1
|
You G, Li Z, Li L, Xu C. Overexpression of RBM15 modulated the effect of trophoblast cells by promoting the binding ability between YTHDF2 and the CD82 3'UTR to decrease the expression of CD82. Heliyon 2024; 10:e30702. [PMID: 38765115 PMCID: PMC11098837 DOI: 10.1016/j.heliyon.2024.e30702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Background Pre-eclampsia (PE) is a syndrome with no specific pathological mechanism and is specific to pregnancy. The combined analysis of proteomics and transcriptomics possesses many benefits for treating this disease. m6A modification plays a major role in PE; however, mechanism have not been studied clearly. This study investigated the potential mechanism underlying the role of m6A in PE. Methods Mass spectrometry-based label-free quantitative proteomics and transcriptomics experiments were conducted on the placenta of patients with pre-eclampsia and normal pregnancies, and the two omics were followed by joint analysis. Total m6A modification in placental tissues, HTR8/SVneo cells, and JEG-3 cells was measured by dot blot. The levels of RBM15 and CD82 in tissues and cells were detected using qPCR. The protein levels of G3BP1, RBM15, MMP-2, YTHDF2, and MMP-9 were measured by western blotting. The function, migration, and invasion characteristics of HTR8/SVneo and JEG-3 cells were measured using Transwell assays. SRAMP predicted the m6A modification site in the CD82 mRNA 3'UTR, and this was confirmed using luciferase activity and YTHDF2-RIP. Results m6A modification was promoted in the PE group, and the RBM15 abundance was increased. Overexpression of RBM15 increased m6A modification. However, overexpression of RBM15 suppressed the expression of MMP-2 and MMP-9 and also the migratory and invasive capabilities of HTR8/SVneo and JEG-3 cells. CD82 expression levels were decreased in PE, and CD82 expression was confirmed via qPCR, western blotting and immunofluorescence. Furthermore, RBM15 overexpression reduced CD82 mRNA and protein levels. Luciferase activity and YTHDF2-RIP results verified that overexpression of RBM15 promoted the binding ability between YTHDF2 and the CD82 3'UTR, thereby decreasing CD82 expression. Finally, CD82 overexpression reversed the effect of RBM15 overexpression on the expression of MMP-2 and MMP-9 and on the migratory and invasive capabilities of the cells. Conclusions Overexpression of RBM15 hindered the migratory and invasive capabilities of trophoblasts, while concurrently enhancing m6A modification. The potential mechanism was that overexpression of RBM15 promoted the binding capability between YTHDF2 and CD82 3'UTR and decrease the expression of CD82. Thus, this study provides a theoretical basis for the treatment of PE.
Collapse
Affiliation(s)
| | | | - Ling Li
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| | - Chengfang Xu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
2
|
Che JH, Zheng ZM, Li MQ, Yao X. Macrophage Polarization in Placenta Accreta and Macrophage-trophoblast Interactions. Am J Reprod Immunol 2022; 88:e13611. [PMID: 36000792 DOI: 10.1111/aji.13611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
PROBLEM Placenta accreta (PA) is defined by an abnormal invasion of placental trophoblasts into the myometrium, which can lead to serious postpartum complications. Macrophages play an important role in the regulation of trophoblast function. Both granulocyte colony-stimulating factor (G-CSF) and its receptor (granulocyte colony-stimulating factor receptor, G-CSFR) have effects on trophoblast invasion. However, the current understanding of G-CSF secretion, G-CSFR expression, abnormal polarization of decidual macrophages (dMϕ) in PA and the abnormal invasion of placental trophoblasts into the myometrium are limited. METHOD OF STUDY The polarization of dMϕ in PA was analyzed by flow cytometry (FCM), and the expression of G-CSFR in placental trophoblasts in PA was evaluated by immunohistochemistry. In an in vitro co-culture model, we investigated the effects of HTR-8/SVneo trophoblasts cell line (HTR-8) on macrophage human monocyte cell line (THP-1) polarization and G-CSF secretion, and we also analyzed the effects of THP-1 cells, especially M2-like subtype, on primary trophoblasts and HTR-8 proliferation, invasion, and adhesion. FCM, transwell assays, adhesion assays, and proliferation assays were used in the above model. RESULTS Compared with controls (n = 9), dMϕ showed significantly lower levels of M1 markers CD80 and CD86 and higher levels of the M2 markers CD163 and CD206, and G-CSFR expression of placental trophoblasts was increased in PA(n = 5). In vitro experiments showed that the trophoblast HTR-8 cell line induced polarization of THP-1 cells to an M2-like subtype and increased their secretion of G-CSF. Furthermore, IL-4/IL-13-induced M2-like THP-1 macrophages were able to increase the expression of G-CSFR, proliferation, invasion and adhesion of both primary trophoblasts and HTR-8 trophoblasts. CONCLUSIONS There is an altered immune imbalance at the maternal-fetal interface in PA, which further may lead to abnormal trophoblast function. G-CSF and its receptors may play important roles in abnormal polarization of macrophages and abnormal invasion of trophoblasts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jia-Hui Che
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zi-Meng Zheng
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, China
| | - Xiaoying Yao
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang XY, Shen HH, Qin XY, Wang CJ, Hu WT, Liu SP, Wu JN, Xie F, Xu FY, Zhao SM, Yuan YY, Li MQ. IL-27 promotes decidualization via the STAT3-ESR/PGR regulatory axis. J Reprod Immunol 2022; 151:103623. [PMID: 35430461 DOI: 10.1016/j.jri.2022.103623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 01/18/2023]
Abstract
Appropriate decidualization is of great importance for embryo implantation, placental development and successful pregnancy. Although it has been well-acknowledged that decidualization relies on activation of progesterone-mediated signaling pathway, the exact mechanisms have not been elucidated. Here, we demonstrated that both IL-27 and IL27RA were highly expressed in decidua than those in endometrium during secretory phase. Estrogen plus progesterone significantly upregulated the expression of IL-27 and IL-27RA in endometrium stromal cells (ESCs). In addition, inhibiting IL-27 signaling with IL-27 neutralization antibody (anti-IL-27) suppressed the expression of decidualization-related molecules, receptors of estrogen (gene coded by ESR) and progesterone (PGR) induced by cAMP or estrogen plus progesterone. Similar results were obtained from Il27ra-/- (knockout of Il27ra) female mice. Moreover, knockout of Il27ra did not affect the estrus cycle and folliculogenesis in mice but reduced implantation rate with the impairing decidualization. Mechanistically, IL-27 upregulated the expression of ESR1, ESR2 and PGR in ESCs and DSCs, as well as the phosphorylation level of STAT3. In the presence of estrogen plus progesterone, treatment with ESCs with anti-IL-27 inhibited the activation of STAT3. Also, the expression of ESR, PGR was decreased in Il27ra-/- mice. In conclusion, these findings demonstrate that IL-27 upregulated by estrogen and progestogen promotes decidualization possibly through a STAT3-dominant pathway.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Ting Hu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Song-Ping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Feng Xie
