1
|
Ahmad A, Bogoch Y, Shvaizer G, Guler N, Levy K, Elkouby YM. The piRNA protein Asz1 is essential for germ cell and gonad development in zebrafish and exhibits differential necessities in distinct types of germ granules. PLoS Genet 2025; 21:e1010868. [PMID: 39804923 PMCID: PMC11760641 DOI: 10.1371/journal.pgen.1010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood. Asz1 is a piRNA protein in Drosophila and mice. Zebrafish Asz1 localizes to both piRNA and Bb granules, with yet unknown functions. Here, we hypothesized that Asz1 functions in germ granules and germline development in zebrafish. We generated asz1 mutant fish to determine the roles of Asz1 in germ cell development. We show that Asz1 is dispensable for somatic development, but essential for germ cell and gonad development. asz1-/- fish developed exclusively as sterile males with severely underdeveloped testes that lacked germ cells. In asz1 mutant juvenile gonads, germ cells undergo extensive apoptosis, demonstrating that Asz1 is essential for germ cell survival. Mechanistically, we provide evidence to conclude that zygotic Asz1 is not required for primordial germ cell specification or migration to the gonad, but is essential during post-embryonic gonad development, likely by suppressing the expression of germline transposons. Increased transposon expression and mis-organized piRNA granules in asz1 mutants, argue that zebrafish Asz1 functions in the piRNA pathway. We generated asz1;tp53 fish to partially rescue ovarian development, revealing that Asz1 is also essential for oogenesis. We further showed that in contrast with piRNA granules, Asz1 is dispensable for Bb granule formation, as shown by normal Bb localization of Buc and dazl. By uncovering Asz1 as an essential regulator of germ cell survival and gonadogenesis in zebrafish, and determining its differential necessity in distinct germ granule types, our work advances our understanding of the developmental genetics of reproduction and fertility, as well as of germ granule biology.
Collapse
Affiliation(s)
- Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Noga Guler
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| |
Collapse
|
2
|
Peng W, Zhang Y, Song B, Yang P, Liu L. Developmental Delay and Male-Biased Sex Ratio in esr2b Knockout Zebrafish. Genes (Basel) 2024; 15:636. [PMID: 38790265 PMCID: PMC11121336 DOI: 10.3390/genes15050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The estrogen receptor signaling pathway plays an important role in vertebrate embryonic development and sexual differentiation. There are four major estrogen receptors in zebrafish: esr1, esr2a, esr2b and gper. However, the specific role of different estrogen receptors in zebrafish is not clear. To investigate the role of esr2b in zebrafish development and reproduction, this study utilized TALENs technology to generate an esr2b knockout homozygous zebrafish line. The number of eggs laid by esr2b knockout female zebrafish did not differ significantly from that of wild zebrafish. The embryonic development process of wild-type and esr2b knockout zebrafish was observed, revealing a significant developmental delay in the esr2b knockout zebrafish. Additionally, mortality rates were significantly higher in esr2b knockout zebrafish than in their wild-type counterparts at 24 hpf. The reciprocal cross experiment between esr2b knockout zebrafish and wild-type zebrafish revealed that the absence of esr2b resulted in a decline in the quality of zebrafish oocytes, while having no impact on sperm cells. The knockout of esr2b also led to an abnormal sex ratio in the adult zebrafish population, with a female-to-male ratio of approximately 1:7. The quantitative PCR (qPCR) and in situ hybridization results demonstrated a significant downregulation of cyp19ab1b expression in esr2b knockout embryos compared to wild-type embryos throughout development (at 2 dpf, 3 dpf and 4 dpf). Additionally, the estrogen-mediated induction expression of cyp19ab1b was attenuated, while the estradiol-induced upregulated expression of vtg1 was disrupted. These results suggest that esr2b is involved in regulating zebrafish oocyte development and sex differentiation.
Collapse
Affiliation(s)
- Wei Peng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Yunsheng Zhang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Bolan Song
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Liangguo Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| |
Collapse
|
3
|
Hala D. The use of in silico extreme pathway (ExPa) analysis to identify conserved reproductive transcriptional-regulatory networks in humans, mice, and zebrafish. Syst Biol Reprod Med 2023; 69:271-287. [PMID: 37023256 PMCID: PMC10461611 DOI: 10.1080/19396368.2023.2188996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Vertebrate sex determination and differentiation are coordinated by the activations and maintenance of reproductive transcriptional-regulatory networks (TRNs). There is considerable interest in studying the conserved design principles and functions of reproductive TRNs given that their intricate regulation is susceptible to disruption by gene mutations or exposures to exogenous endocrine disrupting chemicals (or EDCs). In this manuscript, the Boolean rules describing reproductive TRNs in humans, mice, and zebrafish, were represented as a pseudo-stoichiometric matrix model. This model mathematically described the interactions of 35 transcription factors with 21 sex determination and differentiation genes across the three species. The in silico approach of Extreme Pathway (ExPa) analysis was used to predict the extent of TRN gene activations subject to the species-specific transcriptomics data, from across various developmental life-stages. A goal of this work was to identify conserved and functional reproductive TRNs across the three species. ExPa analyses predicted the sex differentiation genes, DHH, DMRT1, and AR, to be highly active in male humans, mice, and zebrafish. Whereas FOXL2 was the most active gene in female humans and mice; and CYP19A1A in female zebrafish. These results agree with the expectation that regardless of a lack of sex determination genes in zebrafish, the TRNs responsible for canalizing male vs. female sexual differentiation are conserved with mammalian taxa. ExPa analysis therefore provides a framework with which to study the TRNs that influence the development of sexual phenotypes. And the in silico predicted conservation of sex differentiation TRNs between mammals and zebrafish identifies the piscine species as an effective in vivo model to study mammalian reproductive systems under normal or perturbed pathologies.
