation of the immune response. The time-related maturation of the feto-maternal interface needs to be considered because it may be clinically relevant.
Collapse
Affiliation(s)
- Marta Nowak
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich (FGCZ), ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Serhan S Ay
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Murat Findik
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Ewa Kautz
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
17
|
Li X, Mo J, Zhu Q, Ni C, Wang Y, Li H, Lin ZK, Ge RS. The structure-activity relationship (SAR) for phthalate-mediated developmental and reproductive toxicity in males. CHEMOSPHERE 2019; 223:504-513. [PMID: 30784757 DOI: 10.1016/j.chemosphere.2019.02.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Testicular dysgenesis syndrome includes the hypospadias, cryptorchidism and abnormal fetal testis in male neonate. This is possibly caused by the environmental phthalates, which down-regulate the expression of androgen synthetic genes and Insl3 or directly inhibits steroidogenic enzymes. There are distinct structure-activity relationships (SARs) for phthalate-mediated developmental and reproductive toxicity. Here, we review the SAR for phthalate-mediated testicular dysgenesis syndrome. Of phthalates of straight side chains, C5-C6 ones are the most potent, C4 or C7 are moderate, C3 is weakest, and C1-2 or C8-13 are ineffective. The branching and unsaturation of side chains increases the toxicity. The cycling of side chains does not increase the toxicity.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Kun Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
18
|
Čečmanová V, Houdek P, Šuchmanová K, Sládek M, Sumová A. Development and Entrainment of the Fetal Clock in the Suprachiasmatic Nuclei: The Role of Glucocorticoids. J Biol Rhythms 2019; 34:307-322. [PMID: 30854919 DOI: 10.1177/0748730419835360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adult circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is resilient to glucocorticoids (GCs). The fetal rodent SCN resembles that of the adult in its organization of GC-sensitive peripheral tissues. We tested the hypothesis that the fetal SCN clock is sensitive to changes in GC levels. Maternal GCs must pass through the placenta to reach the fetal SCN. We show that the maternal but not the fetal part of the placenta harbors the autonomous circadian clock, which is reset by dexamethasone (DEX) and rhythmically expresses Hsd11b2. The results suggest the presence of a mechanism for rhythmic GC passage through the placental barrier, which is adjusted according to actual GC levels. GC receptors are expressed rhythmically in the laser-dissected fetal SCN samples. We demonstrate that hypothalamic explants containing the SCN of the mPer2 Luc mouse prepared at embryonic day (E)15 spontaneously develop rhythmicity within several days of culture, with dynamics varying among fetuses from the same litter. Culturing these explants in media enriched with DEX accelerates the development. At E17, treatment of the explants with DEX induces phase advances and phase delays of the rhythms depending on the timing of treatments, and the shifts are completely blocked by the GC receptor antagonist, mifepristone. The DEX-induced phase-response curve differs from that induced by the vehicle. The fetal SCN is sensitive to GCs in vivo because DEX administration to pregnant rats acutely downregulates c-fos expression specifically in the laser-dissected fetal SCN. Our results provide evidence that the rodent fetal SCN clock may respond to changes in GC levels.
Collapse
Affiliation(s)
- Vendula Čečmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolína Šuchmanová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Sládek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
19
|
Morales-Rubio RA, Alvarado-Cruz I, Manzano-León N, Andrade-Oliva MDLA, Uribe-Ramirez M, Quintanilla-Vega B, Osornio-Vargas Á, De Vizcaya-Ruiz A. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice. Part Fibre Toxicol 2019; 16:7. [PMID: 30691489 PMCID: PMC6350404 DOI: 10.1186/s12989-019-0289-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Background Exposure to particulate matter (PM) is associated with an adverse intrauterine environment, which can promote adult cardiovascular disease (CVD) risk. Ultrafine particles (UFP) (small size and large surface area/mass ratio) are systemically distributed, induce inflammation and oxidative stress, and have been associated with vascular endothelial dysfunction and arterial vasoconstriction, increasing hypertension risk. Placental stress and alterations in methylation of promoter regions of renin-angiotensin system (RAS)-related elements could be involved in UFP exposure-related programming of hypertension. We investigated whether in utero UFP exposure promotes placental stress by inflammation and oxidative stress, alterations in hydroxysteroid dehydrogenase 11b-type 2 (HSD11B2) and programming of RAS-related elements, and result in altered blood pressure in adult offspring. UFP were collected from ambient air using an aerosol concentrator and physicochemically characterized. Pregnant C57BL/6J pun/pun female mice were exposed to collected UFP (400 μg/kg accumulated dose) by intratracheal instillation and compared to control (nonexposed) and sterile H2O (vehicle) exposed mice. Embryo reabsorption and placental stress by measurement of the uterus, placental and fetal weights, dam serum and fetal cortisol, placental HSD11B2 DNA methylation and protein levels, were evaluated. Polycyclic aromatic hydrocarbon (PAH) biotransformation (CYP1A1 and NQO1 (NAD(P)H dehydrogenase (quinone)1)) enzymes, inflammation and oxidative stress in placentas and fetuses were measured. Postnatal day (PND) 50 in male offspring blood pressure was measured. Methylation and protein expression of (RAS)-related elements, angiotensin II receptor type 1 (AT1R) and angiotensin I-converting enzyme (ACE) in fetuses and lungs of PND 50 male offspring were also assessed. Results In utero UFP exposure induced placental stress as indicated by an increase in embryo reabsorption, decreases in the uterus, placental, and fetal weights, and HSD11B2 hypermethylation and protein downregulation. In utero UFP exposure induced increases in the PAH-biotransforming enzymes, intrauterine oxidative damage and inflammation and stimulated programming and activation of AT1R and ACE, which resulted in increased blood pressure in the PND 50 male offspring. Conclusions In utero UFP exposure promotes placental stress through inflammation and oxidative stress, and programs RAS-related elements that result in altered blood pressure in the offspring. Exposure to UFP during fetal development could influence susceptibility to CVD in adulthood. Electronic supplementary material The online version of this article (10.1186/s12989-019-0289-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Russell A Morales-Rubio
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Isabel Alvarado-Cruz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Natalia Manzano-León
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Maria-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Marisela Uribe-Ramirez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Betzabet Quintanilla-Vega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | | | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México.
| |
Collapse
|
20
|
Zhu P, Wang W, Zuo R, Sun K. Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell Mol Life Sci 2019; 76:13-26. [PMID: 30225585 PMCID: PMC11105584 DOI: 10.1007/s00018-018-2918-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
The fetus is shielded from the adverse effects of excessive maternal glucocorticoids by 11β-HSD2, an enzyme which is expressed in the syncytial layer of the placental villi and is capable of converting biologically active cortisol into inactive cortisone. Impairment of this placental glucocorticoid barrier is associated with fetal intrauterine growth restriction (IUGR) and development of chronic diseases in later life. Ontogeny studies show that the expression of 11β-HSD2 is initiated at a very early stage after conception and increases with gestational age but declines around term. The promoter for HSD11B2, the gene encoding 11β-HSD2, has a highly GC-rich core. However, the pattern of methylation on HSD11B2 may have already been set up in the blastocyst when the trophoblast identity is committed. Instead, hCG-initiated signals appear to be responsible for the upsurge of 11β-HSD2 expression during trophoblast syncytialization. By activating the cAMP/PKA pathway, hCG not only alters the modification of histones but also increases the expression of Sp1 which activates the transcription of HSD11B2. Adverse conditions such as stress, hypoxia and nutritional restriction can cause IUGR of the fetus. It appears that different causes of IUGR may attenuate HSD11B2 expression differentially in the placenta. While stress and nutritional restriction may reduce HSD11B2 expression by increasing its methylation, hypoxia may decrease HSD11B2 expression via alternative mechanisms rather than by methylation. Herein, we summarize the advances in the study of mechanisms underlying the establishment of the placental glucocorticoid barrier and the attenuation of this barrier by adverse conditions during pregnancy.
