1
|
Waye AA, Moeller J, Veiga-Lopez A. Epidermal growth factor receptor in placental health and disease: pathways, dysfunction, and chemical disruption. Toxicol Sci 2025; 205:11-27. [PMID: 39985453 PMCID: PMC12038240 DOI: 10.1093/toxsci/kfaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Formation of the placenta during gestation is required to support fetal growth and development. Derived from the placenta, trophoblast cells express nuclear and membrane-bound receptors. Among these receptors is the epidermal growth factor receptor (EGFR) which plays a key role in placental development. Activation of EGFR-mediated signaling in trophoblast cells regulates critical processes, such as proliferation, differentiation, invasion, and fusion during pregnancy, making it essential for normal placental formation. Dysfunction of EGFR in placental trophoblast cells has been associated with adverse pregnancy outcomes, including intrauterine growth restriction, preeclampsia, and preterm birth. Ubiquitous environmental chemicals, like polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, and bisphenols, have been reported to modulate EGFR signaling pathways, potentially contributing to placental dysfunction. This review explores the pivotal role of EGFR signaling in placental development and function, with a focus on how environmental chemicals interfere with EGFR-mediated pathways and placental cell functions as well as their implications for pregnancy outcomes. Findings presented herein underscore the need for further research into the effects of exposure to environmental chemicals on modulating EGFR signaling pathways in the context of placental health.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jacob Moeller
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
- The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
2
|
Greenbaum S, Averbukh I, Soon E, Rizzuto G, Baranski A, Greenwald NF, Kagel A, Bosse M, Jaswa EG, Khair Z, Kwok S, Warshawsky S, Piyadasa H, Goldston M, Spence A, Miller G, Schwartz M, Graf W, Van Valen D, Winn VD, Hollmann T, Keren L, van de Rijn M, Angelo M. A spatially resolved timeline of the human maternal-fetal interface. Nature 2023; 619:595-605. [PMID: 37468587 PMCID: PMC10356615 DOI: 10.1038/s41586-023-06298-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/08/2023] [Indexed: 07/21/2023]
Abstract
Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.
Collapse
Affiliation(s)
- Shirley Greenbaum
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Inna Averbukh
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Erin Soon
- Department of Pathology, Stanford University, Stanford, CA, USA
- Immunology Program, Stanford University, Stanford, CA, USA
| | - Gabrielle Rizzuto
- Department of Pathology, University of Californica San Francisco, San Francisco, CA, USA
| | - Alex Baranski
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Adam Kagel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Eleni G Jaswa
- Department of Obstetrics Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zumana Khair
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shirley Kwok
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Mako Goldston
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Angie Spence
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Geneva Miller
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Morgan Schwartz
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Will Graf
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - David Van Valen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Travis Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Rampersaud AM, Dunk CE, Lye SJ, Renaud SJ. Palmitic acid induces inflammation in placental trophoblasts and impairs their migration toward smooth muscle cells through plasminogen activator inhibitor-1. Mol Hum Reprod 2020; 26:850-865. [PMID: 32898274 DOI: 10.1093/molehr/gaaa061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
A critical component of early human placental development includes migration of extravillous trophoblasts (EVTs) into the decidua. EVTs migrate toward and displace vascular smooth muscle cells (SMCs) surrounding several uterine structures, including spiral arteries. Shallow trophoblast invasion features in several pregnancy complications including preeclampsia. Maternal obesity is a risk factor for placental dysfunction, suggesting that factors within an obese environment may impair early placental development. Herein, we tested the hypothesis that palmitic acid, a saturated fatty acid circulating at high levels in obese women, induces an inflammatory response in EVTs that hinders their capacity to migrate toward SMCs. We found that SMCs and SMC-conditioned media stimulated migration and invasion of an EVT-like cell line, HTR8/SVneo. Palmitic acid impaired EVT migration and invasion toward SMCs, and induced expression of several vasoactive and inflammatory mediators in EVTs, including endothelin, interleukin (IL)-6, IL-8 and PAI1. PAI1 was increased in plasma of women with early-onset preeclampsia, and PAI1-deficient EVTs were protected from the anti-migratory effects of palmitic acid. Using first trimester placental explants, palmitic acid exposure decreased EVT invasion through Matrigel. Our findings reveal that palmitic acid induces an inflammatory response in EVTs and attenuates their migration through a mechanism involving PAI1. High levels of palmitic acid in pathophysiological situations like obesity may impair early placental development and predispose to placental dysfunction.