Collapse
Affiliation(s)
- David Hala
- Department of Marine Biology, Texas A&M University at Galveston, TX, USA
| |
Collapse
|
4
|
Wang F, Liu H, Liu F. Analysis of the effect of triclosan on gonadal differentiation of zebrafish based on metabolome. CHEMOSPHERE 2023; 331:138856. [PMID: 37149099 DOI: 10.1016/j.chemosphere.2023.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Although the previous research confirmed that triclosan (TCS) affects the female proportion at the early stage of zebrafish (Danio rerio) and has an estrogen effect, the mechanism by which TCS affects the sex differentiation of zebrafish is not entirely clear. In this study, zebrafish embryos were exposed to different concentrations of TCS (0, 2, 10, and 50 μg/L) for 50 consecutive days. The expression of sex differentiation related genes and metabolites were then determined in larvae using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Liquid Chromatography-Mass Spectrometer (LC-MS), respectively. TCS upregulated the expression of the sox9a, dmrt1a and amh genes, down-regulating the expression of wnt4a, cyp19a1b, cyp19a1a, and vtg2 gene. The overlapped classification of Significant Differential Metabolites (SDMs) between the control group and three TCS treated groups related to gonadal differentiation was Steroids and steroid derivatives, including 24 down-regulated SDMs. The enriched pathways related to gonadal differentiation were Steroid hormone biosynthesis, Retinol metabolism, Metabolism of xenobiotics by cytochrome P450, and Cortisol synthesis and secretion. Moreover, SDMs were significantly enriched in Steroid hormone biosynthesis in the 2 μg/L TCS group, which included Dihydrotestosterone, Cortisol, 11beta-hydroxyandrost-4-ene-3, 17-dione, 21-Hydroxypregnenolone, Androsterone, Androsterone glucuronide, Estriol, Estradiol, 19-Hydroxytestosterone, Cholesterol, Testosterone, and Cortisone acetate. Results showed that TCS affects the female proportion mainly through Steroid hormone biosynthesis, in which aromatase plays a key role in zebrafish. Retinol metabolism, metabolism of xenobiotics by cytochrome P450, and cortisol synthesis and secretion may also participate in TCS-mediated sex differentiation. These findings reveal the molecular mechanisms of TCS-induced sex differentiation, and provide theoretical guidance for the maintenance of water ecological balance.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang, 471022, China.
| | - Haifang Liu
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang, 471022, China
| |
Collapse
|
5
|
Mo JY, Yan YS, Lin ZL, Liu R, Liu XQ, Wu HY, Yu JE, Huang YT, Sheng JZ, Huang HF. Gestational diabetes mellitus suppresses fetal testis development in mice. Biol Reprod 2022; 107:148-156. [PMID: 35774031 DOI: 10.1093/biolre/ioac138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of Gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig and Sertoli cells. Pregnant mice were treated on gestational day (GD) 6.5 and 12.5 with streptozotocin (STZ, 100 mg/kg) or vehicle (sodium citrate buffer). Leydig and Sertoli cell development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of DHH in Sertoli cells of testes of male offspring. Fetal Leydig cell number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/β-Catenin signaling was activated and Gsk3β signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.
Collapse
Affiliation(s)
- Jia-Ying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yi-Shang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Zhong-Liang Lin
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Rui Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Xuan-Qi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Hai-Yan Wu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jia-En Yu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yu-Tong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jian-Zhong Sheng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - He-Feng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Abstract
In this systematic review, we highlight the differences between the male and female zebrafish brains to understand their differentiation and their use in studying sex-specific neurological diseases. Male and female brains display subtle differences at the cellular level which may be important in driving sex-specific signaling. Sex differences in the brain have been observed in humans as well as in non-human species. However, the molecular mechanisms of brain sex differentiation remain unclear. The classical model of brain sex differentiation suggests that the steroid hormones derived from the gonads are the primary determinants in establishing male and female neural networks. Recent studies indicate that the developing brain shows sex-specific differences in gene expression prior to gonadal hormone action. Hence, genetic differences may also be responsible for differentiating the brain into male and female types. Understanding the signaling mechanisms involved in brain sex differentiation could help further elucidate the sex-specific incidences of certain neurological diseases. The zebrafish model could be appropriate for enhancing our understanding of brain sex differentiation and the signaling involved in neurological diseases. Zebrafish brains show sex-specific differences at the hormonal level, and recent advances in RNA sequencing have highlighted critical sex-specific differences at the transcript level. The differences are also evident at the cellular and metabolite levels, which could be important in organizing sex-specific neuronal signaling. Furthermore, in addition to having one ortholog for 70% of the human gene, zebrafish also shares brain structural similarities with other higher eukaryotes, including mammals. Hence, deciphering brain sex differentiation in zebrafish will help further enhance the diagnostic and pharmacological intervention of neurological diseases.
Collapse
|
7
|
Tran-Guzman A, Culty M. Eicosanoid Biosynthesis in Male Reproductive Development: Effects of Perinatal Exposure to NSAIDs and Analgesic Drugs. FRONTIERS IN TOXICOLOGY 2022; 4:842565. [PMID: 35295224 PMCID: PMC8915844 DOI: 10.3389/ftox.2022.842565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing rates of infertility associated with declining sperm counts and quality, as well as increasing rates of testicular cancer are contemporary issues in the United States and abroad. These conditions are part of the Testicular Dysgenesis Syndrome, which includes a variety of male reproductive disorders hypothesized to share a common origin based on disrupted testicular development during fetal and neonatal stages of life. Male reproductive development is a highly regulated and complex process that relies on an intricate coordination between germ, Leydig, and Sertoli cells as well as other supporting cell types, to ensure proper spermatogenesis, testicular immune privilege, and endocrine function. The eicosanoid system has been reported to be involved in the regulation of fetal and neonatal germ cell development as well as overall testicular homeostasis. Moreover, non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics with abilities to block eicosanoid synthesis by targeting either or both isoforms of cyclooxygenase enzymes, have been found to adversely affect male reproductive development. This review will explore the current body of knowledge on the involvement of the eicosanoid system in male reproductive development, as well as discuss adverse effects of NSAIDs and analgesic drugs administered perinatally, focusing on toxicities reported in the testis and on major testicular cell types. Rodent and epidemiological studies will be corroborated by findings in invertebrate models for a comprehensive report of the state of the field, and to add to our understanding of the potential long-term effects of NSAID and analgesic drug administration in infants.
Collapse
|
8
|
Cádiz MI, López ME, Díaz-Domínguez D, Cáceres G, Marin-Nahuelpi R, Gomez-Uchida D, Canales-Aguirre CB, Orozco-terWengel P, Yáñez JM. Detection of selection signatures in the genome of a farmed population of anadromous rainbow trout (Oncorhynchus mykiss). Genomics 2021; 113:3395-3404. [PMID: 34339816 DOI: 10.1016/j.ygeno.2021.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.
