1
|
Bühler L, de Moura AC, Giovenardi M, Goffin V, Rasia-Filho AA. Sex-related gene expression in the posterodorsal medial amygdala of cycling female rats along with prolactin modulation of lordosis behavior. Brain Res 2025; 1857:149602. [PMID: 40147695 DOI: 10.1016/j.brainres.2025.149602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The rat posterodorsal medial amygdala (MePD) is sexually dimorphic, has a high concentration of receptors for gonadal hormones and prolactin (PRL), and modulates reproduction. To unravel genetic and functional data for this relevant node of the social behavior network, we studied the expression of ERα, ERβ, GPER1, Kiss1, Kiss1R, PRGR, PRL, PRLR, EGR1, JAK2, STAT5A, and STAT5B in the MePD of males and females along the estrous cycle using the RT-qPCR technique. We also investigated whether PRL in the MePD would affect the sexual behavior display of proestrus females by microinjecting saline, the PRL receptor antagonist Del1-9-G129R-hPRL (1 µM and 10 µM), or PRL (1 nM) and Del1-9-G129R-hPRL (10 µM) 3 h before the onset of the dark-cycle period. The estrogen-dependent lordosis behavior, indicative of sexual receptivity of proestrus females, was recorded and compared before (control) and after (test) microinjections in these groups. Sex differences were found in the right and left MePD gene expression. ERα and Kiss1R, as well as PRL, Short PRLR, and STAT5B expression is higher in cycling females than males. Kiss1 expression is higher in males than females, and GPER1 is higher during diestrus than proestrus. Furthermore, Del1-9-G129R-hPRL in the MePD significantly reduced the full display and quotient of lordosis in proestrus females, an effect restored by the co-microinjection of PRL. In conjunction, the expression of studied genes showed specific sex and estrous cycle phase features, and PRL action in the MePD plays an essential role in the display of lordosis during the ovulatory period.
Collapse
Affiliation(s)
- Letícia Bühler
- Graduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 9035-003, Brazil
| | - Ana Carolina de Moura
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| | - Vincent Goffin
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, F-75015 Paris, France.
| | - Alberto A Rasia-Filho
- Graduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 9035-003, Brazil; Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| |
Collapse
|
2
|
Streifer M, Thompson LM, Mendez SA, Gore AC. Neuroendocrine and Developmental Impacts of Early Life Exposure to EDCs. J Endocr Soc 2024; 9:bvae195. [PMID: 39659541 PMCID: PMC11631349 DOI: 10.1210/jendso/bvae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 12/12/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) pose a global challenge to environmental and human health. Although toxic and carcinogenic at higher exposure levels, at lower concentrations they can act as endocrine-disrupting chemicals. Individuals are more vulnerable to endocrine-disrupting effects of PCB exposures during the perinatal period, when the neuroendocrine system is developing, although assessing the full impact of PCB exposure is difficult because of the often-latent onset of adverse effects. The goal of this study was to determine developmental effects of an estrogenic PCB mixture, Aroclor 1221 (A1221), on KNDy and kisspeptin neuron numbers in the hypothalamic arcuate nucleus and anteroventral periventricular nucleus (AVPV), together with measures of hypothalamic-pituitary-gonadal hormones and postnatal development. We conducted RNAscope of kisspeptin, prodynorphin, neurokinin B, and estrogen receptor alpha genes in the P30 hypothalamus. Early-life PCBs caused small but significant changes in development (body weight and anogenital index) but had no effect on puberty. We found sex-specific effects of treatment on serum LH, FSH, and estradiol in a sex- and developmental age-dependent manner. RNAscope results revealed increased prodynorphin in the AVPV of male rats, but no effects on kisspeptin or neurokinin B in AVPV or arcuate nucleus. An unexpected species difference was found: we were unable to detect prodynorphin coexpression with kisspeptin within KNDy neurons in rats, unlike mice, sheep, and primates. These data show that early-life PCBs can induce developmental and hormonal changes that together with other reports showing latent effects on behavior and the hypothalamic-pituitary-gonadal axis, indicate adverse endocrine and neurobehavioral outcomes.
Collapse
Affiliation(s)
- Madeline Streifer
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Skylar A Mendez
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
4
|
González-Flores O, Domínguez-Ordóñez R, Delgado-Macuil RJ, Tlachi-López JL, Luna-Hernández A, Montes-Narváez O, Pfaus JG, García-Juárez M. Participation of kisspeptin, progesterone, and GnRH receptors on lordosis behavior induced by kisspeptin. Physiol Behav 2024; 283:114609. [PMID: 38851441 DOI: 10.1016/j.physbeh.2024.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The neuropeptide kisspeptin (Kiss) is crucial in regulating the hypothalamic-pituitary-gonadal axis. It is produced by two main groups of neurons in the hypothalamus: the rostral periventricular region around the third ventricle and the arcuate nucleus. Kiss is the peptide product of the KiSS-1 gene and serves as the endogenous agonist for the GPR54 receptor. The Kiss/GPR54 system functions as a critical regulator of the reproductive system. Thus, we examined the effect of intracerebroventricular administration of 3 μg of Kiss to the right lateral ventricle of ovariectomized rats primed with a dose of 5 μg subcutaneous (sc) of estradiol benzoate (EB). Kiss treatment increased the lordosis quotient at all times tested. However, the lordosis reflex score was comparatively lower yet still significant compared to the control group. To investigate receptor specificity and downstream mechanisms on lordosis, we infused 10 μg of GPR54 receptor antagonist, Kiss-234, 5 μg of the progestin receptor antagonist, RU486, or 3 μg of antide, a gonadotropin-releasing hormone-1 (GnRH-1) receptor antagonist, to the right lateral ventricle 30 min before an infusion of 3 μg of Kiss. Results demonstrated a significant reduction in the facilitation of lordosis behavior by Kiss at 60 and 120 min when Kiss-234, RU486, or antide were administered. These findings suggest that Kiss stimulates lordosis expression by activating GPR54 receptors on GnRH neurons and that Kiss/GPR54 system is an essential intermediary by which progesterone activates GnRH.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez-Ordóñez
- Licenciatura en Ingeniería Agronómica y Zootecnia, CRC, Benemérita Universidad Autónoma de, Puebla, México
| | - Raul Jacobo Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Santa Inés, Tecuexcomac, Tlaxcala, México
| | | | - Ailyn Luna-Hernández
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Montes-Narváez
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
5
|
Yamada K, Mano T, Hazim S, Takizawa M, Inoue N, Uenoyama Y, Tsukamura H. Neonatal Aromatase Inhibition Blocked Defeminization of AVPV Kiss1 Neurons and LH Surge-Generating System in Male Rats. Endocrinology 2024; 165:bqae028. [PMID: 38470466 DOI: 10.1210/endocr/bqae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The neuroendocrine system that controls the preovulatory surge of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH), which triggers ovulation in female mammals, is sexually differentiated in rodents. A transient increase in circulating testosterone levels in male rats within a few hours of birth is primarily responsible for the defeminization of anteroventral periventricular nucleus (AVPV) kisspeptin neurons, which are critical regulators of the GnRH/LH surge. The present study aimed to determine whether neonatal estradiol-17β (E2) converted from testosterone by aromatase primarily causes the defeminization of AVPV kisspeptin neurons and the surge of GnRH/LH in male rodents. The results of the present study showed that the neonatal administration of letrozole (LET), a nonsteroidal aromatase inhibitor, within 2 hours of birth rescued AVPV Kiss1 expression and the LH surge in adult male rats, while the neonatal administration of testosterone propionate (TP) irreversibly attenuated AVPV Kiss1 expression and the LH surge in adult female rats. Furthermore, the neonatal LET-treated Kiss1-Cre-activated tdTomato reporter males exhibited a comparable number of AVPV Kiss1-Cre-activated tdTomato-expressing cells to that of vehicle-treated female rats, while neonatal TP-treated females showed fewer AVPV Kiss1-Cre-activated tdTomato-expressing cells than vehicle-treated females. Moreover, neonatal TP administration significantly decreased the number of arcuate Kiss1-expressing and Kiss1-Cre-activated tdTomato-positive cells and suppressed LH pulses in adult gonadectomized female rats; however, neonatal LET administration failed to affect them. These results suggest that E2 converted from neonatal testosterone is primarily responsible for the defeminization of AVPV kisspeptin neurons and the subsequent GnRH/LH surge generation in male rats.
Collapse
Affiliation(s)
- Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Mano
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Safiullah Hazim
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
6
|
Nagae M, Yamada K, Enomoto Y, Kometani M, Tsuchida H, Panthee A, Nonogaki M, Matsunaga N, Takizawa M, Matsuzaki S, Hirabayashi M, Inoue N, Tsukamura H, Uenoyama Y. Conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons caused estrogen-dependent LH pulse disruption and LH surge attenuation in female rats. Sci Rep 2023; 13:20495. [PMID: 37993510 PMCID: PMC10665460 DOI: 10.1038/s41598-023-47222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.
