1
|
So W, Dong R, Lee D, Abazarikia A, Hackfort BT, Cupp AS, Kim SY. Primordial Follicle Survival and Changes in Ovarian Vasculature May Be Independently Regulated During Chemotherapy. Endocrinology 2025; 166:bqaf059. [PMID: 40139946 PMCID: PMC12006718 DOI: 10.1210/endocr/bqaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Chemotherapeutic agents induce irreversible gonadotoxic side effects, resulting in endocrine dysfunction and infertility in female cancer survivors. In the current study, we investigated strategies to protect ovarian function from chemotherapy-induced toxicity by evaluating the effects of cisplatin, doxorubicin, or cyclophosphamide on ovarian vasculature and primordial follicle survival. This investigation was conducted using adult CD-1, PDs 5-7 CD-1, and oocyte-specific Trp63 conditional knockout (Trp63 cKO) mice that demonstrated primordial follicles survived following chemotherapy. In control ovaries, vasculature typically surrounds primordial and primary follicles, is in the theca layer as secondary follicles develop, and is distributed among stromal cells. Our findings revealed that the expression pattern of CD31/PECAM-1 (platelet endothelial adhesion molecule-1) was significantly altered in ovaries treated with chemotherapeutic agents compared with controls. The data demonstrate that these agents not only caused the loss of ovarian follicles but also damaged the ovarian vasculature. Using Trp63 cKO mice and CK2II, an inhibitor of checkpoint kinase 2, we demonstrated that vascular damage can occur independently of primordial follicle loss, and VEGFA165 was unable to prevent either outcome. This indicates that the mechanisms governing the death of primordial follicles and vascular damage may not directly affect each other. Long-term ex vivo culture and in vivo experiments demonstrated the ability of ovarian vasculature to recover from cisplatin-induced damage. In conclusion, our study suggests that ovarian follicle survival and vascular integrity may be independently regulated as independent processes, governed by distinct signaling pathway or mechanisms.
Collapse
Affiliation(s)
- Wonmi So
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rosemary Dong
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amirhossein Abazarikia
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Guo N, Li H, He J, Yang L, Ma H. Bioinformatics analysis explores key pathways and hub genes in central precocious puberty. J Pediatr Endocrinol Metab 2025:jpem-2024-0617. [PMID: 40110745 DOI: 10.1515/jpem-2024-0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/22/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Central precocious puberty (CPP) is one of the common endocrine diseases in pediatrics. However, the molecular mechanisms regulating development of CPP have remained unclear. The purpose of this study was to discover the key pathways and hub genes related to CPP. METHODS We analyzed two public datasets (GSE7142 and GSE8310) to identify differentially expressed genes in the progression of CPP. Then, we screened out overlapping differential genes from these two datasets and performed a series of bioinformatics analyses to explore promising targets and molecule mechanism of CPP. RESULTS We identified 30 down-regulated overlapping DEGs between GSE7142 (CPP/no CPP) and GSE8130 (EP/JUV) datasets and 17 down-regulated overlapping DEGs between GSE7142 (CPP/no CPP) and GSE8130 (LP/JUV) datasets. KEGG signaling pathway shows that calcium signaling pathway is suppressed continuously in early and late pubertal of CPP patients. MAPK signaling pathway also plays an important role in the occurrence and development of CPP. Eventually, we screened out 2 hub genes (FGFR2 and FLT1) highly related to CPP, which may provide a new directions for the diagnosis and treatment of CPP. CONCLUSIONS While further validation is needed, we provide useful and novel information to explore potential signaling pathways and candidate genes for CPP diagnosis and treatment options.
Collapse
Affiliation(s)
- Na Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongyun Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinhong He
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Linlin Yang
- Data Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Lin Y, Sun L, Dai J, Lv Y, Liao R, Shen X, Gao J. Characterization and Comparative Analysis of Whole-Transcriptome Sequencing in High- and Low-Fecundity Chongming White Goat Ovaries during the Estrus Phase. Animals (Basel) 2024; 14:988. [PMID: 38612227 PMCID: PMC11010919 DOI: 10.3390/ani14070988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Reproductive performance is one of the most important economic traits in the goat industry. Increasing the number of goats is an effective measure to improve production efficiency and reduce production costs. Ovaries are important reproductive organs in female mammals that directly affect the estrous cycle and reproductive abilities. Understanding the complex transcription network of non-coding RNAs (lncRNAs, circRNAs, and miRNAs) and messenger RNA (mRNA) could lead to significant insights into the ovarian regulation of the reproductive processes of animals. However, the whole-transcriptome analysis of the non-coding RNAs and mRNA of the ovaries in Chongming white goats between high-fecundity (HP) and low-fecundity (LP) groups is limited. In this study, a whole-transcriptome sequencing approach was used to identify lncRNA, circRNA, miRNA, and mRNA expression in the ovaries of Chongming white goats during the estrus phase using RNA-Seq technology. More than 20,000 messenger RNAs (mRNAs), 10,000 long non-coding RNAs (lncRNAs), 3500 circular RNAs (circRNAs), and 1000 micro RNAs (miRNAs) were identified. A total of 1024 differential transcripts (724 mRNAs, 112 lncRNAs, 178 circRNAs, and 10 miRNAs) existing between the HP and the LP groups were revealed through a bioinformatics analysis. They were enriched in the prolactin signaling pathway, the Jak-STAT signaling pathway, and the GnRH signaling pathway, as well as various metabolic pathways. Differentially expressed mRNAs (such as LYPD6, VEGFA, NOS3, TNXB, and EPHA2) and miRNAs (such as miR-10a-5p) play key roles in the regulation of goat ovaries during the estrus phase. The enrichment of pathways related to reproduction, such as the Hippo, Hedgehog, PI3K-AKT, and MAPK signaling pathways, suggests that they might be involved in the prolificacy of goat ovaries. Overall, we identified several gene modules associated with goat fecundity and provided a basis for a molecular mechanism in the ovaries of Chongming white goats.
Collapse
Affiliation(s)
- Yuexia Lin
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.L.); (L.S.); (J.D.); (Y.L.); (R.L.)
| | - Lingwei Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.L.); (L.S.); (J.D.); (Y.L.); (R.L.)
- Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jianjun Dai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.L.); (L.S.); (J.D.); (Y.L.); (R.L.)
- Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yuhua Lv
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.L.); (L.S.); (J.D.); (Y.L.); (R.L.)
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.L.); (L.S.); (J.D.); (Y.L.); (R.L.)
| | - Xiaohui Shen
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.L.); (L.S.); (J.D.); (Y.L.); (R.L.)
| | - Jun Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.L.); (L.S.); (J.D.); (Y.L.); (R.L.)
- Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
4
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
5
|
Li SY, Bhandary B, Gu X, DeFalco T. Perivascular cells support folliculogenesis in the developing ovary. Proc Natl Acad Sci U S A 2022; 119:e2213026119. [PMID: 36194632 PMCID: PMC9564831 DOI: 10.1073/pnas.2213026119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Supporting cells of the ovary, termed granulosa cells, are essential for ovarian differentiation and oogenesis by providing a nurturing environment for oocyte maintenance and maturation. Granulosa cells are specified in the fetal and perinatal ovary, and sufficient numbers of granulosa cells are critical for the establishment of follicles and the oocyte reserve. Identifying the cellular source from which granulosa cells and their progenitors are derived is an integral part of efforts to understand basic ovarian biology and the etiology of female infertility. In particular, the contribution of mesenchymal cells, especially perivascular cells, to ovarian development is poorly understood but is likely to be a source of new information regarding ovarian function. Here we have identified a cell population in the fetal ovary, which is a Nestin-expressing perivascular cell type. Using lineage tracing and ex vivo organ culture methods, we determined that perivascular cells are multipotent progenitors that contribute to granulosa, thecal, and pericyte cell lineages in the ovary. Maintenance of these progenitors is dependent on ovarian vasculature, likely reliant on endothelial-mesenchymal Notch signaling interactions. Depletion of Nestin+ progenitors resulted in a disruption of granulosa cell specification and in an increased number of germ cell cysts that fail to break down, leading to polyovular ovarian follicles. These findings highlight a cell population in the ovary and uncover a key role for vasculature in ovarian differentiation, which may lead to insights into the origins of female gonad dysgenesis and infertility.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Bidur Bhandary
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
6
|
Abedal-Majed MA, Springman SA, Jafar HD, Bell BE, Kurz SG, Wilson KE, Cupp AS. Naturally occurring androgen excess cows are present in dairy and beef herds and have similar characteristics to women with PCOS. J Anim Sci 2022; 100:6596684. [PMID: 35648128 DOI: 10.1093/jas/skac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Beef cows with excess androstenedione (A4; High A4) in follicular fluid (FF) and secreted by the ovarian cortex have been reported from the University of Nebraska-Lincoln physiology herd displaying characteristics reminiscent of polycystic ovary syndrome (PCOS). Thus, we hypothesized that naturally occurring High A4 cows were present in other dairy and beef herds. Fourteen Jordan (Amman, Jordon) dairy heifers and 16 U.S. Meat Animal Research Center beef heifers were classified by FF (High A4: A4 > 40 ng/mL and Control: A4 < 20 ng/mL) and/or cortex culture media (High A4 > 1 ng/mL/d or Control < 1 ng/mL/d). High A4 dairy heifers (n = 6) had greater A4 concentrations (7.6-fold) in FF and (98-fold) greater in ovarian cortex culture media with greater numbers of primordial and fewer later-stage follicles than Controls (n = 8) even after 7 d of culture. Also, the ovarian cortex had greater staining for Picro Sirius red in High A4 dairy heifers compared with Controls indicating increased fibrosis. Thecal cells from High A4 dairy heifers had greater STAR, LHCGR, CYP17A, CD68, and PECAM mRNA expression with increased mRNA abundance of CYP17A1 and CD68 in the ovarian cortex cultures compared with Control dairy heifers. Similarly, cortex culture media from High A4 beef heifers (n = 10) had increased A4 (290-fold; P ≤ 0.001), testosterone (1,427-fold; P ≤ 0.001), and progesterone (9-fold; P ≤ 0.01) compared with Control heifers with increased primordial follicles and decreased later-stage follicles even after 7 d of culture, indicating abnormal follicular development. High A4 ovarian cortex cultures from beef heifers also had increased fibrosis markers and greater expression of PECAM (P = 0.01) with a tendency for increased vascular endothelial cadherin compared with Controls (n = 6). These two trials support our hypothesis that naturally occurring androgen excess cows are present in other dairy and beef herds. The ability to identify these females that have excess A4 ovarian microenvironments may allow for their use in understanding factors causing abnormal follicle development linked to androgen excess and inflammation.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Shelby A Springman
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Hanan D Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Brooke E Bell
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Scott G Kurz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kyle E Wilson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
7
|
Abedal-Majed MA, Springman SA, Sutton CM, Snider AP, Bell BE, Hart M, Kurz SG, Bergman J, Summers AF, McFee RM, Davis JS, Wood JR, Cupp AS. VEGFA165 can rescue excess steroid secretion, inflammatory markers, and follicle arrest in the ovarian cortex of High A4 cows†. Biol Reprod 2022; 106:118-131. [PMID: 34726240 PMCID: PMC9630404 DOI: 10.1093/biolre/ioab201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A population of cows with excess androstenedione (A4; High A4) in follicular fluid, with follicular arrest, granulosa cell dysfunction, and a 17% reduction in calving rate was previously identified. We hypothesized that excess A4 in the ovarian microenvironment caused the follicular arrest in High A4 cows and that vascular endothelial growth factor A would rescue the High A4 phenotype. In trial 1, prior to culture, High A4 ovarian cortex (n = 9) had greater numbers of early stage follicles (primordial) and fewer later-stage follicles compared to controls (n = 11). Culture for 7 days did not relieve this follicular arrest; instead, High A4 ovarian cortex had increased indicators of inflammation, anti-Mullerian hormone, and A4 secretion compared to controls. In trial 2, we tested if vascular endothelial growth factor A isoforms could rescue the High A4 phenotype. High A4 (n = 5) and control (n = 5) ovarian cortex was cultured with (1) PBS, (2) VEGFA165 (50 ng/mL), (3) VEGFA165B (50 ng/mL), or (4) VEGFA165 + VEGFA165B (50 ng/mL each) for 7 days. Follicular progression increased with VEGFA165 in High A4 cows with greater early primary, primary, and secondary follicles than controls. Similar to trial 1, High A4 ovarian cortex secreted greater concentrations of A4 and other steroids and had greater indicators of inflammation compared to controls. However, VEGFA165 rescued steroidogenesis, oxidative stress, and fibrosis. The VEGFA165 and VEGFA165b both reduced IL-13, INFα, and INFβ secretion in High A4 cows to control levels. Thus, VEGFA165 may be a potential therapeutic to restore the ovarian steroidogenic microenvironment and may promote folliculogenesis.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, University of Jordan, Amman-Jordan, Jordan
| | - Shelby A Springman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Courtney M Sutton
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexandria P Snider
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brooke E Bell
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Scott G Kurz
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Bergman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Adam F Summers
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Renee M McFee
- School of Veterinary and Biomedical Sciences, Veterinary Medicine and Biomedical Sciences Hall (VBS), University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
8
|
Fellus-Alyagor L, Biton IE, Dafni H, Bochner F, Rotkopf R, Dekel N, Neeman M. Prediction of Ovarian Follicular Dominance by MRI Phenotyping of Hormonally Induced Vascular Remodeling. Front Med (Lausanne) 2021; 8:711810. [PMID: 34490300 PMCID: PMC8417579 DOI: 10.3389/fmed.2021.711810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
In the mammalian female, only a small subset of ovarian follicles, known as the dominant follicles (DFs), are selected for ovulation in each reproductive cycle, while the majority of the follicles and their resident oocytes are destined for elimination. This study aimed at characterizing early changes in blood vessel properties upon the establishment of dominance in the mouse ovary and application of this vascular phenotype for prediction of the follicles destined to ovulate. Sexually immature mice, hormonally treated for induction of ovulation, were imaged at three different stages by dynamic contrast-enhanced (DCE) MRI: prior to hormonal administration, at the time of DF selection, and upon formation of the corpus luteum (CL). Macromolecular biotin-bovine serum albumin conjugated with gadolinium-diethylenetriaminepentaacetic acid (b-BSA-GdDTPA) was intravenously injected, and the dynamics of its extravasation from permeable vessels as well as its accumulation in the antral cavity of the ovarian follicles was followed by consecutive T1-weighted MRI. Permeability surface area product (permeability) and fractional blood volume (blood volume) were calculated from b-BSA-GdDTPA accumulation. We found that the neo-vasculature during the time of DF selection was characterized by low blood volume and low permeability values as compared to unstimulated animals. Interestingly, while the vasculature of the CL showed higher blood volume compared to the DF, it exhibited a similar permeability. Taking advantage of immobilized ovarian imaging, we combined DCE-MRI and intravital light microscopy, to reveal the vascular properties of follicles destined for dominance from the non-ovulating subordinate follicles (SFs). Immediately after their selection, permeability of the vasculature of DF was attenuated compared to SF while the blood volume remained similar. Furthermore, DFs were characterized by delayed contrast enhancement in the avascular follicular antrum, reflecting interstitial convection, whereas SFs were not. In this study, we showed that although DF selection is accompanied by blood vessel growth, the new vasculature remained relatively impermeable compared to the vasculature in control animal and compared to SF. Additionally, DFs show late signal enhancement in their antrum. These two properties may aid in clinical prediction of follicular dominance at an early stage of development and help in their diagnosis for possible treatment of infertility.
Collapse
Affiliation(s)
- Liat Fellus-Alyagor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal E Biton
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Dafni
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Filip Bochner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Li Y, Liu F, Li S, Tan S. Association of Variants in Vascular Endothelial Growth Factor A Gene and VEGFA Serum Levels with the Risk of Primary Ovarian Insufficiency: A Case-Control Study. Gynecol Obstet Invest 2021; 86:469-476. [PMID: 34247156 DOI: 10.1159/000517071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The study aimed at investigating the association between the vascular endothelial growth factor A (VEGFA) genetic variants, the VEGFA serum level, and the primary ovarian insufficiency (POI) risk in Chinese Han women. DESIGN An age-matched case-control study was implemented in the West China Second Hospital of Sichuan University. Participants/Materials, Setting, Methods: Blood samples and clinical information were collected from 240 patients with POI and 261 healthy controls between December 2012 and December 2018 at the West China Second Hospital of Sichuan University. Mutations of VEGFA gene -2578C/A, -1154G/A, 936C/T, and -634C/G were identified by PCR-RFLP. Moreover, VEGFA serum levels in the 2 groups were measured by the enzyme-linked immunosorbent assay (ELISA). RESULTS The -1154G>A and 936C>T variants of the VEGFA gene were significantly associated with POI (the adjusted odds ratio [OR] = 2.17 and 95% confidence interval [CI] = 1.07-4.43 for the former; the adjusted OR = 2.74 and 95% CI = 1.18-6.34 for the latter), whereas no significant difference was found in the genotype distribution of -2578C>A and -634C>G variants between patients and controls (p > 0.05). Moreover, the combined -1154G>A and 936C>T genotype was associated with a significantly increased risk of POI (the adjusted OR = 21.98, 95% CI = 2.78-173.78 among subjects carrying 3 or more variants), particularly when patients aged ≥35 years (the adjusted OR = 20.58, and 95% CI = 2.58-164.25). The POI group exhibited an obviously lower VEGFA serum level (45.15 ± 1.25 pg/mL) than the control group. Compared with the control, the expression of VEGFA was significantly decreased in the POI group (279.90 ± 5.71 pg/mL; p < 0.05). Moreover, the serum VEGFA levels are lower in the -1154AA genotype than those of AG/GG genotypes. LIMITATIONS The main limitation is that all participants enrolled in this study were Chinese. As genotype and allelotype frequencies tend to differ between ethnic populations, extrapolation of the results to other ethnic groups should be cautiously considered. CONCLUSIONS Our study indicates an association between the VEGFA -1154G/A, 936C/T variants, and susceptibility to POI in Chinese Han women. Reduced levels of VEGFA may be a potential mechanism for the de-velopment of POI.