Collapse
Affiliation(s)
- Amanda M Rampersaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
4
|
Kala S, Dunk C, Acosta S, Serghides L. Periconceptional exposure to lopinavir, but not darunavir, impairs decidualization: a potential mechanism leading to poor birth outcomes in HIV-positive pregnancies. Hum Reprod 2020; 35:1781-1796. [PMID: 32712670 PMCID: PMC7398624 DOI: 10.1093/humrep/deaa151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Does HIV protease inhibitor (PI)-based combination antiretroviral therapy (cART) initiated at periconception affect key events in early pregnancy, i.e. decidualization and spiral artery remodeling? SUMMARY ANSWER Two PIs, lopinavir and darunavir, currently offered as cART options in HIV-positive pregnancies were evaluated, and we found that lopinavir-based cART, but not darunavir-based cART, impaired uterine decidualization and spiral artery remodeling in both human ex vivo and mouse in vivo experimental models. WHAT IS KNOWN ALREADY Early initiation of cART is recommended for pregnant women living with HIV. However, poor birth outcomes are frequently observed in HIV-positive pregnancies exposed to PI-based cART, especially when it is initiated prior to conception. The correlation between early initiation of PI-cART and adverse birth outcomes is poorly understood, due to lack of data on the specific effects of PI-cART on the early stages of pregnancy involving uterine decidualization and spiral artery remodeling. STUDY DESIGN, SIZE, DURATION Lopinavir and darunavir were evaluated in clinically relevant combinations using an ex vivo human first-trimester placenta-decidua explant model, an in vitro human primary decidual cell culture system, and an in vivo mouse pregnancy model. The first-trimester (gestational age, 6–8 weeks) human placenta-decidua tissue was obtained from 11 to 15 healthy women undergoing elective termination of pregnancy. C57Bl/6 female mice (four/treatment group) were administered either lopinavir-cART, darunavir-cART or water by oral gavage once daily starting on the day of plug detection until sacrifice. PARTICIPANTS/MATERIALS, SETTING, METHODS Human: Spiral artery remodeling was assessed by immunohistochemical analysis of first-trimester placenta-decidua explant co-culture system. Trophoblast migration was measured using a placental explant culture. A primary decidual cell culture was used to evaluate the viability of immune cell populations by flow cytometry. Soluble factors, including biomarkers of decidualization and angiogenesis, were quantified by ELISA and Luminex assay using decidua-conditioned media. Mouse: In the mouse pregnancy model, gestational day 6.5 or 9.5 implantation sites were used to assess decidualization, spiral artery remodeling and uterine natural killer (uNK) cell numbers by immunohistochemistry. Transcription factor STAT3 was assayed by immunohistochemistry in both human decidua and mouse implantation sites. MAIN RESULTS AND THE ROLE OF CHANCE Lopinavir-cART, but not darunavir-cART, impaired uterine decidualization and spiral artery remodeling in both experimental models. Lopinavir-cART treatment was also associated with selective depletion of uNK cells, reduced trophoblast migration and defective placentation. The lopinavir-associated decidualization defects were attributed to a decrease in expression of transcription factor STAT3, known to regulate decidualization. Our results suggest that periconceptional initiation of lopinavir-cART, but not darunavir-cART, causes defective maturation of the uterine endometrium, leading to impairments in spiral artery remodeling and placentation, thus contributing to the poor birth outcomes. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION The human first-trimester placenta/decidua samples could only be obtained from healthy females undergoing elective termination of pregnancy. As biopsy is the only way to obtain first-trimester decidua from pregnant women living with HIV on PI-cART, ethics approval and participant consent are difficult to obtain. Furthermore, our animal model is limited to the study of cART and does not include HIV. HIV infection is also associated with immune dysregulation, inflammation, alterations in angiogenic factors and complement activation, all of which could influence decidual and placental vascular remodeling and modify any cART effects. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide mechanistic insight with direct clinical implications, rationalizing why the highest adverse birth outcomes are reported in HIV-positive pregnancies exposed to lopinavir-cART from conception. We demonstrate that dysregulation of decidualization is the mechanism through which lopinavir-cART, but not darunavir-cART, use in early pregnancy leads to poor birth outcomes. Although lopinavir is no longer a first-line regimen in pregnancy, it remains an alternate regimen and is often the only PI available in low resource settings. Our results highlight the need for reconsidering current guidelines recommending lopinavir use in pregnancy and indicate that lopinavir should be avoided especially in the first trimester, whereas darunavir is safe to use and should be the preferred PI in pregnancy. Further, in current times of the COVID-19 pandemic, lopinavir is among the top drug candidates which are being repurposed for inclusion in clinical trials world-over, to assess their therapeutic potential against the dangerous respiratory disease. Current trials are also testing the efficacy of lopinavir given prophylactically to protect health care workers and people with potential exposures. Given the current extraordinary numbers, these might include women with early pregnancies, who may or may not be cognizant of their gestational status. This is a matter of concern as it could mean that women with early pregnancies might be exposed to this drug, which can cause decidualization defects. Our findings provide evidence of safety concerns surrounding lopinavir use in pregnancy, that women of reproductive age considering participation in such trials should be made aware of, so they can make a fully informed decision. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the Canadian Institutes of Health Research (CIHR) (PJT-148684 and MOP-130398 to L.S.). C.D. received support from CIHR Foundation (FDN143262 to Stephen Lye). S.K. received a TGHRI postdoctoral fellowship. The authors declare that there are no conflicts of interest. L.S. reports personal fees from ViiV Healthcare for participation in a Women and Transgender Think Tank.
Collapse
Affiliation(s)
- Smriti Kala
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Caroline Dunk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sebastian Acosta
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Majali-Martinez A, Hoch D, Tam-Amersdorfer C, Pollheimer J, Glasner A, Ghaffari-Tabrizi-Wizsy N, Beristain AG, Hiden U, Dieber-Rotheneder M, Desoye G. Matrix metalloproteinase 15 plays a pivotal role in human first trimester cytotrophoblast invasion and is not altered by maternal obesity. FASEB J 2020; 34:10720-10730. [PMID: 32614494 PMCID: PMC7496590 DOI: 10.1096/fj.202000773r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 01/13/2023]
Abstract
Adequate anchoring of the placenta in the uterus through invasion of first trimester cytotrophoblasts (CTB) is required for a successful pregnancy. This process is mediated by matrix metalloproteinases (MMPs) and regulated by the maternal environment. Obesity is known to alter the intrauterine milieu and has been related to impaired invasion. We hypothesized that placental MMP15, a novel membrane‐type MMP, is involved in CTB invasion and regulated by maternal obesity in early pregnancy. Thus, in this study MMP15 was immunolocalized to invasive extravillous and interstitial CTB. MMP15 silencing in chorionic villous explants using two different siRNAs reduced trophoblast outgrowth length (−35%, P ≤ .001 and −26%, P < .05) and area (−43%, P ≤ .001 and −36%, P ≤ .01) without altering trophoblast proliferation or apoptosis. Short‐term treatment of primary first trimester trophoblasts with IL‐6 (10 ng/mL), interleukin 10 (IL‐10) (50 ng/mL), and tumor necrosis factor α (TNF‐α) (10 ng/mL) did not affect MMP15 protein levels. Likewise, MMP15 mRNA and protein levels were unaltered between human first trimester placentas from control pregnancies vs those complicated with maternal obesity. Overall, our results suggest that the role of MMP15 in placental development and function in early pregnancy is limited to CTB invasion without being affected by short‐ and long‐term inflammation.