Collapse
Affiliation(s)
- Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yuki Enomoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Mari Kometani
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Arvinda Panthee
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Miku Nonogaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Nao Matsunaga
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Sena Matsuzaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
7
|
Yamada K, Nagae M, Mano T, Tsuchida H, Hazim S, Goto T, Sanbo M, Hirabayashi M, Inoue N, Uenoyama Y, Tsukamura H. Sex difference in developmental changes in visualized Kiss1 neurons in newly generated Kiss1-Cre rats. J Reprod Dev 2023; 69:227-238. [PMID: 37518187 PMCID: PMC10602768 DOI: 10.1262/jrd.2023-019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Hypothalamic kisspeptin neurons are master regulators of mammalian reproduction via direct stimulation of gonadotropin-releasing hormone and consequent gonadotropin release. Here, we generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats. First, we validated Kiss1-Cre rats by generating Kiss1-expressing cell-specific Kiss1 knockout (Kiss1-KpKO) rats, which were obtained by crossing the current Kiss1-Cre rats with Kiss1-floxed rats. The resulting male Kiss1-KpKO rats lacked Kiss1 expression in the brain and exhibited hypogonadotropic hypogonadism, similar to the hypogonadal phenotype of global Kiss1 KO rats. Histological analysis of Kiss1 neurons in Kiss1-Cre-activated tdTomato reporter rats revealed that tdTomato signals in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) were not affected by estrogen, and that tdTomato signals in the ARC, AVPV, and medial amygdala (MeA) were sexually dimorphic. Notably, neonatal AVPV tdTomato signals were detected only in males, but a larger number of tdTomato-expressing cells were detected in the AVPV and ARC, and a smaller number of cells in the MeA was detected in females than in males at postpuberty. These findings suggest that Kiss1-visualized rats can be used to examine the effect of estrogen feedback mechanisms on Kiss1 expression in the AVPV and ARC. Moreover, the Kiss1-Cre and Kiss1-visualized rats could be valuable tools for further detailed analyses of sexual differentiation in the brain and the physiological role of kisspeptin neurons across the brain in rats.
Collapse
Affiliation(s)
- Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Tetsuya Mano
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Safiullah Hazim
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Teppei Goto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
8
|
Magata F, Tsukamura H, Matsuda F. The impact of inflammatory stress on hypothalamic kisspeptin neurons: Mechanisms underlying inflammation-associated infertility in humans and domestic animals. Peptides 2023; 162:170958. [PMID: 36682622 DOI: 10.1016/j.peptides.2023.170958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Inflammatory diseases attenuate reproductive functions in humans and domestic animals. Lipopolysaccharide (LPS), an endotoxin released by bacteria, is known to disrupt female reproductive functions in various inflammatory diseases. LPS administration has been used to elucidate the impact of pathophysiological activation of the immune system on reproduction. Hypothalamic kisspeptin neurons are the master regulators of mammalian reproduction, mediating direct stimulation of hypothalamic gonadotropin-releasing hormone (GnRH) release and consequent release of gonadotropins, such as luteinizing hormone (LH) and follicle-stimulating hormone from the pituitary. The discovery of kisspeptin neurons in the mammalian hypothalamus has drastically advanced our understanding of how inflammatory stress causes reproductive dysfunction in both humans and domestic animals. Inflammation-induced ovarian dysfunction could be caused, at least partly, by aberrant GnRH and LH secretion, which is regulated by kisspeptin signaling. In this review, we focus on the effects of LPS on hypothalamic kisspeptin neurons to outline the impact of inflammatory stress on neuroendocrine regulation of mammalian reproductive systems. First, we summarize the attenuation of female reproduction by LPS during inflammation and the effects of LPS on ovarian and pituitary function. Second, we outline the inhibitory effects of LPS on pulsatile- and surge-mode GnRH/LH release. Third, we discuss the LPS-responsive hypothalamic-pituitary-adrenal axis and hypothalamic neural systems in terms of the cytokine-mediated pathway and the possible direct action of LPS via its hypothalamic receptors. This article describes the impact of LPS on hypothalamic kisspeptin neurons and the possible mechanisms underlying LPS-mediated disruption of LH pulses/surge via kisspeptin neurons.
Collapse
Affiliation(s)
- Fumie Magata
- Department of Veterinary Medical Sciences, the University of Tokyo, Tokyo 113-8657, Japan.
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, the University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
9
|
Magata F, Toda L, Sato M, Sakono T, Chambers JK, Uchida K, Tsukamura H, Matsuda F. Intrauterine LPS inhibited arcuate Kiss1 expression, LH pulses, and ovarian function in rats. Reproduction 2022; 164:207-219. [PMID: 36099331 DOI: 10.1530/rep-22-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
In brief Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. The current findings that intrauterine lipopolysaccharide is absorbed in systemic circulation and attenuates ovarian cyclic activities could provide a basis for developing novel treatments to improve fertility. Abstract Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. Circulating lipopolysaccharide (LPS), a bacterial endotoxin causing uterine inflammation, reportedly downregulates the hypothalamic-pituitary-gonadal axis to mediate ovarian dysfunction. In contrast, the mechanism whereby intrauterine LPS affects ovarian function has not been fully clarified. This study aimed to elucidate whether uterine exposure to LPS downregulates hypothalamic kisspeptin gene (Kiss1) expression, gonadotropin release, and ovarian function. Uterine inflammation was induced by intrauterine LPS administration to ovary-intact and ovariectomized female rats. As a result, plasma LPS concentrations were substantially higher in control rats until 48 h post injection, and the estrous cyclicity was disrupted with a prolonged diestrous phase. Three days post injection, the number of Graafian follicles and plasma estradiol concentration were reduced in LPS-treated rats, while numbers of Kiss1-expressing cells in the anteroventral periventricular nucleus and arcuate nucleus (ARC) were comparable in ovary-intact rats. Four days post injection, ovulation rate and plasma progesterone levels reduced significantly while gene expression of interleukin1β and tumor necrosis factor α was upregulated in the ovaries of LPS-treated rats that failed to ovulate. Furthermore, the number of Kiss1-expressing cells in the ARC and pulsatile luteinizing hormone (LH) release were significantly reduced in ovariectomized rats 24 h post injection. In conclusion, these results indicate that intrauterine LPS is absorbed in systemic circulation and attenuates ovarian function. This detrimental effect might be caused, at least partly, by the inhibition of ARC Kiss1 expression and LH pulses along with an induction of ovarian inflammatory response.
Collapse
Affiliation(s)
- Fumie Magata
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Lisa Toda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Sakono
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Kauffman AS. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front Neurosci 2022; 16:953252. [PMID: 35968365 PMCID: PMC9364933 DOI: 10.3389/fnins.2022.953252] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
A fundamental principle in reproductive neuroendocrinology is sex steroid feedback: steroid hormones secreted by the gonads circulate back to the brain to regulate the neural circuits governing the reproductive neuroendocrine axis. These regulatory feedback loops ultimately act to modulate gonadotropin-releasing hormone (GnRH) secretion, thereby affecting gonadotropin secretion from the anterior pituitary. In females, rising estradiol (E2) during the middle of the menstrual (or estrous) cycle paradoxically "switch" from being inhibitory on GnRH secretion ("negative feedback") to stimulating GnRH release ("positive feedback"), resulting in a surge in GnRH secretion and a downstream LH surge that triggers ovulation. While upstream neural afferents of GnRH neurons, including kisspeptin neurons in the rostral hypothalamus, are proposed as critical loci of E2 feedback action, the underlying mechanisms governing the shift between E2 negative and positive feedback are still poorly understood. Indeed, the precise cell targets, neural signaling factors and receptors, hormonal pathways, and molecular mechanisms by which ovarian-derived E2 indirectly stimulates GnRH surge secretion remain incompletely known. In many species, there is also a circadian component to the LH surge, restricting its occurrence to specific times of day, but how the circadian clock interacts with endocrine signals to ultimately time LH surge generation also remains a major gap in knowledge. Here, we focus on classic and recent data from rodent models and discuss the consensus knowledge of the neural players, including kisspeptin, the suprachiasmatic nucleus, and glia, as well as endocrine players, including estradiol and progesterone, in the complex regulation and generation of E2-induced LH surges in females.
Collapse
|
11
|
Abstract
Sex as a biological variable is the focus of much literature and has been emphasized by the National Institutes of Health, in part, to remedy a long history of male-dominated studies in preclinical and clinical research. We propose that time-of-day is also a crucial biological variable in biomedical research. In common with sex differences, time-of-day should be considered in analyses and reported to improve reproducibility of studies and to provide the appropriate context to the conclusions. Endogenous circadian rhythms are present in virtually all living organisms, including bacteria, plants, invertebrates, and vertebrates. Virtually all physiological and behavioral processes display daily fluctuations in optimal performance that are driven by these endogenous circadian clocks; importantly, many of those circadian rhythms also show sex differences. In this review, we describe some of the documented sex differences in circadian rhythms.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, USA
| |
Collapse
|
12
|
Sex-specific hypothalamic expression of kisspeptin, gonadotropin releasing hormone, and kisspeptin receptor in progressive demyelination model. J Chem Neuroanat 2022; 123:102120. [PMID: 35718292 DOI: 10.1016/j.jchemneu.2022.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Demyelinating diseases, such as multiple sclerosis, decrease the quality of life of patients and can affect reproduction. Assisted reproductive therapies are available, which although effective, aggravate motor symptoms. For this reason, it is important to determine how the control of the hypothalamus-pituitary-gonadal axis is affected in order to develop better strategies for these patients. One way to determine this is using animal models such as the taiep rat, which shows progressive demyelination of the central nervous system, and was used in the present study to characterize the expression of gonadotrophin-releasing hormone (GnRH), Kisspeptin, and kisspeptin receptor (Kiss1R) and luteinizing hormone (LH) secretion. The expression of kisspeptin, GnRH, and Kiss1R was determined at the hypothalamic level by immunofluorescence and serum LH levels were determined by ELISA. The expression of kisspeptin at the hypothalamic level showed sexual dimorphism, where there was an increase in males and a decrease in females during oestrus. There was no change in the expression of GnRH or kisspeptin receptor, regardless of sex. However, a decrease in serum LH concentration was observed in both sexes. The taiep rat showed changes in the expression of kisspeptin at the hypothalamic level. These changes are different from those reported in the literature with the use of animals with experimental allergic encephalomyelitis, this is because both animal models represent different degrees of progression of multiple sclerosis. Our results suggest that the effects on the hypothalamus-pituitary-gonadal axis depend on the differences between the demyelinating processes, their progression, and even individual factors, and it is thus important that fertility treatments are individualized to maximize therapeutic effects.
