1
|
Fort C, Walker BJ, Baert L, Wheeler RJ. Proteins with proximal-distal asymmetries in axoneme localisation control flagellum beat frequency. Nat Commun 2025; 16:3237. [PMID: 40185731 PMCID: PMC11971395 DOI: 10.1038/s41467-025-58405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
The 9 + 2 microtubule-based axoneme within motile flagella is well known for its symmetry. However, examples of asymmetric structures and proteins asymmetrically positioned within the 9 + 2 axoneme architecture have been identified. These occur in multiple different organisms, particularly involving the inner or outer dynein arms. Here, we comprehensively analyse conserved proximal-distal asymmetries in the uniflagellate trypanosomatid eukaryotic parasites. Building on the genome-wide localisation screen in Trypanosoma brucei we identify conserved proteins with an analogous asymmetric localisation in the related parasite Leishmania mexicana. Using deletion mutants, we find which are necessary for normal cell swimming, flagellum beat parameters and axoneme ultrastructure. Using combinatorial endogenous fluorescent tagging and deletion, we map co-dependencies for assembly into their normal asymmetric localisation. This revealed 15 proteins, 9 known and 6 novel, with a conserved proximal or distal axoneme-specific localisation. Most are outer dynein arm associated and show that there are multiple classes of proximal-distal asymmetry - one which is dependent on the docking complex. Many of these proteins are necessary for retaining the normal frequency of the tip-to-base symmetric flagellar waveform. Our comprehensive mapping reveals unexpected contributions of proximal-specific axoneme components to the frequency of waveforms initiated distally.
Collapse
Affiliation(s)
- Cecile Fort
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Didcot, UK
| | - Benjamin J Walker
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Department of Mathematics, University College London, London, UK
| | - Lore Baert
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Lindemann CB, Lesich KA. The mechanics of cilia and flagella: What we know and what we need to know. Cytoskeleton (Hoboken) 2024; 81:648-668. [PMID: 38780123 DOI: 10.1002/cm.21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In this review, we provide a condensed overview of what is currently known about the mechanical functioning of the flagellar/ciliary axoneme. We also present a list of 10 specific areas where our current knowledge is incomplete and explain the benefits of further experimental investigation. Many of the physical parameters of the axoneme and its component parts have not been determined. This limits our ability to understand how the axoneme structure contributes to its functioning in several regards. It restricts our ability to understand how the mechanics of the structure contribute to the regulation of motor function. It also confines our ability to understand the three-dimensional workings of the axoneme and how various beating modes are accomplished. Lastly, it prevents accurate computational modeling of the axoneme in three-dimensions.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
3
|
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024; 13:1722. [PMID: 39451240 PMCID: PMC11506562 DOI: 10.3390/cells13201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PKD2 was first identified as the pathogenic protein for autosomal dominant polycystic kidney disease (ADPKD) and is widely recognized as an ion channel. Subsequent studies have shown that PKD2 is widely expressed in various animal tissues and plays a crucial role in tissue and organ development. Additionally, PKD2 is conserved from single-celled organisms to vertebrates. Here, we provide an overview of recent advances in the function of PKD2 in key model animals, focusing on the establishment of left-right organ asymmetry, renal homeostasis, cardiovascular development, and signal transduction in reproduction and mating. We specifically focus on the roles of PKD2 in development and highlight future prospects for PKD2 research.
Collapse
Affiliation(s)
- Shuo Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Tröster M, Kotrba M, Heß M. Coevolution of spermatozoa and spermathecae in Lonchopteridae (Diptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 82:101385. [PMID: 39265194 DOI: 10.1016/j.asd.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Across the species of spear-winged flies (Diptera: Lonchopteridae) there is a remarkable variation in size of the female reproductive tract, especially of the spermathecae. In this family there are two tubular spermathecae, which are divided into four morphologically and histologically distinct sections of different lengths and functions. The dimensions of the spermathecae and their individual sections were examined across 11 Lonchoptera species and related to the dimensions of the respective spermatozoa. 3D reconstructions from serial sectioning made it possible to include the volume in these considerations, which is a new approach in this context. Results show that the spermathecae are always longer than the respective spermatozoa. There is a highly significant positive linear correlation between the length of the spermatozoa and the length of the spermathecae in total as well as some of the individual spermathecal sections, suggesting a coevolution of these characters. Moreover, the volume of the spermathecae is much larger in those species with longer and more voluminous spermatozoa, but the volume increase is not sufficient to keep constant the number of spermatozoa that fit within. The observed patterns are discussed with respect to their functional and evolutionary implications, including a new hypothesis on the possible selective advantage of increased spermatozoon length.