Collapse
Affiliation(s)
| | - Denise Hoch
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Alexander G Beristain
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Paparini DE, Choudhury RH, Vota DM, Karolczak-Bayatti M, Finn-Sell S, Grasso EN, Hauk VC, Ramhorst R, Pérez Leirós C, Aplin JD. Vasoactive intestinal peptide shapes first-trimester placenta trophoblast, vascular, and immune cell cooperation. Br J Pharmacol 2019; 176:964-980. [PMID: 30726565 DOI: 10.1111/bph.14609] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/10/2018] [Accepted: 01/01/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Extravillous trophoblast (EVT) cells are responsible for decidual stromal invasion, vascular transformation, and the recruitment and functional modulation of maternal leukocytes in the first-trimester pregnant uterus. An early disruption of EVT function leads to placental insufficiency underlying pregnancy complications such as preeclampsia and fetal growth restriction. Vasoactive intestinal peptide (VIP) is a vasodilating and immune modulatory factor synthesized by trophoblast cells. However, its role in first-trimester placenta has not been explored. Here, we tested the hypothesis that VIP is involved in first-trimester EVT outgrowth, spiral artery remodelling, balancing angiogenesis, and maintenance of immune homeostasis. EXPERIMENTAL APPROACH First-trimester placental tissue (five to nine weeks of gestation) was collected, and was used for EVT outgrowth experiments, immunofluorescence, isolation of decidual natural killer (dNK) cells and decidual macrophages (dMA), and functional assays. Peripheral blood monocytes were differentiated with GM-CSF and used for angiogenesis assays. KEY RESULTS In decidua basalis, VIP+ EVT were observed sprouting from cell columns and lining spiral arterioles. EVT migrating from placental explants were also VIP+. VIP increased EVT outgrowth and IL-10 release, whereas it decreased pro-inflammatory cytokine production in EVT, dNK cells, and dMA. VIP disrupted endothelial cell networks, both directly and indirectly via an effect on macrophages. CONCLUSION AND IMPLICATIONS The results suggest that VIP assists the progress of EVT invasion and vessel remodelling in first-trimester placental bed in an immunologically "silent" milieu. The effects of VIP in the present ex vivo human placental model endorse its potential as a therapeutic candidate for deep placentation disorders.
Collapse
Affiliation(s)
- Daniel E Paparini
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Ruhul H Choudhury
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Daiana M Vota
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Magdalena Karolczak-Bayatti
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Sarah Finn-Sell
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Esteban N Grasso
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanesa C Hauk
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - John D Aplin
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| |
Collapse
|
7
|
Choudhury RH, Dunk CE, Lye SJ, Harris LK, Aplin JD, Jones RL. Decidual leucocytes infiltrating human spiral arterioles are rich source of matrix metalloproteinases and degrade extracellular matrix in vitro and in situ. Am J Reprod Immunol 2019; 81:e13054. [PMID: 30267451 DOI: 10.1111/aji.13054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/02/2023] Open
Abstract
PROBLEM During pregnancy, the decidual spiral arterioles (SpAs) that supply maternal blood to the placenta undergo a series of changes to optimise the transfer of nutrients and oxygen to the developing foetus. Recent studies have shown that initiation of SpA transformation coincides with decidual leucocyte infiltration. Leucocytes are known to be a source of matrix metalloproteinases (MMPs); however, the complete profile of MMPs expressed by decidual NK cells (dNK) and macrophages has not been characterised. We hypothesised that leucocyte-derived MMPs contribute to SpA remodelling. METHODS Decidual NK cells and macrophages were isolated from first trimester decidua and their MMP repertoire profiled by qRT-PCR (n = 10; 5-11 weeks). Dual immunofluorescence was used to localise MMP expression in situ (n = 3; 5-12 weeks). Gelatin zymography was carried out to assess whether leucocyte-derived MMPs can degrade ECM. In situ zymography and immunofluorescence identified MMP activity in tissue-resident dNK and macrophages. RESULTS Decidual NK cells cells and macrophages expressed MMP2, -7, -9, -11, -16, -19 and tissue inhibitors of metalloproteinase-1, -2, and -3. Both cell types degraded gelatin using MMP2 and MMP9 and broke down collagen in an in vitro model of the SpA. Extravillous trophoblasts (EVTs) expressed a similar repertoire of MMPs. CONCLUSION We suggest that matrix remodelling in SpA is initiated by infiltrating leucocytes, while EVTs become involved at later stages.
