1
|
Higuchi K, Kazeto Y, Nyuji M, Soma S, Takashi T, Okita K, Hayashida T, Gen K. Molecular characterization and stage-dependent gene expression of gonadotropin receptors in Pacific bluefin tuna, Thunnus orientalis, ovarian follicles. Gen Comp Endocrinol 2024; 359:114620. [PMID: 39368754 DOI: 10.1016/j.ygcen.2024.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
To understand the physiological mechanisms by which pituitary-derived gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) regulate asynchronous oocyte development, we investigated the function and expression of Fsh and Lh receptors (Fshr and Lhr, respectively) in Pacific bluefin tuna (PBT, Thunnus orientalis). As a first, we cloned the full-length cDNAs encoding PBT Fshr and Lhr. Recombinant PBT Fsh and Lh single-chain proteins were produced in abundance using stable CHO-DG44 cell lines and were subsequently purified from the culture medium, culminating in their yields being 87.0 and 88.2%, respectively. An in vitro reporter assay using homologous recombinant Gths revealed that PBT Fshr and Lhr responded strongly to their corresponding ligands in a dose-dependent manner, with no cross-activation over a wide range of concentrations. Moreover, quantitative expression analysis of Fshr and Lhr at the follicle level showed that fshr gene expression was highly upregulated in the ovarian follicles through vitellogenesis, while lhr expression was significantly upregulated and peaked in fully vitellogenic ovarian follicles. These findings suggest that asynchronous-type oocyte development is primarily attributed to the differential function and expression of Gthrs, rather than the ligand, in PBT.
Collapse
Affiliation(s)
- Kentaro Higuchi
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| | - Yukinori Kazeto
- Minamiizu Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 183-2 Irozaki, Minamiizu, Kamo, Shizuoka 415-0156, Japan
| | - Mitsuo Nyuji
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Satoshi Soma
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Yokohama, Kanagawa 236-8648, Japan
| | - Toshinori Takashi
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Kogen Okita
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Takao Hayashida
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Koichiro Gen
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| |
Collapse
|
2
|
Ferrão L, Morini M, González-Lopéz WA, Gallego V, Felip A, Pérez L, Asturiano JF. Effects of cold seawater pre-treatments on induction of early sexual maturation and sperm production in European eel (Anguilla anguilla). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2489-2503. [PMID: 39235533 PMCID: PMC11573872 DOI: 10.1007/s10695-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
To induce sexual maturation in captivity, eels rely on hormonal treatments, but this process is costly and time-consuming. As an alternative, different types of conditioning, also referred as pre-treatment, have been assessed to ease hormonal treatment response. Recent studies have shown that migrating eels experience a wide range of temperatures, varying from 12 °C at night to as low as to 8 °C during the day. Therefore, this study evaluates the effects of low-temperature (10 °C) seawater pre-treatments of different durations (2 and 4 weeks) on male eel reproduction. The eye, gonadosomatic and hepatosomatic indexes from control (without thermic seawater pre-treatment) and pre-treated fish were measured. Blood and testis samples were also collected for sex steroid and histology analysis, respectively. Eels pre-treated for 2 weeks demonstrated increased progestin levels, comparing with the control group. Eels pre-treated for 4 weeks showed significantly higher gonadosomatic index and elevated androgens and estradiol levels in comparison with the remaining groups. In eels pre-treated for 2 and 4 weeks, there was an increase in the proportion of spermatogonia type B cells compared to undifferentiated spermatogonia type A, a differentiation process that was not observed in the control group. Cold seawater pre-treatment induced early sexual maturation, including steroid production, which consequently stimulated biometric changes and increased spermatogonia differentiation. Following the pre-treatments, eels started receiving standard hormonal treatment (with recombinant human chorionic gonadotropin at 20 °C). Pre-treated males started to spermiate earlier than the control group. In some treatment weeks, pre-treated individuals registered higher values of sperm density, motility, and kinetic parameters. Moreover, an economic evaluation was carried out relating the investment made in terms of hormone injections with the volume of high-quality sperm obtained from each experimental group. The low temperature pre-treatments demonstrated their economic effectiveness in terms of hormone treatment profitability, increasing the production of high-quality sperm in the European eel. Thus, this in vivo study suggests that cold seawater pre-treatment may increase sensitivity to the hormone applied during standard maturation treatment.
Collapse
Affiliation(s)
- L Ferrão
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - M Morini
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - W A González-Lopéz
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - V Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - A Felip
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de La Sal (IATS), CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | - L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Atre I, Mizrahi N, Hausken K, Levavi-Sivan B. In silico insights into intra- and inter-species interactions of piscine gonadotropin hormones and receptor crosstalk. Int J Biol Macromol 2024; 260:129524. [PMID: 38242398 DOI: 10.1016/j.ijbiomac.2024.129524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
In mammals, the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are macromolecules secreted during specific reproductive phases and display strict specificity towards their cognate receptors. However, fish gonadotropins (GTH) and their receptors (GTHR) display diverse species-specific expression patterns, secretion patterns, and intra- and interspecies cross-activation. To uncover the molecular basis of this diversity, we generated and analyzed 29 in-silico models of intra- and inter-species combinations of sturgeon, carp, tilapia, and human gonadotropins with piscine receptors and analyzed the resulting receptor activation and signal transduction of these GTHR-GTH complexes in-vitro. Our results suggest that unlike humans, the surface charge on piscine FSH/LH β-seatbelt and N107huLHCGR/K104hFSHR homologs does not necessarily determine binding specificity. Instead, sequence and structural variations allow piscine GTHs significant conformational flexibility when binding to the receptor extracellular domain, thereby enabling cross-activation. The resulting diversity may support various reproductive strategies in different environmental niches.
Collapse
Affiliation(s)
- Ishwar Atre
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Naama Mizrahi
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Krist Hausken
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
4
|
Kazeto Y, Ito R, Tanaka T, Suzuki H, Ozaki Y, Okuzawa K, Gen K. Establishment of cell-lines stably expressing recombinant Japanese eel follicle-stimulating hormone and luteinizing hormone using CHO-DG44 cells: fully induced ovarian development at different modes. Front Endocrinol (Lausanne) 2023; 14:1201250. [PMID: 37693354 PMCID: PMC10486264 DOI: 10.3389/fendo.2023.1201250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
The gonadotropins (Gth), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play central roles in gametogenesis in vertebrates. However, available information on their differential actions in teleost, especially in vivo, is insufficient. In this study, we established stable CHO-DG44 cell lines expressing long-lasting recombinant Japanese eel Fsh and Lh with extra O-glycosylation sites (Fsh-hCTP and Lh-hCTP), which were produced in abundance. Immature female eels received weekly intraperitoneal injections of Gths. Fsh-hCTP induced the entire ovarian development by 8 weeks from the beginning of injection; thus, the ovaries of most fish were at the migratory nucleus stage while the same stage was observed in eels after 4 weeks in the Lh-hCTP-treated group. In contrast, all pretreated and saline-injected eels were in the pre-vitellogenic stage. Gonadosomatic indices in the Fsh-hCTP-treated group were significantly higher than those in the Lh-hCTP group at the migratory nucleus stage because of the significantly higher frequency of advanced ovarian follicles. Ovarian mRNA levels of genes related to E2 production (cyp11a1, cyp17a1, cyp19a1, hsd3b, fshr, and lhr) were measured using real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). All genes were induced by both Fsh-hCTP and Lh-hCTP, with a peak at either the mid- or late vitellogenic stages. Transcript abundance of cyp19a1 and fshr in the Lh-hCTP group were significantly higher than those in the Fsh-hCTP group, whereas no difference in the expression of other genes was observed between the groups. Fluctuations in serum levels of sex steroid hormones (estradiol-17β, 11-ketotestosterone, and testosterone) in female eels were comparable in the Fsh-hCTP and Lh-hCTP groups, thus increasing toward the maturational phase. Furthermore, the fecundity of the eels induced to mature by Fsh-hCTP was significantly higher than that induced by Lh-hCTP. These findings indicate that Fsh and Lh can induce ovarian development in distinctively different modes in the Japanese eel.
