1
|
Giunco S, Petrara MR, Indraccolo S, Ciminale V, De Rossi A. Beyond Telomeres: Unveiling the Extratelomeric Functions of TERT in B-Cell Malignancies. Cancers (Basel) 2025; 17:1165. [PMID: 40227701 PMCID: PMC11987798 DOI: 10.3390/cancers17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The reactivation of telomerase enables cancer cells to maintain the telomere length, bypassing replicative senescence and achieving cellular immortality. In addition to its canonical role in telomere maintenance, accumulating evidence highlights telomere-length-independent functions of TERT, the catalytic subunit of telomerase. These extratelomeric functions involve the regulation of signaling pathways and transcriptional networks, creating feed-forward loops that promote cancer cell proliferation, resistance to apoptosis, and disease progression. This review explores the complex mechanisms by which TERT modulates key signaling pathways, such as NF-κB, AKT, and MYC, highlighting its role in driving autonomous cancer cell growth and resistance to therapy in B-cell malignancies. Furthermore, we discuss the therapeutic potential of targeting TERT's extratelomeric functions. Unlike telomere-directed approaches, which may require prolonged treatment to achieve effective telomere erosion, inhibiting TERT's extratelomeric functions offers the prospect of rapid tumor-specific effects. This strategy could complement existing chemotherapeutic regimens, providing an innovative and effective approach to managing B-cell malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Maria Raffaella Petrara
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Stefano Indraccolo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Ciminale
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
| |
Collapse
|
2
|
Assalve G, Lunetti P, Rocca MS, Cosci I, Di Nisio A, Ferlin A, Zara V, Ferramosca A. Exploring the Link Between Telomeres and Mitochondria: Mechanisms and Implications in Different Cell Types. Int J Mol Sci 2025; 26:993. [PMID: 39940762 PMCID: PMC11817679 DOI: 10.3390/ijms26030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Telomeres protect chromosome ends from damage, but they shorten with each cell division due to the limitations of DNA replication and are further affected by oxidative stress. This shortening is a key feature of aging, and telomerase, an enzyme that extends telomeres, helps mitigate this process. Aging is also associated with mitochondrial dysfunction, leading to increased reactive oxygen species (ROS) that exacerbate cellular damage and promote apoptosis. Elevated ROS levels can damage telomeres by oxidizing guanine and disrupting their regulation. Conversely, telomere damage impacts mitochondrial function, and activation of telomerase has been shown to reverse this decline. A critical link between telomere shortening and mitochondrial dysfunction is the DNA damage response, which activates the tumor suppressor protein p53, resulting in reduced mitochondrial biogenesis and metabolic disruptions. This highlights the bidirectional relationship between telomere maintenance and mitochondrial function. This review explores the complex interactions between telomeres and mitochondria across various cell types, from fibroblasts to sperm cells, shedding light on the interconnected mechanisms underlying aging and cellular function.
Collapse
Affiliation(s)
- Graziana Assalve
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Paola Lunetti
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, I-35128 Padova, Italy; (M.S.R.); (A.F.)
| | - Ilaria Cosci
- Department of Medicine, University of Padova, I-35128 Padova, Italy;
| | - Andrea Di Nisio
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, I-80143 Naples, Italy;
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, I-35128 Padova, Italy; (M.S.R.); (A.F.)
- Department of Medicine, University of Padova, I-35128 Padova, Italy;
| | - Vincenzo Zara
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Alessandra Ferramosca
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| |
Collapse
|
3
|
Sojoudi K, Azizi H, Skutella T. A review of the potential of induced pluripotent stem cell-derived exosome as a novel treatment for male infertility. Biotechnol Genet Eng Rev 2024; 40:1353-1378. [PMID: 36951621 DOI: 10.1080/02648725.2023.2193772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Exosomes are a subset of Extracellular vesicles (EVs) released by most cells in the body and can play a significant role in the intercellular connection. Researchers today claim that exosomes secreted by induced pluripotent stem cells (iPSCs) alone can play the same role as direct cell transplantation and, unlike iPSCs, do not lead to tumorigenesis. As a result, iPSC-derived exosomes (iPSC-Exos) have many applications in cell-free treatments and therapeutic effects on various diseases. Male infertility due to a defect or deficiency of spermatogonia to maintain spermatogenesis is one of the diseases that iPSC-Exos seems to be a new way to cure. However, the studies on the effect of iPSC-Exos on male infertility are very limited. In this review, we intend to provide a broader perspective on understanding the mechanisms of iPSC-Exos on spermatogenesis by collecting and reviewing some of the research conducted in this field.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Pańczyszyn A, Boniewska-Bernacka E, Wertel I, Sadakierska-Chudy A, Goc A. Telomeres and SIRT1 as Biomarkers of Gamete Oxidative Stress, Fertility, and Potential IVF Outcome. Int J Mol Sci 2024; 25:8652. [PMID: 39201341 PMCID: PMC11354255 DOI: 10.3390/ijms25168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The number of infertile couples undergoing in vitro fertilisation (IVF) has increased significantly. The efficacy of this procedure is contingent upon a multitude of factors, including gamete quality. One factor influencing gamete quality is oxidative stress, which leads to telomere damage and accelerates cellular ageing. Identifying new biomarkers that can predict the success of assisted reproduction techniques is a current relevant area of research. In this review, we discuss the potential role of SIRT1, a protein known to protect against oxidative stress and telomeres, which are responsible for genome stability, as biomarkers of gamete quality and assisted reproduction technique outcomes.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (E.B.-B.); (A.G.)
| | - Ewa Boniewska-Bernacka
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (E.B.-B.); (A.G.)