Collapse
Affiliation(s)
- Michael Tröster
- SNSB-Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247, München, Germany; Ludwig-Maximilians-Universität, Biocenter, Großhaderner Straße 2, D-82152, Planegg-Martinsried, Germany.
| | - Marion Kotrba
- SNSB-Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247, München, Germany
| | - Martin Heß
- Ludwig-Maximilians-Universität, Biocenter, Großhaderner Straße 2, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Vedelek V, Jankovics F, Zádori J, Sinka R. Mitochondrial Differentiation during Spermatogenesis: Lessons from Drosophila melanogaster. Int J Mol Sci 2024; 25:3980. [PMID: 38612789 PMCID: PMC11012351 DOI: 10.3390/ijms25073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- Department of Medical Biology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, 6723 Szeged, Hungary;
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
6
|
Hafezi Y, Omurzakov A, Carlisle JA, Caldas IV, Wolfner MF, Clark AG. The Drosophila melanogaster Y-linked gene, WDY, is required for sperm to swim in the female reproductive tract. Commun Biol 2024; 7:90. [PMID: 38216628 PMCID: PMC10786823 DOI: 10.1038/s42003-023-05717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024] Open
Abstract
Unique patterns of inheritance and selection on Y chromosomes have led to the evolution of specialized gene functions. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as those of wild-type and that mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract. Therefore, although mature sperm are produced by WDY mutant males, and are transferred to females, those sperm fail to enter the female sperm storage organs. We report genotype-dependent and regional differences in sperm motility that appear to break the correlation between sperm tail beating and propulsion. Furthermore, we identify a significant change in hydrophobicity at a residue at a putative calcium-binding site in WDY orthologs at the split between the melanogaster and obscura species groups, when WDY first became Y-linked. This suggests that a major functional change in WDY coincided with its appearance on the Y chromosome. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.
Collapse
Affiliation(s)
- Yassi Hafezi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Arsen Omurzakov
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Jolie A Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Ian V Caldas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
7
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
8
|
Gandara ACP, Drummond-Barbosa D. Chronic exposure to warm temperature causes low sperm abundance and quality in Drosophila melanogaster. Sci Rep 2023; 13:12331. [PMID: 37518578 PMCID: PMC10387475 DOI: 10.1038/s41598-023-39360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Temperature influences male fertility across organisms; however, how suboptimal temperatures affect adult spermatogenesis remains understudied. In a recent study on Drosophila melanogaster oogenesis, we observed a drastic reduction in the fertility of adult males exposed to warm temperature (29 °C). Here, we show that males become infertile at 29 °C because of low sperm abundance and quality. The low sperm abundance at 29 °C does not stem from reduced germline stem cell or spermatid numbers, as those numbers remain comparable between 29 °C and control 25 °C. Notably, males at cold 18 °C and 29 °C had similarly increased frequencies of spermatid elongation and individualization defects which, considering the high sperm abundance and male fertility measured at 18 °C, indicate that spermatogenesis has a high tolerance for elongation and individualization defects. Interestingly, the abundance of sperm at 29 °C decreases abruptly and with no evidence of apoptosis as they transition into the seminal vesicle near the end of spermatogenesis, pointing to sperm elimination through an unknown mechanism. Finally, sperm from males at 29 °C fertilize eggs less efficiently and do not support embryos past the first stage of embryogenesis, indicating that poor sperm quality is an additional cause of male infertility at 29 °C.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, WI, 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Gandara ACP, Drummond-Barbosa D. Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis. Development 2022; 149:274368. [PMID: 35156684 PMCID: PMC8959152 DOI: 10.1242/dev.200149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
Despite their medical and economic relevance, it remains largely unknown how suboptimal temperatures affect adult insect reproduction. Here, we report an in-depth analysis of how chronic adult exposure to suboptimal temperatures affects oogenesis using the model insect Drosophila melanogaster. In adult females maintained at 18°C (cold) or 29°C (warm), relative to females at the 25°C control temperature, egg production was reduced through distinct cellular mechanisms. Chronic 18°C exposure improved germline stem cell maintenance, survival of early germline cysts and oocyte quality, but reduced follicle growth with no obvious effect on vitellogenesis. By contrast, in females at 29°C, germline stem cell numbers and follicle growth were similar to those at 25°C, while early germline cyst death and degeneration of vitellogenic follicles were markedly increased and oocyte quality plummeted over time. Finally, we also show that these effects are largely independent of diet, male factors or canonical temperature sensors. These findings are relevant not only to cold-blooded organisms, which have limited thermoregulation, but also potentially to warm-blooded organisms, which are susceptible to hypothermia, heatstroke and fever.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Morcillo i Soler P, Hidalgo C, Fekete Z, Zalanyi L, Khalil ISM, Yeste M, Magdanz V. Bundle formation of sperm: Influence of environmental factors. Front Endocrinol (Lausanne) 2022; 13:957684. [PMID: 36299459 PMCID: PMC9591104 DOI: 10.3389/fendo.2022.957684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cooperative behaviour of sperm is one of the mechanisms that plays a role in sperm competition. It has been observed in several species that spermatozoa interact with each other to form agglomerates or bundles. In this study, we investigate the effect of physical and biochemical factors that will most likely promote bundle formation in bull sperm. These factors include fluid viscosity, swim-up process, post-thaw incubation time and media additives which promote capacitation. While viscosity does not seem to influence the degree of sperm bundling, swim-up, post-thaw migration time and suppressed capacitation increase the occurrence of sperm bundles. This leads to the conclusion that sperm bundling is a result of hydrodynamic and adhesive interactions between the cells which occurs frequently during prolonged incubation times.