Collapse
Affiliation(s)
- Yukinori Kazeto
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Minamiizu, Shizuoka, Japan
| | - Risa Ito
- Fisheries Technology Institute, Tamaki Field Station, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Toshiomi Tanaka
- Hamanako Branch, Shizuoka Prefectural Research Institute of Fishery and Ocean, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Suzuki
- Fisheries Technology Institute, Shibushi Field Station, Japan Fisheries Research and Education Agency, Shibushi, Kagoshima, Japan
| | - Yuichi Ozaki
- Fisheries Technology Institute, Tamaki Field Station, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Koichi Okuzawa
- Fisheries Technology Institute, Tamaki Field Station, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Koichiro Gen
- Fisheries Technology Institute, Nagasaki Station, Japan Fisheries Research and Education Agency, Nagasaki, Japan
| |
Collapse
|
5
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Ramos-Júdez S, Danis T, Angelova N, Tsakogiannis A, Giménez I, Tsigenopoulos CS, Duncan N, Manousaki T. Transcriptome analysis of flathead grey mullet ( Mugil cephalus) ovarian development induced by recombinant gonadotropin hormones. Front Physiol 2022; 13:1033445. [PMID: 36388126 PMCID: PMC9664002 DOI: 10.3389/fphys.2022.1033445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Background: Treatment with recombinant gonadotropin hormones (rGths), follicle-stimulating hormone (rFsh) and luteinizing hormone (rLh), was shown to induce and complete vitellogenesis to finally obtain viable eggs and larvae in the flathead grey mullet (Mugil cephalus), a teleost arrested at early stages of gametogenesis in intensive captivity conditions. This study aimed to investigate the transcriptomic changes that occur in the ovary of females during the rGths-induced vitellogenesis. Methods: Ovarian samples were collected through biopsies from the same five females at four stages of ovarian development. RNASeq libraries were constructed for all stages studied, sequenced on an Illumina HiSeq4000, and a de novo transcriptome was constructed. Differentially expressed genes (DEGs) were identified between stages and the functional properties of DEGs were characterized by comparison with the gene ontology and Kyoto Encyclopedia. An enrichment analysis of molecular pathways was performed. Results: The de novo transcriptome comprised 287,089 transcripts after filtering. As vitellogenesis progressed, more genes were significantly upregulated than downregulated. The rFsh application induced ovarian development from previtellogenesis to early-to-mid-vitellogenesis with associated pathways enriched from upregulated DEGs related to ovarian steroidogenesis and reproductive development, cholesterol metabolism, ovarian growth and differentiation, lipid accumulation, and cell-to-cell adhesion pathways. The application of rFsh and rLh at early-to-mid-vitellogenesis induced the growth of oocytes to late-vitellogenesis and, with it, the enrichment of pathways from upregulated DEGs related to the production of energy, such as the lysosomes activity. The application of rLh at late-vitellogenesis induced the completion of vitellogenesis with the enrichment of pathways linked with the switch from vitellogenesis to oocyte maturation. Conclusion: The DEGs and enriched molecular pathways described during the induced vitellogenesis of flathead grey mullet with rGths were typical of natural oogenesis reported for other fish species. Present results add new knowledge to the rGths action to further raise the possibility of using rGths in species that present similar reproductive disorders in aquaculture, the aquarium industry as well as the conservation of endangered species.
Collapse
Affiliation(s)
| | - Theodoros Danis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - Nelina Angelova
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | | | - Costas S. Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | | | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| |
Collapse
|
7
|
Functional Activity of Recombinant Forms of Amh and Synergistic Action with Fsh in European Sea Bass Ovary. Int J Mol Sci 2021; 22:ijms221810092. [PMID: 34576257 PMCID: PMC8467395 DOI: 10.3390/ijms221810092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023] Open
Abstract
Although anti-Müllerian hormone (AMH) has classically been correlated with the regression of Müllerian ducts in male mammals, involvement of this growth factor in other reproductive processes only recently come to light. Teleost is the only gnathostomes that lack Müllerian ducts despite having amh orthologous genes. In adult teleost gonads, Amh exerts a role in the early stages of germ cell development in both males and females. Mechanisms involving the interaction of Amh with gonadotropin- and growth factor-induced functions have been proposed, but our overall knowledge regarding Amh function in fish gonads remains modest. In this study, we report on Amh actions in the European sea bass ovary. Amh and type 2 Amh receptor (Amhr2) are present in granulosa and theca cells of both early and late-vitellogenic follicles and cannot be detected in previtellogenic ovaries. Using the Pichia pastoris system a recombinant sea bass Amh has been produced that is endogenously processed to generate a 12–15 kDa bioactive mature protein. Contrary to previous evidence in lower vertebrates, in explants of previtellogenic sea bass ovaries, mature Amh has a synergistic effect on steroidogenesis induced by the follicle-stimulating hormone (Fsh), increasing E2 and cyp19a1a levels.
Collapse
|
8
|
Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring. Commun Biol 2021; 4:795. [PMID: 34172814 PMCID: PMC8233318 DOI: 10.1038/s42003-021-02307-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
The underlying molecular mechanisms that determine long day versus short day breeders remain unknown in any organism. Atlantic herring provides a unique opportunity to examine the molecular mechanisms involved in reproduction timing, because both spring and autumn spawners exist within the same species. Although our previous whole genome comparisons revealed a strong association of TSHR alleles with spawning seasons, the functional consequences of these variants remain unknown. Here we examined the functional significance of six candidate TSHR mutations strongly associated with herring reproductive seasonality. We show that the L471M missense mutation in the spring-allele causes enhanced cAMP signaling. The best candidate non-coding mutation is a 5.2 kb retrotransposon insertion upstream of the TSHR transcription start site, near an open chromatin region, which is likely to affect TSHR expression. The insertion occurred prior to the split between Pacific and Atlantic herring and was lost in the autumn-allele. Our study shows that strongly associated coding and non-coding variants at the TSHR locus may both contribute to the regulation of seasonal reproduction in herring. Junfeng Chen et al. examine potential functional consequences of reproduction timing-associated TSHR alleles segregating in Atlantic herring. By comparing fish that spawn during the spring to those that spawn in the autumn, they find that the spring-allele is correlated with enhanced cAMP signaling and that both coding and non-coding variants in the TSHR locus contribute to seasonal reproduction.
Collapse
|
9
|
Kazeto Y, Suzuki H, Ozaki Y, Gen K. C-terminal peptide (hCTP) of human chorionic gonadotropin enhances in vivo biological activity of recombinant Japanese eel follicle-stimulating hormone and luteinizing hormone produced in FreeStyle 293-F cell lines. Gen Comp Endocrinol 2021; 306:113731. [PMID: 33539901 DOI: 10.1016/j.ygcen.2021.113731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Gonadotropins (Gths), follicle-stimulating hormone (Fsh), and luteinizing hormone (Lh) play central roles in the reproductive biology of vertebrates. In this study, recombinant single-chain Japanese eel Gths (rGth: rFsh and rLh), and recombinant chimeric Gths (rGth-hCTPs: rFsh-hCTP and rLh-hCTP; rGth-eCTPs: rFsh-eCTP and rLh-eCTP) with an extra O-glycosylation site (either a C-terminal peptide of human (hCTP) or equine (eCTP) chorionic gonadotropin), which are known to prolong the half-life of glycoprotein were produced in HEK293 cells and highly purified. Lectin blot analyses demonstrated that all these recombinant Gths contained N-glycans of the high mannose and complex types. In contrast, only rGth-hCTPs and rGth-eCTPs possessed highly sialylated O-linked oligosaccharides. Further analyses of glycans by liquid chromatography-mass spectrometry suggested that the species, amount, and degree of sialylation of N-glycans were comparable among recombinant Fshs and recombinant Lhs, while the amount of O-glycans with sialic acids in rGth-hCTPs was higher than that in the corresponding rGth-eCTPs. The serum levels of recombinant Gths in male eels significantly increased 12-24 h after a single injection of the Gths. The levels of rGth-hCTPs tended to be higher than those of the corresponding rGths and rGth-eCTPs throughout the experimental period, coinciding with the serum fluctuations of 11-ketotestosterone (11KT). The long-term treatment of male eels with these recombinant Gths also revealed the superiority of rGth-hCTPs in assisted reproduction; thus, the serum levels of 11KT and gonadosomatic indices in eels treated with rGth-hCTPs were higher than those in eels treated with the corresponding rGths and rGth-eCTPs. The induction of the entire process of spermatogenesis was only histologically observed in rGth-hCTPs-treated eels. These findings strongly suggest that hCTP enhances the in vivo biological activity of recombinant Japanese eel Gths due to the high abundance of O-linked glycans with sialylated antennae.
Collapse
Affiliation(s)
- Yukinori Kazeto
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Hiroshi Suzuki
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan; Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Yuichi Ozaki
- Tamaki Field Station, Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Koichiro Gen
- Tuna Aquaculture Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| |
Collapse
|
10
|
Molés G, Hausken K, Carrillo M, Zanuy S, Levavi-Sivan B, Gómez A. Generation and use of recombinant gonadotropins in fish. Gen Comp Endocrinol 2020; 299:113555. [PMID: 32687933 DOI: 10.1016/j.ygcen.2020.113555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/09/2023]
Abstract
Understanding the differential roles of the pituitary gonadotropins Fsh and Lh in gonad maturation is crucial for a successful manipulation of the reproductive process in fish, and requires species-specific tools and appropriate active hormones. With the increasing availability of fish cDNAs coding for gonadotropin subunits, the production of recombinant hormones in heterologous systems has gradually substituted the approach of isolating native hormones. These recombinant hormones can be continually produced without depending on the fish as starting material and no cross-contamination with other pituitary glycoproteins is assured. Recombinant gonadotropins should be produced in eukaryotic cells, which have glycosylation capacity, but this post-translational modification varies greatly depending on the cell system, influencing hormone activity and stability. The production of recombinant gonadotropin beta-subunits to be used as antigens for antibody production has allowed the development of immunoassays for quantification of gonadotropins in some fish species. The administration in vivo of dimeric homologous recombinant gonadotropins has been used in basic studies and as a biotechnological approach to induce gametogenesis. In addition, gene-based therapies using somatic transfer of the gonadotropin genes have been tested as an alternative for hormone delivery in vivo. In summary, the use of homologous hormonal treatments can open new strategies in aquaculture to solve reproductive problems or develop out-of-season breeding programs.