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Collegium Medicum, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705 Krakow, Poland;
| | - Anna Goc
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (E.B.-B.); (A.G.)
| |
Collapse
|
5
|
Özpolat BD. Annelids as models of germ cell and gonad regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:126-143. [PMID: 38078561 PMCID: PMC11060932 DOI: 10.1002/jez.b.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Germ cells (reproductive cells and their progenitors) give rise to the next generation in sexually reproducing organisms. The loss or removal of germ cells often leads to sterility in established research organisms such as the fruit fly, nematodes, frog, and mouse. The failure to regenerate germ cells in these organisms reinforced the dogma of germline-soma barrier in which germ cells are set-aside during embryogenesis and cannot be replaced by somatic cells. However, in stark contrast, many animals including segmented worms (annelids), hydrozoans, planaria, sea stars, sea urchins, and tunicates can regenerate germ cells. Here I review germ cell and gonad regeneration in annelids, a rich history of research that dates back to the early 20th century in this highly regenerative group. Examples include annelids from across the annelid phylogeny, across developmental stages, and reproductive strategies. Adult annelids regenerate germ cells as a part of regeneration, grafting, and asexual reproduction. Annelids can also recover germ cells after ablation of germ cell progenitors in the embryos. I present a framework to investigate cellular sources of germ cell regeneration in annelids, and discuss the literature that supports different possibilities within this framework, where germ-soma separation may or may not be preserved. With contemporary genetic-lineage tracing and bioinformatics tools, and several genetically enabled annelid models, we are at the brink of answering the big questions that puzzled many for over more than a century.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, St. Louis, United States, United States
| |
Collapse
|
6
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
7
|
Randell Z, Dehghanbanadaki H, Fendereski K, Jimbo M, Aston K, Hotaling J. Sperm telomere length in male-factor infertility and reproduction. Fertil Steril 2024; 121:12-25. [PMID: 37949346 DOI: 10.1016/j.fertnstert.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The underlying reasons for male-factor infertility are often unknown. 30% of all men have unexplained semen analysis abnormalities. Moreover, 15%-40% of infertile men have normal semen analyses. There have been increasing efforts to identify causes and associations that may explain idiopathic male-factor infertility. Telomeres have become an area of considerable interest in the field because of the essential roles they have in cellular division and genome integrity. Research to date most consistently supports that men with infertility have shorter sperm telomere length (STL); however, associations between shorter STL and meaningful reproductive health outcomes are less consistent. There is a major need for additional studies to better identify the role of STL in male reproductive health and use the information to improve the counseling and treatment of couples with idiopathic male-factor infertility.
Collapse
Affiliation(s)
- Zane Randell
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah.
| | - Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kenneth Aston
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - James Hotaling
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Zhang N, Baker EC, Welsh TH, Riley DG. Telomere Dynamics in Livestock. BIOLOGY 2023; 12:1389. [PMID: 37997988 PMCID: PMC10669808 DOI: 10.3390/biology12111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Telomeres are repeated sequences of nucleotides at the end of chromosomes. They deteriorate across mitotic divisions of a cell. In Homo sapiens this process of lifetime reduction has been shown to correspond with aspects of organismal aging and exposure to stress or other insults. The early impetus to characterize telomere dynamics in livestock related to the concern that aged donor DNA would result in earlier cell senescence and overall aging in cloned animals. Telomere length investigations in dairy cows included breed effects, estimates of additive genetic control (heritability 0.12 to 0.46), and effects of external stressors on telomere degradation across animal life. Evaluation of telomeres with respect to aging has also been conducted in pigs and horses, and there are fewer reports of telomere biology in beef cattle, sheep, and goats. There were minimal associations of telomere length with animal productivity measures. Most, but not all, work in livestock has documented an inverse relationship between peripheral blood cell telomere length and age; that is, a longer telomere length was associated with younger age. Because livestock longevity affects productivity and profitability, the role of tissue-specific telomere attrition in aging may present alternative improvement strategies for genetic improvement while also providing translational biomedical knowledge.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
| | - Emilie C. Baker
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
9
|