Collapse
Affiliation(s)
- Ping Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Department of Obstetrics and Gynecology, No. 401 Hospital, Qingdao, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Rujuan Zuo
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA. Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of Adult Stress Physiology and Epigenetic Profiles in Brain. Toxicol Sci 2018; 163:478-489. [PMID: 29481626 PMCID: PMC5974781 DOI: 10.1093/toxsci/kfy046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Developmental exposure to lead (Pb) and prenatal stress (PS) both impair cognition, which could derive from their joint targeting of the hypothalamic-pituitary-adrenal axis and the brain mesocorticolimbic (MESO) system, including frontal cortex (FC) and hippocampus (HIPP). Glucocorticoids modulate both FC and HIPP function and associated mediation of cognitive and other behavioral functions. This study sought to determine whether developmental Pb ± PS exposures altered glucocorticoid-related epigenetic profiles in brain MESO regions in offspring of female mice exposed to 0 or 100 ppm Pb acetate drinking water from 2 mos prior to breeding until weaning, with half further exposed to prenatal restraint stress from gestational day 11-18. Overall, changes in females occured in response to Pb exposure. In males, however, Pb-induced neurotoxicity was modulated by PS. Changes in serum corticosterone levels were seen in males, while glucocorticoid receptor changes were seen in both sexes. In contrast, both Pb and PS broadly impacted brain DNA methyltransferases and binding proteins, particularly DNMT1, DNMT3a and methyl-CpG-binding protein 2, with patterns that differed by sex and brain regions. Specifically, in males, effects on FC epigenetic modifiers were primarily influenced by Pb, whereas extensive changes in HIPP were produced by PS. In females, Pb exposure and not PS primarily altered epigenetic modifiers in both FC and HIPP. Collectively, these findings indicate that epigenetic mechanisms may underlie associated neurotoxicity of Pb and of PS, particularly associated cognitive deficits. However, mechanisms by which this may occur will be different in males versus females.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York,To whom correspondence should be addressed at Department of Environmental Medicine, University of Rochester School of Medicine, University of Rochester Medical Center, Box EHSC, Rochester, NY 14642. Fax: 585-256-2591; E-mail:
| | - Garima Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Beth Adams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
22
|
Le B, Sutherland MR, Black MJ. Maladaptive structural remodelling of the heart following preterm birth. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Mark PJ, Crew RC, Wharfe MD, Waddell BJ. Rhythmic Three-Part Harmony: The Complex Interaction of Maternal, Placental and Fetal Circadian Systems. J Biol Rhythms 2017; 32:534-549. [PMID: 28920512 DOI: 10.1177/0748730417728671] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
From the perspective of circadian biology, mammalian pregnancy presents an unusual biological scenario in which an entire circadian system (i.e., that of the fetus) is embodied within another (i.e., that of the mother). Moreover, both systems are likely to be influenced at their interface by a third player, the placenta. Successful pregnancy requires major adaptations in maternal physiology, many of which involve circadian changes that support the high metabolic demands of the growing fetus. A functional role for maternal circadian adaptations is implied by the effects of circadian disruption, which result in pregnancy complications including higher risks for miscarriage, preterm labor, and low birth weight. Various aspects of fetal physiology lead to circadian variation, at least in late gestation, but it remains unclear what drives this rhythmicity. It likely involves contributions from the maternal environment and possibly from the placenta and the developing intrinsic molecular clocks within fetal tissues. The role of the placenta is of particular significance because it serves not only to relay signals about the external environment (via the mother) but may also exhibit its own circadian rhythmicity. This review considers how the fetus may be influenced by dynamic circadian signals from the mother and the placenta during gestation, and how, in the face of these changing influences, a new fetal circadian system emerges. Particular emphasis is placed on the role of endocrine signals, most notably melatonin and glucocorticoids, as mediators of maternal-fetal circadian interactions, and on the expression of the clock gene in the 3 compartments. Further study is required to understand how the mother, placenta, and fetus interact across pregnancy to optimize circadian adaptations that support adequate growth and development of the fetus and its transition to postnatal life in a circadian environment.
Collapse
Affiliation(s)
- Peter J Mark
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Rachael C Crew
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Michaela D Wharfe
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan J Waddell
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Diemert A, Goletzke J, Barkmann C, Jung R, Hecher K, Arck P. Maternal progesterone levels are modulated by maternal BMI and predict birth weight sex-specifically in human pregnancies. J Reprod Immunol 2017. [PMID: 28641119 DOI: 10.1016/j.jri.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Successful pregnancy outcome is the result of a tailored adaptation of the maternal endocrine and immune system throughout gestation. We aimed to investigate if maternal endocrine, anthropometric and life style factors assessed longitudinally throughout pregnancy allow prediction of birth weight. STUDY DESIGN Data on maternal factors and obstetrical characteristics from 220 pregnancies from a German prospective pregnancy cohort were analyzed using univariate and multivariate regression models. The association between maternal progesterone levels at the end of the 1st (gw 12-14), the 2nd (gw 22-24) and the 3rd trimester (gw 34-36) and birth weight of children born at term was examined. Interaction terms were included to identify possible sex-specific associations. Furthermore, associations between maternal and obstetric characteristics and progesterone levels were tested. RESULTS After controlling for possible confounders, progesterone in the 2nd trimester emerged as an independent predictor for birth weight in pregnancies with female (p=0.01), but not male fetuses (p=0.6). In female fetuses each increase of progesterone by 1ng/ml in the 2nd trimester was associated with an increase of birth weight by 6.8g (95%-CI=1.44-12.24). Maternal 1st trimester BMI showed a significant inverse correlation to progesterone levels throughout gestation (p<0.0001 in the 1st and 2nd, p=0.01 in the 3rd trimester). This inverse association between maternal BMI and progesterone levels was confined to overweight women. CONCLUSION Our data support that maternal progesterone levels have the potential to serve as early biomarker for reduced birth weight and underpins the importance of normal weight when entering the reproductive phase.