Collapse
Affiliation(s)
| | - Carlos Hidalgo
- Centro de Biotecnológia Animal SERIDA-DEVA-GIJON, Gijón, Spain
| | - Zoltán Fekete
- ONGO Vettech Ltd., Martonvásár, Hungary
- Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Laszlo Zalanyi
- ONGO Vettech Ltd., Martonvásár, Hungary
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Marc Yeste
- University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Veronika Magdanz
- Smart Nanobiodevices Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Veronika Magdanz,
| |
Collapse
|
11
|
Maurya S, Kesari KK, Roychoudhury S, Kolleboyina J, Jha NK, Jha SK, Sharma A, Kumar A, Rathi B, Kumar D. Metabolic Dysregulation and Sperm Motility in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:257-273. [DOI: 10.1007/978-3-030-89340-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Gaffney EA, Ishimoto K, Walker BJ. Modelling Motility: The Mathematics of Spermatozoa. Front Cell Dev Biol 2021; 9:710825. [PMID: 34354994 PMCID: PMC8329702 DOI: 10.3389/fcell.2021.710825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
In one of the first examples of how mechanics can inform axonemal mechanism, Machin's study in the 1950s highlighted that observations of sperm motility cannot be explained by molecular motors in the cell membrane, but would instead require motors distributed along the flagellum. Ever since, mechanics and hydrodynamics have been recognised as important in explaining the dynamics, regulation, and guidance of sperm. More recently, the digitisation of sperm videomicroscopy, coupled with numerous modelling and methodological advances, has been bringing forth a new era of scientific discovery in this field. In this review, we survey these advances before highlighting the opportunities that have been generated for both recent research and the development of further open questions, in terms of the detailed characterisation of the sperm flagellum beat and its mechanics, together with the associated impact on cell behaviour. In particular, diverse examples are explored within this theme, ranging from how collective behaviours emerge from individual cell responses, including how these responses are impacted by the local microenvironment, to the integration of separate advances in the fields of flagellar analysis and flagellar mechanics.
Collapse
Affiliation(s)
- Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
| | - Benjamin J. Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Grewal G, Patlar B, Civetta A. Expression of Mst89B and CG31287 is Needed for Effective Sperm Storage and Egg Fertilization in Drosophila. Cells 2021; 10:cells10020289. [PMID: 33535499 PMCID: PMC7912738 DOI: 10.3390/cells10020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/05/2022] Open
Abstract
In Drosophila, male reproductive fitness can be affected by any number of processes, ranging from development of gametes, transfer to and storage of mature sperm within the female sperm storage organs, and utilization of sperm for fertilization. We have previously identified the 89B cytogenetic map position of D. melanogaster as a hub for genes that effect male paternity success when disturbed. Here, we used RNA interference to test 11 genes that are highly expressed in the testes and located within the 89B region for their role in sperm competition and male fecundity when their expression is perturbed. Testes-specific knockdown (KD) of bor and CSN5 resulted in complete sterility, whereas KD of CG31287, Manf and Mst89B, showed a breakdown in sperm competitive success when second to mate (P2 < 0.5) and reduced fecundity in single matings. The low fecundity of Manf KD is explained by a significant reduction in the amount of mature sperm produced. KD of Mst89B and CG31287 does not affect sperm production, sperm transfer into the female bursa or storage within 30 min after mating. Instead, a significant reduction of sperm in female storage is observed 24 h after mating. Egg hatchability 24 h after mating is also drastically reduced for females mated to Mst89B or CG31287 KD males, and this reduction parallels the decrease in fecundity. We show that normal germ-line expression of Mst89B and CG31287 is needed for effective sperm usage and egg fertilization.