- Center for Diagnosis and Treatment of Cervical and Uterine Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shi-Min Zhao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| | - Yi-Yuan Yuan
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China; Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai 201508, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| |
Collapse
|
4
|
Zhang N, Schumacher A, Fink B, Bauer M, Zenclussen AC, Meyer N. Insights into Early-Pregnancy Mechanisms: Mast Cells and Chymase CMA1 Shape the Phenotype and Modulate the Functionality of Human Trophoblast Cells, Vascular Smooth-Muscle Cells and Endothelial Cells. Cells 2022; 11:cells11071158. [PMID: 35406722 PMCID: PMC8997408 DOI: 10.3390/cells11071158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Spiral-artery (SA) remodeling is a fundamental process during pregnancy that involves the action of cells of the initial vessel, such as vascular smooth-muscle cells (VSMCs) and endothelial cells, but also maternal immune cells and fetal extravillous trophoblast cells (EVTs). Mast cells (MCs), and specifically chymase-expressing cells, have been identified as key to a sufficient SA-remodeling process in vivo. However, the mechanisms are still unclear. The purpose of this study is to evaluate the effects of the MC line HMC-1 and recombinant human chymase (rhuCMA1) on human primary uterine vascular smooth-muscle cells (HUtSMCs), a human trophoblast cell line (HTR8/SV-neo), and human umbilical-vein endothelial cells (HUVEC) in vitro. Both HMC-1 and rhuCMA1 stimulated migration, proliferation, and changed protein expression in HUtSMCs. HMC-1 increased proliferation, migration, and changed gene expression of HTR8/SVneo cells, while rhuCMA treatment led to increased migration and decreased expression of tissue inhibitors of matrix metalloproteinases. Additionally, rhuCMA1 enhanced endothelial-cell-tube formation. Collectively, we identified possible mechanisms by which MCs/rhuCMA1 promote SA remodeling. Our findings are relevant to the understanding of this crucial step in pregnancy and thus of the dysregulated pathways that can lead to pregnancy complications such as fetal growth restriction and preeclampsia.
Collapse
Affiliation(s)
- Ningjuan Zhang
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Beate Fink
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
| | - Mario Bauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Nicole Meyer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-235-1542
| |
Collapse
|
5
|
Xia Y, Zhao YD, Sun GX, Xia SS, Yang ZW. Gene Expression Network Analysis Identifies Potential Targets for Prevention of Preeclampsia. Int J Gen Med 2022; 15:1023-1032. [PMID: 35140505 PMCID: PMC8818964 DOI: 10.2147/ijgm.s348175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Preeclampsia (PE) is a pregnancy-specific multisystem disease as well as an important cause of maternal and perinatal death. This study aimed to analyze the placental transcriptional data and clinical information of PE patients available in the published database and predict the target genes for prevention of PE. Methods The clinical information and corresponding RNA data of PE patients were downloaded from the GEO database. Cluster analysis was performed to examine the correlation between different genotyping genes and clinical manifestations. Then, bioinformatic approaches including GO, KEGG, WGCNA, and GSEA were employed to functionally characterize candidate target genes involved in pathogenesis of PE. Results Two PE datasets GSE60438 and GSE75010 were obtained and combined, thereby providing the data of 205 samples in total (100 non-PE and 105 PE samples). After eliminating the batch effect, we grouped and analyzed the integrated data, and further performed GSEA analysis. It was found that the genes in group 1 and group 2 were different from those in normal samples. Moreover, WGCNA analysis revealed that genes in group 1 were up-regulated in turquoise module, including SASH1, PIK3CB and FLT-1, while genes in group 2 were up-regulated in the blue and brown modules. We further conducted GO and KEGG pathway enrichment analyses and found that the differential genes in turquoise module were mainly involved in biological processes such as small molecular catabolic process, while being highly enriched in pathways, including MAPK signaling pathway and Rap1 signaling pathway. Conclusion FLT-1 was conventionally used to predict PE risk, and sFLT-1 could also be used as an indicator to evaluate PE treatment effect. As a candidate biomarker for predicting PE, SASH1 may participate in proliferation, migration, invasion and epithelial mesenchymal transformation of human trophoblast cells by regulating MAPK pathway and Rap1 signaling pathway, thus affecting the progression of PE. The mechanism allowing PIK3CB to regulate PE development was not clear, while the gene could be another candidate biomarker for PE risk prediction. This is an exploratory study and our findings were still required verification in further studies.
Collapse
Affiliation(s)
- Yu Xia
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, People’s Republic of China
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410007, People’s Republic of China
| | - Yu-Dong Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People’s Republic of China
| | - Gui-Xiang Sun
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, People’s Republic of China
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, People’s Republic of China
- Correspondence: Gui-Xiang Sun, Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, No. 300, Xueshi Road, Yuelu District, Changsha, Hunan Province, 410208, People’s Republic of China, Tel +86-13787272837, Email
| | - Shuai-Shuai Xia
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, People’s Republic of China
| | - Zheng-Wang Yang
- Department of Obstetrics and Gynecology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410007, People’s Republic of China
| |
Collapse
|
6
|
Desterke C, Dang J, Lorenzo HK, Candelier JJ. Roles of tetraspanins during trophoblast development: bioinformatics and new perspectives. Cell Tissue Res 2021; 386:157-171. [PMID: 34278518 DOI: 10.1007/s00441-021-03502-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Tetraspanins are a superfamily of membrane proteins found in all eukaryotic organisms. They act as scaffold molecules that regulate the traffic and function of other membrane/signaling proteins, resulting in important downstream cellular consequences. The aim of this work was to use transcriptomes and bioinformatics analysis to identify the tetraspanins (and their partners) involved in trophoblast differentiation. We built a protein-protein interaction network around tetraspanins which revealed that tetraspanins CD9, CD81, and CD82 show a specific expression during trophoblast differentiation. These proteins appeared to be interconnected and to recruit several membrane partners which include integrins, immune-related molecules, and a variety of receptors. During weeks 8 to 24, a CD9 expression trajectory was identified in extravillous trophoblasts, and a website was developed: ( https://extravillous.shinyapps.io/CD9humanEVT/ ). In conclusion, CD81 may, together with CD9 and CD82, be interconnected in controlling trophoblast invasion in the endometrium. CD9 expression trajectory in extravillous trophoblast between weeks 8 and 24 shows the involvement of CD9 in cell adhesion and migration.