Collapse
Affiliation(s)
- Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany.
| | - Janina Goletzke
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Claus Barkmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Robert Jung
- Center for Diagnostics, Department of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Petra Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Chin EH, Schmidt KL, Martel KM, Wong CK, Hamden JE, Gibson WT, Soma KK, Christians JK. A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice. PLoS One 2017; 12:e0174030. [PMID: 28301585 PMCID: PMC5354465 DOI: 10.1371/journal.pone.0174030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/02/2017] [Indexed: 01/21/2023] Open
Abstract
Maternal overnutrition and obesity during pregnancy can have long-term effects on offspring physiology and behaviour. These developmental programming effects may be mediated by fetal exposure to glucocorticoids, which is regulated in part by placental 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 and 2. We tested whether a maternal high-fat, high-sucrose diet would alter expression of placental 11β-HSD1 and 2, thereby increasing fetal exposure to maternal glucocorticoids, with downstream effects on offspring physiology and behaviour. C57BL/6J mice were fed a high-fat, high-sucrose (HFHS) diet or a nutrient-matched low-fat, no-sucrose control diet prior to and during pregnancy and lactation. At day 17 of gestation, HFHS dams had ~20% lower circulating corticosterone levels than controls. Furthermore, there was a significant interaction between maternal diet and fetal sex for circulating corticosterone levels in the fetuses, whereby HFHS males tended to have higher corticosterone than control males, with no effect in female fetuses. However, placental 11β-HSD1 or 11β-HSD2 expression did not differ between diets or show an interaction between diet and sex. To assess potential long-term consequences of this sex-specific effect on fetal corticosterone, we studied locomotor activity and metabolic traits in adult offspring. Despite a sex-specific effect of maternal diet on fetal glucocorticoids, there was little evidence of sex-specific effects on offspring physiology or behaviour, although HFHS offspring of both sexes had higher circulating corticosterone at 9 weeks of age. Our results suggest the existence of as yet unknown mechanisms that mitigate the effects of altered glucocorticoid exposure early in development, making offspring resilient to the potentially negative effects of a HFHS maternal diet.
Collapse
Affiliation(s)
- Eunice H. Chin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Kim L. Schmidt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kaitlyn M. Martel
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Chi Kin Wong
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Jordan E. Hamden
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Kiran K. Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- * E-mail:
| |
Collapse
|
26
|
Placental 11 β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression very early during human pregnancy. J Dev Orig Health Dis 2017; 8:149-154. [DOI: 10.1017/s2040174416000611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Maternal physiologic stress during gestation has been reported to be associated with negative developmental outcomes, including intra-uterine growth restriction and reduced birth weight, which can impact postnatal development, behavior and health. The human fetus is partially protected from elevated cortisol exposure by placental 11 β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which oxidizes bioactive cortisol into bio-inactive cortisone. Importantly, despite the critical protective role hypothesized for 11β-HSD2, the onset of its placental expression has yet to be clearly established. To this aim, we present immunocytochemical analysis of placentas collected 3–6 weeks post-conception. 11β-HSD2 was present as early as 3 weeks post-conception in syncytiotrophoblasts, where most maternal–fetal exchange occurs, and in columnar epithelial cells encircling uterine endometrial glands, which provide early histiopathic nutrition to the embryo. 11β-HSD2 expression in these critical maternal–fetal exchange areas is consistent with its hypothesized protective role. Future studies should investigate the mechanisms that may modulate embryonic glucocorticoid exposure earlier, immediately post-conception.
Collapse
|
27
|
Abstract
Glucocorticoids are primary stress hormones produced by the adrenal cortex. The concentration of serum glucocorticoids in the fetus is low throughout most of gestation but surge in the weeks prior to birth. While their most well-known function is to stimulate differentiation and functional development of the lungs, glucocorticoids also play crucial roles in the development of several other organ systems. Mothers at risk of preterm delivery are administered glucocorticoids to accelerate fetal lung development and prevent respiratory distress. Conversely, excessive glucocorticoid signaling is detrimental for fetal development; slowing fetal and placental growth and programming the individual for disease later in adult life. This review explores the mechanisms that control glucocorticoid signaling during pregnancy and provides an overview of the impact of glucocorticoid signaling on fetal development.
Collapse
Affiliation(s)
- Jonathan T Busada
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States.
| |
Collapse
|
28
|
Cheong JN, Cuffe JSM, Jefferies AJ, Anevska K, Moritz KM, Wlodek ME. Sex-Specific Metabolic Outcomes in Offspring of Female Rats Born Small or Exposed to Stress During Pregnancy. Endocrinology 2016; 157:4104-4120. [PMID: 27571133 DOI: 10.1210/en.2016-1335] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Low birth weight increases adult metabolic disease risk in both the first (F1) and second (F2) generation. Physiological stress during pregnancy in F1 females that were born small induces F2 fetal growth restriction, but the long-term metabolic health of these F2 offspring is unknown. Uteroplacental insufficiency (restricted) or sham (control) surgery was performed in F0 rats. F1 females (control, restricted) were allocated to unstressed or stressed pregnancies. F2 offspring exposed to maternal stress in utero had reduced birth weight. At 6 months, F2 stressed males had elevated fasting glucose. In contrast, F2 restricted males had reduced pancreatic β-cell mass. Interestingly, these metabolic deficits were not present at 12 month. F2 males had increased adrenal mRNA expression of steroidogenic acute regulatory protein and IGF-1 receptor when their mothers were born small or exposed to stress during pregnancy. Stressed control F2 males had increased expression of adrenal genes that regulate androgen signaling at 6 months, whereas expression increased in restricted male and female offspring at 12 months. F2 females from stressed mothers had lower area under the glucose curve during glucose tolerance testing at 12 months compared with unstressed females but were otherwise unaffected. If F1 mothers were either born small or exposed to stress during her pregnancy, F2 offspring had impaired physiological outcomes in a sex- and age-specific manner. Importantly, stress during pregnancy did not exacerbate disease risk in F2 offspring of mothers born small, suggesting that they independently program disease in offspring through different mechanisms.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - James S M Cuffe
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew J Jefferies
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Kristina Anevska
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Karen M Moritz
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Mary E Wlodek
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
29
|
Carbenoxolone exposure during late gestation in rats alters placental expressions of p53 and estrogen receptors. Eur J Pharmacol 2016; 791:675-685. [PMID: 27693517 DOI: 10.1016/j.ejphar.2016.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Gestational carbenoxolone exposure inhibits placental 11β-hydroxysteroid dehydrogenase (11β-HSD), the physiological barrier for glucocorticoids, which increases fetal exposure to glucocorticoids and induces intrauterine growth restriction (IUGR). We hypothesized that carbenoxolone exposure influences the expression of placental estrogen receptors-α and β (ERα & ERβ) and p53 leading to inhibited fetal and placental growth. Pregnant Sprague-Dawley rats were injected twice daily with either carbenoxolone (10mg/kg; s.c.) or vehicle (control group) from gestational days (dg) 12 onwards. Maternal blood and placentas were collected on 16 dg, 19 dg and 21 dg. The expression of ERα, ERβ and p53 were studied in placental basal and labyrinth zones by RT-PCR, Western blotting and immunohistochemistry. Carbenoxolone did not affect placental and fetal body weights, but ELISA showed decreased estradiol levels on 19 dg and 21 dg, and increased maternal luteinizing hormone levels on all dg. The follicle stimulating hormone levels decreased on 16 dg and 19 dg, and increased on 21 dg. Carbenoxolone decreased ERα mRNA levels on 16 dg in both zones and its protein level on 19 dg in the labyrinth zone. However, carbenoxolone increased ERβ mRNA levels on 19 dg and 21 dg and protein levels on 16 dg and 19 dg in the labyrinth zone. The p53 mRNA levels increased on all dg, but its protein levels increased on 21 dg in both zones. In conclusion, carbenoxolone exposure changes placental p53, ERα, ERβ expression in favor of cell death but these changes do not induce IUGR in rats.