Collapse
Affiliation(s)
- María I Cádiz
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - María E López
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Giovanna Cáceres
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile
| | - Rodrigo Marin-Nahuelpi
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Daniel Gomez-Uchida
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Cristian B Canales-Aguirre
- Centro i~Mar, Universidad de Los Lagos, Camino Chinquihue 6 km, Puerto Montt, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | | | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile.
| |
Collapse
|
9
|
Disner GR, Falcão MAP, Lima C, Lopes-Ferreira M. In Silico Target Prediction of Overexpressed microRNAs from LPS-Challenged Zebrafish ( Danio rerio) Treated with the Novel Anti-Inflammatory Peptide TnP. Int J Mol Sci 2021; 22:7117. [PMID: 34281170 PMCID: PMC8268205 DOI: 10.3390/ijms22137117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs regulate gene expression post-transcriptionally in various processes, e.g., immunity, development, and diseases. Since their experimental analysis is complex, in silico target prediction is important for directing investigations. TnP is a candidate peptide for anti-inflammatory therapy, first discovered in the venom of Thalassophryne nattereri, which led to miRNAs overexpression in LPS-inflamed zebrafish post-treatment. This work aimed to predict miR-21, miR-122, miR-731, and miR-26 targets using overlapped results of DIANA microT-CDS and TargetScanFish software. This study described 513 miRNAs targets using highly specific thresholds. Using Gene Ontology over-representation analysis, we identified their main roles in regulating gene expression, neurogenesis, DNA-binding, transcription regulation, immune system process, and inflammatory response. miRNAs act in post-transcriptional regulation, but we revealed that their targets are strongly related to expression regulation at the transcriptional level, e.g., transcription factors proteins. A few predicted genes participated concomitantly in many biological processes and molecular functions, such as foxo3a, rbpjb, rxrbb, tyrobp, hes6, zic5, smad1, e2f7, and npas4a. Others were particularly involved in innate immunity regulation: il17a/f2, pik3r3b, and nlrc6. Together, these findings not only provide new insights into the miRNAs mode of action but also raise hope for TnP therapy and may direct future experimental investigations.
Collapse
Affiliation(s)
| | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (G.R.D.); (M.A.P.F.); (C.L.)
| |
Collapse
|
10
|
Smeeton J, Natarajan N, Naveen Kumar A, Miyashita T, Baddam P, Fabian P, Graf D, Crump JG. Zebrafish model for spondylo-megaepiphyseal-metaphyseal dysplasia reveals post-embryonic roles of Nkx3.2 in the skeleton. Development 2021; 148:dev193409. [PMID: 33462117 PMCID: PMC7860120 DOI: 10.1242/dev.193409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Natasha Natarajan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arati Naveen Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tetsuto Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
12
|
Bereketoglu C, Pradhan A, Olsson PE. Nonsteroidal anti-inflammatory drugs (NSAIDs) cause male-biased sex differentiation in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105476. [PMID: 32315829 DOI: 10.1016/j.aquatox.2020.105476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used pharmaceuticals to treat pain, fever and inflammation. NSAIDs are also known to have many side effects including adverse effects on reproduction in both humans and animals. As NSAIDs usage is not regulated they are frequently detected at high concentrations in the environment. In order to understand the effect of NSAIDs on zebrafish sex differentiation, we used seven different NSAIDs which were either Cox-1 selective, Cox-1 biased, non-selective or COX-2 selective. We show that at higher concentration, NSAIDs are toxic to zebrafish embryo as they lead to mortality and hatching delay. Gene expression analysis following short term exposure of NSAIDs led to downregulation of female specific genes including zp2, vtg2 foxl2 and wnt4. Long term exposure of larvae to environmentally relevant concentrations of Cox-2 selective and non-selective NSAIDs resulted in male-biased sex ratio which confirmed the qRT-PCR analysis. However, the Cox-1 selective acetylsalicylic acid and the Cox-1 biased ketoprofen did not alter sex ratio. The observed male-biased sex ratio could also be due to induction of apoptosis process as the genes including p21 and casp8 were significantly upregulated following exposure to the Cox-2 selective and the non-selective NSAIDs. The present study indicates that NSAIDs alter sex differentiation in zebrafish, primarily through inhibition of Cox-2. This study clearly demonstrates that the use of NSAIDs and their release into the aquatic environment should be carefully monitored to avoid adverse effects to the aquatic organisms.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Biology, The LifeScience Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Ajay Pradhan
- Biology, The LifeScience Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The LifeScience Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
13
|
Lobo IKC, Nascimento ÁRD, Yamagishi MEB, Guiguen Y, Silva GFD, Severac D, Amaral ADC, Reis VR, Almeida FLD. Transcriptome of tambaqui Colossoma macropomum during gonad differentiation: Different molecular signals leading to sex identity. Genomics 2020; 112:2478-2488. [PMID: 32027957 DOI: 10.1016/j.ygeno.2020.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Tambaqui (Colossoma macropomum) is the major native species in Brazilian aquaculture, and we have shown that females exhibit a higher growth compared to males, opening up the possibility for the production of all-female population. To date, there is no information on the sex determination and differentiation molecular mechanisms of tambaqui. In the present study, transcriptome sequencing of juvenile trunks was performed to understand the molecular network involved in the gonadal sex differentiation. The results showed that before differentiation, components of the Wnt/β-catenin pathway, fox and fst genes imprint female sex development, whereas antagonistic pathways (gsk3b, wt1 and fgfr2), sox9 and genes for androgen synthesis indicate male differentiation. Hence, in undifferentiated tambaqui, the Wnt/β-catenin exerts a role on sex differentiation, either upregulated in female-like individuals, or antagonized in male-like individuals.
Collapse
Affiliation(s)
| | | | | | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.
| | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Aldessandro da Costa Amaral
- Programa de Pós-graduação em Ciências Pesqueiras nos Trópicos, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vanessa Ribeiro Reis
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil
| | | |
Collapse
|
14
|
Caballero-Huertas M, Moraleda-Prados J, Joly S, Ribas L. Immune genes, IL1β and Casp9, show sexual dimorphic methylation patterns in zebrafish gonads. FISH & SHELLFISH IMMUNOLOGY 2020; 97:648-655. [PMID: 31830572 DOI: 10.1016/j.fsi.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
There is crosstalk between the immune and reproductive systems in which sexual dimorphism is a common pattern in vertebrates. In recent years, epigenetics has emerged as a way to study the molecular mechanisms involved in gonadal development, those responsible for integrating environmental information that contribute to assigning a specific sexual phenotype (either an ovary or a testis). The knowledge of epigenetic mechanisms in certain molecular processes allows the development of epigenetic markers. In fish gonads, the existence of reproduction-immune system interactions is known, although the epigenetic mechanisms involved are far from clear. Here, we used the zebrafish (Danio rerio) as a model to study the DNA methylation patterns in gonads of two well-known innate immune genes: IL1β and Casp9. DNA methylation levels were studied by a candidate gene approach at single nucleotide resolution and gene expression analyses were also carried out. Results showed that there was clear sexual dimorphism in the DNA methylation levels of the two immune genes studied, being significantly higher in the testes when compared to the ovaries. In summary, and although further research is needed, this paper presents sexual dimorphic methylation patterns of two immune-related genes, thus sex-biased differences in methylation profiles should considered when analyzing immune responses in fish. Data showed here can help to develop epimarkers with forthcoming applications in livestock and fish farming production, for example, in immune fish diseases or sexual control programs as epigenetic molecular tools to predict environmental pressure in the gonads.