Collapse
Affiliation(s)
- Christophe Desterke
- Université Paris-Saclay, UFR Medicine, Gif-sur-Yvette, France.,INSERM UA9 Hôpital P. Brousse, 14 Avenue P.V. Couturier, 94800, Villejuif, France
| | - Julien Dang
- INSERM U970, 56 rue Leblanc, 75015, Paris, France.,Hôpital Bicêtre, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicetre, France
| | - Hans-Kristian Lorenzo
- Université Paris-Saclay, UFR Medicine, Gif-sur-Yvette, France.,Hôpital Bicêtre, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicetre, France.,INSERM U1197, Hôpital P. Brousse, 14 Avenue P.V. Couturier, 94800, Bâtiment Lavoisier, France
| | - Jean-Jacques Candelier
- Université Paris-Saclay, UFR Medicine, Gif-sur-Yvette, France. .,INSERM U1197, Hôpital P. Brousse, 14 Avenue P.V. Couturier, 94800, Bâtiment Lavoisier, France.
| |
Collapse
|
7
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 838] [Impact Index Per Article: 167.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
8
|
Shi JW, Lai ZZ, Yang HL, Yang SL, Wang CJ, Ao D, Ruan LY, Shen HH, Zhou WJ, Mei J, Fu Q, Li MQ. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci 2020; 16:2220-2234. [PMID: 32549767 PMCID: PMC7294936 DOI: 10.7150/ijbs.45586] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The survival and development of a semi-allogenic fetus during pregnancy require special immune tolerance microenvironment at the maternal fetal interface. During the establishment of a successful pregnancy, the endometrium undergoes a series of changes, and the extracellular matrix (ECM) breaks down and remodels. Collagen is one of the most abundant ECM. Emerging evidence has shown that collagen and its fragment are expressed at the maternal fetal interface. The regulation of expression of collagen is quite complex, and this process involves a multitude of factors. Collagen exerts a critical role during the successful pregnancy. In addition, the abnormal expressions of collagen and its fragments are associated with certain pathological states associated with pregnancy, including recurrent miscarriage, diabetes mellitus with pregnancy, preeclampsia and so on. In this review, the expression and potential roles of collagen under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Zhen-Zhen Lai
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Shao-Liang Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Deng Ao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Lu-Yu Ruan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical College, Yantai, 264003, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
9
|
Lu H, Jin LP, Huang HL, Ha SY, Yang HL, Chang RQ, Li DJ, Li MQ. Trophoblast-derived CXCL12 promotes CD56 bright CD82 - CD29 + NK cell enrichment in the decidua. Am J Reprod Immunol 2019; 83. [PMID: 31650642 DOI: 10.1111/aji.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
PROBLEM Decidual natural killer (dNK) cells play key roles in maternal-fetal immune regulation, trophoblast invasion, and vascular remodeling, and most dNK cell populations are CD56bright CD16- NK cells. However, the enrichment and redistribution of dNK cells in the local decidua have not been clarified yet. METHOD OF STUDY A total of 45 women with normal pregnancies and 8 unexplained recurrent spontaneous abortion (RSA) patients were included. We isolated primary human dNK (n = 53) and peripheral blood NK (pNK) cells (n = 5) from specimen and analyzed CD56, CD82, and CD29 by flow cytometry (FCM). We assessed their adhesion ability by cell counts of NK cells adhered to decidual stromal cells (DSCs) in a co-culture system. RESULTS We found that RSA patients had more CD56dim dNK cells with lower CD82 and higher CD29 than women with normal pregnancies. There were negative correlations of CD82 to CD29 on CD56dim and CD56+ dNK cells. In normal pregnancies, dNK cells had lower CD82 and higher CD29 expression with a stronger adhesion ability than pNK cells. Blocking CD82 on dNK cells increased the adhesive ability and CD29 expression, while blocking CD29 decreased the adhesive ability. Co-culturing dNK cells with trophoblast cells decreased CD82 expression and increased the adhesive ability of dNK cells and the percentage of CD56bright NK cells, while blocking trophoblast-derived CXCL12 increased CD82 expression, decreased CD29 expression, and impaired the adhesive ability of NK cells. CONCLUSION Trophoblast cells enhance the adhesive ability of NK cells to DSCs via the CXCL12/CD82/CD29 signaling pathway and contribute to CD56bright NK cell enrichment in the uterus.
Collapse
Affiliation(s)
- Han Lu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Lan Huang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Rui-Qi Chang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Lv S, Wang N, Ma J, Li WP, Chen ZJ, Zhang C. Impaired decidualization caused by downregulation of circadian clock gene BMAL1 contributes to human recurrent miscarriage†. Biol Reprod 2019; 101:138-147. [PMID: 30985884 DOI: 10.1093/biolre/ioz063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/30/2018] [Accepted: 04/14/2019] [Indexed: 12/19/2022] Open
Abstract
Recurrent miscarriage (RM) is characterized by two or more consecutive losses of a clinically established intrauterine pregnancy at early gestation. To date, the etiology of RM remains poorly understood. Impaired decidualization is thought to predispose women to subsequent pregnancy failure. The transcriptional factor brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1) controls circadian rhythms and regulates a very large diversity of physiological processes. BMAL1 is essential for fertility. Here, we investigated the expression and function of BMAL1 in human decidualization and its relation with RM. A total of 39 decidua samples were collected. We also examined human endometrial stromal cells (HESCs) and primary endometrial stromal cells (ESCs), and primary decidual stromal cells (DSCs) isolated from decidua of first-trimester pregnancies. Compared to normal pregnant women, the expression of BMAL1 was reduced in the decidual tissues from individuals with RM. After in vitro induction of decidualization, the transcription of BMAL1 in both HESCs and primary ESCs was increased. This is in line with the relatively higher expression of BMAL1 in DSCs than in ESCs. Silencing of BMAL1 resulted in impaired decidualization. Moreover, levels of tissue inhibitors of metalloproteinases (TIMPs) increased significantly upon decidualization. Further experiments demonstrated that BMAL1 silencing curtails the ability of DSCs to restrict excessive trophoblast invasion via downregulation of TIMP3. Our study demonstrates a functional role for BMAL1 during decidualization: the downregulation of BMAL1 in RM leads to impaired decidualization and aberrant trophoblast invasion by regulating TIMP3 and consequently predisposing individuals for RM.