Collapse
|
30
|
Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat JD, Gerk PM. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm Res 2016; 33:2847-2878. [PMID: 27644937 DOI: 10.1007/s11095-016-2028-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Soniya S Vaidya
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts, USA
| | - Marie V St-Pierre
- Department of Clinical Pharmacology and Toxicology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrei M Mikheev
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
- Department of Neurosurgery, Institute of Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Kelly E Desino
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
- Abbvie Inc, North Chicago, Illinois, USA
| | - Abner N Nyandege
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Kenneth L Audus
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA.
| |
Collapse
|
31
|
Raimundo JRS, Bergamaschi CT, Campos RR, Palma BD, Tufik S, Gomes GN. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy. Clinics (Sao Paulo) 2016; 71:521-7. [PMID: 27652834 PMCID: PMC5004573 DOI: 10.6061/clinics/2016(09)07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. METHODS After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. RESULTS The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. CONCLUSIONS Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.
Collapse
Affiliation(s)
- Joyce R S Raimundo
- Escola Paulista de Medicina – UNIFESP, Departamento de Fisiologia, São Paulo/SP, Brazil
| | - Cassia T Bergamaschi
- Escola Paulista de Medicina – UNIFESP, Departamento de Fisiologia, São Paulo/SP, Brazil
| | - Ruy R Campos
- Escola Paulista de Medicina – UNIFESP, Departamento de Fisiologia, São Paulo/SP, Brazil
| | - Beatriz D Palma
- Escola Paulista de Medicina – UNIFESP, Departamento de Psicobiologia, São Paulo/SP, Brazil
- Centro Universitário São Camilo, São Paulo/SP, Brazil
| | - Sergio Tufik
- Escola Paulista de Medicina – UNIFESP, Departamento de Psicobiologia, São Paulo/SP, Brazil
| | - Guiomar N Gomes
- Escola Paulista de Medicina – UNIFESP, Departamento de Fisiologia, São Paulo/SP, Brazil
- E-mail:
| |
Collapse
|
32
|
Huang QT, Shynlova O, Kibschull M, Zhong M, Yu YH, Matthews SG, Lye SJ. P-glycoprotein expression and localization in the rat uterus throughout gestation and labor. Reproduction 2016; 152:195-204. [PMID: 27335130 DOI: 10.1530/rep-16-0161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/17/2016] [Indexed: 11/08/2022]
Abstract
Uterine tissues contain the efflux transporter P-glycoprotein (P-gp, encoded by Abcb1a/1b gene), but little is known about how it changes through gestation. Our aim was to investigate the expression profile and cellular localization of P-gp in the pregnant, laboring and post-partum (PP) rat uterus. We propose that during pregnancy the mechanical and hormonal stimuli play a role in regulating myometrial Abcb1a/1b/P-gp. Samples from bilaterally and unilaterally pregnant rats were collected throughout gestation, during labor, and PP (n=4-6/gestational day). RNA and protein were isolated and subjected to quantitative PCR and immunoblotting; P-gp transcript and protein were localized by in situ hybridization and immunohistochemistry. Expression of Abcb1a/1b gene and membrane P-gp protein in uterine tissue (1) increased throughout gestation, peaked at term (GD19-21) and dropped during labor (GD23L); and (2) was upregulated only in gravid but not in empty horn of unilaterally pregnant rats. (3) The drop of Abcb1a/1b mRNA on GD23 was prevented by artificial maintenance of elevated progesterone (P4) levels in late gestation; (4) injection of the P4 receptor antagonist RU486 on GD19 caused a significant decrease in Abcb1 mRNA levels. (5) In situ hybridization and immunohistochemistry indicated that Abcb1/P-gp is absent from myometrium throughout gestation; (6) was expressed exclusively by uterine microvascular endothelium (at early gestation) and luminal epithelium (at mid and late gestation), but was undetectable during labor. In conclusion, ABC transporter protein P-gp in pregnant uterus is hormonally and mechanically regulated. However, its substrate(s) and precise function in these tissues during pregnancy remains to be determined.
Collapse
Affiliation(s)
- Qi-Tao Huang
- Lunenfeld-Tanenbaum Research InstituteMount Sinai Hospital, Toronto, Ontario, Canada Division of Obstetrics and GynecologyNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Oksana Shynlova
- Lunenfeld-Tanenbaum Research InstituteMount Sinai Hospital, Toronto, Ontario, Canada Department of Obstetrics & GynecologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research InstituteMount Sinai Hospital, Toronto, Ontario, Canada
| | - Mei Zhong
- Division of Obstetrics and GynecologyNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Hong Yu
- Lunenfeld-Tanenbaum Research InstituteMount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research InstituteMount Sinai Hospital, Toronto, Ontario, Canada Department of Obstetrics & GynecologyUniversity of Toronto, Toronto, Ontario, Canada Department of PhysiologyUniversity of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research InstituteMount Sinai Hospital, Toronto, Ontario, Canada Department of Obstetrics & GynecologyUniversity of Toronto, Toronto, Ontario, Canada Department of PhysiologyUniversity of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Konstantakou P, Mastorakos G, Vrachnis N, Tomlinson JW, Valsamakis G. Dysregulation of 11beta-hydroxysteroid dehydrogenases: implications during pregnancy and beyond. J Matern Fetal Neonatal Med 2016; 30:284-293. [PMID: 27018008 DOI: 10.3109/14767058.2016.1171308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucococorticoids play a critical role in the developmental programing and fetal growth. Key molecules mediating and regulating tissue-specific glucocorticoid actions are 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 isozymes, both of which are expressed in the placenta and the fetal membranes. 11beta-HSD1 is implicated in the pathogenesis of metabolic syndrome and its dysregulation has been observed in pregnancy-related complications (pre-eclampsia, intrauterine growth restriction). Interestingly, preliminary clinical data have associated certain 11beta-HSD1 gene polymorphisms with hypertensive disorders in pregnancy, suggesting, if confirmed by further targeted studies, it's potential as a putative prognostic marker. Animal studies and observations in humans have confirmed that 11beta-HSD2 insufficiency is related with pregnancy adversity (pre-eclampsia, intrauterine growth restriction, preterm birth). Importantly, down-regulation or deficiency of placental 11beta-HSD2 is associated with significant restriction in fetal growth and low-birth weight, and unfavorable cardio-metabolic profile in adulthood. The potential association of 11beta-HSD1 tissue-specific dysregulation with gestational diabetes, as well as the plausible utility of 11beta-HSD2, as a biomarker of pregnancy adversity and later life morbidity, are emerging areas of intense scientific interest and future investigation.