Collapse
Affiliation(s)
- M Caballero-Huertas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - J Moraleda-Prados
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - S Joly
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - L Ribas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
15
|
Jiang YX, Shi WJ, Ma DD, Zhang JN, Ying GG, Zhang H, Ong CN. Male-biased zebrafish sex differentiation and metabolomics profile changes caused by dydrogesterone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105242. [PMID: 31319296 DOI: 10.1016/j.aquatox.2019.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Some progestins, including the widely used dydrogesterone (DDG), have been shown to cause male-biased sex ratio in teleost. However, there is a gap to fully understand the mechanisms of the sex differentiation disturbance by progestins, particularly from the metabolic aspect. We thus aimed to examine the sex changes by exposing zebrafish embryos to 4.4 (L), 44 (M) and 440 (H) ng/L DDG for up to 140 days, and investigated metabolomic profile changes during the critical period of sex differentiation at fry stage (35 dpf). DDG increased the percentage of male zebrafish in a dose-dependent manner, with 98% male fish in the high concentration group. In zebrafish fry, DDG increased the levels of some free fatty acids, monoglycerides, acylcarnitines, organic acids, free amino acids, while decreased lysophospholipids, uric acid and bile acids. DDG exposure also decreased the nucleoside monophosphates and UDP-sugars while increased nucleosides and their bases. These metabolite changes, namely increase in n-3 PUFAs (polyunsaturated fatty acids), myo-inositol, taurine, palmitoleic acid, oleic acid, lactic acid, fumaric acid, and uracil, and decrease in uric acid and bile acids, might account for the male-biased sex ratio in zebrafish. It appears that many of these metabolites could inhibit several pathways that regulate zebrafish gonad differentiation, including NF-κB/COX-2 and Wnt/β-catenin pathways, and activate p53 pathway. Thus we proposed a hypothesis that DDG might induce oocytes apoptosis through the above pathways and finally lead to female-to-male sex reversal. The results from this study suggest that DDG at environmentally relevant concentrations could affect zebrafish metabolomic profiles and finally disturb fish sex differentiation.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Choon-Nam Ong
- School of Public Health, National University of Singapore, 117547, Singapore.
| |
Collapse
|
16
|
Ren J, Han P, Ma X, Farah EN, Bloomekatz J, Zeng XXI, Zhang R, Swim MM, Witty AD, Knight HG, Deshpande R, Xu W, Yelon D, Chen S, Chi NC. Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. Dev Cell 2019; 50:729-743.e5. [PMID: 31402282 DOI: 10.1016/j.devcel.2019.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Pacemaker cardiomyocytes that create the sinoatrial node are essential for the initiation and maintenance of proper heart rhythm. However, illuminating developmental cues that direct their differentiation has remained particularly challenging due to the unclear cellular origins of these specialized cardiomyocytes. By discovering the origins of pacemaker cardiomyocytes, we reveal an evolutionarily conserved Wnt signaling mechanism that coordinates gene regulatory changes directing mesoderm cell fate decisions, which lead to the differentiation of pacemaker cardiomyocytes. We show that in zebrafish, pacemaker cardiomyocytes derive from a subset of Nkx2.5+ mesoderm that responds to canonical Wnt5b signaling to initiate the cardiac pacemaker program, including activation of pacemaker cell differentiation transcription factors Isl1 and Tbx18 and silencing of Nkx2.5. Moreover, applying these developmental findings to human pluripotent stem cells (hPSCs) notably results in the creation of hPSC-pacemaker cardiomyocytes, which successfully pace three-dimensional bioprinted hPSC-cardiomyocytes, thus providing potential strategies for biological cardiac pacemaker therapy.
Collapse
Affiliation(s)
- Jie Ren
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peidong Han
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Bloomekatz
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruilin Zhang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan M Swim
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alec D Witty
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hannah G Knight
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rima Deshpande
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weizhe Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
ABSENCE OF ACUTE TOXICITY OF A SINGLE INTRAMUSCULAR INJECTION OF MELOXICAM IN GOLDFISH ( CARASSIUS AURATUS AURATUS): A RANDOMIZED CONTROLLED TRIAL. J Zoo Wildl Med 2018; 49:617-622. [PMID: 30212321 DOI: 10.1638/2018-0077.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Meloxicam is a nonsteroidal anti-inflammatory drug with preferential cyclooxygenase-2 inhibitory activity. It is frequently used in veterinary medicine, including in fish species. The efficacy and safety of meloxicam, however, has not yet been reported in adult fish. The purpose of this study was to evaluate the acute toxicity of a single intramuscular injection of meloxicam in goldfish ( Carassius auratus auratus). Following 3 wk of acclimation, 32 goldfish were randomly assigned to two groups of 16 individuals. Fish from the treatment group received a single intramuscular injection of 5 mg/kg meloxicam, while the fish from the control group received a single intramuscular injection of a 0.9% sodium chloride solution using a similar volume (1 ml/kg). No external lesions, mortality, or modifications in behavior or position in the water column were noted during the following 72 hr. Three days after the initial injection, all fish were euthanized by immersion in a solution of tricaine methanesulfonate. Complete postmortem and histologic evaluations were performed for each fish. Hemorrhage and muscular necrosis were observed at the site of injection in fish from both groups. Multiple granulomas of undetermined etiology were detected in numerous organs from fish of both groups. No statistically significant differences were detected in regard to the lesions observed in these two groups. This study demonstrates that a single intramuscular injection of meloxicam at a dosage of 5 mg/kg does not cause acute toxicity in goldfish.