Collapse
Affiliation(s)
- Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Na Wang
- bstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jin Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wei-Ping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
11
|
Lv S, Wang N, Lv H, Yang J, Liu J, Li WP, Zhang C, Chen ZJ. The Attenuation of Trophoblast Invasion Caused by the Downregulation of EZH2 Is Involved in the Pathogenesis of Human Recurrent Miscarriage. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:377-387. [PMID: 30710891 PMCID: PMC6356049 DOI: 10.1016/j.omtn.2018.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Recurrent miscarriage (RM) is currently defined as two or more losses of a clinically established intrauterine pregnancy. Despite years of research, RM continues to be a clinically frustrating challenge for patients and physicians, and its etiology remains poorly understood. Accumulating evidence has suggested that epigenetic modifications are involved in early embryogenesis, and defects in epigenetic patterning contribute to the development of RM. Here, we studied the role of enhancer of zeste homolog 2 (EZH2) in the pathogenesis of RM and found that the EZH2 expression was significantly decreased in the villi from women with RM compared with that in control villi. EZH2 promoted the invasion of trophoblast cells. Moreover, EZH2 could promote epithelial-mesenchymal transition by epigenetically silencing CDX1. Both chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase report assays demonstrated that EZH2 repressed CDX1 transcription via direct binding to its promoter region and then trimethylating Histone3-Lysine27. Furthermore, we discovered that progesterone, which is used extensively in the treatment of miscarriage and RM, increased the expression of EZH2 via the extracellular signaling-regulated kinase (ERK1/2) pathway. These findings revealed that EZH2 may regulate trophoblast invasion as an epigenetic factor, suggesting that EZH2 might be a potential therapeutic target for RM.
Collapse
Affiliation(s)
- Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Na Wang
- Obstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai 200090, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jianwei Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wei-Ping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Ji'nan, Shandong 250014, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
12
|
Zhang Y, Jin LP. Effects of TSLP on obstetrical and gynecological diseases. Am J Reprod Immunol 2016; 77. [PMID: 27976427 DOI: 10.1111/aji.12612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuan Zhang
- Laboratory for Reproductive Immunology; Hospital of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology; Hospital of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
- Clinical and Translational Research Center; Shanghai First Maternity and Infant Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
13
|
Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J, Sun Y, Han X, Zhang XA. Tetraspanin CD82: a suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev 2016; 34:619-33. [PMID: 26335499 DOI: 10.1007/s10555-015-9585-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetraspanin CD82 suppresses the progression and metastasis of a wide range of solid malignant tumors. However, its roles in tumorigenesis and hematopoietic malignancy remain unclear. Ubiquitously expressed CD82 restrains cell migration and cell invasion by modulating both cell-matrix and cell-cell adhesiveness and confining outside-in pro-motility signaling. This restraint at least contributes to, if not determines, the metastasis-suppressive activity and, also likely, the physiological functions of CD82. As a modulator of cell membrane heterogeneity, CD82 alters microdomains, trafficking, and topography of the membrane by changing the membrane molecular landscape. The functional activities of membrane molecules and the cytoskeletal interaction of the cell membrane are subsequently altered, followed by changes in cellular functions. Given its pathological and physiological importance, CD82 is a promising candidate for clinically predicting and blocking tumor progression and metastasis and also an emerging model protein for mechanistically understanding cell membrane organization and heterogeneity.
Collapse
Affiliation(s)
- Jin Feng
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dao-Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhou Yan
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Jiexin Zhang
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
14
|
Boieri M, Shah P, Dressel R, Inngjerdingen M. The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Front Immunol 2016; 7:333. [PMID: 27625651 PMCID: PMC5003882 DOI: 10.3389/fimmu.2016.00333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow transplantation (BMT) is the only therapeutic option for many hematological malignancies, but its applicability is limited by life-threatening complications, such as graft-versus-host disease (GvHD). The last decades have seen great advances in the understanding of BMT and its related complications; in particular GvHD. Animal models are beneficial to study complex diseases, as they allow dissecting the contribution of single components in the development of the disease. Most of the current knowledge on the therapeutic mechanisms of BMT derives from studies in animal models. Parallel to BMT, the understanding of the pathophysiology of GvHD, as well as the development of new treatment regimens, has also been supported by studies in animal models. Pre-clinical experimentation is the basis for deep understanding and successful improvements of clinical applications. In this review, we retrace the history of BMT and GvHD by describing how the studies in animal models have paved the way to the many advances in the field. We also describe how animal models contributed to the understanding of GvHD pathophysiology and how they are fundamental for the discovery of new treatments.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Takahashi A, Rahim A, Takeuchi M, Fukui E, Yoshizawa M, Mukai K, Suematsu M, Hasuwa H, Okabe M, Matsumoto H. Impaired female fertility in tubulointerstitial antigen-like 1-deficient mice. J Reprod Dev 2015; 62:43-9. [PMID: 26522507 PMCID: PMC4768111 DOI: 10.1262/jrd.2015-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tubulointerstitial nephritis antigen-like 1 (Tinagl1, also known as adrenocortical zonation factor 1 [AZ-1] or lipocalin 7) is a matricellular protein. Previously, we demonstrated that Tinagl1 expression was restricted to extraembryonic regions during the postimplantation period and detected marked expression in mouse Reichert's membranes. In uteri, Tinagl1 is markedly expressed in the decidual endometrium during the postimplantation period, suggesting that it plays a physical and physiological role in embryo development and/or decidualization of the uterine endometrium during pregnancy. In the present study, in order to determine the role of Tinagl1 during embryonic development and pregnancy, we generated Tinagl1-deficient mice. Although Tinagl1(-/-) embryos were not lethal during development to term, homologous matings of Tinagl1(-/-) females and Tinagl1(-/-) males showed impaired fertility during pregnancy, including failure to carry pregnancy to term and perinatal lethality. To examine ovarian function, ovulation was induced with equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG); the number of ovulated oocytes did not differ between Tinagl1(-/-) and Tinagl1(flox/flox). In vitro fertilization followed by embryo culture also demonstrated the normal developmental potential of Tinagl1-null embryos during the preimplantation period. Our results demonstrate that Tinagl1 deficiency affects female mice and results in subfertility phenotypes, and they suggest that although the potential of Tinagl1(-/-) oocytes is normal, Tinagl1 is related to fertility in adult females but is not essential for either fertilization or preimplantation development in vitro.