Collapse
Affiliation(s)
- P Konstantakou
- a Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio Hospital , Athens , Greece
| | - G Mastorakos
- a Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio Hospital , Athens , Greece
| | - N Vrachnis
- b Department of Obstetrics and Gynecology , Aretaieio Hospital , Athens , Greece
| | - J W Tomlinson
- c Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital , Headington , UK
| | - G Valsamakis
- a Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio Hospital , Athens , Greece
| |
Collapse
|
34
|
Wharfe MD, Mark PJ, Wyrwoll CS, Smith JT, Yap C, Clarke MW, Waddell BJ. Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids. J Endocrinol 2016; 228:135-47. [PMID: 26883207 DOI: 10.1530/joe-15-0405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
Abstract
Maternal physiological adaptations, such as changes to the hypothalamic-pituitary-adrenal (HPA) axis, are central to pregnancy success. Circadian variation of the HPA axis is dependent on clock gene rhythms in the hypothalamus, but it is not known whether pregnancy-induced changes in maternal glucocorticoid levels are mediated via this central clock. We hypothesized that hypothalamic expression of clock genes changes across mouse pregnancy and this is linked to altered HPA activity. The anterior hypothalamus and maternal plasma were collected from C57Bl/6J mice prior to pregnancy and on days 6, 10, 14 and 18 of gestation (term=d19), across a 24-h period (0800, 1200, 1600, 2000, 0000, 0400 h). Hypothalamic expression of clock genes and Crh was determined by qPCR, plasma ACTH concentration measured by Milliplex assay and plasma corticosterone concentration by LC-MS/MS. Expression of all clock genes varied markedly across gestation, most notably at mid-gestation when levels of each gene were elevated. The pregnancy-induced increase in maternal corticosterone levels (by up to 14-fold on day 14) was not accompanied by a parallel shift in plasma ACTH (28% lower on day 14 compared with non-pregnant levels). Moreover, while circadian rhythmicity in corticosterone was maintained up to day 14 of gestation, this was effectively lost by day 18. Overall, our data show that the central circadian clock undergoes marked adaptations throughout mouse pregnancy, changes that are likely to contribute to maternal physiological adaptations. Importantly, however, neither hypothalamic clock genes nor plasma ACTH levels appear to drive the marked increase in maternal corticosterone after mid-gestation.
Collapse
Affiliation(s)
- Michaela D Wharfe
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, M309, Perth 6009, AustraliaMetabolomics AustraliaThe University of Western Australia, Perth 6009, Australia
| | - Peter J Mark
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, M309, Perth 6009, AustraliaMetabolomics AustraliaThe University of Western Australia, Perth 6009, Australia
| | - Caitlin S Wyrwoll
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, M309, Perth 6009, AustraliaMetabolomics AustraliaThe University of Western Australia, Perth 6009, Australia
| | - Jeremy T Smith
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, M309, Perth 6009, AustraliaMetabolomics AustraliaThe University of Western Australia, Perth 6009, Australia
| | - Cassandra Yap
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, M309, Perth 6009, AustraliaMetabolomics AustraliaThe University of Western Australia, Perth 6009, Australia
| | - Michael W Clarke
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, M309, Perth 6009, AustraliaMetabolomics AustraliaThe University of Western Australia, Perth 6009, Australia
| | - Brendan J Waddell
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, M309, Perth 6009, AustraliaMetabolomics AustraliaThe University of Western Australia, Perth 6009, Australia
| |
Collapse
|
35
|
Abstract
The fetal hypothalamus-pituitary-adrenal (HPA) axis is at the center of mechanisms controlling fetal readiness for birth, survival after birth and, in several species, determination of the timing of birth. Stereotypical increases in fetal HPA axis activity at the end of gestation are critical for preparing the fetus for successful transition to postnatal life. The fundamental importance in fetal development of the endogenous activation of this endocrine axis at the end of gestation has led to the use of glucocorticoids for reducing neonatal morbidity in premature infants. However, the choice of dose and repetition of treatments has been controversial, raising the possibility that excess glucocorticoid might program an increased incidence of adult disease (e.g., coronary artery disease and diabetes). We make the argument that because of the critical importance of the fetal HPA axis and its interaction with the maternal HPA axis, dysregulation of cortisol plasma concentrations or inappropriate manipulation pharmacologically can have negative consequences at the beginning of extrauterine life and for decades thereafter.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, FL, USA
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy, FL, USA
| |
Collapse
|
36
|
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 2015; 22:164-81. [PMID: 26545808 DOI: 10.1093/humupd/dmv049] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as 'gatekeepers' at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus.
Collapse
Affiliation(s)
- E Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S J Lye
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - W Gibb
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, ON, Canada Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
37
|
Zhao B, Xie GJ, Li RF, Chen Q, Zhang XQ. Dexamethasone protects normal human liver cells from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand by upregulating the expression of P-glycoproteins. Mol Med Rep 2015; 12:8093-100. [PMID: 26496964 DOI: 10.3892/mmr.2015.4458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids are effective for the treatment of acute-on-chronic pre-liver failure, severe chronic hepatitis B and acute liver failure; however, the mechanism underlying the effects of treatment by glucocorticoids remains to be fully elucidated. The role and detailed mechanism of how glucocorticoids prevent liver disease progression can be elucidated by investigating the apoptosis of hepatocytes following glucocorticoid treatment. P‑glycoproteins (P‑gps) also confer resistance to apoptosis induced by a diverse range of stimuli. Glucocorticoids, particularly dexamethasone (DEX), upregulate the expression of P‑gp in several tissues. In the present study, the normal human L‑02 liver cell line was used, and techniques, including immunocytochemistry, western blot analysis, flow cytometry and reverse transcription‑quantitative polymerase chain reaction analysis were used for determining the expression levels of P‑gps, and for evaluating the effect of DEX pretreatment on the expression of P‑gps. DEX (1‑10 µM) was added to the cell culture media and incubated for 24‑72 h. The results revealed that DEX upregulated the mRNA and protein levels of P‑gp in a dose‑ and time‑dependent manner. Subsequently, tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) was used for the induction of apoptosis in the cells, followed by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay to assess the apoptotic stages. The results demonstrated that apoptosis in the group of cells, which were pre‑treated with DEX was significantly lower than that in the control group. Treatment with tariquidar, a P‑gp inhibitor, reduced the anti‑apoptotic effects of DEX. These results established that DEX protects normal human liver cells from TRAIL‑induced apoptosis by upregulating the expression of P-gp. These observations may be useful for elucidating the mechanism of DEX for preventing the progression of liver disease.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gui-Juan Xie
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Rui-Feng Li
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qing Chen
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xu-Qing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
38
|
Behavioral epigenetics and the developmental origins of child mental health disorders. J Dev Orig Health Dis 2015; 3:395-408. [PMID: 25084292 DOI: 10.1017/s2040174412000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in understanding the molecular basis of behavior through epigenetic mechanisms could help explain the developmental origins of child mental health disorders. However, the application of epigenetic principles to the study of human behavior is a relatively new endeavor. In this paper we discuss the 'Developmental Origins of Health and Disease' including the role of fetal programming. We then review epigenetic principles related to fetal programming and the recent application of epigenetics to behavior. We focus on the neuroendocrine system and develop a simple heuristic stress-related model to illustrate how epigenetic changes in placental genes could predispose the infant to neurobehavioral profiles that interact with postnatal environmental factors potentially leading to mental health disorders. We then discuss from an 'Evo-Devo' perspective how some of these behaviors could also be adaptive. We suggest how elucidation of these mechanisms can help to better define risk and protective factors and populations at risk.