Collapse
|
14
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
15
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
16
|
Dissecting Fertility Functions of Drosophila Y Chromosome Genes with CRISPR. Genetics 2020; 214:977-990. [PMID: 32098759 DOI: 10.1534/genetics.120.302672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
Gene-poor, repeat-rich regions of the genome are poorly understood and have been understudied due to technical challenges and the misconception that they are degenerating "junk." Yet multiple lines of evidence indicate these regions may be an important source of variation that could drive adaptation and species divergence, particularly through regulation of fertility. The ∼40 Mb Y chromosome of Drosophila melanoga st er contains only 16 known protein-coding genes, and is highly repetitive and entirely heterochromatic. Most of the genes originated from duplication of autosomal genes and have reduced nonsynonymous substitution rates, suggesting functional constraint. We devised a genetic strategy for recovering and retaining stocks with sterile Y-linked mutations and combined it with CRISPR to create mutants with deletions that disrupt three Y-linked genes. Two genes, PRY and FDY, had no previously identified functions. We found that PRY mutant males are subfertile, but FDY mutant males had no detectable fertility defects. FDY, the newest known gene on the Y chromosome, may have fertility effects that are conditional or too subtle to detect. The third gene, CCY, had been predicted but never formally shown to be required for male fertility. CRISPR targeting and RNA interference of CCY caused male sterility. Surprisingly, however, our CCY mutants were sterile even in the presence of an extra wild-type Y chromosome, suggesting that perturbation of the Y chromosome can lead to dominant sterility. Our approach provides an important step toward understanding the complex functions of the Y chromosome and parsing which functions are accomplished by genes vs. repeat elements.
Collapse
|
17
|
Zhao L, Hou Y, McNeill NA, Witman GB. The unity and diversity of the ciliary central apparatus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190164. [PMID: 31884923 PMCID: PMC7017334 DOI: 10.1098/rstb.2019.0164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Nearly all motile cilia and flagella (terms here used interchangeably) have a '9+2' axoneme containing nine outer doublet microtubules and two central microtubules. The central pair of microtubules plus associated projections, termed the central apparatus (CA), is involved in the control of flagellar motility and is essential for the normal movement of '9+2' cilia. Research using the green alga Chlamydomonas reinhardtii, an important model system for studying cilia, has provided most of our knowledge of the protein composition of the CA, and recent work using this organism has expanded the number of known and candidate CA proteins nearly threefold. Here we take advantage of this enhanced proteome to examine the genomes of a wide range of eukaryotic organisms, representing all of the major phylogenetic groups, to identify predicted orthologues of the C. reinhardtii CA proteins and explore how widely the proteins are conserved and whether there are patterns to this conservation. We also discuss in detail two contrasting groups of CA proteins-the ASH-domain proteins, which are broadly conserved, and the PAS proteins, which are restricted primarily to the volvocalean algae. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | | | | | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
18
|
Dai DH, Qazi IH, Ran MX, Liang K, Zhang Y, Zhang M, Zhou GB, Angel C, Zeng CJ. Exploration of miRNA and mRNA Profiles in Fresh and Frozen-Thawed Boar Sperm by Transcriptome and Small RNA Sequencing. Int J Mol Sci 2019; 20:ijms20040802. [PMID: 30781801 PMCID: PMC6413023 DOI: 10.3390/ijms20040802] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Due to lower farrowing rate and reduced litter size with frozen-thawed semen, over 90% of artificial insemination (AI) is conducted using liquid stored boar semen. Although substantial progress has been made towards optimizing the cryopreservation protocols for boar sperm, the influencing factors and underlying mechanisms related to cryoinjury and freeze tolerance of boar sperm remain largely unknown. In this study, we report the differential expression of mRNAs and miRNAs between fresh and frozen-thawed boar sperm using high-throughput RNA sequencing. Our results showed that 567 mRNAs and 135 miRNAs were differentially expressed (DE) in fresh and frozen-thawed boar sperm. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the majority of DE mRNAs were enriched in environmental information processing such as cytokine-cytokine receptor interactions, PI3K-Akt signaling, cell adhesion, MAPK, and calcium signaling pathways. Moreover, the targets of DE miRNAs were enriched in significant GO terms such as cell process, protein binding, and response to stimuli. In conclusion, we speculate that DE mRNAs and miRNAs are heavily involved in boar sperm response to environment stimuli, apoptosis, and metabolic activities. The differences in expression also reflect the various structural and functional changes in sperm during cryopreservation.