Collapse
|
13
|
Sheep as a model for neuroendocrinology research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:1-34. [PMID: 35595346 DOI: 10.1016/bs.pmbts.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal models remain essential to understand the fundamental mechanisms of physiology and pathology. Particularly, the complex and dynamic nature of neuroendocrine cells of the hypothalamus make them difficult to study. The neuroendocrine systems of the hypothalamus are critical for survival and reproduction, and are highly conserved throughout vertebrate evolution. Their roles in controlling body metabolism, growth and body composition, stress, electrolyte balance, and reproduction, have been intensively studied, and have yielded groundbreaking discoveries. Many of these discoveries would not have been feasible without the use of the domestic sheep (Ovis aries). The sheep has been used for decades to study the neuroendocrine systems of the hypothalamus and has become a model for human neuroendocrinology. The aim of this chapter is to review some of the profound biomedical discoveries made possible by the use of sheep. The advantages and limitations of sheep as a neuroendocrine model will be discussed. While no animal model can perfectly recapitulate a human disease or condition, sheep are invaluable for enabling manipulations not possible in human subjects and isolating physiologic variables to garner insight into neuroendocrinology and associated pathologies.
Collapse
|
14
|
Lee EB, Dilower I, Marsh CA, Wolfe MW, Masumi S, Upadhyaya S, Rumi MAK. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022; 11:1146. [PMID: 35406710 PMCID: PMC8997554 DOI: 10.3390/cells11071146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin (KP) and kisspeptin receptor (KPR) are essential for the onset of puberty, development of gonads, and maintenance of gonadal function in both males and females. Hypothalamic KPs and KPR display a high degree of sexual dimorphism in expression and function. KPs act on KPR in gonadotropin releasing hormone (GnRH) neurons and induce distinct patterns of GnRH secretion in males and females. GnRH acts on the anterior pituitary to secrete gonadotropins, which are required for steroidogenesis and gametogenesis in testes and ovaries. Gonadal steroid hormones in turn regulate the KP neurons. Gonadal hormones inhibit the KP neurons within the arcuate nucleus and generate pulsatile GnRH mediated gonadotropin (GPN) secretion in both sexes. However, the numbers of KP neurons in the anteroventral periventricular nucleus and preoptic area are greater in females, which release a large amount of KPs in response to a high estrogen level and induce the preovulatory GPN surge. In addition to the hypothalamus, KPs and KPR are also expressed in various extrahypothalamic tissues including the liver, pancreas, fat, and gonads. There is a remarkable difference in circulating KP levels between males and females. An increased level of KPs in females can be linked to increased numbers of KP neurons in female hypothalamus and more KP production in the ovaries and adipose tissues. Although the sexually dimorphic features are well characterized for hypothalamic KPs, very little is known about the extrahypothalamic KPs. This review article summarizes current knowledge regarding the sexual dimorphism in hypothalamic as well as extrahypothalamic KP and KPR system in primates and rodents.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Courtney A. Marsh
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Sameer Upadhyaya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| |
Collapse
|
15
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
16
|
Jamieson BB, Moore AM, Lohr DB, Thomas SX, Coolen LM, Lehman MN, Campbell RE, Piet R. Prenatal androgen treatment impairs the suprachiasmatic nucleus arginine-vasopressin to kisspeptin neuron circuit in female mice. Front Endocrinol (Lausanne) 2022; 13:951344. [PMID: 35992143 PMCID: PMC9388912 DOI: 10.3389/fendo.2022.951344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/06/2022] [Indexed: 01/13/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with elevated androgen and luteinizing hormone (LH) secretion and with oligo/anovulation. Evidence indicates that elevated androgens impair sex steroid hormone feedback regulation of pulsatile LH secretion. Hyperandrogenemia in PCOS may also disrupt the preovulatory LH surge. The mechanisms through which this might occur, however, are not fully understood. Kisspeptin (KISS1) neurons of the rostral periventricular area of the third ventricle (RP3V) convey hormonal cues to gonadotropin-releasing hormone (GnRH) neurons. In rodents, the preovulatory surge is triggered by these hormonal cues and coincident timing signals from the central circadian clock in the suprachiasmatic nucleus (SCN). Timing signals are relayed to GnRH neurons, in part, via projections from SCN arginine-vasopressin (AVP) neurons to RP3VKISS1 neurons. Because rodent SCN cells express androgen receptors (AR), we hypothesized that these circuits are impaired by elevated androgens in a mouse model of PCOS. In prenatally androgen-treated (PNA) female mice, SCN Ar expression was significantly increased compared to that found in prenatally vehicle-treated mice. A similar trend was seen in the number of Avp-positive SCN cells expressing Ar. In the RP3V, the number of kisspeptin neurons was preserved. Anterograde tract-tracing, however, revealed reduced SCNAVP neuron projections to the RP3V and a significantly lower proportion of RP3VKISS1 neurons with close appositions from SCNAVP fibers. Functional assessments showed, on the other hand, that RP3VKISS1 neuron responses to AVP were maintained in PNA mice. These findings indicate that PNA changes some of the neural circuits that regulate the preovulatory surge. These impairments might contribute to ovulatory dysfunction in PNA mice modeling PCOS.
Collapse
Affiliation(s)
- Bradley B. Jamieson
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Aleisha M. Moore
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Dayanara B. Lohr
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Simone X. Thomas
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Lique M. Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Michael N. Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- *Correspondence: Richard Piet,
| |
Collapse
|
17
|
Nakamura S, Watanabe Y, Goto T, Ikegami K, Inoue N, Uenoyama Y, Tsukamura H. Kisspeptin neurons as a key player bridging the endocrine system and sexual behavior in mammals. Front Neuroendocrinol 2022; 64:100952. [PMID: 34755641 DOI: 10.1016/j.yfrne.2021.100952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
Reproductive behaviors are sexually differentiated: for example, male rodents show mounting behavior, while females in estrus show lordosis behavior as sex-specific sexual behaviors. Kisspeptin neurons govern reproductive function via direct stimulation of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release for gonadal steroidogenesis in mammals. First, we discuss the role of hypothalamic kisspeptin neurons as an indispensable regulator of sexual behavior by stimulating the synthesis of gonadal steroids, which exert "activational effects" on the behavior in adulthood. Second, we discuss the central role of kisspeptin neurons that are directly involved in neural circuits controlling sexual behavior in adulthood. We then focused on the role of perinatal hypothalamic kisspeptin neurons in the induction of perinatal testosterone secretion for its "organizational effects" on masculinization/defeminization of the male brain in rodents during a critical period. We subsequently concluded that kisspeptin neurons are key players in bridging the endocrine system and sexual behavior in mammals.
Collapse
Affiliation(s)
- Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Youki Watanabe
- Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Teppei Goto
- RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Kana Ikegami
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
18
|
Mohr MA, Esparza LA, Steffen P, Micevych PE, Kauffman AS. Progesterone Receptors in AVPV Kisspeptin Neurons Are Sufficient for Positive Feedback Induction of the LH Surge. Endocrinology 2021; 162:6348143. [PMID: 34379733 PMCID: PMC8423423 DOI: 10.1210/endocr/bqab161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/19/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates gonadotropin-releasing hormone neurons to govern reproduction. In female rodents, estrogen-sensitive kisspeptin neurons in the rostral anteroventral periventricular (AVPV) hypothalamus are thought to mediate estradiol (E2)-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. AVPV kisspeptin neurons coexpress estrogen and progesterone receptors (PGRs) and are activated during the LH surge. While E2 effects on kisspeptin neurons have been well studied, progesterone's regulation of kisspeptin neurons is less understood. Using transgenic mice lacking PGR exclusively in kisspeptin cells (termed KissPRKOs), we previously demonstrated that progesterone action specifically in kisspeptin cells is essential for ovulation and normal fertility. Unlike control females, KissPRKO females did not generate proper LH surges, indicating that PGR signaling in kisspeptin cells is required for positive feedback. However, because PGR was knocked out from all kisspeptin neurons in the brain, that study was unable to determine the specific kisspeptin population mediating PGR action on the LH surge. Here, we used targeted Cre-mediated adeno-associated virus (AAV) technology to reintroduce PGR selectively into AVPV kisspeptin neurons of adult KissPRKO females, and tested whether this rescues occurrence of the LH surge. We found that targeted upregulation of PGR in kisspeptin neurons exclusively in the AVPV is sufficient to restore proper E2-induced LH surges in KissPRKO females, suggesting that this specific kisspeptin population is a key target of the necessary progesterone action for the surge. These findings further highlight the critical importance of progesterone signaling, along with E2 signaling, in the positive feedback induction of LH surges and ovulation.