Collapse
|
39
|
Bock J, Wainstock T, Braun K, Segal M. Stress In Utero: Prenatal Programming of Brain Plasticity and Cognition. Biol Psychiatry 2015; 78:315-26. [PMID: 25863359 DOI: 10.1016/j.biopsych.2015.02.036] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/17/2022]
Abstract
Animal studies confirm earlier anecdotal observations in humans to indicate that early life experience has a profound impact on adult behavior, years after the original experience has vanished. These studies also highlight the role of early life adversaries in the shaping of a disordered brain. Evidence is accumulating to indicate that the epigenome, through which the environment regulates gene expression, is responsible for long-lasting effects of stress during pregnancy on brain and behavior. A possible differential effect of the environment on the epigenome may underlie the observation that only a small fraction of a population with similar genetic background deteriorates into mental disorders. Considerable progress has been made in the untangling of the epigenetic mechanisms that regulate emotional brain development. The present review focuses on the lasting effects of prenatal stress on brain plasticity and cognitive functions in human and rodent models. Although human studies stress the significance of early life experience in functional maturation, they lack the rigor inherent in controlled animal experiments. Furthermore, the analysis of molecular and cellular mechanisms affected by prenatal stress is possible only in experimental animals. The present review attempts to link human and animal studies while proposing molecular mechanisms that interfere with functional brain development.
Collapse
Affiliation(s)
- Joerg Bock
- Otto von Guericke University Magdeburg (JB, KB), Magdeburg, Germany
| | - Tamar Wainstock
- Rollins School of Public Health (TW), Emory University, Atlanta, Georgia
| | - Katharina Braun
- Otto von Guericke University Magdeburg (JB, KB), Magdeburg, Germany
| | - Menahem Segal
- Department of Neurobiology (MS) Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
40
|
Mina TH, Räikkönen K, Riley SC, Norman JE, Reynolds RM. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex. Psychoneuroendocrinology 2015; 59:112-22. [PMID: 26056743 DOI: 10.1016/j.psyneuen.2015.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/16/2015] [Accepted: 05/08/2015] [Indexed: 01/01/2023]
Abstract
Maternal emotional distress symptoms, including life satisfaction, anxiety and depressed mood, are worse in Severely Obese (SO) than lean pregnancy and may alter placental genes regulating fetal glucocorticoid exposure and placental growth. We hypothesised that the associations between increased maternal distress symptoms and changes in placental gene expression including IGF2 and genes regulating fetal glucocorticoid exposure are more pronounced in SO pregnancy. We also considered whether there were sex-specific effects. Placental mRNA levels of 11β-HSDs, NR3C1-α, NR3C2, ABC transporters, mTOR and the IGF2 family were measured in term placental samples from 43 lean (BMI≤25kg/m(2)) and 50 SO (BMI≥40kg/m(2)) women, in whom distress symptoms were prospectively evaluated during pregnancy. The mRNA levels of genes with a similar role in regulating fetal glucocorticoid exposure were strongly inter-correlated. Increased maternal distress symptoms associated with increased NR3C2 and IGF2 isoform 1(IGF2-1) in both lean and SO group (p≤0.05). Increased distress was associated with higher ABCB1 and ABCG2 mRNA levels in SO but lower ABCB1 and higher 11β-HSD1 mRNA levels in lean (p≤0.05) suggesting a protective adaptive response in SO placentas. Increased maternal distress associated with reduced mRNA levels of ABCB1, ABCG2, 11β-HSD2, NR3C1-α and IGF2-1 in placentas of female but not male offspring. The observed sex differences in placental responses suggest greater vulnerability of female fetuses to maternal distress with potentially greater fetal glucocorticoid exposure and excess IGF2. Further studies are needed to replicate these findings and to test whether this translates to potentially greater negative outcomes of maternal distress in female offspring in early childhood.
Collapse
Affiliation(s)
- Theresia H Mina
- University BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, UK; Tommy's Centre for Maternal and Fetal Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Katri Räikkönen
- Institute of Behavioral Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Simon C Riley
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK; Tommy's Centre for Maternal and Fetal Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Jane E Norman
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK; Tommy's Centre for Maternal and Fetal Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Rebecca M Reynolds
- University BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, UK; Tommy's Centre for Maternal and Fetal Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| |
Collapse
|
41
|
Fowden AL, Forhead AJ. Glucocorticoids as regulatory signals during intrauterine development. Exp Physiol 2015; 100:1477-87. [PMID: 26040783 DOI: 10.1113/ep085212] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/22/2015] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the role of the glucocorticoids as regulatory signals during intrauterine development. It examines the functional significance of these hormones as maturational, environmental and programming signals in determining offspring phenotype. What advances does it highlight? It focuses on the extensive nature of the regulatory actions of these hormones. It highlights the emerging data that these actions are mediated, in part, by the placenta, other endocrine systems and epigenetic modifications of the genome. Glucocorticoids are important regulatory signals during intrauterine development. They act as maturational, environmental and programming signals that modify the developing phenotype to optimize offspring viability and fitness. They affect development of a wide range of fetal tissues by inducing changes in cellular expression of structural, transport and signalling proteins, which have widespread functional consequences at the whole organ and systems levels. Glucocorticoids, therefore, activate many of the physiological systems that have little function in utero but are vital at birth to replace the respiratory, nutritive and excretory functions previously carried out by the placenta. However, by switching tissues from accretion to differentiation, early glucocorticoid overexposure in response to adverse conditions can programme fetal development with longer term physiological consequences for the adult offspring, which can extend to the next generation. The developmental effects of the glucocorticoids can be direct on fetal tissues with glucocorticoid receptors or mediated by changes in placental function or other endocrine systems. At the molecular level, glucocorticoids can act directly on gene transcription via their receptors or indirectly by epigenetic modifications of the genome. In this review, we examine the role and functional significance of glucocorticoids as regulatory signals during intrauterine development and discuss the mechanisms by which they act in utero to alter the developing epigenome and ensuing phenotype.