Collapse
|
18
|
Pradhan A, Olsson PE. Germ cell depletion in zebrafish leads to incomplete masculinization of the brain. Gen Comp Endocrinol 2018; 265:15-21. [PMID: 29408375 DOI: 10.1016/j.ygcen.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/15/2022]
Abstract
Zebrafish sex differentiation is under the control of multiple genes, but also relies on germ cell number for gonadal development. Morpholino and chemical mediated germ cell depletion leads to sterile male development in zebrafish. In this study we produced sterile males, using a dead end gene morpholino, to determine gonadal-brain interactions. Germ cell depletion following dnd inhibition downregulated the germ cell markers, vasa and ziwi, and later the larvae developed as sterile males. Despite lacking proper testis, the gonadal 11-ketotestosterone (11-KT) and estradiol (E2) levels of sterile males were similar to wild type males. Qualitative analysis of sexual behavior of sterile males demonstrated that they behaved like wild type males. Furthermore, we observed that brain 11-KT and E2 levels in sterile males remained the same as in the wild type males. In female brain, 11-KT was lower in comparison to wild type males and sterile males, while E2 was higher when compared to wild type males. qRT-PCR analysis revealed that the liver transcript profile of sterile adult males was similar to wild type males while the brain transcript profile was similar to wild type females. The results demonstrate that proper testis development may not be a prerequisite for male brain development in zebrafish but that it may be needed to fully masculinize the brain.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
19
|
Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function. Oncotarget 2018; 9:24320-24334. [PMID: 29849943 PMCID: PMC5966271 DOI: 10.18632/oncotarget.24407] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/24/2018] [Indexed: 11/25/2022] Open
Abstract
The androgen receptor (AR) is a nuclear receptor protein family member and inducible transcription factor that modulates androgen target gene expression. Studies using a mouse model confirmed the need for ar in reproductive development, particularly spermatogenesis. Here, we investigated the role of ar in zebrafish using CRISPR/Cas9 gene targeting technology. Targeted disruption of ar in zebrafish increases the number of female offspring and increases offspring weight. In addition, ar-null male zebrafish have female secondary sex characteristics. More importantly, targeted disruption of ar in zebrafish causes male infertility via defective spermatogenesis and female premature ovarian failure during growth. Mechanistic assays suggest that these effects are caused by fewer proliferated cells and more apoptotic cells in ar-null testes. Moreover, genes involved in reproductive development, estradiol induction and hormone synthesis were dys-regulated in testes and ovaries and the reproductive-endocrine axis was disordered. Our data thus suggest that the zebrafish ar is required for spermatogenesis and maintenance of ovarian function, which confirms evolutionarily conserved functions of ar in vertebrates, as well as indicates that ar-null zebrafish are a suitable model for studying pathologic mechanisms related to androgen disorders.
Collapse
|
20
|
Morthorst JE, Lund BF, Holbech H, Bjerregaard P. Two common mild analgesics have no effect on general endocrine mediated endpoints in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:63-70. [PMID: 29180113 DOI: 10.1016/j.cbpc.2017.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Mild analgesics such as acetylsalicylic acid (ASA) and acetaminophen (APAP) exert their pain-relieving effect in humans by inhibition of prostaglandin synthesis. Prostaglandins play key roles in developmental and reproductive processes in vertebrates, and in recent years, it has been suggested that weak analgesics might also act as endocrine disrupters. In a set of experiments we investigated if ASA and APAP affect well-established endocrine endpoints in zebrafish (Danio rerio), which is a commonly used model organism in the investigation of endocrine disrupting chemicals. Zebrafish were exposed to APAP (0.22, 2.3, and 30mgL-1) or ASA (0.2, 0.5, 1.7, and 8.2mgL-1) from hatch to sexual maturity in a test design resembling the OECD Fish Sexual Development Test. No effects on sex ratio and vitellogenin levels were observed. Adult zebrafish were exposed to high concentrations (mgL-1) of ASA or APAP for eight or 14days. ASA reduced the levels of prostaglandin E2, but had no effect on the concentration of 11-ketotestosterone and vitellogenin. Overall, ASA decrease prostaglandin E2 concentrations, but well-established endpoints for endocrine disruption in zebrafish are generally not affected by aquatic exposure neither during development nor adulthood. According to the WHO/IPCS definition of an endocrine disrupter, the present results do not define APAP and ASA as endocrine disrupters.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Birgit F Lund
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Poul Bjerregaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| |
Collapse
|
21
|
Li H, Xu W, Zhu Y, Zhang N, Ma J, Sun A, Cui Z, Gao F, Wang N, Shao C, Dong Z, Li Y. Characterization and expression pattern of r-spondin1 in Cynoglossus semilaevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:772-780. [PMID: 29044994 DOI: 10.1002/jez.b.22774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
r-spondin1 (rspo1) encodes a secreted protein that is involved in the determination and differentiation of the mammalian ovary. However, little information is yet available for teleosts. Here, we identified a homologue of rspo1 in Cynoglossus semilaevis. The full-length cDNA of rspo1 had a length of 2,703 bp with an open reading frame of 834 bp, encoding a protein with a length of 277 amino-acids. rspo1 expression was detected via qRT-PCR in various tissues, and significant sexually dimorphic expression was observed in the gonads. Furthermore, ISH located rspo1 in germ cells such as spermatogonia, spermatocytes, spermatids, spermatozoa, and oocytes, as well as in somatic cells of the gonads. Following knockdown of rspo1 in an ovarian cell line, the expressions of wnt4a, β-catenin, foxl2, and StAR were highly affected; wnt4a and β-catenin were significantly downregulated, whereas foxl2 and StAR were significantly upregulated. In summary, these data suggest that rspo1 may be involved in the regulation of ovarian development and differentiation through a conserved pathway, while the function of the gene in the testis remains elusive.
Collapse
Affiliation(s)
- Hailong Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Wenteng Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jialu Ma
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ai Sun
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No.BZ0301), Beijing Fisheries Research Institute, Beijing, China
| | - Zhongkai Cui
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fengtao Gao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Na Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhongdian Dong
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yangzhen Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Morais RDVS, Crespo D, Nóbrega RH, Lemos MS, van de Kant HJG, de França LR, Male R, Bogerd J, Schulz RW. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol Cell Endocrinol 2017. [PMID: 28645700 DOI: 10.1016/j.mce.2017.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fsh-mediated regulation of zebrafish spermatogenesis includes modulating the expression of testicular growth factors. Here, we study if and how two Sertoli cell-derived Fsh-responsive growth factors, anti-Müllerian hormone (Amh; inhibiting steroidogenesis and germ cell differentiation) and insulin-like growth factor 3 (Igf3; stimulating germ cell differentiation), cooperate in regulating spermatogonial development. In dose response and time course experiments with primary testis tissue cultures, Fsh up-regulated igf3 transcript levels and down-regulated amh transcript levels; igf3 transcript levels were more rapidly up-regulated and responded to lower Fsh concentrations than were required to decrease amh mRNA levels. Quantification of immunoreactive Amh and Igf3 on testis sections showed that Fsh increased slightly Igf3 staining but decreased clearly Amh staining. Studying the direct interaction of the two growth factors showed that Amh compromised Igf3-stimulated proliferation of type A (both undifferentiated [Aund] and differentiating [Adiff]) spermatogonia. Also the proliferation of those Sertoli cells associated with Aund spermatogonia was reduced by Amh. To gain more insight into how Amh inhibits germ cell development, we examined Amh-induced changes in testicular gene expression by RNA sequencing. The majority (69%) of the differentially expressed genes was down-regulated by Amh, including several stimulators of spermatogenesis, such as igf3 and steroidogenesis-related genes. At the same time, Amh increased the expression of inhibitory signals, such as inha and id3, or facilitated prostaglandin E2 (PGE2) signaling. Evaluating one of the potentially inhibitory signals, we indeed found in tissue culture experiments that PGE2 promoted the accumulation of Aund at the expense of Adiff and B spermatogonia. Our data suggest that an important aspect of Fsh bioactivity in stimulating spermatogenesis is implemented by restricting the different inhibitory effects of Amh and by counterbalancing them with stimulatory signals, such as Igf3.