Collapse
Affiliation(s)
- Ya Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Center for Reproductive Medicine, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu, China
| | - Fei Liu
- Division of Liver Transplantation, Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shangwei Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shiqiao Tan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
Kisspeptin regulates the development of caprine primordial follicles in vitro. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Stucker S, De Angelis J, Kusumbe AP. Heterogeneity and Dynamics of Vasculature in the Endocrine System During Aging and Disease. Front Physiol 2021; 12:624928. [PMID: 33767633 PMCID: PMC7987104 DOI: 10.3389/fphys.2021.624928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The endocrine system consists of several highly vascularized glands that produce and secrete hormones to maintain body homeostasis and regulate a range of bodily functions and processes, including growth, metabolism and development. The dense and highly vascularized capillary network functions as the main transport system for hormones and regulatory factors to enable efficient endocrine function. The specialized capillary types provide the microenvironments to support stem and progenitor cells, by regulating their survival, maintenance and differentiation. Moreover, the vasculature interacts with endocrine cells supporting their endocrine function. However, the structure and niche function of vasculature in endocrine tissues remain poorly understood. Aging and endocrine disorders are associated with vascular perturbations. Understanding the cellular and molecular cues driving the disease, and age-related vascular perturbations hold potential to manage or even treat endocrine disorders and comorbidities associated with aging. This review aims to describe the structure and niche functions of the vasculature in various endocrine glands and define the vascular changes in aging and endocrine disorders.
Collapse
Affiliation(s)
| | | | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Li L, Kong F, Zhang L, Li X, Fu X, Wang X, Wu J, Zhang F, Ren L, Zhang M. Apatinib, a novel VEGFR-2 tyrosine kinase inhibitor, for relapsed and refractory nasopharyngeal carcinoma: data from an open-label, single-arm, exploratory study. Invest New Drugs 2020; 38:1847-1853. [PMID: 32363427 PMCID: PMC7575486 DOI: 10.1007/s10637-020-00925-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/16/2020] [Indexed: 11/16/2022]
Abstract
Purpose Apatinib, a new tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, has shown promising efficacy against several solid cancers, but evidence of its efficacy against relapsed and refractory nasopharyngeal carcinoma is limited. We investigated the efficacy and safety of apatinib for relapsed and refractory nasopharyngeal carcinoma in an open-label, single-arm, phase II clinical trial. Fifty-one patients with relapsed and refractory nasopharyngeal carcinoma in the First Affiliated Hospital, Zhengzhou University, who met the inclusion criteria were enrolled in the study. All patients received apatinib at an initial dose of 500 mg daily (1 cycle = 28 days). The primary and secondary endpoints were overall response rate, progression-free survival, and overall survival. We evaluated treatment effects and recorded apatinib-related adverse events by performing regular follow-ups and workup. The overall response rate (complete and partial responses) was 31.37% (16/51). The median overall survival and progression-free survival were 16 (95% CI, 9.32–22.68) and 9 months (95% CI, 5.24–12.76), respectively. Most patients tolerated treatment-related adverse events of grades 1 and 2; hypertension (29, 56.86%), proteinuria (25, 49.02%), and hand–foot syndrome (27, 52.94%) were the most common adverse events. There were no treatment-related deaths. Apatinib showed good efficacy and safety in patients with relapsed and refractory NPC.
Collapse
Affiliation(s)
- Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China.
| | - Fei Kong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Fangwen Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Liangliang Ren
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Morrell BC, Zhang L, Schütz LF, Perego MC, Maylem ERS, Spicer LJ. Regulation of the transcription factor E2F8 gene expression in bovine ovarian cells. Mol Cell Endocrinol 2019; 498:110572. [PMID: 31493442 DOI: 10.1016/j.mce.2019.110572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Overexpression of the transcription factor, E2F8, has been associated with ovarian cancer. Objectives of this study were to determine: 1) if E2F8 gene expression in granulosa cells (GC) and theca cells (TC) change with follicular development, and 2) if E2F8 mRNA abundance in TC and GC is hormonally regulated. Using real-time PCR, E2F8 mRNA abundance in GC and TC was greater (P < 0.05) in small than large follicles. FGF9 induced an increase (P < 0.05) in E2F8 mRNA abundance by 1.6- to 7-fold in large-follicle (8-20 mm) TC and GC as well as in small-follicle (1-5 mm) GC. Abundance of E2F8 mRNA in TC was increased (P < 0.05) with FGF2, FGF9 or VEGFA treatments alone in vitro, and concomitant treatment of VEGFA with FGF9 increased (P < 0.05) abundance of E2F8 mRNA above any of the singular treatments; BMP4, WNT3A and LH were without effect. IGF1 amplified the stimulatory effect of FGF9 on E2F8 mRNA abundance by 2.7-fold. Collectively, our studies show for the first time that follicular E2F8 is developmentally and hormonally regulated indicating that E2F8 may be involved in follicular development.
Collapse
Affiliation(s)
- Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lingna Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - M Chiara Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
14
|
Abedal-Majed MA, Kurz SG, Springman SA, McNeel AK, Freetly HC, Largen V, Magamage M, Sargent KM, Wood JR, Cushman RA, Cupp AS. Vascular endothelial growth factor A isoforms modulate follicle development in peripubertal heifers independent of diet through diverse signal transduction pathways. Biol Reprod 2019; 102:680-692. [DOI: 10.1093/biolre/ioz211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/13/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Follicular progression during peripuberty is affected by diet. Vascular endothelial growth factor A (VEGFA) induces follicle progression in many species; however, there are limited studies to determine if diet may alter the effects of angiogenic VEGFA165-stimulated follicle progression or antiangiogenic VEGFA165b follicle arrest. We hypothesized that diet affects the magnitude of angiogenic and antiangiogenic VEGFA isoform actions on follicular development through diverse signal transduction pathways. To test this hypothesis, beef heifers in our first trial received Stair-Step (restricted and refeeding) or control diets from 8 to 13 months of age. Ovaries were collected to determine follicle stages, measure vascular gene expression and conduct ovarian cortical cultures. Ovarian cortical cultures were treated with phosphate-buffered saline (control), 50 ng/ml VEGFA165, VEGFA165b, or VEGFA165 + VEGFA165b. The Stair-Step heifers had more primordial follicles (P < 0.0001), greater messenger RNA abundance of vascular markers VE-cadherin (P < 0.0001) and NRP-1 (P < 0.0051) than controls at 13 months of age prior to culture. After culture, VEGFA isoforms had similar effects, independent of diet, where VEGFA165 stimulated and VEGFA165b inhibited VEGFA165-stimulated follicle progression from early primary to antral follicle stages. In vitro cultures were treated with VEGFA isoforms and signal transduction array plates were evaluated. VEGFA165 stimulated expression of genes related to cell cycle, cell proliferation, and growth while VEGFA165b inhibited expression of those genes. Thus, VEGFA isoforms can act independently of diet to alter follicle progression or arrest. Furthermore, follicle progression can be stimulated by VEGFA165 and inhibited by VEGFA165b through diverse signal transduction pathways.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The Universityof Jordan, Amman, Jordan
| | - Scott G Kurz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Shelby A Springman
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anthony K McNeel
- The United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Harvey C Freetly
- The United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Valerie Largen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Manjula Magamage
- Department of Livestock Production, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sabaragamuwa Province, Sri Lanka
| | - Kevin M Sargent
- Department of Agriculture, College of the Ozarks, Point Lookout, MO, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert A Cushman
- The United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
15
|
Imatinib mesylate effects on zebrafish reproductive success: Gonadal development, gamete quality, fertility, embryo-larvae viability and development, and related genes. Toxicol Appl Pharmacol 2019; 379:114645. [PMID: 31278918 DOI: 10.1016/j.taap.2019.114645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
Imatinib (IM) is a tyrosine kinase (TK) inhibitor (TKI) used to treat chronic myeloid leukemia. Clinical case reports and a few laboratory mammal studies provide inconclusive evidence about its deleterious effects on reproduction. The aim of the current study was to evaluate the potential of zebrafish to characterize IM-induced effects on reproduction and clarify IM effects on reproductive success. To this end, we exposed adult zebrafish to four concentrations of IM for 30 days followed by a 30-day depuration period. IM exposure caused a concentration-dependent, irreversible, suppression of folliculogenesis, reversible decrease in sperm density and motility, decreased fecundity and fertility, but no significant change in atretic follicle abundance. We also observed IM-induced premature hatching, but no significant change in embryo-larvae survivability. However, we found significant IM-induced morphometric malformations. IM decreased expression of vegfaa and igf2a (two reproductive-, angiogenic-, and growth-related genes) in testes and ovaries. The results demonstrate IM can induce significant changes in critical reproductive endpoints and zebrafish as a suitable model organism to show effects of IM on reproduction. The findings suggest that TKI effects on reproductive success should be considered.