Collapse
Affiliation(s)
- Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Alison J Forhead
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
42
|
Review: Endocrine regulation of placental phenotype. Placenta 2015; 36 Suppl 1:S50-9. [DOI: 10.1016/j.placenta.2014.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022]
|
43
|
Meng X, Zhang T, Li Y, Pan Q, Jiang J, Luo Y, Chong L, Yang Y, Xu S, Zhou L, Sun Z. The toxicokinetic profile of curdione in pregnant SD rats and its transference in a placental barrier system detected by LC–MS/MS. Regul Toxicol Pharmacol 2015; 71:158-63. [DOI: 10.1016/j.yrtph.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/07/2014] [Indexed: 11/29/2022]
|
44
|
Wang F, Zhang Q, Zhang X, Luo S, Ye D, Guo Y, Chen S, Huang Y. Preeclampsia induced by cadmium in rats is related to abnormal local glucocorticoid synthesis in placenta. Reprod Biol Endocrinol 2014; 12:77. [PMID: 25108313 PMCID: PMC4249735 DOI: 10.1186/1477-7827-12-77] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/02/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cadmium (Cd) is a major environmental pollutant that causes multiple adverse health effects in humans and animals. In this study, we investigated Cd-mediated toxic effects in rats during pregnancy and endocrine intervention in the placenta. METHODS We exposed pregnant rats to intraperitoneal Cd (CdCl2) at various doses (0, 0.25, and 0.5 mg/kg BW/day) from days 5 to 19 of pregnancy and evaluated the maternal-placental-fetal parameters linked to preeclampsia. We measured the corticosterone level in rat serum and placental tissue by sensitive ELISA and also analyzed the expression of glucocorticoid synthesis enzymes in the placenta. RESULTS Key features of preeclampsia (PE), including hypertension, proteinuria, glomerular endotheliosis, placental abnormalities and small fetal size, appeared in pregnant rats after injection with 0.5 mg/kg BW/day Cd. The placental corticosterone production and maternal and fetal plasma corticosterone levels were increased in rats treated with 0.5 mg/kg BW/day Cd (P <0.01). The expression of 21-hydroxylase (CYP21) and 11beta-hydroxylase (CYP11B1), enzymes essential for corticosteroid synthesis, were increased in Cd-exposed placenta (P <0.01). 11beta-hydroxysteroid dehydrogenase (11beta-HSD2), a dominant negative regulator of local glucocorticoid levels, was decreased in Cd-exposed placenta (P <0.01). CONCLUSIONS Our study demonstrates for the first time that changes in placental glucocorticoid synthesis induced by Cd exposure during pregnancy could contribute to preeclamptic conditions in rats.
Collapse
Affiliation(s)
- Fan Wang
- />Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Qiong Zhang
- />Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Xiaojie Zhang
- />Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Shunqun Luo
- />Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Duyun Ye
- />Department of Pathophysiology, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yi Guo
- />Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Sisi Chen
- />Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yinping Huang
- />Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
45
|
Mark PJ, Wyrwoll CS, Zulkafli IS, Mori TA, Waddell BJ. Rescue of glucocorticoid-programmed adipocyte inflammation by omega-3 fatty acid supplementation in the rat. Reprod Biol Endocrinol 2014; 12:39. [PMID: 24886466 PMCID: PMC4022445 DOI: 10.1186/1477-7827-12-39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/26/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adverse fetal environments predispose offspring to pathologies associated with the metabolic syndrome. Previously we demonstrated that adult offspring of dexamethasone-treated mothers had elevated plasma insulin and pro-inflammatory cytokines, effects prevented by a postnatal diet enriched with omega (n)-3 fatty acids. Here we tested whether prenatal glucocorticoid excess also programmed the adipose tissue phenotype, and whether this outcome is rescued by dietary n-3 fatty acids. METHODS Offspring of control and dexamethasone-treated mothers (0.75 μg/ml in drinking water, day 13 to term) were cross-fostered to mothers on a standard (Std) or high n-3 (Hn3) diet at birth. Offspring remained on these diets post-weaning, and serum and retroperitoneal fat were obtained at 6 months of age (n = 5-8 per group). Serum was analysed for blood lipids and fatty acid profiles, adipocyte cross sectional area was measured by unbiased stereological analysis and adipose expression of markers of inflammation, glucocorticoid sensitivity and lipid metabolism were determined by RT-qPCR analysis. RESULTS Serum total fatty acid levels were elevated (P < 0.01) in male offspring of dexamethasone-treated mothers, an effect prevented by Hn3 consumption. Prenatal dexamethasone also programmed increased adipose expression of Il6, Il1b (both P < 0.05) and Tnfa (P < 0.001) mRNAs regardless of fetal sex, but again this effect was prevented (for Il6 and Il1b) by Hn3 consumption. Offspring of dexamethasone-treated mothers had increased adipose expression of Gr (P = 0.008) and Ppara (P < 0.05) regardless of sex or postnatal diet, while 11bHsd1 was upregulated in males only. The Hn3 diet increased Ppard expression and reduced adipocyte size in all offspring (both P < 0.05) irrespective of prenatal treatment. CONCLUSIONS Prenatal glucocorticoid exposure programmed increased expression of inflammatory markers and enhanced glucocorticoid sensitivity of adipose tissue. Partial prevention of this phenotype by high n-3 consumption indicates that postnatal dietary manipulations can limit adverse fetal programming effects on adipose tissue.
Collapse
Affiliation(s)
- Peter J Mark
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Perth, Australia
| | - Caitlin S Wyrwoll
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Perth, Australia
| | - Intan S Zulkafli
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Perth, Australia
| | - Trevor A Mori
- School of Medicine and Pharmacology, The University of Western Australia, Perth, Australia
| | - Brendan J Waddell
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
46
|
Jones ML, Mark PJ, Waddell BJ. Maternal omega-3 fatty acid intake increases placental labyrinthine antioxidant capacity but does not protect against fetal growth restriction induced by placental ischaemia-reperfusion injury. Reproduction 2013; 146:539-47. [PMID: 24023246 DOI: 10.1530/rep-13-0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders. Oxidative stress occurs when excess reactive oxygen species (ROS) damages cellular components, an outcome limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) also limits ROS production. We recently reported that maternal dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation reduced placental oxidative damage and enhanced fetal and placental growth in the rats. Here, we examined the effect of n-3 PUFAs on placental antioxidant defences and whether n-3 PUFA supplementation could prevent growth restriction induced by placental ischaemia-reperfusion (IR), a known inducer of oxidative stress. Rats were fed either standard or high-n-3 PUFA diets from day 1 of pregnancy. Placentas were collected on days 17 and 22 in untreated pregnancies (term=day 23) and at day 22 following IR treatment on day 17. Expression of several antioxidant enzyme genes (Sod1, Sod2, Sod3, Cat, Txn1 and Gpx3) and Ucp2 was measured by quantitative RT-PCR in the placental labyrinth zone (LZ) and junctional zone (JZ). Cytosolic superoxide dismutase (SOD), mitochondrial SOD and catalase (CAT) activities were also analyzed. Maternal n-3 PUFA supplementation increased LZ mRNA expression of Cat at both gestational days (2- and 1.5-fold respectively; P<0.01) and female Sod2 at day 22 (1.4-fold, P<0.01). Cytosolic SOD activity increased with n-3 PUFA supplementation at day 22 (1.3-fold, P<0.05). Sod1 and Txn1 expression decreased marginally (30 and 22%, P<0.05). JZ antioxidant defences were largely unaffected by diet. Despite increased LZ antioxidant defences, maternal n-3 PUFA supplementation did not protect against placental IR-induced growth restriction of the fetus and placental LZ.