Collapse
Affiliation(s)
- Ruhul H Choudhury
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
8
|
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol 2018; 9:2597. [PMID: 30483261 PMCID: PMC6243063 DOI: 10.3389/fimmu.2018.02597] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Jennet Baltayeva
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Guillermo Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Li F, Xie Y, Wu Y, He M, Yang M, Fan Y, Li X, Qiao F, Deng D. HSP20 Exerts a Protective Effect on Preeclampsia by Regulating Function of Trophoblast Cells Via Akt Pathways. Reprod Sci 2018; 26:961-971. [PMID: 30305007 DOI: 10.1177/1933719118802057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preeclampsia (PE) remains the leading cause of maternal and fetal morbidity and mortality. Excessive apoptosis of the placenta and poor remodeling of spiral arteries caused by insufficient invasion of trophoblast cells into uterus have been implicated in the pathogenesis of PE. Accumulating evidence showed that heat shock protein 20 (HSP20) is closely associated with the proliferation, apoptosis, and metastasis of tumor cells. However, little is known about whether HSP20 plays a role in the development of PE. In this study, we detected the apoptosis index and the expressions of HSP20 and apoptosis-associated proteins in the placentas from PE and normal pregnancies. We found that HSP20 was reversely related to the apoptosis rate and the levels of proapoptotic proteins. Moreover, we identified that HSP20 could suppress the proliferation and apoptosis of trophoblast cells, turning them into a more invasive phenotype. Additionally, H2O2-induced oxidative stress was significantly alleviated, and several key proteins on the Akt signaling pathway were upregulated in HSP20-overexpressing trophoblast cells. These findings strongly suggested that HSP20 might play a role in the remodeling of spiral arteries through affecting the invasiveness of extravillous trophoblast cells via Akt signaling pathway, and the dysregulation of it might contribute to the pathophysiology of PE.
Collapse
Affiliation(s)
- Fanfan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yin Xie
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Wu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengzhou He
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meitao Yang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Fan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuanxuan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fuyuan Qiao
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongrui Deng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Dunk CE, Pappas JJ, Lye P, Kibschull M, Javam M, Bloise E, Lye SJ, Szyf M, Matthews SG. P-Glycoprotein (P-gp)/ABCB1 plays a functional role in extravillous trophoblast (EVT) invasion and is decreased in the pre-eclamptic placenta. J Cell Mol Med 2018; 22:5378-5393. [PMID: 30256530 PMCID: PMC6201374 DOI: 10.1111/jcmm.13810] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of trophoblast differentiation is implicated in the placental pathologies of intrauterine growth restriction and pre‐eclampsia. P‐glycoprotein (P‐gp encoded by ABCB1) is an ATP‐binding cassette transporter present in the syncytiotrophoblast layer of the placenta where it acts as a molecular sieve. In this study, we show that P‐gp is also expressed in the proliferating cytotrophoblast (CT), the syncytiotrophoblast (ST) and the extravillous trophoblast (EVT), suggesting our hypothesis of a functional role for P‐gp in placental development. Silencing of ABCB1, via siRNA duplex, results in dramatically reduced invasion and migration, and increased tube formation and fusion in the EVT‐like HTR8/SVneo cell line. In both EVT and CT explant differentiation experiments, silencing of ABCB1 leads to induction of the fusion markers human hCG, ERVW‐1 and GJA1 and terminal differentiation of both trophoblast subtypes. Moreover, P‐gp protein levels are decreased in both the villous and the EVT of severe early‐onset pre‐eclamptic placentas. We conclude that, in addition to its role as a syncytial transporter, P‐gp is a key factor in the maintenance of both CT and EVT lineages and that its decrease in severe pre‐eclampsia may contribute to the syncytial and EVT placental pathologies associated with this disease.