Collapse
Affiliation(s)
- Ding-Hui Dai
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - Ming-Xia Ran
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kai Liang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ming Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Christiana Angel
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Edwards BFL, Wheeler RJ, Barker AR, Moreira-Leite FF, Gull K, Sunter JD. Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry. Proc Natl Acad Sci U S A 2018; 115:E7341-E7350. [PMID: 30030284 PMCID: PMC6077732 DOI: 10.1073/pnas.1805827115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 9 + 2 axoneme structure of the motile flagellum/cilium is an iconic, apparently symmetrical cellular structure. Recently, asymmetries along the length of motile flagella have been identified in a number of organisms, typically in the inner and outer dynein arms. Flagellum-beat waveforms are adapted for different functions. They may start either near the flagellar tip or near its base and may be symmetrical or asymmetrical. We hypothesized that proximal/distal asymmetry in the molecular composition of the axoneme may control the site of waveform initiation and the direction of waveform propagation. The unicellular eukaryotic pathogens Trypanosoma brucei and Leishmania mexicana often switch between tip-to-base and base-to-tip waveforms, making them ideal for analysis of this phenomenon. We show here that the proximal and distal portions of the flagellum contain distinct outer dynein arm docking-complex heterodimers. This proximal/distal asymmetry is produced and maintained through growth by a concentration gradient of the proximal docking complex, generated by intraflagellar transport. Furthermore, this asymmetry is involved in regulating whether a tip-to-base or base-to-tip beat occurs, which is linked to a calcium-dependent switch. Our data show that the mechanism for generating proximal/distal flagellar asymmetry can control waveform initiation and propagation direction.
Collapse
Affiliation(s)
| | - Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom;
| | - Amy Rachel Barker
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| |
Collapse
|
20
|
Degner EC, Harrington LC. A mosquito sperm's journey from male ejaculate to egg: Mechanisms, molecules, and methods for exploration. Mol Reprod Dev 2018; 83:897-911. [PMID: 27147424 PMCID: PMC5086422 DOI: 10.1002/mrd.22653] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The fate of mosquito sperm in the female reproductive tract has been addressed sporadically and incompletely, resulting in significant gaps in our understanding of sperm-female interactions that ultimately lead to fertilization. As with other Diptera, mosquito sperm have a complex journey to their ultimate destination, the egg. After copulation, sperm spend a short time at the site of insemination where they are hyperactivated and quickly congregate near the entrance of the spermathecal ducts. Within minutes, they travel up the narrow ducts to the spermathecae, likely through the combined efforts of female transport and sperm locomotion. The female nourishes sperm and maintains them in these permanent storage organs for her entire life. When she is ready, the female coordinates the release of sperm with ovulation, and the descending egg is fertilized. Although this process has been well studied via microscopy, many questions remain regarding the molecular processes that coordinate sperm motility, movement through the reproductive tract, maintenance, and usage. In this review, we describe the current understanding of a mosquito sperm's journey to the egg, highlighting gaps in our knowledge of mosquito reproductive biology. Where insufficient information is available in mosquitoes, we describe analogous processes in other organisms, such as Drosophila melanogaster, as a basis for comparison, and we suggest future areas of research that will illuminate how sperm successfully traverse the female reproductive tract. Such studies may yield molecular targets that could be manipulated to control populations of vector species. Mol. Reprod. Dev. 83: 897-911, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ethan C Degner
- Department of Entomology, Cornell University, Ithaca, New York
| | | |
Collapse
|
21
|
Tomaru M, Ohsako T, Watanabe M, Juni N, Matsubayashi H, Sato H, Takahashi A, Yamamoto MT. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster. G3 (BETHESDA, MD.) 2018; 8:149-160. [PMID: 29158336 PMCID: PMC5765343 DOI: 10.1534/g3.117.300171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps) of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611 Thus, shps may define a new class of gene responsible for sperm storage.
Collapse
Affiliation(s)
- Masatoshi Tomaru
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Takashi Ohsako
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masahide Watanabe
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Naoto Juni
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiroshi Matsubayashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiromi Sato
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Ayako Takahashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masa-Toshi Yamamoto
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| |
Collapse
|
22
|
Cooper JC, Phadnis N. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels. Genome Biol Evol 2017; 9:1938-1949. [PMID: 28810709 PMCID: PMC5553355 DOI: 10.1093/gbe/evx131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior.