Collapse
Affiliation(s)
- Margaret A Mohr
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, Los Angeles, CA 90095, USA
| | - Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paige Steffen
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: Dr. Alexander S. Kauffman, Department of OBGYN and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, #0674, La Jolla, CA 92093, USA. E-mail:
| |
Collapse
|
19
|
Chandra K, Banerjee A, Das M. Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Stephens SBZ, Kauffman AS. Estrogen Regulation of the Molecular Phenotype and Active Translatome of AVPV Kisspeptin Neurons. Endocrinology 2021; 162:6226761. [PMID: 33856454 PMCID: PMC8286094 DOI: 10.1210/endocr/bqab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/11/2022]
Abstract
In females, ovarian estradiol (E2) exerts both negative and positive feedback regulation on the neural circuits governing reproductive hormone secretion, but the cellular and molecular mechanisms underlying this remain poorly understood. In rodents, estrogen receptor α-expressing kisspeptin neurons in the hypothalamic anteroventral periventricular region (AVPV) are prime candidates to mediate E2 positive feedback induction of preovulatory gonadotropin-releasing hormone and luteinizing hormone (LH) surges. E2 stimulates AVPV Kiss1 expression, but the full extent of estrogen effects in these neurons is unknown; whether E2 stimulates or inhibits other genes in AVPV Kiss1 cells has not been determined. Indeed, understanding of the function(s) of AVPV kisspeptin cells is limited, in part, by minimal knowledge of their overall molecular phenotype, as only a few genes are currently known to be co-expressed in AVPV Kiss1 cells. To provide a more detailed profiling of co-expressed genes in AVPV Kiss1 cells, including receptors and other signaling factors, and test how these genes respond to E2, we selectively isolated actively translated mRNAs from AVPV Kiss1 cells of female mice and performed RNA sequencing (RNA-seq). This identified >13 000 mRNAs co-expressed in AVPV Kiss1 cells, including multiple receptor and ligand transcripts positively or negatively regulated by E2. We also performed RNAscope to validate co-expression of several transcripts identified by RNA-seq, including Pdyn (prodynorphin), Penk (proenkephalin), Vgf (VGF), and Cartpt (CART), in female AVPV Kiss1 cells. Given the important role of AVPV kisspeptin cells in positive feedback, E2 effects on identified genes may relate to the LH surge mechanism and/or other physiological processes involving these cells.
Collapse
Affiliation(s)
- Shannon B Z Stephens
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Kisspeptin Neurons and Estrogen-Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. Int J Mol Sci 2021; 22:ijms22179229. [PMID: 34502135 PMCID: PMC8430864 DOI: 10.3390/ijms22179229] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
- Correspondence:
| |
Collapse
|
22
|
Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. Proc Natl Acad Sci U S A 2021; 118:2009156118. [PMID: 33500349 DOI: 10.1073/pnas.2009156118] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gonadotropin-releasing hormone (GnRH) pulse is fundamental for mammalian reproduction: GnRH pulse regimens are needed as therapies for infertile women as continuous GnRH treatment paradoxically inhibits gonadotropin release. Circumstantial evidence suggests that the hypothalamic arcuate KNDy neurons expressing kisspeptin (encoded by Kiss1), neurokinin B (encoded by Tac3), and d ynorphin A serve as a GnRH pulse generator; however, no direct evidence is currently available. Here, we show that rescuing >20% KNDy neurons by transfecting Kiss1 inside arcuate Tac3 neurons, but not outside of these neurons, recovered folliculogenesis and luteinizing hormone (LH) pulses, an indicator of GnRH pulses, in female global Kiss1 knockout (KO) rats and that >90% conditional arcuate Kiss1 KO in newly generated Kiss1-floxed rats completely suppressed LH pulses. These results first provide direct evidence that KNDy neurons are the GnRH pulse generator, and at least 20% of KNDy neurons are sufficient to maintain folliculogenesis via generating GnRH/gonadotropin pulses.
Collapse
|
23
|
Watanabe Y, Ikegami K, Nakamura S, Uenoyama Y, Ozawa H, Maeda KI, Tsukamura H, Inoue N. Mating-induced increase in Kiss1 mRNA expression in the anteroventral periventricular nucleus prior to an increase in LH and testosterone release in male rats. J Reprod Dev 2020; 66:579-586. [PMID: 32968033 PMCID: PMC7768167 DOI: 10.1262/jrd.2020-067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Kisspeptin has an indispensable role in gonadotropin-releasing hormone/gonadotropin secretion in mammals. In rodents, kisspeptin neurons are located in distinct brain regions, namely the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), arcuate nucleus (ARC), and medial amygdala (MeA). Among them, the physiological role of AVPV/PeN kisspeptin neurons in males has not been clarified yet. The present study aims to investigate the acute effects of the olfactory and/or mating stimulus with a female rat on hypothalamic and MeA Kiss1 mRNA expression, plasma luteinizing hormone (LH) and testosterone levels in male rats. Intact male rats were exposed to the following stimuli: exposure to clean bedding; exposure to female-soiled bedding as a female-olfactory stimulus; exposure to female-soiled bedding and mating stimulus with a female rat. The mating stimulus significantly increased the number of the AVPV/PeN Kiss1 mRNA-expressing cells in males within 5 minutes after the exposure, and significantly increased LH and testosterone levels, followed by an increase in male sexual behavior. Whereas, the males exposed to female-soiled bedding showed a moderate increase in LH levels and no significant change in testosterone levels and the number of the AVPV/PeN Kiss1 mRNA-expressing cells. Importantly, none of the stimuli affected the number of Kiss1 mRNA-expressing cells in the ARC and MeA. These results suggest that the mating-induced increase in AVPV/PeN Kiss1 mRNA expression may be, at least partly, involved in stimulating LH and testosterone release, and might consequently ensure male mating behavior. This study would be the first report suggesting that the AVPV/PeN kisspeptin neurons in males may play a physiological role in ensuring male reproductive performance.
Collapse
Affiliation(s)
- Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Sho Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
24
|
Tsukahara S, Morishita M. Sexually Dimorphic Formation of the Preoptic Area and the Bed Nucleus of the Stria Terminalis by Neuroestrogens. Front Neurosci 2020; 14:797. [PMID: 32848568 PMCID: PMC7403479 DOI: 10.3389/fnins.2020.00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Testicular androgens during the perinatal period play an important role in the sexual differentiation of the brain of rodents. Testicular androgens transported into the brain act via androgen receptors or are the substrate of aromatase, which synthesizes neuroestrogens that act via estrogen receptors. The latter that occurs in the perinatal period significantly contributes to the sexual differentiation of the brain. The preoptic area (POA) and the bed nucleus of the stria terminalis (BNST) are sexually dimorphic brain regions that are involved in the regulation of sex-specific social behaviors and the reproductive neuroendocrine system. Here, we discuss how neuroestrogens of testicular origin act in the perinatal period to organize the sexually dimorphic structures of the POA and BNST. Accumulating data from rodent studies suggest that neuroestrogens induce the sex differences in glial and immune cells, which play an important role in the sexually dimorphic formation of the dendritic synapse patterning in the POA, and induce the sex differences in the cell number of specific neuronal cell groups in the POA and BNST, which may be established by controlling the number of cells dying by apoptosis or the phenotypic organization of living cells. Testicular androgens in the peripubertal period also contribute to the sexual differentiation of the POA and BNST, and thus their aromatization to estrogens may be unnecessary. Additionally, we discuss the notion that testicular androgens that do not aromatize to estrogens can also induce significant effects on the sexually dimorphic formation of the POA and BNST.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
25
|
Minabe S, Nakamura S, Fukushima E, Sato M, Ikegami K, Goto T, Sanbo M, Hirabayashi M, Tomikawa J, Imamura T, Inoue N, Uenoyama Y, Tsukamura H, Maeda KI, Matsuda F. Inducible Kiss1 knockdown in the hypothalamic arcuate nucleus suppressed pulsatile secretion of luteinizing hormone in male mice. J Reprod Dev 2020; 66:369-375. [PMID: 32336702 PMCID: PMC7470898 DOI: 10.1262/jrd.2019-164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that kisspeptin-GPR54 signaling is indispensable for gonadotropin-releasing hormone (GnRH)/gonadotropin secretion and consequent reproductive functions in mammals. Conventional Kiss1 knockout (KO) mice and rats are reported to be infertile. To date, however, no study has investigated the effect of inducible central Kiss1 KO/knockdown on pulsatile gonadotropin release in male mammals. Here we report an in vivo analysis of inducible conditional Kiss1 knockdown male mice. The mice were generated by a bilateral injections of either adeno-associated virus (AAV) vectors driving Cre recombinase (AAV-Cre) or AAV vectors driving GFP (AAV-GFP, control) into the hypothalamic arcuate nucleus (ARC) of Kiss1-floxed male mice, in which exon 3 of the Kiss1 gene were floxed with loxP sites. Four weeks after the AAV-Cre injection, the mice showed a profound decrease in the both number of ARC Kiss1-expressing cells and the luteinizing hormone (LH) pulse frequency. Interestingly, pulsatile LH secretion was apparent 8 weeks after the AAV-Cre injection despite the suppression of ARC Kiss1 expression. The control Kiss1-floxed mice infected with AAV-GFP showed apparent LH pulses and Kiss1 expression in the ARC at both 4 and 8 weeks after the AAV-GFP injection. These results with an inducible conditional Kiss1 knockdown in the ARC of male mice suggest that ARC kisspeptin neurons are responsible for pulsatile LH secretion in male mice, and indicate the possibility of a compensatory mechanism that restores GnRH/LH pulse generation.