Collapse
Affiliation(s)
- Caroline E Dunk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Jane J Pappas
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Mark Kibschull
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Mohsen Javam
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Canada.,Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen J Lye
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Departments of Obstetrics and Gynecology and Medicine, University of Toronto, Toronto, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Stephen G Matthews
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Departments of Obstetrics and Gynecology and Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Siwowska K, Schmid RM, Cohrs S, Schibli R, Müller C. Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals (Basel) 2017; 10:ph10030072. [PMID: 28809784 PMCID: PMC5620616 DOI: 10.3390/ph10030072] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 01/10/2023] Open
Abstract
The folate receptor alpha (FR) is expressed in a variety of gynecological cancer types. It has been widely used for tumor targeting with folic acid conjugates of diagnostic and therapeutic probes. The cervical KB tumor cells have evolved as the standard model for preclinical investigations of folate-based (radio) conjugates. In this study, a panel of FR-expressing human cancer cell lines—including cervical (HeLa, KB, KB-V1), ovarian (IGROV-1, SKOV-3, SKOV-3.ip), choriocarcinoma (JAR, BeWo) and endometrial (EFE-184) tumor cells—was investigated in vitro and for their ability to grow as xenografts in mice. FR-expression levels were compared in vitro and in vivo and the cell lines were characterized by determination of the sensitivity towards commonly-used chemotherapeutics and the expression of two additional, relevant tumor markers, HER2 and L1-CAM. It was found that, besides KB cells, its multiresistant KB-V1 subclone as well as the ovarian cancer cell lines, IGROV-1 and SKOV-3.ip, could be used as potentially more relevant preclinical models. They would allow addressing specific questions such as the therapeutic efficacy of FR-targeting agents in tumor (mouse) models of multi-resistance and in mouse models of metastases formation.
Collapse
Affiliation(s)
- Klaudia Siwowska
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI 5232, Switzerland.
| | - Raffaella M Schmid
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI 5232, Switzerland.
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI 5232, Switzerland.
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI 5232, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI 5232, Switzerland.
| |
Collapse
|
12
|
Choudhury RH, Dunk CE, Lye SJ, Aplin JD, Harris LK, Jones RL. Extravillous Trophoblast and Endothelial Cell Crosstalk Mediates Leukocyte Infiltration to the Early Remodeling Decidual Spiral Arteriole Wall. THE JOURNAL OF IMMUNOLOGY 2017; 198:4115-4128. [PMID: 28396316 DOI: 10.4049/jimmunol.1601175] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
Decidual spiral arteriole (SpA) remodeling is essential to ensure optimal uteroplacental blood flow during human pregnancy, yet very little is known about the regulatory mechanisms. Uterine decidual NK (dNK) cells and macrophages infiltrate the SpAs and are proposed to initiate remodeling before colonization by extravillous trophoblasts (EVTs); however, the trigger for their infiltration is unknown. Using human first trimester placenta, decidua, primary dNK cells, and macrophages, we tested the hypothesis that EVTs activate SpA endothelial cells to secrete chemokines that have the potential to recruit maternal immune cells into SpAs. Gene array, real-time PCR, and ELISA analyses showed that treatment of endothelial cells with EVT conditioned medium significantly increased production of two chemokines, CCL14 and CXCL6. CCL14 induced chemotaxis of both dNK cells and decidual macrophages, whereas CXCL6 also induced dNK cell migration. Analysis of the decidua basalis from early pregnancy demonstrated expression of CCL14 and CXCL6 by endothelial cells in remodeling SpAs, and their cognate receptors are present in both dNK cells and macrophages. Neutralization studies identified IL-6 and CXCL8 as factors secreted by EVTs that induce endothelial cell CCL14 and CXCL6 expression. This study has identified intricate crosstalk between EVTs, SpA cells, and decidual immune cells that governs their recruitment to SpAs in the early stages of remodeling and has identified potential key candidate factors involved. This provides a new understanding of the interactions between maternal and fetal cells during early placentation and highlights novel avenues for research to understand defective SpA remodeling and consequent pregnancy pathology.