Collapse
Affiliation(s)
- Akihito Takahashi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Faculty of Agriculture, Utsunomiya University, Tochigi 321-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo XZ, Zhou WJ, Tao Y, Wang XQ, Li DJ. TLR4 Activation Promotes the Secretion of IL-8 Which Enhances the Invasion and Proliferation of Endometrial Stromal Cells in an Autocrine Manner via the FAK Signal Pathway. Am J Reprod Immunol 2015; 74:467-79. [PMID: 26362992 DOI: 10.1111/aji.12425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023] Open
Abstract
PROBLEM Chronic inflammation is important for the occurrence of endometriosis, but the molecular mechanisms are still poorly understood. TLR4 is not only expressed on immune cells but is also present in the human endometrium, and its regulation might be crucial for the pathogenesis of endometriosis. METHOD OF STUDY In this study, the expression of TLR4 in normal, eutopic endometrium, and ectopic tissues was analyzed by immunohistochemistry. The expression of the key molecules in endometrial stromal cells (ESCs) was assessed by in-cell Western assays. The invasion of eutopic ESCs from patients with endometriosis was evaluated by Matrigel invasion assay. The effects of CXCL8 on the proliferation of ESCs in vitro were assessed using BrdU assays. RESULTS We found that the expression of TLR4 is higher in the eutopic endometrium than the normal endometrium and that ectopic tissue had the highest level of expression. TLR4 activation stimulated IL-8 secretion and the expression of its receptor CXCR1 in ESCs by activating p38/ERK, but not JNK and NK-κB signal pathways. IL-8 could enhance the invasion and proliferation of ESCs through the FAK signal pathway, and these effects could be abolished by an anti-CXCL8 neutralizing antibody or by a FAK inhibitor.
Collapse
Affiliation(s)
- Xue-zhen Luo
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Wen-jie Zhou
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiao-qiu Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-jin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China.,Department of Obstetrics and Gynecology, Hainan Medical College Affiliated Hospital, Haikou, China
| |
Collapse
|
17
|
Li H, Meng YH, Shang WQ, Liu LB, Chen X, Yuan MM, Jin LP, Li MQ, Li DJ. Chemokine CCL24 promotes the growth and invasiveness of trophoblasts through ERK1/2 and PI3K signaling pathways in human early pregnancy. Reproduction 2015; 150:417-27. [PMID: 26316550 DOI: 10.1530/rep-15-0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023]
Abstract
Chemokine CCL24, acting through receptor CCR3, is a potent chemoattractant for eosinophil in allergic diseases and parasitic infections. We recently reported that CCL24 and CCR3 are co-expressed by trophoblasts in human early pregnant uterus. Here we prove with evidence that steroid hormones estradiol (E), progesterone (P), and human chorionic gonadotropin (hCG), as well as decidual stromal cells (DSCs) could regulate the expression of CCL24 and CCR3 of trophoblasts. We further investigate how trophoblast-derived CCL24 mediates the function of trophoblasts in vitro, and conclude that CCL24/CCR3 promotes the proliferation, viability and invasiveness of trophoblasts. In addition, analysis of the downstream signaling pathways of CCL24/CCR3 show that extracellular signal-regulated kinases (ERK1/2) and phosphoinositide 3-kinase (PI3K) pathways may contribute to the proliferation, viability and invasiveness of trophoblasts by activating intracellular molecules Ki67 and matrix metallopeptidase 9 (MMP9). However, we did not observe any inhibitory effect on trophoblasts when blocking c-Jun N-terminal kinase (JNK) or p38 pathways. In conclusion, our data suggests that trophoblast-derived CCL24 at the maternal-fetal interface promotes trophoblasts cell growth and invasiveness by ERK1/2 and PI3K pathways. Meanwhile, pregnancy-related hormones (P and hCG), as well as DSCs could up-regulate CCL24/CCR3 expression in trophoblasts, which may indirectly influence the biological functions of trophoblasts. Thus, our results provide a possible explanation for the growth and invasion of trophoblasts in human embryo implantation.