Collapse
|
16
|
Sözmen M, Devrim AK, Kabak YB, Devrim T, Sudagidan M. The Effects of Periostin in a Rat Model of Isoproterenol: Mediated Cardiotoxicity. Cardiovasc Toxicol 2019; 18:142-160. [PMID: 28895052 DOI: 10.1007/s12012-017-9426-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Periostin is an extracellular matrix protein from fasciclin family, and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The present study was designed to investigate cardioprotective effects of the recombinant murine periostin peptide administration in a rat model of isoproterenol (ISO)-induced myocardial injury. The experiment was performed on 84 adult male Sprague Dawley rats in 4 groups (n = 21): control group (1), periostin-treated group (2), ISO-treated group (3), and ISO + periostin-treated group (4). The groups were further divided into three subgroups based on the duration of the experiment in which rats were killed on days 1, 7, and 28 (n = 7). Growth factors (VEGF, ANGPT, FGF-2, TGFβ), mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, phospho-histone H3), cell cycle activators and inhibitors (cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) mRNA were detected using quantitative real-time polymerase chain reaction (PCR) and PCR array. Immunohistochemistry staining was used to directly detect protein level and distribution in the heart tissues. Administration of periostin following ISO-induced cardiotoxicity revealed that periostin alleviated deleterious effects of ISO through several pathways: (1) periostin induced mitotic activity of endothelial/fibroblastic cells, (2) periostin drives cardiomyocytes into S and M phases, thus promoting proliferation of cardiomyocytes, (3) periostin contributed to collagen degradation, tissue remodeling, and reduced cardiac fibrosis during the healing process following myocardial damage while preserving tissue matrix, (4) periostin stimulated angiogenesis by upregulating THBS1, TGFB2, and HGF genes, (5) periostin regulated cell growth and proliferation while maintaining cell shape and cellular muscle contractions (ACTB) and functioned as chemoattractant factor (CCL2) at the beginning of myocardial damage.
Collapse
Affiliation(s)
- Mahmut Sözmen
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Kurupelit, Samsun, Turkey.
| | - Alparslan K Devrim
- Department of Biochemistry, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Yonca B Kabak
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Kurupelit, Samsun, Turkey
| | - Tuba Devrim
- Department of Pathology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mert Sudagidan
- Strategic Product Research and Development Center (SARGEM), Konya Food and Agriculture University, Meram, Konya, Turkey
| |
Collapse
|
17
|
Peluso JJ, Liu X, Uliasz T, Pru CA, Kelp NC, Pru JK. PGRMC1/2 promotes luteal vascularization and maintains the primordial follicles of mice. Reproduction 2018; 156:365-373. [PMID: 30306772 PMCID: PMC6348134 DOI: 10.1530/rep-18-0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
To determine whether conditional depletion of progesterone receptor membrane component (PGRMC) 1 and PGRMC2 affected ovarian follicle development, follicle distribution was assessed in ovaries of young (≈3-month-old) and middle-aged (≈6-month-old) control (Pgrmc1/2fl/fl) and double conditional PGRMC1/2-knockout (Pgrmc1/2d/d) mice. This study revealed that the distribution of primary, preantral and antral follicles was not altered in Pgrmc1/2d/d mice, regardless of the age. Although the number of primordial follicles was similar at ≈3 months of age, their numbers were reduced by ≈80% in 6-month-old Pgrmc1/2d/d mice compared to age-matched Pgrmc1/2fl/fl mice. The Pgrmc1/2d/d mice were generated using Pgr-cre mice, so ablation of Pgrmc1 and Pgrmc2 in the ovary was restricted to peri-ovulatory follicles and subsequent corpora lutea (CL). In addition, the vascularization of CL was attenuated in Pgrmc1/2d/d mice, although mRNA levels of vascular endothelial growth factor A (Vegfa) were elevated. Moreover, depletion of Pgrmc1 and Pgrmc2 altered the gene expression profile in the non-luteal component of the ovary such that Vegfa expression, a stimulator of primordial follicle growth, was elevated; Kit Ligand expression, another stimulator of primordial follicle growth, was suppressed and anti-Mullerian hormone, an inhibitor of primordial follicle growth, was enhanced compared to Pgrmc1/2fl/fl mice. These data reveal that luteal cell depletion of Pgrmc1 and 2 alters the expression of growth factors within the non-luteal component of the ovary, which could account for the premature demise of the adult population of primordial follicles. In summary, the survival of adult primordial follicles is dependent in part on progesterone receptor membrane component 1 and 2.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030
| | - Xiufang Liu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Tracy Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Cindy A. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Nicole C. Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - James K. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
18
|
Garcia Santos FA, Freire SA, Vieira DP, Papa PDC, de Barros GF, Castilho C, Guaberto LM, Souza LFAD, Laposy CB, Nogueira RMB, Santos ADO, Giometti IC. White tea intake interferes with the expression of angiogenic factors in the corpora lutea of superovulated rats. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Francislaine Anelize Garcia Santos
- Faculdade de Medicina Veterinária e Zootecnia; Universidade de São Paulo (USP); Av. Prof°. Dr, Orlando Marques Paiva, 87 São Paulo (SP) CEP: 05508-270 Brazil
| | - Samuel Aparecido Freire
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Deyvid Parreira Vieira
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Paula de Carvalho Papa
- Faculdade de Medicina Veterinária e Zootecnia; Universidade de São Paulo (USP); Av. Prof°. Dr, Orlando Marques Paiva, 87 São Paulo (SP) CEP: 05508-270 Brazil
| | - Gabriela Fernandes de Barros
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Caliê Castilho
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Luciana Machado Guaberto
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Lilian Francisco Arantes de Souza
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Cecília Braga Laposy
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Rosa Maria Barilli Nogueira
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Aline de Oliveira Santos
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| | - Ines Cristina Giometti
- Universidade do Oeste Paulista (UNOESTE); Campus II, Rod. Raposo Tavares, Km 572, Bairro Limoeiro Presidente Prudente (SP) 19067-175 Brazil
| |
Collapse
|
19
|
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 2018; 39:1-20. [PMID: 29028960 PMCID: PMC5807095 DOI: 10.1210/er.2017-00164] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yi A. Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jaye E. Adams
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Medicine, Magee-Women’s Research Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
20
|
Hu W, Tamadon A, Hsueh AJW, Feng Y. Three-dimensional Reconstruction of the Vascular Architecture of the Passive CLARITY-cleared Mouse Ovary. J Vis Exp 2017. [PMID: 29286393 DOI: 10.3791/56141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ovary is the main organ of the female reproductive system and is essential for the production of female gametes and for controlling the endocrine system, but the complex structural relationships and three-dimensional (3D) vasculature architectures of the ovary are not well described. In order to visualize the 3D connections and architecture of blood vessels in the intact ovary, the first important step is to make the ovary optically clear. In order to avoid tissue shrinkage, we used the hydrogel fixation-based passive CLARITY (Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/ Immunostaining/In situ-hybridization-compatible Tissue Hydrogel) protocol method to clear an intact ovary. Immunostaining, advanced multiphoton confocal microscopy, and 3D image-reconstructions were then used for the visualization of ovarian vessels and follicular capillaries. Using this approach, we showed a significant positive correlation (P <0.01) between the length of the follicular capillaries and volume of the follicular wall.
Collapse
Affiliation(s)
- Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University
| | - Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University
| | - Aaron J W Hsueh
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University;
| |
Collapse
|
21
|
Asadi E, Najafi A, Moeini A, Pirjani R, Hassanzadeh G, Mikaeili S, Salehi E, Adutwum E, Soleimani M, Khosravi F, Barati M, Abolhassani F. Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis. J Endocrinol 2017; 232:205-219. [PMID: 27852727 DOI: 10.1530/joe-16-0368] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Ovarian tissue cryopreservation together with follicle culture provides a promising technique for fertility preservation in cancer patients. The study aimed to evaluate follicle parameters in a culture medium supplemented with VEGFA165 and/or fetuin. Vitrified-warmed ovarian cortical pieces were divided randomly into four culture groups consisting of basic culture medium (control), and the basic culture medium supplemented with VEGFA165, fetuin or both. After six days of culture, we evaluated the following: percentage of resting, primary and secondary growing follicles; survival rate; steroid hormones production; levels of reactive oxygen species, lipid peroxidation and total antioxidant capacity; and developmental and antioxidant gene expression. The addition of VEGFA165 alone or in combination with fetuin to the culture medium caused resting follicle activation and increased the number of growing follicles. In the VEGFA165 group, we found a significant increase in the concentrations of 17β-estradiol at day 6 and progesterone from 4th day of the culture period. In the VEGFA165 + fetuin group, the concentration of 17β-estradiol rose at day 4 of the culture period. The levels of BMP15, GDF9 and INHB mRNAs were increased in all treated groups. In the fetuin and fetuin + VEGFA165 groups, we observed a high level of total antioxidant capacity and expression of SOD1 and CAT genes, low reactive oxygen species and lipid peroxidation levels and increased number of viable follicles. In conclusion, the present study provides useful evidence that supplementation of culture medium with VEGFA165 + fetuin leads to primordial follicle activation and development and increased percentage of healthy secondary growing follicles.