Collapse
Affiliation(s)
- Ruhul H Choudhury
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom; .,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; and
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada; and
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom.,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom.,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom.,Manchester Pharmacy School, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, United Kingdom.,Academic Health Science Centre, St. Mary's Hospital, Manchester M13 9WL, United Kingdom
| |
Collapse
|
13
|
Baines K, Renaud S. Transcription Factors That Regulate Trophoblast Development and Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:39-88. [DOI: 10.1016/bs.pmbts.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
E Davies J, Pollheimer J, Yong HEJ, Kokkinos MI, Kalionis B, Knöfler M, Murthi P. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adh Migr 2016; 10:310-21. [PMID: 27070187 DOI: 10.1080/19336918.2016.1170258] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A successful pregnancy depends on the intricate and timely interactions of maternal and fetal cells. Placental extravillous cytotrophoblast invasion involves a cellular transition from an epithelial to mesenchymal phenotype. Villous cytotrophoblasts undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts and gain the capacity to migrate and invade. This review summarizes our current knowledge regarding known regulators of EMT in the human placenta, including the inducers of EMT, upstream transcription factors that control EMT and the downstream effectors, cell adhesion molecules and their differential expression and functions in pregnancy pathologies, preeclampsia (PE) and fetal growth restriction (FGR). The review also describes the research strategies that were used for the identification of the functional role of EMT targets in vitro. A better understanding of molecular pathways driven by placental EMT and further elucidation of signaling pathways underlying the developmental programs may offer novel strategies of targeted therapy for improving feto-placental growth in placental pathologies including PE and FGR.
Collapse
Affiliation(s)
- Jessica E Davies
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Jürgen Pollheimer
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Hannah E J Yong
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Maria I Kokkinos
- b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Bill Kalionis
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Martin Knöfler
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Padma Murthi
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia.,d Department of Medicine , School of Clinical Sciences, Monash University , Clayton , Victoria , Australia
| |
Collapse
|
15
|
Velicky P, Knöfler M, Pollheimer J. Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adh Migr 2015; 10:154-62. [PMID: 26418186 PMCID: PMC4853032 DOI: 10.1080/19336918.2015.1089376] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs.