Collapse
Affiliation(s)
- R D V S Morais
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - D Crespo
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R H Nóbrega
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil
| | - M S Lemos
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - H J G van de Kant
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - L R de França
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; National Institute of Amazonian Research (L.R.F.), Manaus, Brazil
| | - R Male
- Department of Molecular Biology (R.M.), University of Bergen, 5020 Bergen, Norway
| | - J Bogerd
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - R W Schulz
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology (R.W.S.), Institute of Marine Research, 5817 Bergen, Norway.
| |
Collapse
|
23
|
Epigenetic control of cyp19a1a expression is critical for high temperature induced Nile tilapia masculinization. J Therm Biol 2017; 69:76-84. [DOI: 10.1016/j.jtherbio.2017.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/11/2017] [Accepted: 06/18/2017] [Indexed: 01/17/2023]
|
24
|
Pradhan A, Ivarsson P, Ragnvaldsson D, Berg H, Jass J, Olsson PE. Transcriptional responses of zebrafish to complex metal mixtures in laboratory studies overestimates the responses observed with environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:1138-1146. [PMID: 28159303 DOI: 10.1016/j.scitotenv.2017.01.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Metals released into the environment continue to be of concern for human health. However, risk assessment of metal exposure is often based on total metal levels and usually does not take bioavailability data, metal speciation or matrix effects into consideration. The continued development of biological endpoint analyses are therefore of high importance for improved eco-toxicological risk analyses. While there is an on-going debate concerning synergistic or additive effects of low-level mixed exposures there is little environmental data confirming the observations obtained from laboratory experiments. In the present study we utilized qRT-PCR analysis to identify key metal response genes to develop a method for biomonitoring and risk-assessment of metal pollution. The gene expression patterns were determined for juvenile zebrafish exposed to waters from sites down-stream of a closed mining operation. Genes representing different physiological processes including stress response, inflammation, apoptosis, drug metabolism, ion channels and receptors, and genotoxicity were analyzed. The gene expression patterns of zebrafish exposed to laboratory prepared metal mixes were compared to the patterns obtained with fish exposed to the environmental samples with the same metal composition and concentrations. Exposure to environmental samples resulted in fewer alterations in gene expression compared to laboratory mixes. A biotic ligand model (BLM) was used to approximate the bioavailability of the metals in the environmental setting. However, the BLM results were not in agreement with the experimental data, suggesting that the BLM may be overestimating the risk in the environment. The present study therefore supports the inclusion of site-specific biological analyses to complement the present chemical based assays used for environmental risk-assessment.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - Per Ivarsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; BioImpakt AB, Drevevägen 18C, SE-70510 Örebro, Sweden
| | | | - Håkan Berg
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
25
|
David A, Lange A, Abdul-Sada A, Tyler CR, Hill EM. Disruption of the Prostaglandin Metabolome and Characterization of the Pharmaceutical Exposome in Fish Exposed to Wastewater Treatment Works Effluent As Revealed by Nanoflow-Nanospray Mass Spectrometry-Based Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:616-624. [PMID: 27976870 DOI: 10.1021/acs.est.6b04365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fish can be exposed to a complex mixture of chemical contaminants, including pharmaceuticals, present in discharges of wastewater treatment works (WwTWs) effluents. There is little information on the effects of effluent exposure on fish metabolism, especially the small molecule signaling compounds which are the biological target of many pharmaceuticals. We applied a newly developed sensitive nanoflow-nanospray mass spectrometry nontargeted profiling technique to identify changes in the exposome and metabolome of roach (Rutilus rutilus) exposed to a final WwTWs effluent for 15 days. Effluent exposure resulted in widespread reduction (between 50% and 90%) in prostaglandin (PG) profiles in fish tissues and plasma with disruptions also in tryptophan/serotonin, bile acid and lipid metabolism. Metabolite disruptions were not explained by altered expression of genes associated with the PG or tryptophan metabolism. Of the 31 pharmaceutical metabolites that were detected in the effluent exposome of fish, 6 were nonsteroidal anti-inflammatory drugs but with plasma concentrations too low to disrupt PG biosynthesis. PGs, bile acids, and tryptophan metabolites are important mediators regulating a diverse array of physiological systems in fish and the identity of wastewater contaminants disrupting their metabolism warrants further investigation on their exposure effects on fish health.
Collapse
Affiliation(s)
- Arthur David
- School of Life Sciences. University of Sussex . Brighton. U.K. BN1 9QG
| | - Anke Lange
- Biosciences, College of Life & Environmental Sciences. University of Exeter , Exeter. U.K. EX4 4QD
| | - Alaa Abdul-Sada
- School of Life Sciences. University of Sussex . Brighton. U.K. BN1 9QG
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences. University of Exeter , Exeter. U.K. EX4 4QD
| | - Elizabeth M Hill
- School of Life Sciences. University of Sussex . Brighton. U.K. BN1 9QG
| |
Collapse
|
26
|
Feswick A, Loughery JR, Isaacs MA, Munkittrick KR, Martyniuk CJ. Molecular initiating events of the intersex phenotype: Low-dose exposure to 17α-ethinylestradiol rapidly regulates molecular networks associated with gonad differentiation in the adult fathead minnow testis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:46-56. [PMID: 27810492 DOI: 10.1016/j.aquatox.2016.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Intersex, or the presence of oocytes in the testes, has been documented in fish following exposure to wastewater effluent and estrogenic compounds. However, the molecular networks underlying the intersex condition are not completely known. To address this, we exposed male fathead minnows to a low, environmentally-relevant concentration of 17alpha-ethinylestradiol (EE2) (15ng/L) and measured the transcriptome response in the testis after 96h to identify early molecular initiating events that may proceed the intersex condition. The short-term exposure to EE2 did not affect gonadosomatic index and proportion of gametes within the testes. However, the production of 11-ketotestosterone and testosterone from the testis in vitro was decreased relative to controls. Expression profiling using a 8×60K fathead minnow microarray identified 10 transcripts that were differentially expressed in the testes, the most dramatic change being that of coagulation factor XIII A chain (20-fold increase). Transcripts that included guanine nucleotide binding protein (Beta Polypeptide 2), peroxisome proliferator-activated receptor delta, and WNK lysine deficient protein kinase 1a, were down-regulated by EE2. Subnetwork enrichment analysis revealed that EE2 suppressed transcriptional networks associated with steroid metabolism, hormone biosynthesis, and sperm mobility. Most interesting was that gene networks associated with doublesex and mab-3 related transcription factor 1 (dmrt1) were suppressed in the adult testis, despite the fact that dmrt1 itself was not different in expression from control males. Transcriptional networks involving forkhead box L2 (foxl2) (transcript involved in ovarian follicle development) were increased in expression in the testis. Noteworthy was that a gene network associated to granulosa cell development was increased over 100%, suggesting that this transcriptome network may be important for monitoring estrogenic exposures. Other cell processes rapidly downregulated by EE2 at the transcript level included glucose homeostasis, response to heavy metal, amino acid catabolism, and the cyclooxygenase pathway. Conversely, lymphocyte chemotaxis, intermediate filament polymerization, glucocorticoid metabolism, carbohydrate utilization, and anterior/posterior axis specification were increased. These data provide new insight into the transcriptional responses that are perturbed prior to gonadal remodeling and intersex following exposure to estrogens. These data demonstrate that low concentrations of EE2 (1) rapidly suppresses male hormone production, (2) down-regulate molecular networks related to male sex differentiation, and (3) induce transcriptional networks related to granulosa cell development in the adult testis. These responses are hypothesized to be key molecular initiating events that occur prior to the development of the intersex phenotype following estrogenic exposures.