Collapse
Affiliation(s)
- Ebrahim Asadi
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Atefeh Najafi
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ashraf Moeini
- Department of Gynecology and ObstetricsArash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Pirjani
- Department of Gynecology and ObstetricsArash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Saideh Mikaeili
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Emmanuel Adutwum
- School of MedicineTehran University of Medical Science, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research CenterIran University of Medical Sciences, Tehran, Iran
- Department of Anatomical SciencesSchool of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Mahmood Barati
- Department of Pharmaceutical BiotechnologySchool of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Abolhassani
- Department of Anatomical SciencesSchool of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
Xie F, Anderson CL, Timme KR, Kurz SG, Fernando SC, Wood JR. Obesity-Dependent Increases in Oocyte mRNAs Are Associated With Increases in Proinflammatory Signaling and Gut Microbial Abundance of Lachnospiraceae in Female Mice. Endocrinology 2016; 157:1630-43. [PMID: 26881311 PMCID: PMC4816731 DOI: 10.1210/en.2015-1851] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNAs stored in the metaphase II-arrested oocyte play important roles in successful embryonic development. Their abundance is defined by transcriptional activity during oocyte growth and selective degradation of transcripts during LH-induced oocyte maturation. Our previous studies demonstrated that mRNA abundance is increased in mature ovulated oocytes collected from obese humans and mice and therefore may contribute to reduced oocyte developmental competence associated with metabolic dysfunction. In the current study mouse models of diet-induced obesity were used to determine whether obesity-dependent increases in proinflammatory signaling regulate ovarian abundance of oocyte-specific mRNAs. The abundance of oocyte-specific Bnc1, Dppa3, and Pou5f1 mRNAs as well as markers of proinflammatory signaling were significantly increased in ovaries of obese compared with lean mice which were depleted of fully grown preovulatory follicles. Chromatin-immunoprecipitation analyses also demonstrated increased association of phosphorylated signal transducer and activator of transcription 3 with the Pou5f1 promoter in ovaries of obese mice suggesting that proinflammatory signaling regulates transcription of this gene in the oocyte. The cecum microbial content of lean and obese female mice was subsequently examined to identify potential relationships between microbial composition and proinflammatory signaling in the ovary. Multivariate Association with Linear Models identified significant positive correlations between cecum abundance of the bacterial family Lachnospiraceae and ovarian abundance of Tnfa as well as Dppa3, Bnc1, and Pou5f1 mRNAs. Together, these data suggest that diet-induced changes in gut microbial composition may be contributing to ovarian inflammation which in turn alters ovarian gene expression and ultimately contributes to obesity-dependent reduction in oocyte quality and development of infertility in obese patients.
Collapse
Affiliation(s)
- Fang Xie
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Christopher L Anderson
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Kelsey R Timme
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Scott G Kurz
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Samodha C Fernando
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| | - Jennifer R Wood
- Department of Animal Science (F.X., K.R.T., S.G.K., S.C.F., J.R.W.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908; School of Biological Sciences (C.L.A., S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118; and Food Science and Technology Department (S.C.F.), University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919
| |
Collapse
|
23
|
Romereim SM, Cupp AS. Mesonephric Cell Migration into the Gonads and Vascularization Are Processes Crucial for Testis Development. Results Probl Cell Differ 2016; 58:67-100. [PMID: 27300176 DOI: 10.1007/978-3-319-31973-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Testis morphogenesis requires the integration and reorganization of multiple cell types from several sources, one of the more notable being the mesonephric-derived cell population. One of the earliest sex-specific morphogenetic events in the gonad is a wave of endothelial cell migration from the mesonephros that is crucial for (1) partitioning the gonad into domains for testis cords, (2) providing the vasculature of the testis, and (3) signaling to cells both within the gonad and beyond it to coordinately regulate testis development. In addition to endothelial cell migration, there is evidence that precursors of peritubular myoid cells migrate from the mesonephros, an event which is also important for testis cord architecture. Investigation of the mesonephric cell migration event has utilized histology, lineage tracing with mouse genetic markers, and many studies of the signaling molecules/pathways involved. Some of the more well-studied signaling molecules involved include vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and neurotrophins. In this chapter, the morphogenetic events, relevant signaling pathways, mechanisms underlying the migration, and the role of the migratory cells within the testis will be discussed. Overall, the migration of mesonephric cells into the early testis is indispensable for its development and future functionality.
Collapse
|
24
|
The Paracrine Effect of Transplanted Human Amniotic Epithelial Cells on Ovarian Function Improvement in a Mouse Model of Chemotherapy-Induced Primary Ovarian Insufficiency. Stem Cells Int 2015; 2016:4148923. [PMID: 26664408 PMCID: PMC4655291 DOI: 10.1155/2016/4148923] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022] Open
Abstract
Human amnion epithelial cells (hAECs) transplantation via tail vein has been reported to rescue ovarian function in mice with chemotherapy-induced primary ovarian insufficiency (POI). To test whether intraperitoneally transplanted hAECs could induce therapeutic effect and to characterize the paracrine effect of transplanted hAECs, we utilized a chemotherapy induced mice model of POI and investigated the ability of hAECs and conditioned medium collected from cultured hAECs (hAECs-CM) to restore ovarian function. We found that transplantation of hAECs or hAECs-CM either 24 hours or 7 days after chemotherapy could increase follicle numbers and partly restore fertility. By PCR analysis of recipient mice ovaries, the presence of SRY gene was only detected in mice transplanted with male hAECs 24 hours following chemotherapy. Further, the gene expression level of VEGFR1 and VEGFR2 in the ovaries decreased, although VEGFA increased 2 weeks after chemotherapy. After treatment with hAECs or hAEC-CM, the expression of both VEGFR1 and VEGFR2 increased, consistent with the immunohistochemical analysis. In addition, both hAECs and hAECs-CM treatment enhanced angiogenesis in the ovaries. The results suggested that hAECs-CM, like hAECs, could partly restore ovarian function, and the therapeutic function of intraperitoneally transplanted hAECs was mainly induced by paracrine-mediated ovarian protection and angiogenesis.
Collapse
|
25
|
Sargent KM, McFee RM, Spuri Gomes R, Cupp AS. Vascular endothelial growth factor A: just one of multiple mechanisms for sex-specific vascular development within the testis? J Endocrinol 2015; 227:R31-50. [PMID: 26562337 PMCID: PMC4646736 DOI: 10.1530/joe-15-0342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Many in vitro experiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However, in vivo models using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa(-/-)); Sertoli and Leydig cells (Amhr2-Cre;Vegfa(-/-)) or Sertoli cells (Amh-Cre;Vegfa(-/-) and Sry-Cre;Vegfa(-/-)) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;Vegfa(-/-) versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renee M McFee
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Renata Spuri Gomes
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal ScienceUniversity of Nebraska-Lincoln, Animal Science Building, 3940 Fair Street, Lincoln, Nebraska 68583-0908, USA
| |
Collapse
|
26
|
Loss of vascular endothelial growth factor A (VEGFA) isoforms in granulosa cells using pDmrt-1-Cre or Amhr2-Cre reduces fertility by arresting follicular development and by reducing litter size in female mice. PLoS One 2015; 10:e0116332. [PMID: 25658474 PMCID: PMC4320103 DOI: 10.1371/journal.pone.0116332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022] Open
Abstract
Because VEGFA has been implicated in follicle development, the objective of this study was to determine the effects of granulosa- and germ cell-specific VEGFA loss on ovarian morphogenesis, function, and female fertility. pDmrt1-Cre mice were mated to floxed VEGFA mice to develop granulosa-/germ cell-specific knockouts (pDmrt1-Cre;Vegfa-/-). The time from mating to first parturition was increased when pDmrt1-Cre;Vegfa-/- females were mated to control males (P = 0.0008) and tended to be longer for heterozygous females (P < 0.07). Litter size was reduced for pDmrt1-Cre;Vegfa-/- females (P < 0.007). The time between the first and second parturitions was also increased for heterozygous females (P < 0.04) and tended to be increased for pDmrt1-Cre;Vegfa-/- females (P < 0.07). pDmrt1-Cre;Vegfa-/- females had smaller ovaries (P < 0.04), reduced plasma estradiol (P < 0.007), fewer developing follicles (P < 0.008) and tended to have fewer corpora lutea (P < 0.08). Expression of Igf1r was reduced (P < 0.05); expression of Foxo3a tended to be increased (P < 0.06); and both Fshr (P < 0.1) and Sirt6 tended to be reduced (P < 0.06) in pDmrt1-Cre;Vegfa-/- ovaries. To compare VEGFA knockouts, we generated Amhr2-Cre;Vegfa-/- mice that required more time from mating to first parturition (P < 0.003) with variable ovarian size. Both lines had more apoptotic granulosa cells, and vascular staining did not appear different. Taken together these data indicate that the loss of all VEGFA isoforms in granulosa/germ cells (proangiogenic and antiangiogenic) causes subfertility by arresting follicular development, resulting in reduced ovulation rate and fewer pups per litter.