Collapse
Affiliation(s)
- Shiori Minabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sho Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Eri Fukushima
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Junko Tomikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
26
|
Ikegami K, Goto T, Nakamura S, Watanabe Y, Sugimoto A, Majarune S, Horihata K, Nagae M, Tomikawa J, Imamura T, Sanbo M, Hirabayashi M, Inoue N, Maeda KI, Tsukamura H, Uenoyama Y. Conditional kisspeptin neuron-specific Kiss1 knockout with newly generated Kiss1-floxed and Kiss1-Cre mice replicates a hypogonadal phenotype of global Kiss1 knockout mice. J Reprod Dev 2020; 66:359-367. [PMID: 32307336 PMCID: PMC7470906 DOI: 10.1262/jrd.2020-026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate
the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian
reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two
lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that
newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that
hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable
tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of
Cre expression.
Collapse
Affiliation(s)
- Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Teppei Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Sho Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Arisa Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sutisa Majarune
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei Horihata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Junko Tomikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takuya Imamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
27
|
Horihata K, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Retinoblastoma binding protein 7 is involved in Kiss1 mRNA upregulation in rodents. J Reprod Dev 2020; 66:125-133. [PMID: 31956172 PMCID: PMC7175387 DOI: 10.1262/jrd.2019-149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kisspeptin, encoded by Kiss1, is essential for reproduction in mammals. Kiss1 expression is regulated by estrogen via histone acetylation in the
Kiss1 promotor region. Thus, elucidation of histone modification factor(s) involved in the regulation of Kiss1 expression is required to gain further
understanding of the mechanisms of its control. The RNA-seq analysis of isolated kisspeptin neurons, obtained from the arcuate nucleus (ARC) of female rats, revealed that
Rbbp7, encoding retinoblastoma binding protein 7 (RBBP7), a member of histone modification and chromatin remodeling complexes, is highly expressed in the ARC kisspeptin
neurons. Thus, the present study aimed to investigate whether RBBP7 is involved in Kiss1 expression. Histological analysis using in situ hybridization (ISH)
revealed that Rbbp7 expression was located in several hypothalamic nuclei, including the ARC and the anteroventral periventricular nucleus (AVPV), where kisspeptin neurons
are located. Double ISH for Rbbp7 and Kiss1 showed that a majority of kisspeptin neurons (more than 85%) expressed Rbbp7 mRNA in both the
ARC and the AVPV of female rats. Further, Rbbp7 mRNA knockdown significantly decreased in vitro expression of Kiss1 in a mouse immortalized
kisspeptin neuronal cell line (mHypoA-55). Estrogen treatment significantly decreased and increased Kiss1 mRNA levels in the ARC and AVPV of ovariectomized female rats,
respectively, but failed to affect Rbbp7 mRNA levels in both the nuclei. Taken together, these findings suggest that RBBP7 is involved in the upregulation of
Kiss1 expression in kisspeptin neurons of rodents in an estrogen-independent manner.
Collapse
Affiliation(s)
- Kei Horihata
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
28
|
Cisternas CD, Cortes LR, Golynker I, Castillo-Ruiz A, Forger NG. Neonatal Inhibition of DNA Methylation Disrupts Testosterone-Dependent Masculinization of Neurochemical Phenotype. Endocrinology 2020; 161:5631853. [PMID: 31742329 DOI: 10.1210/endocr/bqz022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.
Collapse
Affiliation(s)
| | - Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Ilona Golynker
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
29
|
Martini M, Froment P, Franceschini I, Pillon D, Guibert E, Cahier C, Mhaouty-Kodja S, Keller M. Perinatal Exposure to Methoxychlor Affects Reproductive Function and Sexual Behavior in Mice. Front Endocrinol (Lausanne) 2020; 11:639. [PMID: 33013709 PMCID: PMC7509471 DOI: 10.3389/fendo.2020.00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/06/2020] [Indexed: 01/07/2023] Open
Abstract
Numerous chemicals derived from human activity are now disseminated in the environment where their exert estrogenic endocrine disrupting effects, and therefore represent major health concerns. The present study explored whether Methoxychlor (MXC), an insecticide with xenoestrogens activities, given during the perinatal period (from gestational day 11 to postnatal day 8) and at an environmentally dose [20 μg/kg (body weight)/day], would affect reproductive physiology and sexual behavior of the offspring in mice. While MXC exposure did not induce any differences in the weight gain of animals from birth to 4 months of age, a clear difference (although in opposite direction according to the sexes) was observed on the anogenital distance between intact and exposed animals. A similar effect was also observed on preputial separation and vaginal opening, which reflects, respectively, in males and females, puberty occurrence. The advanced puberty observed in females was associated with an enhanced expression of kisspeptin cells in the anteroventral periventricular region of the medial preoptic area. Exposure to MXC did not induce in adult females changes in the estrous cycle or in the weight of the female reproductive tract. By contrast, males showed reduced weight of the epididymis and seminiferous vesicles associated with reduced testosterone levels and seminiferous tubule diameter. We also showed that both males and females showed deficits in mate preference tests. As a whole, our results show that MXC impacts reproductive outcomes.
Collapse
Affiliation(s)
- Mariangela Martini
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
- Department of Biological Sciences & Toxicology Program, North Carolina State University, Raleigh, NC, United States
| | - Pascal Froment
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Isabelle Franceschini
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Delphine Pillon
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Edith Guibert
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Claude Cahier
- Unité Expérimentale de Physiologie Animale de l'Orfrasière, UE 1297, INRA, Nouzilly, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France
| | - Matthieu Keller
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
- *Correspondence: Matthieu Keller
| |
Collapse
|
30
|
Neurochemical Characterization of Neurons Expressing Estrogen Receptor β in the Hypothalamic Nuclei of Rats Using in Situ Hybridization and Immunofluorescence. Int J Mol Sci 2019; 21:ijms21010115. [PMID: 31877966 PMCID: PMC6981915 DOI: 10.3390/ijms21010115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Estrogens play an essential role in multiple physiological functions in the brain, including reproductive neuroendocrine, learning and memory, and anxiety-related behaviors. To determine these estrogen functions, many studies have tried to characterize neurons expressing estrogen receptors known as ERα and ERβ. However, the characteristics of ERβ-expressing neurons in the rat brain still remain poorly understood compared to that of ERα-expressing neurons. The main aim of this study is to determine the neurochemical characteristics of ERβ-expressing neurons in the rat hypothalamus using RNAscope in situ hybridization (ISH) combined with immunofluorescence. Strong Esr2 signals were observed especially in the anteroventral periventricular nucleus (AVPV), bed nucleus of stria terminalis, hypothalamic paraventricular nucleus (PVN), supraoptic nucleus, and medial amygdala, as previously reported. RNAscope ISH with immunofluorescence revealed that more than half of kisspeptin neurons in female AVPV expressed Esr2, whereas few kisspeptin neurons were found to co-express Esr2 in the arcuate nucleus. In the PVN, we observed a high ratio of Esr2 co-expression in arginine-vasopressin neurons and a low ratio in oxytocin and corticotropin-releasing factor neurons. The detailed neurochemical characteristics of ERβ-expressing neurons identified in the current study can be very essential to understand the estrogen signaling via ERβ.
Collapse
|
31
|
Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res 2019; 45:2318-2329. [PMID: 31608564 DOI: 10.1111/jog.14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023]
Abstract
Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jing Chen
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
32
|
Majarune S, Nima P, Sugimoto A, Nagae M, Inoue N, Tsukamura H, Uenoyama Y. Ad libitum feeding triggers puberty onset associated with increases in arcuate Kiss1 and Pdyn expression in growth-retarded rats. J Reprod Dev 2019; 65:397-406. [PMID: 31155522 PMCID: PMC6815743 DOI: 10.1262/jrd.2019-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty
onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous
cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing
hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70–80 g by 49 days of age. Then,
animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both
Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian
and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding
induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results
suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin
secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus
gonadotropin secretion and follicular development in female rats.