Collapse
|
23
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
24
|
Gracielle I, Tidon R, Báo S. Structure and ultrastructure of spermatozoon in six species of Drosophilidae (Diptera). Tissue Cell 2016; 48:596-604. [DOI: 10.1016/j.tice.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
|
25
|
Andere AA, Platt RN, Ray DA, Picard CJ. Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research. BMC Genomics 2016; 17:842. [PMID: 27793085 PMCID: PMC5084420 DOI: 10.1186/s12864-016-3187-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/22/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Blow flies (Diptera: Calliphoridae) are important medical, veterinary and forensic insects encompassing 8 % of the species diversity observed in the calyptrate insects. Few genomic resources exist to understand the diversity and evolution of this group. RESULTS We present the hybrid (short and long reads) draft assemblies of the male and female genomes of the common North American blow fly, Phormia regina (Diptera: Calliphoridae). The 550 and 534 Mb draft assemblies contained 8312 and 9490 predicted genes in the female and male genomes, respectively; including > 93 % conserved eukaryotic genes. Putative X and Y chromosomes (21 and 14 Mb, respectively) were assembled and annotated. The P. regina genomes appear to contain few mobile genetic elements, an almost complete absence of SINEs, and most of the repetitive landscape consists of simple repetitive sequences. Candidate gene approaches were undertaken to annotate insecticide resistance, sex-determining, chemoreceptors, and antimicrobial peptides. CONCLUSIONS This work yielded a robust, reliable reference calliphorid genome from a species located in the middle of a calliphorid phylogeny. By adding an additional blow fly genome, the ability to tease apart what might be true of general calliphorids vs. what is specific of two distinct lineages now exists. This resource will provide a strong foundation for future studies into the evolution, population structure, behavior, and physiology of all blow flies.
Collapse
Affiliation(s)
- Anne A. Andere
- Department of Biology, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202 USA
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79403-3131 USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79403-3131 USA
| | - Christine J. Picard
- Department of Biology, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202 USA
| |
Collapse
|
26
|
Localized, Reactive F-Actin Dynamics Prevents Abnormal Somatic Cell Penetration by Mature Spermatids. Dev Cell 2016; 38:507-21. [DOI: 10.1016/j.devcel.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/15/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022]
|
27
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
28
|
Kotrba M, Heß M, Dallai R. Giant spermatozoa of Diasemopsis (Diopsidae, Diptera) - Structural, ultrastructural and functional aspects. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:42-56. [PMID: 26692211 DOI: 10.1016/j.asd.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
The spermatozoa of Diasemopsis comoroensis and Diasemopsis meigenii differ from the conventional brachyceran type in several respects. Not only are they very long but they are also extraordinarily wide, especially at the very end of the tail. The latter is effected by two cellular components: oversized mitochondrial derivatives and a prominent central band, which is a peculiar structure not known from any other spermatozoa. Based on its position with respect to the other organelles and its origin during early spermiogenesis, the central band is interpreted as a derivative of the centriolar adjunct material. Like the axoneme, the mitochondrial derivatives and the central band extend through the entire length of the spermatozoon tail. The spermatozoon tail is helical and can be coiled up into a tight cone-shaped spiral with a peculiar corkscrew shaped end portion. The potential adaptive significance of these features and their coevolution with the morphology of the female's multi-chambered ventral receptacle are discussed, as are sperm competition and cryptic female choice.
Collapse
Affiliation(s)
- M Kotrba
- SNSB - Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 München, Germany.
| | - M Heß
- Ludwig-Maximilians-Universtity, Biocenter, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| | - R Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
29
|
Riley EE, Lauga E. Small-amplitude swimmers can self-propel faster in viscoelastic fluids. J Theor Biol 2015; 382:345-55. [DOI: 10.1016/j.jtbi.2015.06.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/24/2015] [Accepted: 06/28/2015] [Indexed: 01/19/2023]
|
30
|
Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 2015; 4:6. [PMID: 25932323 PMCID: PMC4415241 DOI: 10.1186/s13630-015-0015-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
31
|
Schnakenberg SL, Siegal ML, Bloch Qazi MC. Oh, the places they'll go: Female sperm storage and sperm precedence in Drosophila melanogaster. SPERMATOGENESIS 2014; 2:224-235. [PMID: 23087839 PMCID: PMC3469444 DOI: 10.4161/spmg.21655] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among most animals with internal fertilization, females store sperm in specific regions of their reproductive tract for later use. Sperm storage enables prolonged fertility, physical and temporal separation of mating from fertilization and, when females mate with multiple males, opportunities for differential use of the various males’ sperm. Thus, stored sperm move within the female reproductive tract as well as to several potential fates – fertilization, displacement by other sperm or ejection by the female. Drosophila melanogaster is a leading model system for elucidating both the mechanisms and evolutionary consequences of female sperm storage and differential male fertilization success. The prominence of Drosophila is due, in part, to the ability to examine processes influencing sperm movement and fate at several biological levels, from molecules to organ systems. In this review, we describe male and female factors, as well as their interactions, involved in female sperm storage and differential male fertilization success.