Collapse
Affiliation(s)
- Hui Li
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yu-Han Meng
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Wen-Qing Shang
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Li-Bing Liu
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xuan Chen
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Min-Min Yuan
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Li-Ping Jin
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China Laboratory for Reproductive ImmunologyHospital of Obstetrics and Gynecology, Fudan University, Zhao Zhou Road 413, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaNPFPC Key Laboratory of Contraceptive Drugs & DevicesShanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
18
|
Koo TB, Han MS, Tadashi Y, Seong WJ, Choi JY. Differential expression of the metastasis suppressor KAI1 in decidual cells and trophoblast giant cells at the feto-maternal interface. BMB Rep 2014; 46:507-12. [PMID: 24148772 PMCID: PMC4133835 DOI: 10.5483/bmbrep.2013.46.10.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Invasion of trophoblasts into maternal uterine tissue is essential for establishing mature feto-maternal circulation. The trophoblast invasion associated with placentation is similar to tumor invasion. In this study, we investigated the role of KAI1, an anti-metastasis factor, at the maternal-fetal interface during placentation. Mouse embryos were obtained from gestational days 5.5 (E5.5) to E13.5. Immunohistochemical analysis revealed that KAI1 was expressed on decidual cells around the track made when a fertilized ovum invaded the endometrium, at days E5.5 and E7.5, and on trophoblast giant cells, along the central maternal artery of the placenta at E9.5. KAI1 in trophoblast giant cells was increased at E11.5, and then decreased at E13.5. Furthermore, KAI1 was upregulated during the forskolinmediated trophoblastic differentiation of BeWo cells. Collectively, these results indicate that KAI1 is differentially expressed in decidual cells and trophoblasts at the maternal-fetal interface, suggesting that KAI1 prevents trophoblast invasion during placentation. [BMB Reports 2013; 46(10): 507-512]
Collapse
Affiliation(s)
- Tae Bon Koo
- Departments of Biochemistry and Cell Biology, School of Medicine; Departments of WCU and BK21 Plus Program, Kyungpook National University, Daegu 700-422, Korea
| | | | | | | | | |
Collapse
|
19
|
Termini CM, Cotter ML, Marjon KD, Buranda T, Lidke KA, Gillette JM. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell 2014; 25:1560-73. [PMID: 24623721 PMCID: PMC4019488 DOI: 10.1091/mbc.e13-11-0660] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem/progenitor cell (HSPC) interactions with the bone marrow microenvironment are important for maintaining HSPC self-renewal and differentiation. In recent work, we identified the tetraspanin protein, CD82, as a regulator of HPSC adhesion and homing to the bone marrow, although the mechanism by which CD82 mediated adhesion was unclear. In the present study, we determine that CD82 expression alters cell-matrix adhesion, as well as integrin surface expression. By combining the superresolution microscopy imaging technique, direct stochastic optical reconstruction microscopy, with protein clustering algorithms, we identify a critical role for CD82 in regulating the membrane organization of α4 integrin subunits. Our data demonstrate that CD82 overexpression increases the molecular density of α4 within membrane clusters, thereby increasing cellular adhesion. Furthermore, we find that the tight packing of α4 into membrane clusters depend on CD82 palmitoylation and the presence of α4 integrin ligands. In combination, these results provide unique quantifiable evidence of CD82's contribution to the spatial arrangement of integrins within the plasma membrane and suggest that regulation of integrin density by tetraspanins is a critical component of cell adhesion.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Maura L Cotter
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Kristopher D Marjon
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Tione Buranda
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
20
|
Kwon HJ, Min SY, Park MJ, Lee C, Park JH, Chae JY, Moon KC. Expression of CD9 and CD82 in clear cell renal cell carcinoma and its clinical significance. Pathol Res Pract 2014; 210:285-90. [PMID: 24553302 DOI: 10.1016/j.prp.2014.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 12/22/2022]
Abstract
CD9 and CD82, members of the tetraspanin family, act as metastasis suppressors in many human malignant tumors, but the role of these molecules is not well known in clear cell renal cell carcinoma (CCRCC). This study was designed to evaluate the immunohistochemical expression of CD9 and CD82 in 644 cases of CCRCC and to determine the clinicopathologic and prognostic significance of their expression. The percentage of positive tumor cells was evaluated, and the expression was classified into 2 categories: low expression (less than 10% positive cells) or high expression (more than 10% positive cells) for CD9 expression and negative (no positive cells) or positive for CD82 expression. CD9 high expression was found in 303 (47.0%) patients, and CD82 positivity was found in 98 (15.2%) patients. High expression of CD9 was statistically associated with older patients (p=0.003). The cases showing positive immunoreactivity for CD82 exhibited a high stage (p<0.001) and high nuclear grade (p<0.001). The overall, cancer-specific and progression-free survival rates were significantly higher in patients with a CD82-negative profile compared to patients with a CD82-positive profile (p<0.001). Although the biological function of CD82 in CCRCC remains unclear, the CCRCC patients with CD82 positive expression show poor prognosis.
Collapse
Affiliation(s)
- Hyeong Ju Kwon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Min
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Jee Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Youn Chae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Kaipe H, Erkers T, Sadeghi B, Ringdén O. Stromal cells–are they really useful for GVHD? Bone Marrow Transplant 2014; 49:737-43. [DOI: 10.1038/bmt.2013.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
22
|
Hu WT, Li MQ, Liu W, Jin LP, Li DJ, Zhu XY. IL-33 enhances proliferation and invasiveness of decidual stromal cells by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2 signaling. Mol Hum Reprod 2013; 20:358-72. [PMID: 24344240 DOI: 10.1093/molehr/gat094] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-33, a newly described member of the IL-1 family, has been reported to facilitate primary tumor progression and metastatic dissemination. However, its biological function on decidual stromal cells (DSCs) remains unclear. In this study, we tested the hypothesis whether IL-33 promotes proliferation and invasion of DSCs, and the possible mechanism. IL-33 and its orphan receptor ST2 was found to be co-expressed by DSCs in human first-trimester pregnancy. Addition of IL-33, enhanced the proliferation and invasion of DSCs in a dosage-dependent manner, concomitantly with increasing expression of proliferation relative gene (PCNA, survivin) and invasion relative gene (titin, MMP2). Blocking IL-33/ST2 signaling by soluble sST2 apparently abolished the stimulatory effect on the proliferation, invasiveness and related gene expression in DSCs. We also demonstrated that chemokines CCL2/CCR2 was significantly increased with IL-33 administration. Moreover, inhibition of CCL2/CCR2 activation using CCL2 neutralizing antibody or CCR2 blocker prevented IL-33-stimulated proliferation and invasiveness capacity of DSCs. Increasing phosphorylation of nuclear factor NF-κB p65 and extracellular signal-regulated kinases ERK1/2 after treatment with IL-33 was confirmed by western blotting. And the IL-33-induced CCL2/CCR2 expression was abrogated by treatment with the NF-κB inhibitor BAY 11-7082 or ERK1/2 inhibitor U0126. Finally, we showed that decreased IL-33/ST2 expression was observed in DSCs from spontaneous abortion compared with normal pregnancy at both gene and protein levels. This study provides evidence for the molecular mechanism of IL-33 in promoting proliferation and invasiveness of DSCs by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2 signal pathways and thus contributes insight to the potential of IL-33 involved in successful pregnancy via inducing DSCs mitosis and invasion.