Collapse
Affiliation(s)
- Sutisa Majarune
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Pelden Nima
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Arisa Sugimoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
Minabe S, Sato M, Inoue N, Watanabe Y, Magata F, Matsuda F, Uenoyama Y, Ozawa H, Tsukamura H. Neonatal Estrogen Causes Irreversible Male Infertility via Specific Suppressive Action on Hypothalamic Kiss1 Neurons. Endocrinology 2019; 160:1223-1233. [PMID: 30920587 DOI: 10.1210/en.2018-00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Aberrant exposure to estrogen-like compounds during the critical developmental period may cause improper hypothalamic programming, thus resulting in reproductive dysfunction in adulthood in male mammals. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) have been suggested to govern tonic GnRH/gonadotropin release to control reproduction in male mammals. In this study, we report that chronic exposure to supraphysiological levels of estrogen during the neonatal period caused an irreversible suppression of KNDy genes in the ARC, resulting in reproductive dysfunction in male rats. Daily estradiol benzoate (EB) administration from days 0 to 10 postpartum caused smaller seminiferous tubules, abnormal spermatogenesis, and a decrease in plasma testosterone in adult male rats. The neonatal EB treatment profoundly suppressed LH pulse and ARC KNDy gene expression at adulthood, but it failed to affect the number of GnRH gene-expressing cells in male rats. The EB treatment failed to affect gene expression of other neuropeptides, such as GHRH, proopiomelanocortin, and agouti-related protein in the ARC, suggesting that ARC KNDy neurons would be a specific target of neonatal estrogen to cause male reproductive dysfunction. Because LH secretory responses to kisspeptin challenge and GnRH expression were spared in male rats with the EB treatment, LH pulse suppression is most probably due to ARC KNDy deficiency. Taken together, the current study indicates that chronic exposure to estrogenic chemicals in the developing brain causes a defect of ARC KNDy neurons, resulting in an inhibition of pulsatile GnRH/LH release and the failure of spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Shiori Minabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Youki Watanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Fumie Magata
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
34
|
Ikeda Y, Kato-Inui T, Tagami A, Maekawa M. Expression of progesterone receptor, estrogen receptors α and β, and kisspeptin in the hypothalamus during perinatal development of gonad-lacking steroidogenic factor-1 knockout mice. Brain Res 2019; 1712:167-179. [PMID: 30776325 DOI: 10.1016/j.brainres.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Gonadal hormones contribute to brain sexual differentiation. We analyzed expression of progesterone receptor (PR), estrogen receptor-α (ERα), ERβ, and kisspeptin, in the preoptic area (POA) and/or the arcuate nucleus (ARC), in gonad-lacking steroidogenic factor-1 knockout (KO) mice during perinatal development. At postnatal-day (P) 0-P7, POA PR levels were higher in wild-type (WT) males compared with WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females. At P14-P21, PR levels in all groups increased similarly. POA ERα levels were similar in all groups at embryonic-day (E) 15.5-P14. Those in WT but not KO males reduced during postnatal development to be significantly lower compared with females at P21. POA ERβ levels were higher in WT males than in WT females, while those in KO males were lower than in WT males and similar to those in WT and KO females at P0-P21. POA kisspeptin expression was female-biased in WT mice, while levels in KO females were lower compared with WT females and similar to those in WT and KO males. ARC kisspeptin levels were equivalent among groups at E15.5-P0. At P7-P21, ARC levels in WT but not KO males became lower compared with WT females. Diethylstilbestrol exposure during P0-P6 and P7-P13 increased POA PR and ERβ, and decreased POA ERα and ARC kisspeptin levels at P7 and/or P14 in both sexes of KO mice. These data further understanding of gonadal hormone action on neuronal marker expression during brain sexual development.
Collapse
Affiliation(s)
- Yayoi Ikeda
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan.
| | - Tomoko Kato-Inui
- Koeki Zaidan Hojin Tokyo-to Igaku Sogo Kenkyujo, Regenerative Medicine Project 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Ayako Tagami
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Mamiko Maekawa
- Department of Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
35
|
Sugimoto A, Tsuchida H, Ieda N, Ikegami K, Inoue N, Uenoyama Y, Tsukamura H. Somatostatin-Somatostatin Receptor 2 Signaling Mediates LH Pulse Suppression in Lactating Rats. Endocrinology 2019; 160:473-483. [PMID: 30544226 DOI: 10.1210/en.2018-00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Follicular development and ovulation are profoundly suppressed during lactation in mammals. This suppression is suggested to be mainly due to the suckling-induced inhibition of kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and consequent inhibition of pulsatile GnRH/LH release. We examined whether central somatostatin (SST) signaling mediates the suckling-induced suppression of pulsatile LH secretion. SST has been reported to be expressed in the posterior intralaminar thalamic nucleus (PIL), where the suckling stimulus is postulated to be relayed to the hypothalamus during lactation. SST inhibitory receptors (SSTRs) are abundantly expressed in the ARC, where kisspeptin/neurokinin B/dynorphin A (KNDy) neurons are located. Histological and quantitative studies revealed that the suckling stimulus increased the number of SST-expressing cells in the PIL, and Sstr2 expression in the ARC. Furthermore, a central injection of an SSTR2 antagonist caused a significant increase in pulsatile LH release in lactating rats. Double labeling of Sstr2 and the neurokinin B gene, as a marker for ARC KNDy neurons, showed Sstr2 expression was abundantly detected in the ARC, but few KNDy neurons coexpressed Sstr2 in lactating rats. Taken together, these findings suggest the suckling-induced activation of SST-SSTR2 signaling mediates, at least in part, the suppression of pulsatile LH secretion during lactation in rats, probably via the indirect effects of SST on KNDy neurons. These results provide a new aspect on the role of central SST-SSTR signaling in understanding the mechanism underlying lactational anestrus.
Collapse
Affiliation(s)
- Arisa Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hitomi Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
36
|
Deura C, Minabe S, Ikegami K, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Morphological analysis for neuronal pathway from the hindbrain ependymocytes to the hypothalamic kisspeptin neurons. J Reprod Dev 2019; 65:129-137. [PMID: 30662010 PMCID: PMC6473108 DOI: 10.1262/jrd.2018-122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hindbrain ependymocytes are postulated to have a glucose-sensing role in regulating gonadal functions. Previous studies have suggested that malnutrition-induced suppression of gonadotropin
secretion is mediated by noradrenergic inputs from the A2 region in the solitary tract nucleus to the paraventricular nucleus (PVN), and by corticotropin-releasing hormone (CRH) release in
the hypothalamus. However, no morphological evidence to indicate the neural pathway from the hindbrain ependymocytes to hypothalamic kisspeptin neurons, a center for reproductive function in
mammals, currently exists. The present study aimed to examine the existence of a neuronal pathway from the hindbrain ependymocytes to kisspeptin neurons in the arcuate nucleus (ARC) and
anteroventral periventricular nucleus (AVPV). To determine this, wheat-germ agglutinin (WGA), a trans-synaptic tracer, was injected into the fourth ventricle (4V) in heterozygous
Kiss1-tandem dimer Tomato (tdTomato) rats, where kisspeptin neurons were visualized by tdTomato fluorescence. 48 h after the WGA injection, brain sections were taken from
the forebrain, midbrain and hindbrain and subjected to double immunohistochemistry for WGA and dopamine β-hydroxylase (DBH) or CRH. WGA immunoreactivities were found in
vimentin-immunopositive ependymocytes of the 4V and the central canal (CC), but not in the third ventricle. The WGA immunoreactivities were detected in some tdTomato-expressing cells in the
ARC and AVPV, DBH-immunopositive cells in the A1–A7 noradrenergic nuclei, and CRH-immunopositive cells in the PVN. These results suggest that the hindbrain ependymocytes have neuronal
connections with the kisspeptin neurons, most probably via hindbrain noradrenergic and CRH neurons to relay low energetic signals for regulation of reproduction.
Collapse
Affiliation(s)
- Chikaya Deura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Shiori Minabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
37
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Front Endocrinol (Lausanne) 2019; 10:312. [PMID: 31164866 PMCID: PMC6536648 DOI: 10.3389/fendo.2019.00312] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/30/2019] [Indexed: 01/29/2023] Open
Abstract
Pubertal onset is thought to be timed by an increase in pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in mammals. The underlying mechanism of pubertal onset in mammals is still an open question. Evidence accumulated in the last 15 years suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus play a key role in pubertal onset by triggering pulsatile GnRH/gonadotropin secretin in mammals. Specifically, KNDy neurons are now considered a part of GnRH pulse generator, in which neurokinin B facilitates and dynorphin A inhibits, the synchronized discharge of KNDy neurons in autocrine and/or paracrine manners. Kisspeptin serves as a potent secretagogue of GnRH secretion and thus its release is fundamental to pubertal increase in GnRH/gonadotropin secretion in mammals. Proposed mechanisms inhibiting Kiss1 (kisspeptin gene) expression during childhood to juvenile varies from species to species: we envisage that negative feedback action of estrogen plays a key role in the inhibition of Kiss1 expression in KNDy neurons in rodents and sheep, whereas estrogen-independent inhibition of kisspeptin secretion by γ-amino butyric acid or neuropeptide Y are suggested to be responsible for the pre-pubertal suppression of GnRH/gonadotropin secretion in primates. Taken together, the timing of pubertal onset is postulated to be controlled by upstream regulators for kisspeptin biosynthesis and secretion in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Yoshihisa Uenoyama
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
38
|
Uenoyama Y, Inoue N, Maeda KI, Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J Reprod Dev 2018; 64:469-476. [PMID: 30298825 PMCID: PMC6305848 DOI: 10.1262/jrd.2018-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin, identified as a natural ligand of GPR54 in 2001, is now considered as a master regulator of puberty and subsequent reproductive functions in mammals. Our previous studies using
Kiss1 knockout (KO) rats clearly demonstrated the indispensable role of kisspeptin in gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. In addition, behavioral
analyses of Kiss1 KO rats revealed an organizational effect of kisspeptin on neural circuits controlling sexual behaviors. Our studies using transgenic mice carrying a
region-specific Kiss1 enhancer-driven reporter gene provided a clue as to the mechanism by which estrogen regulates Kiss1 expression in hypothalamic
kisspeptin neurons. Analyses of Kiss1 expression and gonadotropin secretion during the pubertal transition shed light on the mechanism triggering GnRH/gonadotropin secretion
at the onset of puberty in rats. Here, we summarize data obtained from the aforementioned studies and revisit the physiological roles of kisspeptin in the mechanism underlying reproductive
functions in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
39
|
Mhaouty-Kodja S. Role of the androgen receptor in the central nervous system. Mol Cell Endocrinol 2018; 465:103-112. [PMID: 28826929 DOI: 10.1016/j.mce.2017.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022]
Abstract
The involvement of gonadal androgens in functions of the central nervous system was suggested for the first time about half a century ago. Since then, the number of functions attributed to androgens has steadily increased, ranging from regulation of the hypothalamic-pituitary-gonadal axis and reproductive behaviors to modulation of cognition, anxiety and other non-reproductive functions. This review focuses on the implication of the neural androgen receptor in these androgen-sensitive functions and behaviors.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 7 Quai St Bernard, 75005 Paris, France.