Collapse
|
27
|
Summers AF, Pohlmeier WE, Sargent KM, Cole BD, Vinton RJ, Kurz SG, McFee RM, Cushman RA, Cupp AS, Wood JR. Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess. PLoS One 2014; 9:e110683. [PMID: 25330369 PMCID: PMC4199720 DOI: 10.1371/journal.pone.0110683] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022] Open
Abstract
Aspiration of bovine follicles 12-36 hours after induced corpus luteum lysis serendipitously identified two populations of cows, one with High androstenedione (A4; >40 ng/ml; mean = 102) and another with Low A4 (<20 ng/ml; mean = 9) in follicular fluid. We hypothesized that the steroid excess in follicular fluid of dominant follicles in High A4 cows would result in reduced fertility through altered follicle development and oocyte maternal RNA abundance. To test this hypothesis, estrous cycles of cows were synchronized and ovariectomy was performed 36 hours later. HPLC MS/MS analysis of follicular fluid showed increased dehydroepiandrosterone (6-fold), A4 (158-fold) and testosterone (31-fold) in the dominant follicle of High A4 cows. However, estrone (3-fold) and estradiol (2-fold) concentrations were only slightly elevated, suggesting a possible inefficiency in androgen to estrogen conversion in High A4 cows. Theca cell mRNA expression of LHCGR, GATA6, CYP11A1, and CYP17A1 was greater in High A4 cows. Furthermore, abundance of ZAR1 was decreased 10-fold in cumulus oocyte complexes from High A4 cows, whereas NLRP5 abundance tended to be 19.8-fold greater (P = 0.07). There was a tendency for reduction in stage 4 follicles in ovarian cortex samples from High A4 cows suggesting that progression to antral stages were impaired. High A4 cows tended (P<0.07) to have a 17% reduction in calving rate compared with Low A4 cows suggesting reduced fertility in the High A4 population. These data suggest that the dominant follicle environment of High A4 cows including reduced estrogen conversion and androgen excess contributes to infertility in part through altered follicular and oocyte development.
Collapse
Affiliation(s)
- Adam F. Summers
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - William E. Pohlmeier
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Kevin M. Sargent
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Brizett D. Cole
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rebecca J. Vinton
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Scott G. Kurz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Renee M. McFee
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Robert A. Cushman
- USDA-ARS Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
28
|
Nordqvist S, Kårehed K, Skoog Svanberg A, Menezes J, Åkerud H. Ovarian response is affected by a specific histidine-rich glycoprotein polymorphism: a preliminary study. Reprod Biomed Online 2014; 30:74-81. [PMID: 25456162 DOI: 10.1016/j.rbmo.2014.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022]
Abstract
Genetic polymorphisms involved in angiogenesis, apoptosis and chemokine signalling are associated with varying ovarian response and oocyte quality. The protein, histidine-rich glycoprotein (HRG), is involved in these processes, but its effect on ovarian response in IVF has not been previously studied. A single nucleotide polymorphism (SNP) in the HRG gene (C633T) seems to affect pregnancy results in IVF. Women with the C/C genotype had higher pregnancy rates, C/T had moderate rates and none of those in the T/T group conceived. The aim of this study was to investigate if the HRG C633T SNP affects ovarian response. The HRG C633T SNP genotype of 67 women with unexplained infertility undergoing IVF was analysed and related to medical data. The T/T genotype obtained fewer oocytes, including mature oocytes, despite higher dosages of FSH administered. Additionally, the highest proportion of women who had exclusively poor-quality embryos was in the T/T group. No differences in demographic factors known to affect these parameters were found. The results suggest that the HRG C633T SNP influences ovarian response. Further studies of this SNP may increase knowledge about the biological processes involved in oocyte development and, furthermore, improve predicted ovarian response and fertilization.
Collapse
Affiliation(s)
- Sarah Nordqvist
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Karin Kårehed
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Agneta Skoog Svanberg
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Judith Menezes
- Fertilitetscentrum Stockholm, Storängsvägen 10, SE-115 42 Stockholm, Sweden
| | - Helena Åkerud
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
29
|
Kere M, Siriboon C, Liao JW, Lo NW, Chiang HI, Fan YK, Kastelic JP, Ju JC. Vascular endothelial growth factor A improves quality of matured porcine oocytes and developing parthenotes. Domest Anim Endocrinol 2014; 49:60-9. [PMID: 25061966 DOI: 10.1016/j.domaniend.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor is a multipotent angiogenic factor implicated in cell survival and proliferation. The objective was to determine effects of exogenous recombinant human VEGFA (or VEGFA165) in culture media on porcine oocyte maturation and parthenote development. Adding 5 ng/mL VEGFA to the culture medium improved the maturation rate of denuded oocytes (P < 0.05), although 5, 50, or 500 ng/mL did not significantly affect nuclear maturation of oocytes. Parthenotes from oocytes cultured either in in vitro maturation or in vitro culture medium supplemented with 5 or 50 ng/mL VEGFA had an improved blastocyst rate and increased total numbers of cells (P < 0.05). Moreover, those treated with 5 ng/mL of VEGFA had a higher hatched blastocyst rate (average of 121 cells per blastocyst). All VEGFA-treated oocytes had reduced apoptotic indices (P < 0.05), except for those with a higher dose (500 ng/mL) of VEGFA which had more apoptotic cells (P < 0.05). Adding 5 ng/mL VEGFA to oocytes during the last 22 h of in vitro maturation improved (P < 0.05) blastocyst rates and total numbers of cells, with reduced apoptosis indices similar to that of long-term (44 h) culture. Furthermore, Axitinib (VEGFR inhibitor) reversed the effects of VEGFA on parthenote development (P < 0.05). Follicular fluids from medium (2-6 mm) to large (>6 mm) follicles contained 5.3 and 7.0 ng/mL vascular endothelial growth factor protein, respectively, higher (P < 0.05) than concentrations in small (<2 mm) follicles (0.4 ng/mL). Also, VEGFA and its receptor (VEGFR-2) were detected (immunohistochemistry) in growing follicles and developing blastocysts. In addition, VEGFA inhibited caspase-3 activation in matured oocytes (P < 0.05). In conclusion, this is apparently the first report that VEGFA has proliferative and cytoprotective roles in maturing porcine oocytes and parthenotes. Furthermore, an optimal VEGFA concentration promoted porcine oocyte maturation and subsequent development.
Collapse
Affiliation(s)
- M Kere
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - C Siriboon
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 402, Taiwan
| | - J W Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - N W Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan
| | - H I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Y K Fan
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - J P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J C Ju
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 402, Taiwan; Agriculture Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Medical Research Department, China Medical University Hospital, Taichung 404, Taiwan; Department of Biomedical Informatics, College of Computer Science, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
30
|
Jeon YJ, Kim YR, Lee BE, Cha SH, Moon MJ, Oh D, Lee WS, Kim NK. Association of five common polymorphisms in the plasminogen activator inhibitor-1 gene with primary ovarian insufficiency. Fertil Steril 2013; 101:825-32. [PMID: 24355042 DOI: 10.1016/j.fertnstert.2013.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the association between potentially functional plasminogen activator inhibitor-1 (PAI-1) genetic polymorphisms and primary ovarian insufficiency (POI). DESIGN Case-control study. SETTING Urban university-based hospital. PATIENT(S) A cohort of 137 POI patients and 227 controls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Genotyping of five PAI-1 polymorphisms (-844G>A [rs2227631], -675 4G/5G [rs1799889], 43G>A (Ala>Thr) [rs6092], 9785G>A [rs2227694], and 11053T>G [rs7242]) was assessed by polymerase chain reaction-restriction fragment length polymorphism assay. RESULT(S) PAI-1 polymorphisms 9785GA+AA, -844A/9785A, 4G/9785A, and 9785A/11053G were associated with POI occurrence. Moreover, -844GA+AA and 11053TG+GG were associated with lower serum E2 levels in controls. CONCLUSION(S) We have identified an association between five PAI-1 polymorphisms and POI occurrence. However, the mechanism underlying the function of these polymorphisms in POI remains to be determined. Further studies are needed to improve understanding of the roles of PAI-1 polymorphisms and genes in related pathways, using a larger and more heterogeneous cohort.