Collapse
Affiliation(s)
- Sandra L Schnakenberg
- Center for Genomics and Systems Biology; Department of Biology; New York University; New York, NY USA
| | | | | |
Collapse
|
32
|
Pitts RJ, Liu C, Zhou X, Malpartida JC, Zwiebel LJ. Odorant receptor-mediated sperm activation in disease vector mosquitoes. Proc Natl Acad Sci U S A 2014; 111:2566-71. [PMID: 24550284 PMCID: PMC3932880 DOI: 10.1073/pnas.1322923111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects, such as the malaria vector mosquito, Anopheles gambiae, depend upon chemoreceptors to respond to volatiles emitted from a range of environmental sources, most notably blood meal hosts and oviposition sites. A subset of peripheral signaling pathways involved in these insect chemosensory-dependent behaviors requires the activity of heteromeric odorant receptor (OR) ion channel complexes and ligands for numerous A. gambiae ORs (AgOrs) have been identified. Although AgOrs are expressed in nonhead appendages, studies characterizing potential AgOr function in nonolfactory tissues have not been conducted. In the present study, we explore the possibility that AgOrs mediate responses of spermatozoa to endogenous signaling molecules in A. gambiae. In addition to finding AgOr transcript expression in testes, we show that the OR coreceptor, AgOrco, is localized to the flagella of A. gambiae spermatozoa where Orco-specific agonists, antagonists, and other odorant ligands robustly activate flagella beating in an Orco-dependent process. We also demonstrate Orco expression and Orco-mediated activation of spermatozoa in the yellow fever mosquito, Aedes aegypti. Moreover, we find Orco localization in testes across distinct insect taxa and posit that OR-mediated responses in spermatozoa may represent a general characteristic of insect reproduction and an example of convergent evolution.
Collapse
Affiliation(s)
- R. Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Chao Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Juan C. Malpartida
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
| | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235; and
- Department of Pharmacology, Vanderbilt Brain Institute, Program in Developmental Biology and Institutes of Chemical Biology and Global Health, Vanderbilt University Medical Center, Nashville, TN 37235
| |
Collapse
|
33
|
Thaler CD, Miyata H, Haimo LT, Cardullo RA. Waveform generation is controlled by phosphorylation and swimming direction is controlled by Ca2+ in sperm from the mosquito Culex quinquefasciatus. Biol Reprod 2013; 89:135. [PMID: 24108305 DOI: 10.1095/biolreprod.113.109488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most animal sperm are quiescent in the male reproductive tract and become activated after mixing with accessory secretions from the male and/or female reproductive tract. Sperm from the mosquito Culex quinquefasciatus initiate flagellar motility after mixing with male accessory gland components, and the sperm flagellum displays three distinct motility patterns over time: a low amplitude, a long wavelength form (Wave A), a double waveform consisting of two superimposed waveforms over the length of the flagellum (Wave B), and finally, a single helical waveform that propels the sperm at high velocity (Wave C). This flagellar behavior is replicated by treating quiescent sperm with trypsin. When exposed to either broad spectrum or tyrosine kinase inhibitors, sperm activated by accessory gland secretions exhibited motility through Wave B but were unable to progress to Wave C. The MEK1/2 inhibitor UO126 and the ERK1/2 inhibitor FR180204 each blocked the transition from Wave B to Wave C, indicating a role for MAPK activity in the control of waveform and, accordingly, progressive movement. Furthermore, a MAPK substrate antibody stained the flagellum of activated sperm. In the absence of extracellular Ca(2+), a small fraction of sperm swam backwards, whereas most could not be activated by either accessory glands or trypsin and were immotile. However, the phosphatase inhibitor okadaic acid in the absence of extracellular Ca(2+) induced all sperm to swim backwards with a flagellar waveform similar to Wave A. These results indicate that flagellar waveform generation and direction of motility are controlled by protein phosphorylation and Ca(2+) levels, respectively.