Collapse
Affiliation(s)
- Philipp Velicky
- a Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Martin Knöfler
- a Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Jürgen Pollheimer
- a Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
16
|
Fock V, Plessl K, Fuchs R, Dekan S, Milla SK, Haider S, Fiala C, Knöfler M, Pollheimer J. Trophoblast subtype-specific EGFR/ERBB4 expression correlates with cell cycle progression and hyperplasia in complete hydatidiform moles. Hum Reprod 2015; 30:789-99. [DOI: 10.1093/humrep/dev027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Aghababaei M, Perdu S, Irvine K, Beristain AG. A disintegrin and metalloproteinase 12 (ADAM12) localizes to invasive trophoblast, promotes cell invasion and directs column outgrowth in early placental development. Mol Hum Reprod 2013; 20:235-49. [PMID: 24243624 DOI: 10.1093/molehr/gat084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, stromal- and vascular-remodeling trophoblasts serve critical roles in directing placental development acquiring pro-invasive characteristics. The A Disintegrin and Metalloproteinase (ADAM) family of multifunctional proteins direct cellular processes across multiple organ systems via their intrinsic catalytic, cell adhesive and intracellular signaling properties. ADAM12, existing as two distinct splice variants (ADAM12L and ADAM12S), is highly expressed in the human placenta and promotes cell migration and invasion in several tumor cell lines; however, its role in trophoblast biology is unknown. In this study, ADAM12 was localized to anchoring trophoblast columns in first trimester placentas and to highly invasive extracellular matrix-degrading trophoblasts in placental villous explants. The importance of ADAM12 in directing trophoblast invasion was tested using loss-of and gain-of-function strategies, where siRNA-directed knockdown of ADAM12 inhibited trophoblast cell invasion while over-expression promoted migration and invasion in two trophoblastic cell models. In placental villous explant cultures, siRNA-directed loss of ADAM12 significantly dampened trophoblast column outgrowth. Additionally, we provide functional evidence for the ADAM12S variant in promoting trophoblast invasion and column outgrowth through a mechanism requiring its catalytic activity. This is the first study to assign a function for ADAM12 in trophoblast biology, where ADAM12 may play a central role regulating the behavior of invasive trophoblast subsets in early pregnancy. This study also underlines the importance of ADAM12L and ADAM12S in directing cell motility in normal developmental processes outside of cancer, specifically highlighting a potentially important function of ADAM12S in directing early placental development.
Collapse
Affiliation(s)
- M Aghababaei
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
18
|
Gellersen B, Wolf A, Kruse M, Schwenke M, Bamberger AM. Human Endometrial Stromal Cell-Trophoblast Interactions: Mutual Stimulation of Chemotactic Migration and Promigratory Roles of Cell Surface Molecules CD82 and CEACAM11. Biol Reprod 2013; 88:80. [DOI: 10.1095/biolreprod.112.106724] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
19
|
Wallace AE, Fraser R, Cartwright JE. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update 2012; 18:458-71. [PMID: 22523109 DOI: 10.1093/humupd/dms015] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND During pregnancy, maternal uterine spiral arteries (SAs) are remodelled from minimal-flow, high-resistance vessels into larger diameter vessels with low resistance and high flow. Fetal extravillous trophoblasts (EVT) have important roles in this process. Decidual natural killer cells (dNK cells) are the major maternal immune component of the decidua and accumulate around SAs before trophoblast invasion. A role for dNK cells in vessel remodelling is beginning to be elucidated. This review examines the overlapping and dissimilar mechanisms used by EVT and dNK cells in this process and how this may mirror another example of tissue remodelling, namely cancer development. METHODS The published literature was searched using Pubmed focusing on EVT, dNK cells and SA remodelling. Additional papers discussing cancer development are also included. RESULTS Similarities exist between actions carried out by dNK cells and EVT. Both interact with vascular cells lining the SA, as well as with each other, to promote transformation of the SA. EVT differentiation has previously been likened to the epithelial-mesenchymal transition in cancer cells, and we discuss how dNK-EVT interactions at the maternal-fetal interface can also be compared with the roles of immune cells in cancer. CONCLUSIONS The combined role that dNK cells and EVT play in SA remodelling suggests that these interactions could be described as a partnership. The investigation of pregnancy as a multicellular system involving both fetal and maternal components, as well as comparisons to similar examples of tissue remodelling, will further identify the key mechanisms in SA remodelling that are required for a successful pregnancy.
Collapse
Affiliation(s)
- Alison E Wallace
- Reproductive and Cardiovascular Disease Research Group, Division of Biomedical Sciences, St George's University of London, London, UK.
| | | | | |
Collapse
|