Collapse
Affiliation(s)
- Wen-Ting Hu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | | | | | | | | | | |
Collapse
|
23
|
Meng YH, Li H, Chen X, Liu LB, Shao J, Chang KK, Du MR, Jin LP, Li MQ, Li DJ. RANKL promotes the growth of decidual stromal cells in an autocrine manner via CCL2/CCR2 interaction in human early pregnancy. Placenta 2013; 34:663-71. [PMID: 23697850 DOI: 10.1016/j.placenta.2013.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Receptor-activator of NF-κB ligand (TNFSF11, also known as RANKL) and its receptor RANK are essential regulators on bone remodeling, mammary gland development and hormone-associated breast cancer development. However, the expression pattern and role of RANKL/RANK axis in decidual stromal cells (DSCs) are unclear in human early pregnancy. STUDY DESIGN We analyzed RANKL/RANK expression in DSCs by real-time PCR, immunhistochemistry, enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. Then BrdU cell proliferation assay, flow cytometry assay and ELISA were performed to investigate the effect of recombinant human RANKL and DSCs-derived RANKL on the proliferation, apoptosis, chemokine (C-C motif) ligand 2 (CCL2) secretion, C-C chemokine receptor type 2 (CCR2) and other target proteins expression in DSCs in vitro, respectively. RESULTS Here we show that DSCs co-express RANKL/RANK. Not only recombinant human (rh) RANKL but also the DSC-secreted RANKL stimulate proliferation and anti-apoptosis, and elevate CCL2 secretion and CCR2 expression of DSCs. Furthermore, the stimulatory effects on the proliferation, anti-apoptosis and the expression of Bcl-2 and Ki67 and inhibitory signaling on Fas ligand (FasL) in DSCs induced by RANKL can be partly reversed by the way of blocking CCL2 and or CCR2. CONCLUSIONS Our results have revealed that RANKL/RANK signal promotes Bcl-2 and Ki67 and decreases FasL expression, and further as a positive regulator for stimulating the proliferation and growth of DSCs through up-regulating CCL2/CCR2 signal, which finally contributes to the establishment and maintenance of physiological pregnancy.
Collapse
Affiliation(s)
- Y-H Meng
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 413 Zhaozhou Rd., Shanghai 200011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shao J, Li MQ, Meng YH, Chang KK, Wang Y, Zhang L, Li DJ. Estrogen promotes the growth of decidual stromal cells in human early pregnancy. ACTA ACUST UNITED AC 2013; 19:655-64. [DOI: 10.1093/molehr/gat034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Gellersen B, Wolf A, Kruse M, Schwenke M, Bamberger AM. Human Endometrial Stromal Cell-Trophoblast Interactions: Mutual Stimulation of Chemotactic Migration and Promigratory Roles of Cell Surface Molecules CD82 and CEACAM11. Biol Reprod 2013; 88:80. [DOI: 10.1095/biolreprod.112.106724] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
26
|
Havemann D, Balakrishnan M, Borahay M, Theiler R, Jennings K, Endsley J, Phelps J, Hankins GDV, Yallampalli C, Chauhan M. Intermedin/adrenomedullin 2 is associated with implantation and placentation via trophoblast invasion in human pregnancy. J Clin Endocrinol Metab 2013; 98:695-703. [PMID: 23337723 PMCID: PMC3565110 DOI: 10.1210/jc.2012-2172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Intermedin (IMD) is a novel peptide expressed in trophoblast cells in human placenta and enhances the invasion, migration, and human leukocyte antigen class I, G (HLA-G) expression in first-trimester HTR-8SV/neo cells. We recently reported that infusion of IMD antagonist in pregnant rats is detrimental to pregnancy outcome, resulting in impaired fetoplacental growth and deformed placental vasculature. OBJECTIVE This study was undertaken to assess expression of IMD and its involvement in human implantation and early placentation and assess whether its expression is altered in spontaneous abortion. FINDINGS AND CONCLUSIONS We demonstrate for the first time that IMD is present in day 5 embryonic secretome; villous and decidual expression of IMD is higher at 6-8 weeks after a decline as gestation advances toward the second trimester; first-trimester spontaneous abortion is associated with a lower expression of IMD in serum, villi, and decidua; IMD stimulates the invasive capacity of first-trimester primary Extravillous cytotrophoblast cells; and IMD decreases elevated levels of tumor suppressor Kangia-1 in decidual explants from first-trimester spontaneous abortion. In conclusion, this study is the first to demonstrate a potential involvement of IMD in human embryo implantation and placental development via regulation of trophoblast invasion at the maternal-fetal interface and suggests a physiological role for this novel peptide in establishment of human pregnancy.
Collapse
Affiliation(s)
- Dara Havemann
- Department of Obstetrics, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1062, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Han SY, Lee M, Hong YK, Hwang S, Choi G, Suh YS, Park SH, Lee S, Lee SH, Chung J, Baek SH, Cho KS. Tsp66E, the Drosophila KAI1 homologue, and Tsp74F function to regulate ovarian follicle cell and wing development by stabilizing integrin localization. FEBS Lett 2012; 586:4031-7. [PMID: 23068610 DOI: 10.1016/j.febslet.2012.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/13/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022]
Abstract
The metastasis suppressor KAI1/CD82 has been implicated in various cellular processes; however, its function in development is not fully understood. Here, we generated and characterized mutants of Tsp66E and Tsp74F, which are Drosophila homologues of KAI1/CD82 and Tspan11, respectively. These mutants exhibited egg elongation defects along with disturbed integrin localization and actin polarity. Moreover, the defects were enhanced by mutation of inflated, an αPS2 integrin gene. Mutant ovaries had elevated αPS2 integrin levels and reduced endocytic trafficking. These results suggest that Drosophila KAI1/CD82 affects the polarized localization and the level of integrin, which may contribute to epithelial cell polarity.