Collapse
Affiliation(s)
- Young Joo Jeon
- Institute for Clinical Research, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Bo Eun Lee
- Institute for Clinical Research, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Sun Hee Cha
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Myoung-Jin Moon
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Doyeun Oh
- Department of Internal Medicine, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, South Korea
| | - Nam Keun Kim
- Institute for Clinical Research, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 463-712, South Korea.
| |
Collapse
|
31
|
Lu N, Sargent KM, Clopton DT, Pohlmeier WE, Brauer VM, McFee RM, Weber JS, Ferrara N, Silversides DW, Cupp AS. Loss of vascular endothelial growth factor A (VEGFA) isoforms in the testes of male mice causes subfertility, reduces sperm numbers, and alters expression of genes that regulate undifferentiated spermatogonia. Endocrinology 2013; 154:4790-802. [PMID: 24169552 PMCID: PMC3836063 DOI: 10.1210/en.2013-1363] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) isoform treatment has been demonstrated to alter spermatogonial stem cell homeostasis. Therefore, we generated pDmrt1-Cre;Vegfa(-/-) (knockout, KO) mice by crossing pDmrt1-Cre mice to floxed Vegfa mice to test whether loss of all VEGFA isoforms in Sertoli and germ cells would impair spermatogenesis. When first mated, KO males took 14 days longer to get control females pregnant (P < .02) and tended to take longer for all subsequent parturition intervals (9 days; P < .07). Heterozygous males sired fewer pups per litter (P < .03) and after the first litter took 10 days longer (P < .05) to impregnate females, suggesting a more progressive loss of fertility. Reproductive organs were collected from 6-month-old male mice. There were fewer sperm per tubule in the corpus epididymides (P < .001) and fewer ZBTB16-stained undifferentiated spermatogonia (P < .003) in the testes of KO males. Testicular mRNA abundance for Bcl2 (P < .02), Bcl2:Bax (P < .02), Neurog3 (P < .007), and Ret was greater (P = .0005), tended to be greater for Sin3a and tended to be reduced for total Foxo1 (P < .07) in KO males. Immunofluorescence for CD31 and VE-Cadherin showed no differences in testis vasculature; however, CD31-positive staining was evident in undifferentiated spermatogonia only in KO testes. Therefore, loss of VEGFA isoforms in Sertoli and germ cells alters genes necessary for long-term maintenance of undifferentiated spermatogonia, ultimately reducing sperm numbers and resulting in subfertility.
Collapse
Affiliation(s)
- Ningxia Lu
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang S, Wang S, Luo A, Ding T, Lai Z, Shen W, Ma X, Cao C, Shi L, Jiang J, Rong F, Ma L, Tian Y, Du X, Lu Y, Li Y, Wang S. Expression Patterns and Regulatory Functions of MicroRNAs During the Initiation of Primordial Follicle Development in the Neonatal Mouse Ovary1. Biol Reprod 2013; 89:126. [DOI: 10.1095/biolreprod.113.107730] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Brown HM, Russell DL. Blood and lymphatic vasculature in the ovary: development, function and disease. Hum Reprod Update 2013; 20:29-39. [PMID: 24097804 DOI: 10.1093/humupd/dmt049] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The remodelling of the blood vasculature has been the subject of much research while rapid progress in the understanding of the factors controlling lymphangiogenesis in the ovary has only been reported more recently. The ovary undergoes cyclic remodelling throughout each menstrual/estrous cycle. This process requires significant vascular remodelling to supply each new cohort of growing follicles. METHODS Literature searches were performed to review studies on the ovarian lymphatic vasculature that described spatial, temporal and functional data in human or animal species. The role of ovarian blood and lymphatic vasculature in the pathogenesis of ovarian disease and dysfunction was also explored. RESULTS Research in a number of species including zebrafish, rodents and primates has described the lymphatic vasculature within the remodelling ovary, while recent research in mouse has confirmed hormonal regulation of lymphangiogenic growth factors, their receptors and also a role for the protease, ADAMTS1 in the development of the lymphatic vasculature. With a critical role in the maintenence of fluid homeostasis, the ovarian lymphatic vasculature is important for normal ovarian function and has been linked to syndromes involving ovarian fluid imbalance, including ovarian hyperstimulation syndrome and massive ovarian edema. The lymphatic vasculature has also been heavily implicated in the metastatic cancer process. CONCLUSION The spatial and temporal regulation of the ovarian lymphatic vasculature has now been reported in a number of species and the data also implicate the ovarian lymphatic vasculature in ovarian pathologies, including cancer and those linked with use of artificial reproduction technologies.
Collapse
Affiliation(s)
- H M Brown
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Level 3, Medical School South, Frome Rd., Adelaide 5005, Australia
| | | |
Collapse
|
34
|
McFee RM, Cupp AS. Vascular contributions to early ovarian development: potential roles of VEGFA isoforms. Reprod Fertil Dev 2013; 25:333-42. [PMID: 23021322 DOI: 10.1071/rd12134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/21/2012] [Indexed: 12/25/2022] Open
Abstract
Vascularisation is an essential component of ovarian morphogenesis; however, little is known regarding factors regulating the establishment of vasculature in the ovary. Angiogenesis involving extensive endothelial cell migration is a critical component of vessel formation in the embryonic testis but vasculogenic mechanisms appear to play a prominent role in ovarian vascularisation. Vasculature has a strong influence on the formation of ovarian structures, and the early developmental processes of ovigerous cord formation, primordial follicle assembly and follicle activation are all initiated in regions of the ovary that are in close association with the highly vascular medulla. The principal angiogenic factor, vascular endothelial growth factor A (VEGFA), has an important role in both endothelial cell differentiation and vascular pattern development. Expression of VEGFA has been localised to ovigerous cords and follicles in developing ovaries and an increased expression of pro-angiogenic Vegfa isoform mRNA in relation to anti-angiogenic isoform mRNA occurs at the same time-point as the peak of primordial follicle assembly in perinatal rats. Elucidation of specific genes that affect vascular development within the ovary may be critical for determining not only the normal mechanisms of ovarian morphogenesis, but also for understanding certain ovarian reproductive disorders.
Collapse
Affiliation(s)
- Renee M McFee
- Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NB 68583-0908, USA
| | | |
Collapse
|
35
|
Qiu Y, Seager M, Osman A, Castle-Miller J, Bevan H, Tortonese DJ, Murphy D, Harper SJ, Fraser HM, Donaldson LF, Bates DO. Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility. Reproduction 2012; 143:501-11. [PMID: 22232745 PMCID: PMC3325318 DOI: 10.1530/rep-11-0091] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 12/07/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
Angiogenesis and vascular regression are critical for the female ovulatory cycle. They enable progression and regression of follicular development, and corpora lutea formation and regression. Angiogenesis in the ovary occurs under the control of the vascular endothelial growth factor-A (VEGFA) family of proteins, which are generated as both pro-(VEGF(165)) and anti(VEGF(165)b)-angiogenic isoforms by alternative splicing. To determine the role of the VEGF(165)b isoforms in the ovulatory cycle, we measured VEGF(165)b expression in marmoset ovaries by immunohistochemistry and ELISA, and used transgenic mice over-expressing VEGF(165)b in the ovary. VEGF(165)b was expressed in the marmoset ovaries in granulosa cells and theca, and the balance of VEGF(165)b:VEGF(165) was regulated during luteogenesis. Mice over-expressing VEGF(165)b in the ovary were less fertile than wild-type littermates, had reduced secondary and tertiary follicles after mating, increased atretic follicles, fewer corpora lutea and generated fewer embryos in the oviduct after mating, and these were more likely not to retain the corona radiata. These results indicate that the balance of VEGFA isoforms controls follicle progression and luteogenesis, and that control of isoform expression may regulate fertility in mammals, including in primates.
Collapse
Affiliation(s)
- Y Qiu
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - M Seager
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - A Osman
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - J Castle-Miller
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
- Centre for Comparative and Clinical AnatomyUniversity of BristolPre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - H Bevan
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - D J Tortonese
- Centre for Comparative and Clinical AnatomyUniversity of BristolPre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - D Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK
| | - S J Harper
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| | - H M Fraser
- MRC Human Reproductive Sciences UnitQueen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - L F Donaldson
- School of Physiology and PharmacologyMedical Sciences Building, University Walk, Bristol, BS8 1TDUK
| | - D O Bates
- Microvascular Research LaboratoriesSchool of Physiology and Pharmacology, Bristol Heart InstitutePre-clinical Veterinary Sciences Building, Southwell Street, Bristol, BS2 8EJUK
| |
Collapse
|
36
|
The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development. Cell Tissue Res 2012; 349:635-47. [PMID: 22322423 PMCID: PMC3429770 DOI: 10.1007/s00441-012-1330-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/29/2011] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) has been extensively studied because of its role in follicular development and is a principal angiogenic factor essential for angiogenesis. Since vascularization of the theca layer increases as follicles progress in size through preantral and antral stages, VEGFA might influence follicle growth via the regulation of angiogenesis. However, VEGFA might also influence follicular development through nonangiogenic mechanisms, since its expression has been localized in nonvascular follicles and cells. Alternative mRNA splicing of eight exons from the VEGFA gene results in the formation of various VEGFA isoforms. Each isoform has unique properties and is identified by the number of amino acids within the mature protein. Proangiogenic isoforms (VEGFA_XXX) are encoded by exon 8a, whereas a sister set of isoforms (VEGFA_XXXB) with antiangiogenic properties is encoded by exon 8b. The antiangiogenic VEGFA_XXXB isoforms comprise the majority of VEGFA expressed in most tissues, whereas expression of the proangiogenic VEGFA isoforms is upregulated in tissues undergoing active angiogenesis. Although proangiogenic and antiangiogenic isoforms can now be distinguished from one another, many studies evaluating VEGFA in ovarian and follicular development up to now have not differentiated proangiogenic VEGFA from antiangiogenic VEGFA. Experiments from our laboratory indicate that proangiogenic VEGFA promotes follicle recruitment and early follicular development and antiangiogenic VEGFA inhibits these processes. The balance of proangiogenic versus antiangiognic VEGFA isoforms is thus of importance during follicle development. Further studies are warranted to elucidate the way that this balance regulates follicular formation and progression.