Collapse
Affiliation(s)
- G Molés
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - K Hausken
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - M Carrillo
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - S Zanuy
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - B Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - A Gómez
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain.
| |
Collapse
|
11
|
Suzuki H, Kazeto Y, Gen K, Ozaki Y. Functional analysis of recombinant single-chain Japanese eel Fsh and Lh produced in FreeStyle 293-F cell lines: Binding specificities to their receptors and differential efficacy on testicular steroidogenesis. Gen Comp Endocrinol 2020; 285:113241. [PMID: 31400434 DOI: 10.1016/j.ygcen.2019.113241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/11/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023]
Abstract
Pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play central roles in the control of gonadal development of vertebrates. In mammals, Fsh and Lh exclusively activate their respective cognate receptors: Fsh receptor (Fshr) in the Sertoli cell and Lh/choriogonadotropin receptor (Lhcgr) in the Leydig cell. In teleosts, the distinct functions of Fsh and Lh and information on cellular localization of their receptors are still poorly understood. Recently we established FreeStyle 293-F cell lines producing recombinant Japanese eel Fsh and Lh (reFsh and reLh), which form a single chain consisting of a common α-subunit and β-subunits. In this study, we conducted functional analyses of reFsh and reLh, focusing on the binding specificities to their receptors and effects on testicular steroidogenesis in vitro. Assays with gonadotropin receptors-expressing COS-7 cells indicated reFsh stimulated its cognate receptor, meanwhile reLh activated both receptors. Although results of in vitro incubations showed that reFsh and reLh induced testicular 11-ketotestosterone production in a dose and time-dependent manner by upregulating expression of steroidogenic enzymes, the effective doses of reLh were apparently lower and the effects of reLh emerged faster in comparison with reFsh. Results of quantitative real-time PCR using testicular cell fractions showed that fshr and lhcgr1 mRNA were detected both in Sertoli and Leydig cells. These analyses revealed that reFsh and reLh were biologically active and hence will be useful for future studies. Moreover, our data showed that both eel Fsh and Lh acted as steroidogenic hormones through their receptors in testicular somatic cells; however, Lh was more potent on androgen production, implying differential functions on spermatogenesis.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tsuiura, Kamiura, Saiki, Oita 879-2602, Japan.
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira, Nagasaki 851-2213, Japan.
| | - Yuichi Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| |
Collapse
|
12
|
Burow S, Mizrahi N, Maugars G, von Krogh K, Nourizadeh-Lillabadi R, Hollander-Cohen L, Shpilman M, Atre I, Weltzien FA, Levavi-Sivan B. Characterization of gonadotropin receptors Fshr and Lhr in Japanese medaka, Oryzias latipes. Gen Comp Endocrinol 2020; 285:113276. [PMID: 31536722 DOI: 10.1016/j.ygcen.2019.113276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshβα, mdLhβα, tiFshβα, tiLhβα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshβα was able to activate the mdLhr, and mdLhβα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhβα, tiFshβα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshβα, tiLhβα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshβα, mdLhβα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Naama Mizrahi
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Gersende Maugars
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Ishwar Atre
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Hollander-Cohen L, Böhm B, Hausken K, Levavi-Sivan B. Ontogeny of the specificity of gonadotropin receptors and gene expression in carp. Endocr Connect 2019; 8:1433-1446. [PMID: 31581128 PMCID: PMC6826172 DOI: 10.1530/ec-19-0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023]
Abstract
The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are the principle endocrine drivers of reproductive processes in the gonads of jawed vertebrates. Canonically, FSH recruits and maintains selected ovarian follicles for maturation and LH induces the stages of germinal vesicle breakdown and ovulation. In mammals, LH and FSH specifically activate cognate G-protein-coupled receptors that affect the proteins involved in steroidogenesis, protein hormone synthesis, and gametogenesis. This dual-gonadotropin model also exists in some fish species, but not in all. In fact, due to their diverse number of species, extended number of ecological niches, and remarkably flexible reproductive strategies, fish are appropriate as models to understand the co-evolution of gonadotropins and their receptors. In this study, we cloned and characterized the expression profile over the final stages of ovarian maturation of carp (Cyprinus carpio) LHCGR and FSHR. Expression of both gonadotropin receptors increased in the later stage of early vitellogenesis, suggesting that both LH and FSH play a role in the development of mature follicles. We additionally tested the activation of cLHCGR and cFSHR using homologous and heterologous recombinant gonadotropins in order to gain insight into an evolutionary model of permissive gonadotropin receptor function. These data suggest that carp (Cyprinus carpio) gonad development and maturation depends on a specific gonadotropin profile that does not reflect the temporally distinct dual-gonadotropin model observed in salmonids or mammals, and that permissive gonadotropin receptor activation is a specific feature of Ostariophysi, not all teleosts.
Collapse
Affiliation(s)
- Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Benjamin Böhm
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Krist Hausken
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
- Correspondence should be addressed to B Levavi-Sivan:
| |
Collapse
|
14
|
Hong SM, Choi JH, Jo SJ, Min KS, Kim DJ, Lee JM, Kusakabe T. Heterologous Production and Glycosylation of Japanese Eel Follitropin Using Silkworm. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Nocillado J, Palma P, Fielder S, Zanardini M, Dennis LP, Elizur A. Development of specific enzyme-linked immunosorbent assay for yellowtail kingfish (Seriola lalandi) follicle stimulating hormone using recombinant gonadotropins. Gen Comp Endocrinol 2019; 282:113208. [PMID: 31226255 DOI: 10.1016/j.ygcen.2019.113208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
We developed a specific competitive enzyme-linked immunosorbent assay (ELISA) for yellowtail kingfish (Seriola lalandi) follicle stimulating hormone (FSH). We previously produced a full-length single chain recombinant yellowtail kingfish FSH using the Pichia pastoris expression system. We used the same method to produce the β subunit of the hormone, against which polyclonal antibodies were raised in rabbits. We first confirmed immunoreactivity of the polyclonal antibodies with the recombinant full length FSH and FSHβ as well as plasma and pituitary FSH of sexually immature and mature yellowtail kingfish by Western blot analysis. We then developed a precise and reproducible ELISA for yellowtail kingfish FSH and validated the assay in plasma and pituitary extracts. The intra- and inter-assay coefficients of variation was <2.2% and 10.2%, respectively. The sensitivity of the assay was 78 pg/ml. For further validation of the assay, we measured the plasma FSH in immature yellowtail kingfish treated with increasing doses (blank, 50, 100 and 150 µg/kg) of kisseptin2-10 peptide from a previous study. The dose response observed in treated females was not significant, however the increased plasma FSH levels coincided with the significantly higher estradiol levels we previously reported in the treated groups. We assessed the applicability of the assay in measuring circulating FSH in other species. We observed parallelism between the linearized FSH standard curve and displacement curves of serially diluted plasma from Atlantic bluefin tuna (Thunnus thynnus) and tilapia (Oreochromis niloticus). We also observed similar parallelism with full length recombinant giant grouper (Epinephelus lanceolatus) FSH. The ELISA we developed for yellowtail kingfish FSH will be useful in understanding the reproductive biology of the species as well as enhancing its aquaculture.
Collapse
Affiliation(s)
- Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan 5021, Iloilo, Philippines
| | - Stewart Fielder
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Locked Bag 1, Nelson Bay 2315, New South Wales, Australia
| | - Maya Zanardini
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Lachlan P Dennis
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia.