Collapse
Affiliation(s)
- April Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Jennifer R Loughery
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Meghan A Isaacs
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
27
|
Leal LF, Bueno AC, Gomes DC, Abduch R, de Castro M, Antonini SR. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget 2016; 6:43016-32. [PMID: 26515592 PMCID: PMC4767488 DOI: 10.18632/oncotarget.5513] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022] Open
Abstract
Background To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. Aim To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. Methods Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5–200 μM) for 24–96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). Results In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. Conclusions Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC.
Collapse
Affiliation(s)
- Letícia F Leal
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ana Carolina Bueno
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Débora C Gomes
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.,Department of Pediatrics, School of Medicine, Federal University of Uberlandia, Uberlândia, Minas Gerais, Brazil
| | - Rafael Abduch
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Margaret de Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
28
|
Chen S, Zhang H, Wang F, Zhang W, Peng G. nr0b1 (DAX1) mutation in zebrafish causes female-to-male sex reversal through abnormal gonadal proliferation and differentiation. Mol Cell Endocrinol 2016; 433:105-16. [PMID: 27267667 DOI: 10.1016/j.mce.2016.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023]
Abstract
Sex determinations are diverse in vertebrates. Although many sex-determining genes and pathways are conserved, the mechanistic roles of these genes and pathways in the genetic sex determination are not well understood. DAX1 (encoded by the NR0B1 gene) is a vertebrate specific orphan nuclear receptor that regulates gonadal development and sexual determination. In human, duplication of the NR0B1 gene leads to male-to-female sex reversal. In mice, Nr0b1 shows both pro-testis and anti-testis functions. We generated inheritable nr0b1 mutation in the zebrafish and found the nr0b1 mutation caused homozygous mutants to develop as fertile males due to female-to-male sex reversal. The nr0b1 mutation did not increase Caspase-3 labeling nor tp53 expression in the developing gonads. Introduction of a tp53 mutation into the nr0b1 mutant did not rescue the sex-reversal phenotype. Further examination revealed reduction in cell proliferation and abnormal somatic cell differentiation in the nr0b1 mutant gonads at the undifferentiated and bi-potential ovary stages. Together, our results suggest nr0b1 regulates somatic cell differentiation and cell proliferation to ensure normal sex development in the zebrafish.
Collapse
Affiliation(s)
- Sijie Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Hefei Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Fenghua Wang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Ribas L, Robledo D, Gómez-Tato A, Viñas A, Martínez P, Piferrer F. Comprehensive transcriptomic analysis of the process of gonadal sex differentiation in the turbot (Scophthalmus maximus). Mol Cell Endocrinol 2016; 422:132-149. [PMID: 26586209 DOI: 10.1016/j.mce.2015.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
The turbot is a flatfish with a ZW/ZZ sex determination system but with a still unknown sex determining gene(s), and with a marked sexual growth dimorphism in favor of females. To better understand sexual development in turbot we sampled young turbot encompassing the whole process of gonadal differentiation and conducted a comprehensive transcriptomic study on its sex differentiation using a validated custom oligomicroarray. Also, the expression profiles of 18 canonical reproduction-related genes were studied along gonad development. The expression levels of gonadal aromatase cyp19a1a alone at three months of age allowed the accurate and early identification of sex before the first signs of histological differentiation. A total of 56 differentially expressed genes (DEG) that had not previously been related to sex differentiation in fish were identified within the first three months of age, of which 44 were associated with ovarian differentiation (e.g., cd98, gpd1 and cry2), and 12 with testicular differentiation (e.g., ace, capn8 and nxph1). To identify putative sex determining genes, ∼4.000 DEG in juvenile gonads were mapped and their positions compared with that of previously identified sex- and growth-related quantitative trait loci (QTL). Although no genes mapped to the previously identified sex-related QTLs, two genes (foxl2 and 17βhsd) of the canonical reproduction-related genes mapped to growth-QTLs in linkage group (LG) 15 and LG6, respectively, suggesting that these genes are related to the growth dimorphism in this species.
Collapse
Affiliation(s)
- L Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain
| | - D Robledo
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - A Gómez-Tato
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15781, Santiago de Compostela, Spain
| | - A Viñas
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - P Martínez
- Departamento de Genética. Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - F Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| |
Collapse
|
30
|
|
31
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [PMID: 26549540 DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Örn S, Holbech H, Norrgren L. Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17α-ethinylestradiol and 17β-trenbolone. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:225-231. [PMID: 26734721 DOI: 10.1016/j.etap.2015.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Environmental estrogens and androgens can be present simultaneously in aquatic environments and thereby interact to disturb multiple physiological systems in organisms. Studies on interaction effects in fish of androgenic and estrogenic chemicals are limited. Therefore, the aim of the present study was to evaluate feminization and masculinization effects in zebrafish (Danio rerio) exposed to combinations of two synthetic steroid hormones detected in environmental waters: the androgen 17β-trenbolone (Tb) and the oestrogen 17α-ethinylestradiol (EE2). Juvenile zebrafish were exposed between days 20 and 60 post-hatch to different binary mixtures of Tb (1, 10, and 50 ng/L) and EE2 (2 and 5 ng/L). The endpoints studied were whole-body homogenate vitellogenin concentration at 40 days post-hatch, and sex ratio including gonad maturation at 60 days post-hatch. The feminizing potency of 5 ng/L of EE2, alone as well as in combination with Tb, was clear in the present study, with exposures resulting in almost all-female populations and females being sexually immature. Masculinization effects with male-biased sex ratios were observed when fish were exposed to 2 ng/L of EE2 in combination with Tb concentrations. Intersex fish were observed after exposure to mixtures of 2 ng/L EE2 with 50 ng/L Tb. Sexual maturity generally increased among males at increasing concentrations of Tb. The results of the present study show that exposure to environmentally relevant mixtures of an oestrogen and androgen affects the process of gonad differentiation in zebrafish and lead to sexual disruption.