Collapse
|
37
|
Li Y, Luo J, Lau WM, Zheng G, Fu S, Wang TT, Zeng HP, So KF, Chung SK, Tong Y, Liu K, Shen J. Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway. PLoS One 2011; 6:e22901. [PMID: 21826216 PMCID: PMC3149620 DOI: 10.1371/journal.pone.0022901] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/08/2011] [Indexed: 01/17/2023] Open
Abstract
In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O2 for 24 h and then switched to 21% O2 for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O2. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.
Collapse
Affiliation(s)
- Yue Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Luo
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wui-Man Lau
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
| | - Guoqing Zheng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Shuping Fu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
| | - Ting-Ting Wang
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- Institute of Functional Molecule, School of Chemistry, South China University of Technology, Guangzhou, China
| | - He-Ping Zeng
- Institute of Functional Molecule, School of Chemistry, South China University of Technology, Guangzhou, China
| | - Kwok-Fai So
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
| | - Sookja Kim Chung
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
| | - Yao Tong
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kejian Liu
- Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
38
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Bott RC, Clopton DT, Fuller AM, McFee RM, Lu N, McFee RM, Cupp AS. KDR-LacZ-expressing cells are involved in ovarian and testis-specific vascular development, suggesting a role for VEGFA in the regulation of this vasculature. Cell Tissue Res 2010; 342:117-30. [PMID: 20848132 DOI: 10.1007/s00441-010-1038-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/15/2010] [Indexed: 11/30/2022]
Abstract
Our objectives were to evaluate kinase insert domain protein receptor (KDR)-β-galactosidase (LacZ) expression as a marker for vascular development during gonadal morphogenesis and to determine whether any novel non-angiogenic KDR-LacZ expression was present in mouse testes or ovaries. Gonads were collected from mice expressing LacZ driven by the Kdr promoter (KDR-LacZ) from embryonic day 11 (E11) through postnatal day 60 (P60). At E11.5, mesonephric cells expressing KDR-LacZ seemed to migrate into the developing testis and surrounded developing seminiferous cords. Cells expressing KDR-LacZ appeared in the ovary with no apparent migration from the adjacent mesonephros, suggesting a different origin of endothelial cells. Testis organ cultures from E11 mice were treated with 8 μM VEGFR-TKI, a vascular endothelial growth factor A signal transduction inhibitor; subsequently, the amount of KDR-LacZ staining was reduced by 66%-99% (P<0.002), and the ability of KDR-expressing cells to form a densely organized vascular network was inhibited. Novel non-angiogenic KDR-LacZ staining was detected in the testis on specific subsets of germ cells at E16, E17, P4, P20, P30, and P60. In ovaries, staining was present on oocytes within oocyte cysts at E17 and within late secondary follicles of postnatal mice. Thus, KDR is an excellent marker for analyzing vascular development in the gonads. Inhibition of VEGFA signal transduction prevents the development of testis-specific vasculature. Furthermore, non-vascular KDR-LacZ staining suggests that KDR directly affects both spermatogenesis and somatic-oocyte interactions during gametogenesis.
Collapse
Affiliation(s)
- Rebecca C Bott
- Department of Animal Science, A224i Animal Science Building, University of Nebraska-Lincoln, 3800 Fair Street, Lincoln, NE 68583-0908, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Baltes-Breitwisch MM, Artac RA, Bott RC, McFee RM, Kerl JG, Clopton DT, Cupp AS. Neutralization of vascular endothelial growth factor antiangiogenic isoforms or administration of proangiogenic isoforms stimulates vascular development in the rat testis. Reproduction 2010; 140:319-29. [PMID: 20457593 DOI: 10.1530/rep-09-0456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vascular endothelial growth factor A (VEGFA) plays a role in both angiogenesis and seminiferous cord formation, and alternative splicing of the Vegfa gene produces both proangiogenic isoforms and antiangiogenic isoforms (B-isoforms). The objectives of this study were to evaluate the expression of pro- and antiangiogenic isoforms during testis development and to determine the role of VEGFA isoforms in testis morphogenesis. Quantitative RT-PCR determined that Vegfa_165b mRNA was most abundant between embryonic days 13.5 and 16 (E13.5 and 16; P<0.05). Compared with ovarian mRNA levels, Vegfa_120 was more abundant at E13-14 (P<0.05), Vegfa_164 was less abundant at E13 (P<0.05), and Vegfa_165b tended to be less abundant at E13 (P<0.09) in testes. Immunohistochemical staining localized antiangiogenic isoforms to subsets of germ cells at E14-16, and western blot analysis revealed similar protein levels for VEGFA_165B, VEGFA_189B, and VEGFA_206B at this time point. Treatment of E13 organ culture testes with VEGFA_120, VEGFA_164, and an antibody to antiangiogenic isoforms (anti-VEGFAxxxB) resulted in less organized and defined seminiferous cords compared with paired controls. In addition, 50 ng/ml VEGFA_120 and VEGFA_164 treatments increased vascular density in cultured testes by 60 and 48% respectively, and treatment with VEGFAxxxB antibody increased vascular density by 76% in testes (0.5 ng/ml) and 81% in ovaries (5 ng/ml) compared with controls (P<0.05). In conclusion, both pro- and antiangiogenic VEGFA isoforms are involved in the development of vasculature and seminiferous cords in rat testes, and differential expression of these isoforms may be important for normal gonadal development.
Collapse
|
41
|
Abstract
In the human ovary, early in pre-natal life, oocytes are surrounded by pre-granulosa follicular cells to form primordial follicles. These primordial oocytes remain dormant, often for decades, until recruited into the growing pool throughout a woman's adult reproductive years. Activation of follicle growth and subsequent development of growing oocytes in pre-antral follicles are major biological checkpoints that determine an individual females reproductive potential. In the past decade, great strides have been made in the elucidation of the molecular and cellular mechanisms underpinning maintenance of the quiescent primordial follicle pool and initiation and development of follicle growth. Gaining an in-depth knowledge of the intracellular signalling systems that control oocyte preservation and follicle activation has significant implications for improving female reproductive productivity and alleviating infertility. It also has application in domestic animal husbandry, feral animal population control and contraception in women.
Collapse
Affiliation(s)
- Eileen A McLaughlin
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | | |
Collapse
|
42
|
Artac RA, McFee RM, Smith RAL, Baltes-Breitwisch MM, Clopton DT, Cupp AS. Neutralization of vascular endothelial growth factor antiangiogenic isoforms is more effective than treatment with proangiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary. Biol Reprod 2009; 81:978-88. [PMID: 19605786 DOI: 10.1095/biolreprod.109.078097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Inhibition of vascular endothelial growth factor A (VEGFA) signal transduction arrests vascular and follicle development. Because antiangiogenic VEGFA isoforms are proposed to block proangiogenic VEGFA isoforms from binding to their receptors, we hypothesized that proangiogenic isoforms promote and antiangiogenic isoforms inhibit these processes. The antiangiogenic isoforms Vegfa_165b and Vegfa_189b were amplified and sequenced from rat ovaries. The Vegfa_165b sequence was 90% homologous to human VEGFA_165B. Quantitative RT-PCR determined that Vegfa_165b mRNA was more abundant around Embryonic Day 18, but Vegfa_189b lacked a distinct pattern of abundance. Antiangiogenic VEGFA isoforms were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the effects of VEGFA isoforms in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with VEGFA_164 or an antibody to antiangiogenic isoforms (anti-VEGFAxxxB). Treatment with 50 ng/ml of VEGFA_164 resulted in a 93% increase in vascular density (P < 0.01), and treated ovaries were composed of fewer primordial follicles (stage 0) and more developing follicles (stages 1-4) than controls (P < 0.04). Ovaries treated with 5 ng/ml of VEGFAxxxB antibody had a 93% increase in vascular density (P < 0.02), with fewer primordial and early primary follicles (stage 1) and more primary, transitional, and secondary follicles (stages 2, 3, and 4, respectively) compared with controls (P < 0.005). We conclude that neutralization of antiangiogenic VEGFA isoforms may be a more effective mechanism of enhancing vascular and follicular development in perinatal rat ovaries than treatment with the proangiogenic isoform VEGFA_164.
Collapse
Affiliation(s)
- Robin A Artac
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USA
| | | | | | | | | | | |
Collapse
|