| |
Collapse
|
16
|
Zeitoun MM, El-Dawas AO, Ateah MA, El-Deen MAS. Consequences of twinning induction to Noemi ewes by a recombinant human follicle-stimulating hormone compared with pituitary-derived porcine follicle-stimulating hormone on follicular dynamics, maternal biochemical attributes, and neonatal traits. Vet World 2019; 13:633-641. [PMID: 32546905 PMCID: PMC7245704 DOI: 10.14202/vetworld.2020.633-641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
AIM The aim of this study was to investigate the effectiveness of using recombinant human follicle-stimulating hormone (FSH) compared with pituitary-derived porcine FSH given as one dose or multiple doses on the neonatal traits, follicular dynamics, and maternal blood biochemical constituents in Noemi ewes. MATERIALS AND METHODS A 3×2 factorial arrangement was designed utilizing 60 adults Noemi ewes to test the effects of using two sources of FSH (human vs. porcine) in addition to control, either given as a single total dose or six descending doses to provoke twinning. Six treatments (T) were tested (n=10 ewes/T). C1 and C6 served as control ewes given saline as one dose and six doses, respectively; H1 and H6 ewes were given human FSH as one and six doses; and P1 and P6 ewes were given porcine FSH similar to the above treatments. Saline and/or FSH administration were administered at days 8, 9, and 10 of the 10-day controlled internal drug release (CIDR) implant. At CIDR removal, fertile rams were used for natural mating. Blood samples for the assessment of serum metabolites were collected. RESULTS Twinning increased in FSH-treated ewes than control. However, giving FSH of either source as a single dose resulted in a higher incidence of stillbirths. Pregnancy rates were 30, 40, 50, 60, 70, and 80% in C1, C6, P1, P6, H1, and H6, respectively. Respective percent of ewes delivering twins/multiple birth was 0, 0, 80, 66.7, 71.4, and 87.5%. FSH of human source was more efficient for folliculogenesis than porcine FSH. Administration of FSH increased blood cholesterol, decreased high-density lipoprotein; however, low-density lipoprotein levels were not different than control. Moreover, an interaction (p<0.05) exists between source and type of FSH administration on blood glucose. Six doses of FSH elevated blood protein. Blood albumin decreased by porcine-FSH but not affected by human-FSH. Blood globulins were not different due to source of FSH, whereas giving FSH as six doses increased globulins than in single-dose protocol. Contrariwise, an interaction was found between source and type of FSH administration on elevating the activity of alanine aminotransferase and reducing the activity of aspartate aminotransferase. CONCLUSION Administration of human FSH at 180 IU in six descending doses resulted in the best neonatal outcomes and maternal health in Noemi ewes.
Collapse
Affiliation(s)
- Moustafa Mohamed Zeitoun
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University 51452, Saudi Arabia
- Department of Animal and Fish Production, Faculty of Agriculture, El-Shatby, Alexandria University, Alexandria 21545, Egypt
| | - Abdulrahman O. El-Dawas
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University 51452, Saudi Arabia
| | - Mohamed A. Ateah
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University 51452, Saudi Arabia
| | - Mohamed Ahmed Shehab El-Deen
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University 51452, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
17
|
Burow S, Fontaine R, von Krogh K, Mayer I, Nourizadeh-Lillabadi R, Hollander-Cohen L, Cohen Y, Shpilman M, Levavi-Sivan B, Weltzien FA. Medaka follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression levels. Gen Comp Endocrinol 2019; 272:93-108. [PMID: 30576646 DOI: 10.1016/j.ygcen.2018.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 02/06/2023]
Abstract
The two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are of particular importance within the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates. In the current study, we demonstrate the production and validation of Japanese medaka (Oryzias latipes) recombinant (md) gonadotropins Fshβ (mdFshβ), Lhβ (mdLhβ), Fshβα (mdFshβα), and Lhβα (mdLhβα) by Pichia pastoris, the generation of specific rabbit antibodies against their respective β subunits, and their use within the development and validation of competitive enzyme-linked immunosorbent assays (ELISAs) for quantification of medaka Fsh and Lh. mdFsh and mdLh were produced as single-chain polypeptides by linking the α subunit with mdFshβ or mdLhβ mature protein coding sequences to produce a "tethered" polypeptide with the β-chain at the N-terminal and the α-chain at the C-terminal. The specificity of the antibodies raised against mdFshβ and mdLhβ was determined by immunofluorescence (IF) for Fshβ and Lhβ on medaka pituitary tissue, while comparison with fluorescence in situ hybridization (FISH) for fshb and lhb mRNA was used for validation. Competitive ELISAs were developed using antibodies against mdFshβ or mdLhβ, and the tethered proteins mdFshβα or mdLhβα for standard curves. The standard curve for the Fsh ELISA ranged from 97.6 pg/ml to 50 ng/ml, and for the Lh ELISA from 12.21 pg/ml to 6.25 ng/ml. The sensitivity of the assays for Fsh and Lh was 44.7 and 70.8 pg/ml, respectively. A profile of pituitary protein levels of medaka Fsh and Lh comparing juveniles with adults showed significant increase of protein amount from juvenile group (body length from 12 mm to 16.5 mm) to adult group (body length from 21 mm to 26.5 mm) for both hormones in male medaka. Comparing these data to a developmental profile of pituitary mRNA expression of medaka fshb and lhb, the mRNA expression of lhb also increased during male maturation and a linear regression analysis revealed a significant increase of lhb expression with increased body length that proposes a linear model. However, fshb mRNA expression did not change significantly during male development and therefore was not correlated with body length. In summary, we have developed and validated homologous ELISA assays for medaka Fsh and Lh based on proteins produced in P. pastoris, assays that will be used to study the functions and regulations of Fsh and Lh in more detail.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Yaron Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
18
|
Zapater C, Molés G, Muñoz I, Pinto PIS, Canario AVM, Gómez A. Differential involvement of the three nuclear estrogen receptors during oogenesis in European sea bass (Dicentrarchus labrax)†. Biol Reprod 2018; 100:757-772. [DOI: 10.1093/biolre/ioy227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cinta Zapater
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Gregorio Molés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Iciar Muñoz
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Patricia I S Pinto
- Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas, Faro, Portugal
| | - Adelino V M Canario
- Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas, Faro, Portugal
| | - Ana Gómez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| |
Collapse
|
19
|
Hollander-Cohen L, Golan M, Aizen J, Shpilman M, Levavi-Sivan B. Characterization of carp gonadotropins: Structure, annual profile, and carp and zebrafish pituitary topographic organization. Gen Comp Endocrinol 2018; 264:28-38. [PMID: 29183794 DOI: 10.1016/j.ygcen.2017.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022]
Abstract
Two gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), are important players in the hypothalamic-pituitary-gonadal axis of vertebrates. In the present work, we describe the construction of recombinant (r) common carp (Cyprinus carpio; c) FSH (rcFSH) and LH (rcLH) using the Pichia pastoris system, the generation of specific antibodies against their respective β subunits, and their use in the development and validation of specific ELISAs. We produced carp rLH and rFSH as single-chain polypeptides, wherein the GTH subunit α was joined with either cLHβ or cFSHβ mature protein-coding sequences to form a fusion gene that encodes a yoked polypeptide, in which the GTH β-subunit forms the N-terminal part and the α-subunit forms the C-terminal part. Competitive ELISAs were developed, using primary antibodies against rcLHβ or rcFSHβ, respectively, and rcLHβα or rcFSHβα for the standard curves. The standard curves for cLH paralleled those of pituitary extracts of the homologous fish and also those of other cyprinids species like the black carp (Mylopharyngodon piceus), goldfish (Carassius auratus), silver carp (Hypophthalmichthys molitrix), and grass carp (Ctenopharyngodon idella). We used the specific antibodies raised against cFSH and cLH to study the specific localization of the different GTH cells in the pituitary of carp and its taxonomic relative species - the zebrafish. Both FSH and LH cells are localized in the center of the proximal pars distalis enveloping both sides of the neurohypophysis. LH cells form a continuous population throughout the PPD, while FSH cells are more loosely distributed throughout the same area and form small aggregations. Marked annual changes were encountered in gonadosomatic index (GSI), follicle diameter, mRNA levels and protein levels of FSH and LH. From September to November, all fish had low GSI, and the ovary contained previtellogenic follicles. From December, the GSI level increased and remained high until March, the follicular diameter reached its maximum in January, where the ovary contained large fully grown follicles. Thereafter, spawning occurred through March and April and ended in May, and GSI level and follicle diameter increased again; and the ovary contained mid-vitellogenic follicles. LH pituitary content and mRNA levels were low at pre- and early vitellogenesis, increasing gradually during this process to reach a peak of LH mRNA levels in mid vitellogenic ovary and a peak of LH content in fully grown ovarian follicles. However, no significant change occurred in FSH pituitary content and mRNA levels in vitellogenic fish and in fish during final maturation stages. A dramatic difference was found in the total content of each gonadotropin in the pituitary, with higher LH than FSH. Moreover, follicle diameter was positively and significantly correlated with LH pituitary content and its transcript levels - but not with the pituitary content or mRNA levels of FSH. Taken together, these results indicate that in carp, LH alone is sufficient to regulate both vitellogenesis and final oocyte maturation while FSH may have another, yet undefined role.