| |
Collapse
|
40
|
Eckstrum KS, Edwards W, Banerjee A, Wang W, Flaws JA, Katzenellenbogen JA, Kim SH, Raetzman LT. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology 2018; 159:119-131. [PMID: 29092056 PMCID: PMC5761589 DOI: 10.1210/en.2017-00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022]
Abstract
Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males. However, the effects of exposure during the neonatal period have not been examined. Therefore, we dosed pups from postnatal day (PND)0 to PND7 with 0.05, 0.5, and 50 μg/kg/d BPA, environmentally relevant doses, or 50 μg/kg/d estradiol (E2). Mice were collected after dosing at PND7 and at 5 weeks. Dosing mice neonatally with BPA caused sex-specific gene expression changes distinct from those observed with embryonic exposure. At PND7, pituitary Pit1 messenger RNA (mRNA) expression was decreased with BPA 0.05 and 0.5 μg/kg/d in males only. Expression of Pomc mRNA was decreased at 0.5 μg/kg/d BPA in males and at 0.5 and 50 μg/kg/d BPA in females. Similarly, E2 decreased Pomc mRNA in both males and females. However, no noticeable corresponding changes were found in protein expression. Both E2 and BPA suppressed Pomc mRNA in pituitary organ cultures; this repression appeared to be mediated by estrogen receptor-α and estrogen receptor-β in females and G protein-coupled estrogen receptor in males, as determined by estrogen receptor subtype-selective agonists. These data demonstrated that BPA exposure during neonatal pituitary development has unique sex-specific effects on gene expression and that Pomc repression in males and females can occur through different mechanisms.
Collapse
Affiliation(s)
- Kirsten S. Eckstrum
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Annesha Banerjee
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Wei Wang
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A. Flaws
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Lori T. Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
41
|
Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update 2017; 23:421-432. [PMID: 28531286 DOI: 10.1093/humupd/dmx013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-aged women. The pathophysiology of this syndrome is still not completely understood but recent evidence suggests that the intra-uterine environment may be a key factor in the pathogenesis of PCOS, in particular, hyperexposure of the foetus to androgens. High concentrations of maternal serum testosterone during pregnancy have been shown to influence behaviour during childhood, the prevalence of autism disorders and anti-Mullerian hormone (AMH) concentrations in adolescence. They are also thought to re-programme the female reproductive axis to induce the features of PCOS in later life: oligo/anovulation, polycystic ovaries, hyperandrogenism and insulin resistance (IR). Support for this developmental theory for the aetiology of PCOS is gathering momentum, following results from first animal studies and now human data, which lend credence to many aspects of this hypothesis. OBJECTIVE AND RATIONALE In this review the recent available evidence is presented to support the hypothesis that hyperandrogenic changes in the intra-uterine environment could play a major part in the aetiological basis of PCOS. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies were identified using a combination of search terms: 'polycystic ovary syndrome', 'PCOS', 'aetiology', 'anti-Mullerian hormone', 'AMH', 'pathogenesis', 'kisspeptin', 'hyperandrogenism', 'insulin resistance', 'metabolic factors', 'placenta', 'developmental hypothesis', 'genetic and epigenetic origins'. OUTCOMES A total of 82 studies were finally included in this review. There is robust evidence that a hyperandrogenic intra-uterine environment 'programmes' the genes concerned with ovarian steroidogenesis, insulin metabolism, gonadotrophin secretion and ovarian follicle development resulting in the development of PCOS in adult life. WIDER IMPLICATIONS Once the evidence supporting this hypothesis has been expanded by additional studies, the door would be open to find innovative treatments and preventative measures for this very prevalent condition. Such measures could considerably ease the human and economic burden that PCOS creates.
Collapse
Affiliation(s)
- Panagiota Filippou
- Homerton Fertility Centre, Homerton University Hospital, London E9 6SR, UK
| | | |
Collapse
|
42
|
Minabe S, Ieda N, Watanabe Y, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Long-Term Neonatal Estrogen Exposure Causes Irreversible Inhibition of LH Pulses by Suppressing Arcuate Kisspeptin Expression via Estrogen Receptors α and β in Female Rodents. Endocrinology 2017; 158:2918-2929. [PMID: 28368450 DOI: 10.1210/en.2016-1144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/22/2017] [Indexed: 11/19/2022]
Abstract
Exposure to estrogen during the developmental period causes reproductive dysfunction in mammals, because the developing brain is highly sensitive to estrogens. In the present study, we report that long-term exposure to supraphysiological doses of estrogen during the neonatal critical period causes irreversible suppression of Kiss1/kisspeptin expression in the arcuate nucleus (ARC) via estrogen receptor-alpha (ERα) and ERβ, resulting in reproductive dysfunction in female rats. Daily estradiol-benzoate (EB) administration from days 0 to 10 postpartum caused persistent vaginal diestrus in female rats. The female rats showed profound suppression of pulsatile luteinizing hormone (LH) release and ARC Kiss1/kisspeptin expression even after ovariectomy at adulthood. In contrast, female rats treated with a single EB injection at day 5 postpartum exhibited persistent vaginal estrus and showed comparable LH pulses and numbers of ARC Kiss1-expressing cells to vehicle-treated controls after ovariectomy at adulthood. Because the LH secretory response to exogenous kisspeptin was spared in female rats with neonatal long-term estrogen exposure, the LH pulse suppression was most probably due to ARC kisspeptin deficiency. Furthermore, neonatal estrogen might act through both ERα and ERβ, because EB exposure significantly reduced the number of ARC Kiss1-expressing cells in wild-type mice but not in ERα or ERβ knockout mice. Taken together, long-term exposure to supraphysiological doses of estrogen in the developing brain might cause defects in ARC kisspeptin neurons via ERα and ERβ, resulting in inhibition of pulsatile LH release and lack of estrous cyclicity.
Collapse
Affiliation(s)
- Shiori Minabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
43
|
Watanabe Y, Ikegami K, Ishigaki R, Ieda N, Uenoyama Y, Maeda KI, Tsukamura H, Inoue N. Enhancement of the luteinising hormone surge by male olfactory signals is associated with anteroventral periventricular Kiss1 cell activation in female rats. J Neuroendocrinol 2017; 29. [PMID: 28699305 DOI: 10.1111/jne.12505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
Abstract
Olfactory stimuli play an important role in regulating reproductive functions in mammals. The present study investigated the effect of olfactory signals derived from male rats on kisspeptin neuronal activity and luteinising hormone (LH) secretion in female rats. Wistar-Imamichi strain female rats were ovariectomised (OVX) and implanted with preovulatory levels of 17β-oestradiol (E2 ). OVX+E2 rats were killed 1 hour after exposure to either: clean bedding, female-soiled bedding or male-soiled bedding. Dual staining for Kiss1 mRNA in situ hybridisation and c-Fos immunohistochemistry revealed that the numbers of Kiss1-expressing cells and c-Fos-immunopositive Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV) were significantly higher in OVX+E2 rats exposed to male-soiled bedding than those of the other groups. No significant difference was found with respect to the number of c-Fos-immunopositive Kiss1-expressing cells in the arcuate nucleus and c-Fos-immunopositive Gnrh1-expressing cells between the groups. The number of c-Fos-immunopositive cells was also significantly higher in the limbic system consisting of several nuclei, such as the bed nucleus of the stria terminalis, the cortical amygdala and the medial amygdala, in OVX+E2 rats exposed to male-soiled bedding than the other groups. OVX+E2 rats exposed to male-soiled bedding showed apparent LH surges, and the peak of the LH surge and area under the curve of LH concentrations in the OVX+E2 group were significantly higher than those of the other two groups. These results suggest that olfactory signals derived from male rats activate AVPV kisspeptin neurones, likely via the limbic system, resulting in enhancement of the peak of the LH surge in female rats. Taken together, the results of the present study suggests that AVPV kisspeptin neurones are a target of olfactory signals to modulate LH release in female rats.
Collapse
Affiliation(s)
- Y Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - K Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - R Ishigaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - N Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Y Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - K I Maeda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - N Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
44
|
Iwata K, Kunimura Y, Matsumoto K, Ozawa H. Effect of androgen on Kiss1 expression and luteinizing hormone release in female rats. J Endocrinol 2017; 233:281-292. [PMID: 28377404 DOI: 10.1530/joe-16-0568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Hyperandrogenic women have various grades of ovulatory dysfunction, which lead to infertility. The purpose of this study was to determine whether chronic exposure to androgen affects the expression of kisspeptin (ovulation and follicle development regulator) or release of luteinizing hormone (LH) in female rats. Weaned females were subcutaneously implanted with 90-day continuous-release pellets of 5α-dihydrotestosterone (DHT) and studied after 10 weeks of age. Number of Kiss1-expressing cells in both the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) was significantly decreased in ovary-intact DHT rats. Further, an estradiol-induced LH surge was not detected in DHT rats, even though significant differences were not observed between DHT and non-DHT rats with regard to number of AVPV Kiss1-expressing cells or gonadotrophin-releasing hormone (GnRH)-immunoreactive (ir) cells in the presence of high estradiol. Kiss1-expressing and neurokinin B-ir cells were significantly decreased in the ARC of ovariectomized (OVX) DHT rats compared with OVX non-DHT rats; pulsatile LH secretion was also suppressed in these animals. Central injection of kisspeptin-10 or intravenous injection of a GnRH agonist did not affect the LH release in DHT rats. Notably, ARC Kiss1-expressing cells expressed androgen receptors (ARs) in female rats, whereas only a few Kiss1-expressing cells expressed ARs in the AVPV. Collectively, our results suggest excessive androgen suppresses LH surge and pulsatile LH secretion by inhibiting kisspeptin expression in the ARC and disruption at the pituitary level, whereas AVPV kisspeptin neurons appear to be directly unaffected by androgen. Hence, hyperandrogenemia may adversely affect ARC kisspeptin neurons, resulting in anovulation and menstrual irregularities.