Collapse
Affiliation(s)
- Seung Yeop Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Q, Tan D, Luo W, Lu J, Tan Y. Expression of CD82 in human trophoblast and its role in trophoblast invasion. PLoS One 2012; 7:e38487. [PMID: 22679510 PMCID: PMC3367946 DOI: 10.1371/journal.pone.0038487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Well-controlled trophoblast invasion at maternal-fetal interface is a critical event for the normal development of placenta. CD82 is a member of transmembrane 4 superfamily, which showed important role in inhibiting tumor cell invasion and migration. We surmised that CD82 are participates in trophoblast differentiation during placenta development. METHODOLOGY/PRINCIPAL FINDINGS CD82 was found to be strongly expressed in human first trimester placental villous and extravillous trophoblast cells as well as in trophoblast cell lines. To investigate whether CD82 plays a role in trophoblast invasion and migration, we further utilized human villous explants culture model on matrigel and invasion/migration assay of trophoblast cell line HTR8/SVneo. CD82 siRNA significantly promoted outgrowth of villous explants in vitro (P<0.01), as well as invasion and migration of HTR8/SVneo cells (P<0.05), whereas the trophoblast proliferation was not affected. The enhanced effect of CD82 siRNA on invasion and migration of trophoblast cells was found associated with increased gelatinolytic activities of matrix metalloproteinase MMP9 while over-expression of CD82 markedly decreased trphoblast cell invasion and migration as well as MMP9 activities. CONCLUSIONS/SIGNIFICANCE These findings suggest that CD82 is an important negative regulator at maternal-fetal interface during early pregnancy, inhibiting human trophoblast invasion and migration.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Junjie Lu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
29
|
Li MQ, Luo XZ, Meng YH, Mei J, Zhu XY, Jin LP, Li DJ. CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway. Hum Reprod 2012; 27:2107-16. [PMID: 22563025 DOI: 10.1093/humrep/des132] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chemokine CXCL8 (also known as IL-8) has been identified as a potential regulator of endometrial stromal cells (ESCs), but it is unclear how CXCL8 regulates the survival of ESCs in the pathogenesis of endometriosis. METHODS We assessed the secretion of CXCL8 by enzyme-linked immunosorbent assays and the expression of its receptors, CXCR1 and CXCR2, by in-cell Western assay and immunohistochemistry. The effects of CXCL8 on the activation or expression of various cell mediators were also investigated by in-cell Western assay. The effects of CXCL8 on the proliferation, growth and apoptosis of ESCs in vitro were assessed by BrdU assays, cell counts and annexin V labeling, respectively. RESULTS Secretion of CXCL8 and expression of CXCR1 in the eutopic ESCs from women with endometriosis were significantly higher than that in control ESCs, but the expression of CXCR2 showed no significant difference between these two cell types. CXCL8 stimulated proliferation and growth and reduced apoptosis of ESCs in an autocrine manner, and these effects were abolished by anti-human CXCL8 and CXCR1 neutralizing antibodies and by a PI3K/Akt inhibitor. Moreover, CXCL8 up-regulated the expression of the anti-apoptotic proteins, survivin and Bcl-2, inhibited the expression of the Phosphatase and tensin homolog (PTEN) and activated the phosphorylation of Akt. CONCLUSIONS This study suggests that CXCL8 and CXCR1 are involved in the pathogenesis of endometriosis by up-regulating proliferation and growth and restricting apoptosis in ESCs by activating the PTEN/Akt pathway and mediating the expression of survivin and Bcl-2.
Collapse
Affiliation(s)
- Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Du MR, Zhou WH, Piao HL, Li MQ, Tang CL, Li DJ. Cyclosporin A promotes crosstalk between human cytotrophoblast and decidual stromal cell through up-regulating CXCL12/CXCR4 interaction. Hum Reprod 2012; 27:1955-65. [DOI: 10.1093/humrep/des111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Wang Y, Fan DX, Duan J, Li MQ, Zhu XY, Jin LP. Thymic stromal lymphopoietin downregulates NME1 expression and promotes invasion in human trophoblasts via the activation of STAT3 signaling pathway. Clin Immunol 2012; 143:88-95. [DOI: 10.1016/j.clim.2012.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 11/24/2022]
|
32
|
Li MQ, Li HP, Meng YH, Wang XQ, Zhu XY, Mei J, Li DJ. Chemokine CCL2 enhances survival and invasiveness of endometrial stromal cells in an autocrine manner by activating Akt and MAPK/Erk1/2 signal pathway. Fertil Steril 2012; 97:919-29. [DOI: 10.1016/j.fertnstert.2011.12.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/14/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
33
|
Li MQ, Hou XF, Lv SJ, Meng YH, Wang XQ, Tang CL, Li DJ. CD82 gene suppression in endometrial stromal cells leads to increase of the cell invasiveness in the endometriotic milieu. J Mol Endocrinol 2011; 47:195-208. [PMID: 21685244 DOI: 10.1530/jme-10-0165] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tetraspanin CD82 is a wide-spectrum tumor metastasis suppressor that inhibits motility and invasiveness of cancer cells. Endometriosis is a benign gynecological disorder, but appears malignant behaviors including invasion, ectopic implantation and recurrence. This study is to elucidate the role of CD82 expression regulation in the pathogenesis of endometriosis. The short interfering RNA silence was established to analyze the roles of CD82, chemokine CCL2, and its receptor CCR2 in the invasiveness of endometrial stromal cells (ESCs). We have found that the mRNA and protein levels of CD82 in the primary normal ESCs from endometrium without endometriosis are significantly higher than that of the primary ESCs from eutopic endometrium and ectopic tissue. CD82 inhibits the invasiveness of ESCs by downregulating CCL2 secretion and CCR2 expression via mitogen-activated protein kinase (MAPK) and integrinβ1 signal pathway, and in turn upregulating the expression of TIMP1 and TIMP2 in an autocrine manner. The combination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with 17β-estradiol can promote the invasion of ESCs via suppressing CD82 expression and stimulating CCL2 secretion and CCR2 expression, and the enhanced interaction of CCL2-CCR2 recruits more macrophages into the ectopic milieu in a paracrine manner, which further downregulates CD82 expression in the ectopic ESCs. Our study has demonstrated for the first time that the abnormal lower CD82 expression in ESCs induced by TCDD and estrogen may be an important molecular basis of endometriosis pathogenesis through enhancing the CCL2 secretion and CCR2 expression and the invasion of ESCs via MAPK and integrinβ1 signal pathway.
Collapse
Affiliation(s)
- Ming-Qing Li
- Laboratory for Reproductive Immunology, Fudan University Shanghai Medical College, Hospital and Institute of Obstetrics and Gynecology, IBS, Shanghai 200011, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Gonzalez M, Neufeld J, Reimann K, Wittmann S, Samalecos A, Wolf A, Bamberger AM, Gellersen B. Expansion of human trophoblastic spheroids is promoted by decidualized endometrial stromal cells and enhanced by heparin-binding epidermal growth factor-like growth factor and interleukin-1β. ACTA ACUST UNITED AC 2011; 17:421-33. [DOI: 10.1093/molehr/gar015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|