Collapse
Affiliation(s)
- Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joseph Aizen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
20
|
Lv W, Jiang P, Wang W, Wang X, Wang K, Chang L, Fang Y, Chen J. Electrotransfer of single-chain LH gene into skeletal muscle induces early ovarian development of orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2018; 259:12-19. [PMID: 29106969 DOI: 10.1016/j.ygcen.2017.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
Luteinizing hormone (LH) plays important roles in regulating steroidogenesis and reproductive development of vertebrates. In the present paper, we study function of LH on early ovarian development of orange-spotted grouper by electrotransfer of single-chain LH gene into skeletal muscle for the first time. Short-term and long-term injection experiments were performed in this work, respectively. For short-term injection experiments, fish received one electrotransfer with the plasmid in skeletal muscle, then blood and muscle around the injected area were sampled 1, 3, 5 and 7 days after the injection, mRNA expression levels of LH gene relative to 18S were determined by quantitative real-time PCR (RT-PCR) assays and serum 17β-estradiol (E2) levels were quantified by ELISA method. The results showed that levels of mRNA of LH gene in muscle and serum E2 level increased from 1 day to 7 days after the injection. For long-term injection experiments, fish received electrotransfer with the plasmid 4 times at weekly intervals in skeletal muscle. 48 h after the last injection, blood, gonad and hypothalamus samples were collected. Transcripts of cyp19a1a, cyp19a1b and gnrh1 genes and levels of serum E2 were separately analyzed by RT-PCR assays and ELISA method, and ovarian tissues were made of paraffin sections and stained by hematoxylin-eosin by method and observed by optical microscopy. The results suggested that long-term injection of LH gene into muscle upregulated transcripts of cyp19a1a and cyp19a1b and downregulated that of gnrh1, and stimulated E2 production and early-stage oogenesis. Moreover, statistical data showed that 9 of 10 ovaries of injected fish with LH gene began to develop after the long-term experiments. These data suggest that single-chain LH gene introduced into skeletal muscle via electrotransfer can be expressed and induce the early ovarian development of juvenile orange-spotted grouper. This work contributes to solve reproductive dysfunctions associated with low hormone levels of teleosts, further it may represent the demonstration at regulation of LH on early ovarian development of orange-spotted grouper to a certain extent.
Collapse
Affiliation(s)
- Wuhong Lv
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Pengxin Jiang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenqiang Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
21
|
Pinto PIS, Andrade AR, Estêvão MD, Alvarado MV, Felip A, Power DM. Duplicated membrane estrogen receptors in the European sea bass (Dicentrarchus labrax): Phylogeny, expression and regulation throughout the reproductive cycle. J Steroid Biochem Mol Biol 2018; 178:234-242. [PMID: 29288793 DOI: 10.1016/j.jsbmb.2017.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
The numerous estrogen functions reported across vertebrates have been classically explained by their binding to specific transcription factors, the nuclear estrogen receptors (ERs). Rapid non-genomic estrogenic responses have also been recently identified in vertebrates including fish, which can be mediated by membrane receptors such as the G protein-coupled estrogen receptor (Gper). In this study, two genes for Gper, namely gpera and gperb, were identified in the genome of a teleost fish, the European sea bass. Phylogenetic analysis indicated they were most likely retained after the 3R teleost-specific whole genome duplication and raises questions about their function in male and female sea bass. Gpera expression was mainly restricted to brain and pituitary in both sexes while gperb had a widespread tissue distribution with higher expression levels in gill filaments, kidney and head kidney. Both receptors were detected in the hypothalamus and pituitary of both sexes and significant changes in gpers expression were observed throughout the annual reproductive season. In female pituitaries, gpera showed an overall increase in expression throughout the reproductive season while gperb levels remained constant. In the hypothalamus, gpera had a higher expression during vitellogenesis and decreased in fish entering the ovary maturation and ovulation stage, while gperb expression increased at the final atresia stage. In males, gpers expression was constant in the hypothalamus and pituitary throughout the reproductive cycle apart from the mid- to late testicular development stage transition when a significant up-regulation of gpera occurred in the pituitary. The differential sex, seasonal and subtype-specific expression patterns detected for the two novel gper genes in sea bass suggests they may have acquired different and/or complementary roles in mediating estrogens actions in fish, namely on the neuroendocrine control of reproduction.
Collapse
Affiliation(s)
| | | | - M Dulce Estêvão
- CCMAR - Centre of Marine Sciences, Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Av. Dr. Adelino da Palma Carlos, 8000-510 Faro, Portugal.
| | - M Victoria Alvarado
- CCMAR - Centre of Marine Sciences, Faro, Portugal; Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain.
| | - Alicia Felip
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain.
| | | |
Collapse
|
22
|
Pinto P, Velez Z, Sousa C, Santos S, Andrade A, Alvarado MV, Felip A, Zanuy S, Canário AVM. Responsiveness of pituitary to galanin throughout the reproductive cycle of male European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2017. [PMID: 28636888 DOI: 10.1016/j.ygcen.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neuropeptide galanin (Gal) is a putative factor regulating puberty onset and reproduction through its actions on the pituitary. The present study investigated the pituitary responsiveness to galanin and the patterns of galanin receptors (Galrs) expression throughout the reproductive cycle of two years old male European sea bass (Dicentrarchus labrax), an important aquaculture species. Quantitative analysis of pituitary and hypothalamus transcript expression of four galr subtypes revealed differential regulation according to the testicular developmental stage, with an overall decrease in expression from the immature stage to the mid-recrudescence stage. Incubation of pituitary cells with mammalian 1-29Gal peptide induced significant changes in cAMP concentration, with sensitivities that varied according to the testicular development stages. Furthermore 1-29Gal was able to stimulate both follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) release from pituitary cell suspensions. The magnitude of the effects and effective concentrations varied according to reproductive stage, with generalized induction of Fsh and Lh release in animals sampled in January (full spermiation). The differential expression of galrs in pituitary and hypothalamus across the reproductive season, together with the differential effects of Gal on gonadotropins release in vitro strongly suggests the involvement of the galaninergic system in the regulation the hypothalamus-pituitary-gonad axis of male sea bass. This is to our knowledge the first clear evidence for the involvement of galanin in the regulation of reproduction in non-mammalian vertebrates.
Collapse
Affiliation(s)
- P Pinto
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Z Velez
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - C Sousa
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - S Santos
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - A Andrade
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - M V Alvarado
- CSIC-Instituto de Acuicultura de Torre de la Sal, Ribera de Cabanes, 12595 Castellón, Spain
| | - A Felip
- CSIC-Instituto de Acuicultura de Torre de la Sal, Ribera de Cabanes, 12595 Castellón, Spain
| | - S Zanuy
- CSIC-Instituto de Acuicultura de Torre de la Sal, Ribera de Cabanes, 12595 Castellón, Spain
| | - A V M Canário
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
23
|
Chauvigné F, Ollé J, González W, Duncan N, Giménez I, Cerdà J. Toward developing recombinant gonadotropin-based hormone therapies for increasing fertility in the flatfish Senegalese sole. PLoS One 2017; 12:e0174387. [PMID: 28329024 PMCID: PMC5362233 DOI: 10.1371/journal.pone.0174387] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
Captive flatfishes, such as the Senegalese sole, typically produce very low volumes of sperm. This situation is particularly prevalent in the first generation (F1) of reared sole males, which limits the development of artificial fertilization methods and the implementation of selective breeding programs. In this study, we investigated whether combined treatments with homologous recombinant follicle-stimulating (rFsh) and luteinizing (rLh) hormones, produced in a mammalian host system, could stimulate spermatogenesis and enhance sperm production in Senegalese sole F1 males. In an initial autumn/winter experiment, weekly intramuscular injections with increasing doses of rFsh over 9 weeks resulted in the stimulation of gonad weight, androgen release, germ cell proliferation and entry into meiosis, and the expression of different spermatogenesis-related genes, whereas a subsequent single rLh injection potentiated spermatozoa differentiation. In a second late winter/spring trial corresponding to the sole’s natural prespawning and spawning periods, we tested the effect of repeated rLh injections on the amount and quality of sperm produced by males previously treated with rFsh for 4, 6, 8 or 10 weeks. These latter results showed that the combination of rFsh and rLh treatments could increase sperm production up to 7 times, and slightly improve the motility of the spermatozoa, although a high variability in the response was found. However, sustained administration of rFsh during spawning markedly diminished Leydig cell survival and the steroidogenic potential of the testis. These data suggest that in vivo application of rFsh and rLh is effective at stimulating spermatogenesis and sperm production in Senegalese sole F1 males, setting the basis for the future establishment of recombinant gonadotropin-based hormone therapies to ameliorate reproductive dysfunctions of this species.
Collapse
Affiliation(s)
- François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail: (FC); (IG); (JC)
| | - Judith Ollé
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | - Neil Duncan
- IRTA, Sant Carles de la Ràpita, Tarragona, Spain
| | - Ignacio Giménez
- Rara Avis Biotec, S. L., Valencia, Spain
- * E-mail: (FC); (IG); (JC)
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail: (FC); (IG); (JC)
| |
Collapse
|
24
|
Sanchís-Benlloch PJ, Nocillado J, Ladisa C, Aizen J, Miller A, Shpilman M, Levavi-Sivan B, Ventura T, Elizur A. In-vitro and in-vivo biological activity of recombinant yellowtail kingfish (Seriola lalandi) follicle stimulating hormone. Gen Comp Endocrinol 2017; 241:41-49. [PMID: 26965950 DOI: 10.1016/j.ygcen.2016.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022]
Abstract
Biologically active recombinant yellowtail kingfish follicle stimulating hormone (rytkFsh) was produced in yeast Pichia pastoris and its biological activity was demonstrated by both in-vitro and in-vivo bioassays. Incubation of ovarian and testicular fragments with the recombinant hormone stimulated E2 and 11-KT secretion, respectively. In-vivo trial in immature female YTK resulted in a significant increase of plasma E2 levels and development of oocytes. In males at the early stages of puberty, advancement of spermatogenesis was observed, however plasma 11-KT levels were reduced when administered with rytkFsh.