Collapse
Affiliation(s)
- Stefan Örn
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-75007 Uppsala, Sweden.
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Leif Norrgren
- Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, SE-75007 Uppsala, Sweden
| |
Collapse
|
33
|
Pradhan A, Olsson PE. Zebrafish sexual behavior: role of sex steroid hormones and prostaglandins. Behav Brain Funct 2015; 11:23. [PMID: 26385780 PMCID: PMC4575480 DOI: 10.1186/s12993-015-0068-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/25/2015] [Indexed: 12/11/2022] Open
Abstract
Background Mating behavior differ between sexes and involves gonadal hormones and possibly sexually dimorphic gene expression in the brain. Sex steroids and prostaglandin E2 (PGE2) have been shown to regulate mammalian sexual behavior. The present study was aimed at determining whether exposure to sex steroids and prostaglandins could alter zebrafish sexual mating behavior. Methods Mating behavior and successful spawning was recorded following exposure to 17β-estradiol (E2), 11-ketotestosterone (11-KT), prostaglandin D2 (PGD2) and PGE2 via the water. qRT-PCR was used to analyze transcript levels in the forebrain, midbrain, and hindbrain of male and female zebrafish and compared to animals exposed to E2 via the water. Results Exposure of zebrafish to sex hormones resulted in alterations in behavior and spawning when male fish were exposed to E2 and female fish were exposed to 11-KT. Exposure to PGD2, and PGE2 did not alter mating behavior or spawning success. Determination of gene expression patterns of selected genes from three brain regions using qRT-PCR analysis demonstrated that the three brain regions differed in gene expression pattern and that there were differences between the sexes. In addition, E2 exposure also resulted in altered gene transcription profiles of several genes. Conclusions Exposure to sex hormones, but not prostaglandins altered mating behavior in zebrafish. The expression patterns of the studied genes indicate that there are large regional and gender-based differences in gene expression and that E2 treatment alter the gene expression pattern in all regions of the brain. Electronic supplementary material The online version of this article (doi:10.1186/s12993-015-0068-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
34
|
|
35
|
Pradhan A, Olsson PE. Inhibition of retinoic acid synthesis disrupts spermatogenesis and fecundity in zebrafish. Gen Comp Endocrinol 2015; 217-218:81-91. [PMID: 25687389 DOI: 10.1016/j.ygcen.2015.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/31/2015] [Accepted: 02/06/2015] [Indexed: 01/03/2023]
Abstract
Timing of germ cell entry into meiosis is sexually dimorphic in mammals. However it was recently shown that germ cells initiate meiosis at the same time in male and female zebrafish. Retinoic acid (RA) has been shown to be critical for mammalian spermatogenesis. Inhibition of RA synthesis by WIN 18,446 has been reported to inhibit spermatogenesis in a wide variety of animals including humans and was once used as a contraceptive in humans. In this study we explored the role of RA in zebrafish spermatogenesis. In silico analysis with Internal coordinate mechanics docking software showed that WIN 18,446 can bind to the rat, human and zebrafish Aldh1a2 catalytic domain with equivalent potency. RA exposure resulted in up-regulation of the RA metabolizing enzyme genes cyp26a1, cyp26b1 and cyp26c1 in vitro and in vivo. Exposure to WIN 18,446 resulted in down-regulation of Aldh1a2, cyp26a1 and cyp26b1 in vivo. WIN 18,446 was effective in disrupting spermatogenesis and fecundity in zebrafish but the reduction in sperm count and fecundity was only observed when zebrafish were maintained on a strict Artemia nauplii diet which is known to contain low levels of vitamin A. This study shows that RA is involved in spermatogenesis as well as oocyte development in zebrafish. As the zebrafish Aldh1a2 structure and function is similar to the mammalian counterpart, Aldh1a2 inhibitor screening using zebrafish as a model system may be beneficial in the discovery and development of new and safe contraceptives for humans.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
36
|
Novel cancer chemotherapy hits by molecular topology: dual Akt and Beta-catenin inhibitors. PLoS One 2015; 10:e0124244. [PMID: 25910265 PMCID: PMC4409212 DOI: 10.1371/journal.pone.0124244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/27/2015] [Indexed: 01/12/2023] Open
Abstract
Background and Purpose Colorectal and prostate cancers are two of the most common types and cause of a high rate of deaths worldwide. Therefore, any strategy to stop or at least slacken the development and progression of malignant cells is an important therapeutic choice. The aim of the present work is the identification of novel cancer chemotherapy agents. Nowadays, many different drug discovery approaches are available, but this paper focuses on Molecular Topology, which has already demonstrated its extraordinary efficacy in this field, particularly in the identification of new hit and lead compounds against cancer. This methodology uses the graph theoretical formalism to numerically characterize molecular structures through the so called topological indices. Once obtained a specific framework, it allows the construction of complex mathematical models that can be used to predict physical, chemical or biological properties of compounds. In addition, Molecular Topology is highly efficient in selecting and designing new hit and lead drugs. According to the aforementioned, Molecular Topology has been applied here for the construction of specific Akt/mTOR and β-catenin inhibition mathematical models in order to identify and select novel antitumor agents. Experimental Approach Based on the results obtained by the selected mathematical models, six novel potential inhibitors of the Akt/mTOR and β-catenin pathways were identified. These compounds were then tested in vitro to confirm their biological activity. Conclusion and Implications Five of the selected compounds, CAS n° 256378-54-8 (Inhibitor n°1), 663203-38-1 (Inhibitor n°2), 247079-73-8 (Inhibitor n°3), 689769-86-6 (Inhibitor n°4) and 431925-096 (Inhibitor n°6) gave positive responses and resulted to be active for Akt/mTOR and/or β-catenin inhibition. This study confirms once again the Molecular Topology’s reliability and efficacy to find out novel drugs in the field of cancer.
Collapse
|
37
|
Schubert C. Switching Sexual Identity. Biol Reprod 2015. [DOI: 10.1095/biolreprod.114.126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|