Collapse
Affiliation(s)
- Kinuyo Iwata
- Department of Anatomy and NeurobiologyGraduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yuyu Kunimura
- Department of Anatomy and NeurobiologyGraduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Matsumoto
- Department of Anatomy and NeurobiologyGraduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and NeurobiologyGraduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
Takahashi M, Ichimura R, Inoue K, Morikawa T, Kuwata K, Watanabe G, Yoshida M. The role of estrogen receptor subtypes for induction of delayed effects on the estrous cycle and female reproductive organs in rats. Reprod Biol 2017; 17:111-119. [PMID: 28215489 DOI: 10.1016/j.repbio.2017.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 11/24/2022]
Abstract
It has been reported that neonatal exposure to estrogens at relatively low doses can induce early onset anovulation as a delayed effect in female rats. Dysfunction of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) was proposed to be a trigger for this effect. To determine the roles of estrogen receptor (ER) subtypes in the induction of delayed effects, we conducted a series of experiments using Donryu rats to examine whether neonatal injection of an ERα agonist (PPT), an ERβ agonist (DPN) or an ERα antagonist (ICI) could induce delayed effects. Also, involvement of the kisspeptin neurons in the AVPV for induction of delayed effect by PPT and DPN was investigated. We observed that neonatal exposure to PPT, DPN and ICI induced the early onset of abnormal estrous cyclicity after sexual maturation, suggesting that the compounds capable of inducing delayed effects are not limited to ERα agonists. On the other hand, the data suggested the possibility that DPN and ICI functioned partially as ERα agonists in the neonatal brain. Regardless of the agents used, there is a possibility that dysfunction of kisspeptin neurons in the AVPV might contribute to induction of early onset anovulation.
Collapse
Affiliation(s)
- Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Ryohei Ichimura
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kazunori Kuwata
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, 12 Fuchu-shi, Tokyo 183-8509, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Midori Yoshida
- Food Safety Commission, Akasaka Park Bld. 22nd F. Akasaka 5-2-20, Minato-ku, Tokyo 107-6122, Japan.
| |
Collapse
|
46
|
Stephens SBZ, Kauffman AS. Regulation and Possible Functions of Kisspeptin in the Medial Amygdala. Front Endocrinol (Lausanne) 2017; 8:191. [PMID: 28824550 PMCID: PMC5545938 DOI: 10.3389/fendo.2017.00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin, encoded by the Kiss1 gene, is required for reproduction. Humans and mice lacking kisspeptin or its receptor, Kiss1r, have impairments in reproductive physiology and fertility. In addition to being located in the hypothalamus in the anteroventral periventricular and arcuate nuclei, kisspeptin neurons are also present in several extra-hypothalamic regions, such as the medial amygdala (MeA). However, while there has been a significant focus on the reproductive roles of hypothalamic kisspeptin neurons, the regulation and function(s) of MeA and other extra-hypothalamic kisspeptin neurons have received far less attention. This review summarizes what is currently known about the regulation, development, neural projections, and potential functions of MeA kisspeptin neurons, as well as kisspeptin signaling directly within the MeA, with emphasis on data gathered from rodent models. Recent data are summarized and compared between rodent species and also between males and females. In addition, critical gaps in knowledge and important future directions are discussed.
Collapse
Affiliation(s)
- Shannon B. Z. Stephens
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Alexander S. Kauffman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Alexander S. Kauffman,
| |
Collapse
|
47
|
Constantin S. Progress and Challenges in the Search for the Mechanisms of Pulsatile Gonadotropin-Releasing Hormone Secretion. Front Endocrinol (Lausanne) 2017; 8:180. [PMID: 28790978 PMCID: PMC5523686 DOI: 10.3389/fendo.2017.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/10/2017] [Indexed: 12/05/2022] Open
Abstract
Fertility relies on the proper functioning of the hypothalamic-pituitary-gonadal axis. The hormonal cascade begins with hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH) into the hypophyseal portal system. In turn, the GnRH-activated gonadotrophs in the anterior pituitary release gonadotropins, which then act on the gonads to regulate gametogenesis and sex steroidogenesis. Finally, sex steroids close this axis by feeding back to the hypothalamus. Despite this seeming straightforwardness, the axis is orchestrated by a complex neuronal network in the central nervous system. For reproductive success, GnRH neurons, the final output of this network, must integrate and translate a wide range of cues, both environmental and physiological, to the gonadotrophs via pulsatile GnRH secretion. This secretory profile is critical for gonadotropic function, yet the mechanisms underlying these pulses remain unknown. Literature supports both intrinsically and extrinsically driven GnRH neuronal activity. However, the caveat of the techniques supporting either one of the two hypotheses is the gap between events recorded at a single-cell level and GnRH secretion measured at the population level. This review aims to compile data about GnRH neuronal activity focusing on the physiological output, GnRH secretion.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stephanie Constantin,
| |
Collapse
|
48
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
49
|
Abstract
Kisspeptins are a group of peptide fragments encoded by the KISS1 gene in humans. They bind to kisspeptin receptors with equal efficacy. Kisspeptins and their receptors are expressed by neurons in the arcuate and anteroventral periventricular nuclei of the hypothalamus. Oestrogen mediates negative feedback of gonadotrophin-releasing hormone secretion via the arcuate nucleus. Conversely, it exerts positive feedback via the anteroventral periventricular nucleus. The sexual dimorphism of these nuclei accounts for the differential behaviour of the hypothalamic-pituitary-gonadal axis between genders. Kisspeptins are essential for reproductive function. Puberty is regulated by the maturation of kisspeptin neurons and by interactions between kisspeptins and leptin. Hence, kisspeptins have potential diagnostic and therapeutic applications. Kisspeptin agonists may be used to localise lesions in cases of hypothalamic-pituitary-gonadal axis dysfunction and evaluate the gonadotrophic potential of subfertile individuals. Kisspeptin antagonists may be useful as contraceptives in women, through the prevention of premature luteinisation during in vitro fertilisation, and in the treatment of sex steroid-dependent diseases and metastatic cancers.
Collapse
Affiliation(s)
- Eng Loon Tng
- Associate Consultant, Department of Medicine, Ng Teng Fong General Hospital, 1 Jurong East Street 21, Singapore 609606
| |
Collapse
|
50
|
Nakamura S, Uenoyama Y, Ikegami K, Dai M, Watanabe Y, Takahashi C, Hirabayashi M, Tsukamura H, Maeda KI. Neonatal Kisspeptin is Steroid-Independently Required for Defeminisation and Peripubertal Kisspeptin-Induced Testosterone is Required for Masculinisation of the Brain: A Behavioural Study Using Kiss1 Knockout Rats. J Neuroendocrinol 2016; 28. [PMID: 27344056 DOI: 10.1111/jne.12409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 05/23/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
Abstract
Rodents show apparent sex differences in their sexual behaviours. The present study used Kiss1 knockout (KO) rats to evaluate the role of kisspeptin in the defeminisation/masculinisation of the brain mechanism that controls sexual behaviours. Castrated adult Kiss1 KO males treated with testosterone showed no male sexual behaviours but demonstrated the oestrogen-induced lordosis behaviours found in wild-type females. The sizes of some of the sexual dimorphic nuclei of Kiss1 KO male rats are similar to those of females. Plasma testosterone levels at embryonic day 18 and postnatal day 0 (PND0) in Kiss1 KO males were high, similar to wild-type males, indicating that perinatal testosterone is secreted in a kisspeptin-independent manner. Long-term exposure to testosterone from peripubertal to adult periods restored mounts and intromissions in KO males, suggesting that kisspeptin-dependent peripubertal testosterone secretion is required to masculinise the brain mechanism. This long-term testosterone treatment failed to abolish lordosis behaviours in KO males, whereas kisspeptin replacement at PND0 reduced lordosis quotients in Kiss1 KO males but not in KO females. These results suggest that kisspeptin itself is required to defeminise behaviour in the perinatal period, in cooperation with testosterone. Oestradiol benzoate treatment at PND0 suppressed lordosis quotients in Kiss1 KO rats, indicating that the mechanisms downstream of oestradiol work properly in the absence of kisspeptin. There was no significant difference in aromatase gene expression in the whole hypothalamus between Kiss1 KO and wild-type male rats at PND0. Taken together, the present study demonstrates that both perinatal kisspeptin and kisspeptin-independent testosterone are required for defeminisation of the brain, whereas kisspeptin-dependent testosterone during peripuberty to adulthood is needed for masculinisation of the brain in male rats.
Collapse
Affiliation(s)
- S Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Y Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - K Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - M Dai
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Y Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - C Takahashi
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - M Hirabayashi
- Center for Genetic Analysis of Behaviour, National Institute for Physiological Sciences, Okazaki, Japan
| | - H Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - K-I Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|