Collapse
Affiliation(s)
- Pablo J Sanchís-Benlloch
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Josephine Nocillado
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Claudia Ladisa
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Joseph Aizen
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Adam Miller
- Clean Seas Tuna Ltd, Port Lincoln, SA, Australia
| | - Michal Shpilman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia.
| |
Collapse
|
25
|
Yom-Din S, Hollander-Cohen L, Aizen J, Boehm B, Shpilman M, Golan M, Hurvitz A, Degani G, Levavi-Sivan B. Gonadotropins in the Russian Sturgeon: Their Role in Steroid Secretion and the Effect of Hormonal Treatment on Their Secretion. PLoS One 2016; 11:e0162344. [PMID: 27622546 PMCID: PMC5021361 DOI: 10.1371/journal.pone.0162344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022] Open
Abstract
In the reproduction process of male and female fish, pituitary derived gonadotropins (GTHs) play a key role. To be able to specifically investigate certain functions of Luteinizing (LH) and Follicle stimulating hormone (FSH) in Russian sturgeon (Acipenser gueldenstaedtii; st), we produced recombinant variants of the hormones using the yeast Pichia pastoris as a protein production system. We accomplished to create in vitro biologically active heterodimeric glycoproteins consisting of two associated α- and β-subunits in sufficient quantities. Three dimensional modelling of both GTHs was conducted in order to study the differences between the two GTHs. Antibodies were produced against the unique β-subunit of each of the GTHs, in order to be used for immunohistochemical analysis and to develop an ELISA for blood and pituitary hormone quantification. This detection technique revealed the specific localization of the LH and FSH cells in the sturgeon pituitary and pointed out that both cell types are present in substantially higher numbers in mature males and females, compared to immature fish. With the newly attained option to prevent cross-contamination when investigating on the effects of GTH administration, we compared the steroidogeneic response (estradiol and 11-Keto testosterone (11-KT) in female and males, respectively) of recombinant stLH, stFSH, and carp pituitary extract in male and female sturgeon gonads at different developmental stages. Finally, we injected commercially available gonadotropin releasing hormones analog (GnRH) to mature females, and found a moderate effect on the development of ovarian follicles. Application of only testosterone (T) resulted in a significant increase in circulating levels of 11-KT whereas the combination of GnRH + T did not affect steroid levels at all. The response pattern for estradiol demonstrated a similar situation. FSH levels showed significant increases when GnRH + T was administered, while no changes were present in LH levels.
Collapse
Affiliation(s)
- Svetlana Yom-Din
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Joseph Aizen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Benjamin Boehm
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Avshalom Hurvitz
- MIGAL Galilee Technology Center, PO Box 831, Kiryat Shmona, 10200, Israel
| | - Gad Degani
- MIGAL Galilee Technology Center, PO Box 831, Kiryat Shmona, 10200, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- * E-mail:
| |
Collapse
|
26
|
Molecular analysis and bioactivity of luteinizing hormone from Japanese eel, Anguilla japonica, produced in silkworm pupae. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Nyuji M, Kazeto Y, Izumida D, Tani K, Suzuki H, Hamada K, Mekuchi M, Gen K, Soyano K, Okuzawa K. Greater amberjack Fsh, Lh, and their receptors: Plasma and mRNA profiles during ovarian development. Gen Comp Endocrinol 2016; 225:224-234. [PMID: 26519759 DOI: 10.1016/j.ygcen.2015.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022]
Abstract
To understand the endocrine regulation of ovarian development in a multiple spawning fish, the relationship between gonadotropins (Gths; follicle-stimulating hormone [Fsh] and luteinizing hormone [Lh]) and their receptors (Gthrs; Fshr and Lhr) were investigated in greater amberjack (Seriola dumerili). cDNAs encoding the Gth subunits (Fshβ, Lhβ, and glycoprotein α [Gpα]) and Gthrs were cloned. The in vitro reporter gene assay using recombinant hormones revealed that greater amberjack Fshr and Lhr responded strongly to their own ligands. Competitive enzyme-linked immunosorbent assays (ELISAs) were developed for measuring greater amberjack Fsh and Lh. Anti-Fsh and anti-Lh antibodies were raised against recombinant chimeric single-chain Gths consisting of greater amberjack Fshβ (or Lhβ) with rabbit GPα. The validation study showed that the ELISAs were precise (intra- and inter-assay coefficient of variation, <10%) and sensitive (detection limit of 0.2ng/ml for Fsh and 0.8ng/ml for Lh) with low cross-reactivity. A good parallelism between the standard curve and serial dilutions of greater amberjack plasma and pituitary extract were obtained. In female greater amberjack, pituitary fshb, ovarian fshr, and plasma E2 gradually increased during ovarian development, and plasma Fsh significantly increased during the post-spawning period. This suggests that Fsh plays a role throughout ovarian development and during the post-spawning period. Pituitary lhb, ovarian lhr, and plasma Lh were high during the spawning period, suggesting that the synthesis and secretion of Lh, and Lhr expression are upregulated to induce final oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Daisuke Izumida
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Kosuke Tani
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Hiroshi Suzuki
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Kazuhisa Hamada
- Komame Branch, Stock Enhancement Technology Development Center, National Research Institute of Aquaculture, Fisheries Research Agency, Otsuki 788-0315, Japan
| | - Miyuki Mekuchi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2231, Japan
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Koichi Okuzawa
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| |
Collapse
|
28
|
Chauvigné F, Verdura S, Mazón MJ, Boj M, Zanuy S, Gómez A, Cerdà J. Development of a flatfish-specific enzyme-linked immunosorbent assay for Fsh using a recombinant chimeric gonadotropin. Gen Comp Endocrinol 2015; 221:75-85. [PMID: 25449660 DOI: 10.1016/j.ygcen.2014.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
Abstract
In flatfishes with asynchronous and semicystic spermatogenesis, such as the Senegalese sole (Solea senegalensis), the specific roles of the pituitary gonadotropins during germ cell development, particularly of the follicle-stimulating hormone (Fsh), are still largely unknown in part due to the lack of homologous immunoassays for this hormone. In this study, an enzyme-linked immunosorbent assay (ELISA) for Senegalese sole Fsh was developed by generating a rabbit antiserum against a recombinant chimeric single-chain Fsh molecule (rFsh-C) produced by the yeast Pichia pastoris. The rFsh-C N- and C-termini were formed by the mature sole Fsh β subunit (Fshβ) and the chicken glycoprotein hormone common α subunit (CGA), respectively. Depletion of the antiserum to remove anti-CGA antibodies further enriched the sole Fshβ-specific antibodies, which were used to develop the ELISA using the rFsh-C for the standard curve. The sensitivity of the assay was 10 and 50 pg/ml for Fsh measurement in plasma and pituitary, respectively, and the cross-reactivity with a homologous recombinant single-chain luteinizing hormone was 1%. The standard curve for rFsh-C paralleled those of serially diluted plasma and pituitary extracts of other flatfishes, such as the Atlantic halibut, common sole and turbot. In Senegalese sole males, the highest plasma Fsh levels were found during early spermatogenesis but declined during enhanced spermiation, as found in teleosts with cystic spermatogenesis. In pubertal males, however, the circulating Fsh levels were as high as in adult spermiating fish, but interestingly the Fsh receptor in the developing testis containing only spermatogonia was expressed in Leydig cells but not in the primordial Sertoli cells. These results indicate that a recombinant chimeric Fsh can be used to generate specific antibodies against the Fshβ subunit and to develop a highly sensitive ELISA for Fsh measurements in diverse flatfishes.
Collapse
Affiliation(s)
- François Chauvigné
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain; Department of Biology, University of Bergen, Bergen High Technology Centre, N-5020 Bergen, Norway
| | - Sara Verdura
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - María José Mazón
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain
| | - Mónica Boj
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Silvia Zanuy
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain
| | - Ana Gómez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595 Castellón, Spain
| | - Joan Cerdà
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain.
| |
Collapse
|
29
|
Mazón MJ, Molés G, Rocha A, Crespo B, Lan-Chow-Wing O, Espigares F, Muñoz I, Felip A, Carrillo M, Zanuy S, Gómez A. Gonadotropins in European sea bass: Endocrine roles and biotechnological applications. Gen Comp Endocrinol 2015; 221:31-41. [PMID: 26002037 DOI: 10.1016/j.ygcen.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
Follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) are central endocrine regulators of the gonadal function in vertebrates. They act through specific receptors located in certain cell types found in the gonads. In fish, the differential roles of these hormones are being progressively elucidated due to the development of suitable tools for their study. In European sea bass (Dicentrarchus labrax), isolation of the genes coding for the gonadotropin subunits and receptors allowed in first instance to conduct expression studies. Later, to overcome the limitation of using native hormones, recombinant dimeric gonadotropins, which show different functional characteristics depending on the cell system and DNA construct, were generated. In addition, single gonadotropin beta-subunits have been produced and used as antigens for antibody production. This approach has allowed the development of detection methods for native gonadotropins, with European sea bass being one of the few species where both gonadotropins can be detected in their native form. By administering recombinant gonadotropins to gonad tissues in vitro, we were able to study their effects on steroidogenesis and intracellular pathways. Their administration in vivo has also been tested for use in basic studies and as a biotechnological approach for hormone therapy and assisted reproduction strategies. In addition to the production of recombinant hormones, gene-based therapies using somatic gene transfer have been offered as an alternative. This approach has been tested in sea bass for gonadotropin delivery in vivo. The hormones produced by the genes injected were functional and have allowed studies on the action of gonadotropins in spermatogenesis.