Collapse
Affiliation(s)
- Catherine D Thaler
- Department of Biology, University of California, Riverside, Riverside, California
| | | | | | | |
Collapse
|
34
|
Shiba K, Shibata D, Inaba K. Autonomous changes in the swimming direction of sperm in the gastropod Strombus luhuanus. ACTA ACUST UNITED AC 2013; 217:986-96. [PMID: 24311809 DOI: 10.1242/jeb.095398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The sperm of the gastropod Strombus luhuanus show dimorphism. The eusperm have a nucleus and fertilize the egg, whereas the other type of sperm, parasperm, are anucleate and are thought to assist fertilization. Here we report the autonomous changes in the swimming pattern of S. luhuanus eusperm. In artificial seawater, the eusperm collected from S. luhuanus sperm ducts formed sperm bundles and initially swam backward with asymmetric flagellar waveforms to detach from the bundles. One hour later, the sperm began to swim forward and in a circle. After an additional 1 h incubation, the sperm swam straight, with a change in the flagellar waveforms from asymmetric to symmetric. Spontaneous backward swimming with symmetric waveforms was also observed. The eusperm stored in the female seminal receptacle were motile and showed forward symmetric swimming with spontaneous backward swimming, which appeared necessary for detachment from the wall of receptacle. All of these motility changes were observed in the absence of parasperm, suggesting that these changes autonomously occur in eusperm. Our waveform analysis of these swimming patterns revealed that only the swimming with symmetric waveform showed reverse propagation of the flagellar waveforms. Both types of backward swimming were diminished in Ca(2+)-free seawater and in seawater containing Ni(2+), indicating the regulation of swimming direction by Ca(2+)-dependent signal transduction.
Collapse
Affiliation(s)
- Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | | | | |
Collapse
|
35
|
Yanagimachi R, Cherr G, Matsubara T, Andoh T, Harumi T, Vines C, Pillai M, Griffin F, Matsubara H, Weatherby T, Kaneshiro K. Sperm Attractant in the Micropyle Region of Fish and Insect Eggs1. Biol Reprod 2013; 88:47. [DOI: 10.1095/biolreprod.112.105072] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
Lu X. Fluorescent imaging of Drosophila melanogaster sperm in the reproductive tract: a new model of flagellar motility. Methods Enzymol 2013; 525:131-48. [PMID: 23522468 DOI: 10.1016/b978-0-12-397944-5.00007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sperm of Drosophila melanogaster stands out because of its enormous length and perplexing movements that break some norms of flagella. Most flagella with analyzed motility, ranging from flagella of Chlamydomonas to sperm of marine invertebrates and vertebrates, are from a few microns to at most 208 μm in length. Most flagella propagate waves in a constant direction, starting at the base of the flagellum and moving toward the tip (base-to-tip waves). In contrast, the fly sperm is 1.9-mm long and it propagates waves in base-to-tip or tip-to-base direction, generating head-leading or tail-leading movement. Of the two movement orientations, the sperm choose one or the other for a particular movement along the convoluted path leading to fertilization. For example, the sperm enter the seminal receptacle (SR) for storage with a tail-leading movement, but exit it for fertilization with a head-leading movement. Moreover, the sperm move with unusual waveforms. A modified sinusoidal or arc-line waveform generates semistationary movement-moving but staying at a general area-within temporary reservoirs (ejaculatory duct, uterus) and storage organs (SR, spermathecae). In contrast, a corkscrew-like helical waveform is ideal for rapid advancing movement and suspected for traveling through long tubules that interconnect these reservoirs. Here, we describe new methods for capturing these complex sperm movements that naturally occur in the reproductive tract. The imaging methods coupled with large mutant collections and genomic resources make the fly sperm a powerful new model for understanding flagellar motility and its dynamic regulation in vivo. The motility regulatory proteins we have identified in the fly are broadly conserved, thus illustrating a general utility of this model system.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
37
|
Yang Y, Cochran DA, Gargano MD, King I, Samhat NK, Burger BP, Sabourin KR, Hou Y, Awata J, Parry DAD, Marshall WF, Witman GB, Lu X. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell 2011; 22:976-87. [PMID: 21289096 PMCID: PMC3069022 DOI: 10.1091/mbc.e10-04-0331] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca²+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia.
Collapse
Affiliation(s)
- Yong Yang
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|