Collapse
Affiliation(s)
- Megan L Jones
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | |
Collapse
|
47
|
Lin F, Yu X, Zhang X, Guo Y, Huang Y, Zhou J, Zeng P, Ye D, Huang Y. A synthetic analog of lipoxin A4 partially alleviates dexamethasone-induced fetal growth restriction in rats. Placenta 2013; 34:941-8. [DOI: 10.1016/j.placenta.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/20/2022]
|
48
|
Zulkafli IS, Waddell BJ, Mark PJ. Postnatal dietary omega-3 fatty acid supplementation rescues glucocorticoid-programmed adiposity, hypertension, and hyperlipidemia in male rat offspring raised on a high-fat diet. Endocrinology 2013; 154:3110-7. [PMID: 23782939 DOI: 10.1210/en.2013-1153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal glucocorticoid excess programs several adverse outcomes in adult offspring, many of which can be prevented by postnatal, dietary omega-3 (n-3) fatty acids. Here we tested 2 separate hypotheses: 1) a postnatal high-fat diet exacerbates the glucocorticoid-programmed phenotype; and 2) postnatal, dietary n-3 fatty acids rescue programmed outcomes, even in the presence of a high-fat diet challenge. Pregnant Wistar rat dams were either untreated or administered dexamethasone acetate (Dex; 0.5 μg/mL drinking water) from day 13 of pregnancy. Offspring were cross-fostered to untreated mothers and males were weaned onto a standard (Std), high-fat, low n-3 (HF), or high-fat, high n-3 (HFHn-3) diet. Prenatal Dex reduced birth weight (26%) and delayed puberty onset by 1.2 days, irrespective of postnatal diet. Prenatal Dex programmed increased blood pressure in adult offspring, an effect worsened by the postnatal HF diet. Supplementation with high n-3 fatty acids, however, prevented both the Dex and HF-induced increases in blood pressure. Prenatal Dex also programmed increased adiposity, plasma cholesterol, and plasma triglyceride levels at 6 months of age, particularly in those offspring raised on the HF diet. But again, each of these adverse outcomes was rescued by supplementation of the HF diet with n-3 fatty acids. In conclusion, the capacity of n-3 fatty acids to overcome adverse programming outcomes remains evident, even in the presence of a HF diet challenge.
Collapse
MESH Headings
- Adiposity
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Diet, High-Fat/adverse effects
- Dietary Supplements/adverse effects
- Disease Models, Animal
- Fatty Acids, Omega-3/adverse effects
- Fatty Acids, Omega-3/therapeutic use
- Female
- Fetal Development
- Glucocorticoids/blood
- Glucocorticoids/metabolism
- Hyperlipidemias/etiology
- Hyperlipidemias/immunology
- Hyperlipidemias/prevention & control
- Hypertension/etiology
- Hypertension/immunology
- Hypertension/prevention & control
- Male
- Maternal-Fetal Exchange
- Pregnancy
- Pregnancy Complications/blood
- Pregnancy Complications/immunology
- Pregnancy Complications/physiopathology
- Random Allocation
- Rats
- Rats, Wistar
- Stress, Physiological
- Stress, Psychological/blood
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Intan S Zulkafli
- School of Anatomy, Physiology, and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | | | | |
Collapse
|
49
|
Jones ML, Mark PJ, Keelan JA, Barden A, Mas E, Mori TA, Waddell BJ. Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta. J Lipid Res 2013; 54:2247-2254. [PMID: 23723388 PMCID: PMC3708374 DOI: 10.1194/jlr.m039842] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/22/2013] [Indexed: 12/17/2022] Open
Abstract
Placental inflammation is associated with several pregnancy disorders. Inflammation is limited by anti-inflammatory and proresolving mechanisms, the latter partly mediated by resolvins and protectins derived from omega-3 polyunsaturated fatty acids (n-3PUFA). We examined effects of dietary n-3PUFAs on levels of resolvins, protectins, and lipoxygenase (ALOX) enzymes in the rat placenta. Rats consumed standard (Std) or high n-3PUFA (Hn3) diets from day 1 of pregnancy; tissues were collected on day 17 or 22 (term = day 23). Maternal Hn3 diet increased resolvin and protectin precursors, 18R/S-HEPE (P < 0.001), and 17R/S-HDHA (P < 0.01) at both days. Resolvins (17R-RvD1 and RvD1) increased at day 22 (P < 0.001) after Hn3 consumption, coincident with higher Alox15b and Alox5 mRNA expression, while RvD2 increased at both days (P < 0.05). Protectins, PD1, and 10S,17S-DiHDHA increased over late gestation (P < 0.001), coincident with higher Alox15 mRNA expression (P < 0.001) and further increased with Hn3 diet (P < 0.05). Maternal systemic and placental proinflammatory mediators were not suppressed by Hn3 diet; systemic IL1β, placental Il1β, and Il6 mRNA expression increased marginally with Hn3 at day 22 (P < 0.001), while Ptgs1 (Cox1) expression increased both days (P < 0.05). Our data indicate that maternal n-3PUFA supplementation enhances expression of enzymes in the n-3PUFA metabolic pathway and increases placental levels of resolvins and protectins.
Collapse
Affiliation(s)
- Megan L Jones
- Schools of Anatomy, Physiology & Human Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter J Mark
- Schools of Anatomy, Physiology & Human Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jeffrey A Keelan
- Women's & Infants' Health, and The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Anne Barden
- Medicine & Pharmacology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Emilie Mas
- Medicine & Pharmacology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Trevor A Mori
- Medicine & Pharmacology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Brendan J Waddell
- Schools of Anatomy, Physiology & Human Biology, The University of Western Australia, Perth, Western Australia 6009, Australia.
| |
Collapse
|
50
|
Mark P, Lewis J, Jones M, Keelan J, Waddell B. The inflammatory state of the rat placenta increases in late gestation and is further enhanced by glucocorticoids in the labyrinth zone. Placenta 2013; 34:559-66. [DOI: 10.1016/j.placenta.2013.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/22/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
|