Collapse
Affiliation(s)
- María José Mazón
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Gregorio Molés
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Rocha
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Berta Crespo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Olivier Lan-Chow-Wing
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Felipe Espigares
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Iciar Muñoz
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Alicia Felip
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Manuel Carrillo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain.
| |
Collapse
|
30
|
Maugars G, Dufour S. Demonstration of the Coexistence of Duplicated LH Receptors in Teleosts, and Their Origin in Ancestral Actinopterygians. PLoS One 2015; 10:e0135184. [PMID: 26271038 PMCID: PMC4536197 DOI: 10.1371/journal.pone.0135184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
Pituitary gonadotropins, FSH and LH, control gonad activity in vertebrates, via binding to their respective receptors, FSHR and LHR, members of GPCR superfamily. Until recently, it was accepted that gnathostomes possess a single FSHR and a single LHR, encoded by fshr and lhcgr genes. We reinvestigated this question, focusing on vertebrate species of key-phylogenetical positions. Genome analyses supported the presence of a single fshr and a single lhcgr in chondrichthyans, and in sarcopterygians including mammals, birds, amphibians and coelacanth. In contrast, we identified a single fshr but two lhgcr in basal teleosts, the eels. We further showed the coexistence of duplicated lhgcr in other actinopterygians, including a non-teleost, the gar, and other teleosts, e.g. Mexican tetra, platyfish, or tilapia. Phylogeny and synteny analyses supported the existence in actinopterygians of two lhgcr paralogs (lhgcr1/ lhgcr2), which do not result from the teleost-specific whole-genome duplication (3R), but likely from a local gene duplication that occurred early in the actinopterygian lineage. Due to gene losses, there was no impact of 3R on the number of gonadotropin receptors in extant teleosts. Additional gene losses during teleost radiation, led to a single lhgcr (lhgcr1 or lhgcr2) in some species, e.g. medaka and zebrafish. Sequence comparison highlighted divergences in the extracellular and intracellular domains of the duplicated lhgcr, suggesting differential properties such as ligand binding and activation mechanisms. Comparison of tissue distribution in the European eel, revealed that fshr and both lhgcr transcripts are expressed in the ovary and testis, but are differentially expressed in non-gonadal tissues such as brain or eye. Differences in structure-activity relationships and tissue expression may have contributed as selective drives in the conservation of the duplicated lhgcr. This study revises the evolutionary scenario and nomenclature of gonadotropin receptors, and opens new research avenues on the roles of duplicated LHR in actinopterygians.
Collapse
Affiliation(s)
- Gersende Maugars
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| |
Collapse
|
31
|
Aizen J, Kowalsman N, Niv MY, Levavi-Sivan B. Characterization of tilapia (Oreochromis niloticus) gonadotropins by modeling and immunoneutralization. Gen Comp Endocrinol 2014; 207:28-33. [PMID: 24954479 DOI: 10.1016/j.ygcen.2014.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 01/01/2023]
Abstract
In fish, both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play important roles in reproduction. Here we explored the structure and differential specificity of tilapia (t) gonadotropins (GTHs) to delineate their physiological relevance and the nature of their regulation. We generated structural models of tGTHs and GTH receptors (R) that enabled us to better understand the hormone-receptor interacting region. In tilapia, FSH release is under the control of the hypothalamic decapeptide GnRH, an effect that was abolished by specific bioneutralizing antisera [anti-recombinant (r) tFSHβ]. These antisera also reduced the basal secretion and delayed GnRH-stimulated production of 11-ketotestosterone (11KT), and dramatically reduced LH levels. Immunoneutralization of tLH using anti-rtLHβ significantly reduced its GnRH-stimulated levels. Basal 11KT and FSH levels were also reduced. Taken together, these results suggest a feedback mechanism between FSH and LH release in tilapia.
Collapse
Affiliation(s)
- Joseph Aizen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Noga Kowalsman
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Masha Y Niv
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel; The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Berta Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
32
|
Mazón MJ, Gómez A, Yilmaz O, Carrillo M, Zanuy S. Administration of Follicle-Stimulating Hormone In Vivo Triggers Testicular Recrudescence of Juvenile European Sea Bass (Dicentrarchus labrax)1. Biol Reprod 2014; 90:6. [DOI: 10.1095/biolreprod.113.110569] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
33
|
Shin J, Kim MA, Kobayashi M, Sohn YC. Production and characterization of recombinant Manchurian trout thyrotropin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1353-1363. [PMID: 23519897 DOI: 10.1007/s10695-013-9789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/09/2013] [Indexed: 06/01/2023]
Abstract
Thyrotropin (thyroid-stimulating hormone, TSH), a heterodimeric glycoprotein hormone produced in the pituitary, stimulates the thyroid gland and release of thyroid hormones. In contrast to a well-known efficacy of recombinant mammalian TSHs, there is no report about the production of teleost recombinant TSH and its biological activity. In this study, we report the production of a single-chain recombinant TSH (mtTSH) of Manchurian trout (Brachymystax lenok), by baculovirus in silkworm (Bombyx mori) larvae. The mtTSH was produced in silkworm larvae and characterized as a form of N-linked glycosylation. The cAMP signaling system in transiently transfected COS-7 cells revealed that the mtTSH was recognized by their cognate receptors, salmon TSHα and TSHβ receptors, but not LH receptor. The thyrotropic potency of the mtTSH was examined by rainbow trout basibranchial tissues containing thyroid follicles. The height of follicle epithelial cells was significantly increased by treatments of mtTSH in vivo and in vitro. In conclusion, the present study suggests that the mtTSH produced by baculovirus-silkworm larvae is a biologically active recombinant TSH.
Collapse
Affiliation(s)
- Jihye Shin
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung, 210-702, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Muñoz I, Sepulcre MP, Meseguer J, Mulero V. Molecular cloning, phylogenetic analysis and functional characterization of soluble Toll-like receptor 5 in gilthead seabream, Sparus aurata. FISH & SHELLFISH IMMUNOLOGY 2013; 35:36-45. [PMID: 23571319 DOI: 10.1016/j.fsi.2013.03.374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Two forms of TLR5, one membrane-anchored and one soluble, have been described in some teleost fish species. However, the exact role of each form has been poorly studied. In the present study, we show that the mRNA levels of soluble gilthead seabream TLR5 (sbTLR5S) are highly induced in head kidney, spleen, liver and blood after Vibrio anguillarum infection, suggesting an important role for sbTLR5S in the innate immune response against bacteria. Comparative genomic and phylogenetic analyses revealed a co-evolution pattern of both genes across fish species and a proximal location in their genomes, further suggesting a functional link between them. To further investigate this issue, the coding sequence of the sbTLR5S was cloned and the corresponding recombinant protein was produced in HEK293 cells. The gene product was secreted to the culture medium as a soluble factor and a physical interaction between flagellin and sbTLR5S was demonstrated. Collectively, these results suggest that sbTLR5S plays an important role in modulating the flagellin-mediated immune response in seabream.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | | | | | | |
Collapse
|
35
|
Mazón MJ, Zanuy S, Muñoz I, Carrillo M, Gómez A. Luteinizing Hormone Plasmid Therapy Results in Long-Lasting High Circulating Lh and Increased Sperm Production in European Sea Bass (Dicentrarchus labrax)1. Biol Reprod 2013; 88:32. [DOI: 10.1095/biolreprod.112.102640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
36
|
Chen J, Zhang Y, Tang Z, Mao J, Kuang Z, Qin C, Li W. Production of recombinant orange-spotted grouper (Epinephelus coioides) follicle-stimulating hormone (FSH) in single-chain form and dimer form by Pichia pastoris and their biological activities. Gen Comp Endocrinol 2012; 178:237-49. [PMID: 22684083 DOI: 10.1016/j.ygcen.2012.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022]
Abstract
FSH is a key regulator of steroidogenesis and gonadal growth in teleosts. However, function of FSH is elusive in grouper due to the lack of purified and native FSH. In the present study, we reported production of bioactive orange-spotted grouper (Epinephelus coioides) FSH in dimer form and single-chain form by Pichia pastoris. Dimer form of recombinant grouper FSH (rgFSHba) was accomplished by co-expressing mature FSHb-subunit and a-subunit genes. Fusion of mature FSHb-subunit and a-subunit genes together linking with a polypeptide (4×(Gly-Ser)-Gly-Thr) gene generated single-chain form of recombinant grouper FSH (rgFSHb-a). Recombinant grouper common α-subunit (rgCga) and FSHb-subunit (rgFSHb) were also separately produced. Recombinant proteins were verified by Western blot and mass spectrometry assays, and characterized by deglycosylation analysis. Deglycosylation assay suggested that glycosylation of recombinant FSH mainly occurred on common a-subunit. Bioactivities of recombinant proteins were initially evaluated by activating grouper FSH receptor, and further demonstrated by incubating ovarian fragments of adult grouper and intraperitoneal injection in juvenile female grouper. Two forms of recombinant FSH presented similar biological activities of activating FSH receptor and stimulating in vitro testosterone (T) and estradiol-17β (E2) secretion, though the dimer form functioned slightly weaker than the single-chain form. However, injections of rgFSHb-a or rgFSHba could significantly increase serum T and E2 levels, induce early ovarian development, reduce hypothalamic gnrh1 mRNA level, and increase hypothalamic cyp19a1b mRNA level. Data in this study suggested that recombinant gonadotropin could be produced in dimer form or single-chain form by P. pastoris, and FSH could regulate steroidogenesis and early ovarian development in juvenile grouper.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Chauvigné F, Verdura S, Mazón MJ, Duncan N, Zanuy S, Gómez A, Cerdà J. Follicle-stimulating hormone and luteinizing hormone mediate the androgenic pathway in Leydig cells of an evolutionary advanced teleost. Biol Reprod 2012; 87:35. [PMID: 22649073 DOI: 10.1095/biolreprod.112.100784] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endocrine pathways controlling vertebrate spermatogenesis are well established in mammals where the pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) exclusively activate the FSH receptor (FSHR) in Sertoli cells and the LH/choriogonadotropin receptor (LHCGR) in Leydig cells, respectively. In some teleosts, however, it has been shown that Lh can cross-activate the Fshra ortholog, and that Leydig cells coexpress the Lhcgrba and Fshra paralogs, thus mediating the androgenic function of Fsh in the testis. Here, we investigated whether these proposed mechanisms are conserved in an evolutionary advanced pleuronectiform teleost, the Senegalese sole (Solea senegalensis). Transactivation assays using sole Fshra- and Lhcgrba-expressing cells and homologous single-chain recombinant gonadotropins (rFsh and rLh) showed that rFsh exclusively activated Fshra, whereas rLh stimulated both Lhcgrba and Fshra. The latter cross-activation of Fshra by rLh occurred with an EC(50) 4-fold higher than for rFsh. Both recombinant gonadotropins elicited a significant androgen release response in vitro and in vivo, which was blocked by protein kinase A (PKA) and 3beta-hydroxysteroid dehydrogenase inhibitors, suggesting that activation of steroidogenesis through the cAMP/PKA pathway is the major route for both Lh- and Fsh-stimulated androgen secretion. Combined in situ hybridization and immunocytochemistry using cell-specific molecular markers and antibodies specifically raised against sole Fshra and Lhcgrba demonstrated that both receptors are expressed in Leydig cells, whereas Sertoli cells only express Fshra. These data suggest that Fsh-mediated androgen production through the activation of cognate receptors in Leydig cells is a conserved pathway in Senegalese sole.
Collapse
|
38
|
Minegishi Y, Dirks RP, de Wijze DL, Brittijn SA, Burgerhout E, Spaink HP, van den Thillart GEEJM. Quantitative bioassays for measuring biologically functional gonadotropins based on eel gonadotropic receptors. Gen Comp Endocrinol 2012; 178:145-52. [PMID: 22580328 DOI: 10.1016/j.ygcen.2012.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/12/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
Significant declines in eel stocks have been noted in many parts of the world. Because eel aquaculture is dependent on wild-caught juveniles, there is a need to achieve artificial reproduction. Adult eel maturation is currently induced by repeated injections of purified gonadotropin (human chorionic gonadotropin [hCG]) or pituitary extract. Thus the determination of the biological efficacy and quantification of internal levels of gonadotropic hormones is important for optimizing artificial reproduction protocols. To quantify the plasma levels of biologically functional gonadotropic hormones, we developed a bioassay for luteinizing hormone (LH) and follicle-stimulating hormone (FSH) based on the stable expression of receptors in HEK293 cells of the Japanese eel Anguilla japonica LH (ajLHR) and the European eel Anguilla anguilla FSH (aaFSHR), respectively. Such cells also contain a firefly luciferase reporter gene driven by a cAMP-responsive element (CRE-Luc). We found that the obtained stable cells, with ajLHR, responded linearly to a more than 100,000-fold concentration range of hCG diluted in saline. The cells with aaFSHR showed a linear response to a 1000-fold concentration range of salmon pituitary extract mixed with saline. The biological functionality of the LH and FSH bioassays was validated using hCG, human FSH, and pituitary extracts from salmon, carp and eel. Since the toxins in eel plasma damaged the HEK293 cells, the protocol was adapted to selectively inactivate the toxins by heating at 37°C for 24h. This process successfully enabled the monitoring of hormone levels in blood plasma sampled from hCG-injected eels. In this paper, we describe the development of gonadotropin bioassays that will be useful for improving reproduction protocols in eel aquaculture.
Collapse
Affiliation(s)
- Y Minegishi
- Institute of Biology Leiden, Sylvius Laboratory, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Development of an in vitro system for functional studies of ovarian follicular cells in European sea bass (Dicentrarchus labrax). Cytotechnology 2012; 65:273-86. [PMID: 22760552 DOI: 10.1007/s10616-012-9484-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/24/2012] [Indexed: 10/28/2022] Open
Abstract
The layers of follicular cells surrounding the oocyte and the interactions among them and the germ cells are critical for the successful maintenance of the ovarian functions. We have set up the isolation procedure and culture conditions of sea bass ovarian follicular cells. Their behaviour at three different physiological temperatures (25, 18 and 15 °C) was evaluated by verifying their steroidogenic capacity along time together with the expression of follicular specific genes (cyp19a1, fshr, lhr and star). These characteristics revealed this culture as a good in vitro alternative to short term in vivo studies at the level of the ovarian follicle. Moreover, to evaluate the suitability of this system for gene function studies conditions for transient transfection of plasmid DNA were optimized. Finally, the characteristics of the follicular culture were not affected by freezing and thawing cycles what facilitates the performance of experiments independently of the reproductive season. In conclusion, we have developed an in vitro homologous system that enables functional and gene expression studies and resembles the in vivo situation in the ovarian follicle.
Collapse
|
40
|
Molés G, Gómez A, Carrillo M, Zanuy S. Development of a homologous enzyme-linked immunosorbent assay for European sea bass FSH. Reproductive cycle plasma levels in both sexes and in yearling precocious and non-precocious males. Gen Comp Endocrinol 2012; 176:70-8. [PMID: 22227219 DOI: 10.1016/j.ygcen.2011.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/21/2022]
Abstract
Since the late 1980s, gonadotropins have been isolated and characterized in several fish species, but specific immunoassays for the follicle-stimulating hormone (FSH) have only been developed for a few. The present study reports the development and use of a specific and homologous competitive ELISA for measuring FSH in European sea bass (Dicentrarchus labrax) using a recombinant FSH and its specific antiserum. Recombinant European sea bass FSHβ and FSH heterodimer were produced in the methylotrophic yeast Pichia pastoris and a baculovirus expression system, respectively. Specific polyclonal antibodies, generated by rabbit immunization against recombinant FSHβ, were used at a final dilution of 1:8000. Recombinant FSH heterodimer was used to generate a standard curve and for coating of microplates (166 μg/ml). The sensitivity of the assay was 0.5 ng/ml [B(0)-2SD], and the intra- and inter-assay coefficients of variation were 2.12% (n=10) and 5.44% (n=16) (B(i)/B(0) ∼45%), respectively. A high degree of parallelism was observed between the standard curve and serially diluted plasma and pituitary samples of European sea bass. The ELISA developed was used to study the plasma FSH profiles of mature males and females during the reproductive cycle, and those of immature juvenile males under different light regimes. The analysis showed that FSH increased significantly during the intermediate stages of spermatogenesis and during vitellogenesis. Analyses in immature juvenile males showed that the continuous light photoperiod significantly reduced plasma FSH levels, and consequently, testicular growth and precocious puberty. In conclusion, the immunoassay developed has proven to be sensitive, specific and accurate for measuring European sea bass FSH, and it represents a valuable tool for future studies on the reproductive endocrinology of this species.
Collapse
Affiliation(s)
- Gregorio Molés
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de Sal, Spanish National Research Council (CSIC), Torre de Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | | | |
Collapse
|
41
|
Molés G, Gómez A, Carrillo M, Rocha A, Mylonas CC, Zanuy S. Determination of Fsh Quantity and Bioactivity During Sex Differentiation and Oogenesis in European Sea Bass1. Biol Reprod 2011; 85:848-57. [DOI: 10.1095/biolreprod.111.091868] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|