Cui H, Yang W, He S, Chai Z, Wang L, Zhang G, Zou P, Sun L, Yang H, Chen Q, Liu J, Cao J, Ling X, Ao L. TERT transcription and translocation into mitochondria regulate benzo[a]pyrene/BPDE-induced senescence and mitochondrial damage in mouse spermatocytes. Toxicol Appl Pharmacol 2023; 475:116656. [PMID: 37579952 DOI: 10.1016/j.taap.2023.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Telomere and mitochondria may be the targets of Benzo[a]pyrene (BaP) -induced male reproductive damage, and further elucidation of the toxic molecular mechanisms is necessary. In this study, we used in vivo and in vitro exposure models to explore the molecular mechanisms of TERT regulation in BaP-induced telomere and mitochondrial damage in spermatocytes. The results showed that the treatment of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the active metabolite of BaP, caused telomere dysfunction in mouse spermatocyte-derived GC-2 cells, resulting in S-phase arrest and increased senescence-associated secretory phenotype (SASP). These effects were significantly alleviated by telomerase agonist (ABG) pretreatment in GC-2 cells. SIRT1, FOXO3a, or c-MYC overexpressing GC-2 cell models were established to demonstrate that BPDE inhibited TERT transcriptional expression through the SIRT1/FOXO3a/c-MYC pathway, leading to telomere dysfunction. We also observed that BPDE induced mitochondrial compromise, including complex I damage, accompanied by reduced mitochondrial TERT expression. Based on this, we constructed wild-type TERT-overexpressing (OE-TERTwt) and mitochondria targeting TERT-overexpressing (OE-TERTmst) GC-2 cell models and found that OE-TERTmst GC-2 cells improved mitochondrial function better than OE-TERTwt GC-2 cells. Finally, ICR mice were given BaP by intragastric administration for 35 days, which verified the results of the in vitro study. The results shown that BaP exposure can lead to spermatogenesis disturbance, which is related to the telomere and mitochondrial damage in spermatocytes. In conclusion, our results suggest that BPDE causes telomere and mitochondrial damage in spermatocytes by inhibiting TERT transcription and mitochondrial TERT expression. This study elucidates the molecular mechanism of male reproductive toxicity due to environmental pollutant BaP, and also provides a new perspective for the exploration of interventions and protective measures against male reproductive damage by BaP.
Collapse
Affiliation(s)
- Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zili Chai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lihong Wang
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
10
|
Gouhier C, Pons-Rejraji H, Dollet S, Chaput L, Bourgne C, Berger M, Pereira B, Tchirkov A, Brugnon F. Freezing Does Not Alter Sperm Telomere Length despite Increasing DNA Oxidation and Fragmentation. Genes (Basel) 2023; 14:genes14051039. [PMID: 37239399 DOI: 10.3390/genes14051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Correlations were reported between sperm telomere length (STL) and male fertility, sperm DNA fragmentation, and oxidation. Sperm freezing is widely used for assisted reproductive techniques, fertility preservation, and sperm donation. However, its impact on STL remains unknown. For this study, semen surplus from patients who underwent routine semen analysis were used. The impact of slow freezing on STL was analyzed by performing qPCR before and after freezing. Sperm populations with different STL were evaluated using Q-FISH. The relationship between sperm DNA oxidation, DNA fragmentation, and STL was assessed in fresh and frozen sperm samples. No significant impact of slow freezing on STL was observed, neither measured by qPCR nor Q-FISH. However, Q-FISH allowed for the distinguishing of sperm populations with different STLs within individual sperm samples. Slow freezing induced different STL distributions for some of the analyzed sperm samples, but no correlation was found between STL and sperm DNA fragmentation or oxidation. Slow freezing does not alter STL despite increasing sperm DNA oxidation and fragmentation. As STL alterations could be transmitted to offspring, the lack of impact of the slow freezing method on STL ensures the safety of this procedure.
Collapse
Affiliation(s)
- Charlène Gouhier
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
| | - Hanae Pons-Rejraji
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Sandra Dollet
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Laure Chaput
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Céline Bourgne
- CHU Clermont Ferrand, Laboratoire d'Hématologie Biologique, F-63003 Clermont-Ferrand, France
| | - Marc Berger
- CHU Clermont Ferrand, Laboratoire d'Hématologie Biologique, F-63003 Clermont-Ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, DRCI-Délégation Recherche Clinique et Innovation, F-63000 Clermont-Ferrand, France
| | - Andrei Tchirkov
- CHU Clermont-Ferrand, Service de Cytogénétique Médicale, F-63003 Clermont-Ferrand, France
| | - Florence Brugnon
- CHU Clermont-Ferrand, Laboratoire AMP-CECOS, F-63003 Clermont-Ferrand, France
- UMR 1240 INSERM, IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
12
|
Chieffi Baccari G, Iurato G, Santillo A, Dale B. Male Germ Cell Telomeres and Chemical Pollutants. Biomolecules 2023; 13:biom13050745. [PMID: 37238614 DOI: 10.3390/biom13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, male infertility has been correlated with the shortening of sperm telomeres. Telomeres regulate the reproductive lifespan by mediating the synapsis and homologous recombination of chromosomes during gametogenesis. They are composed of thousands of hexanucleotide DNA repeats (TTAGGG) that are coupled to specialized shelterin complex proteins and non-coding RNAs. Telomerase activity in male germ cells ensures that the telomere length is maintained at maximum levels during spermatogenesis, despite telomere shortening due to DNA replication or other genotoxic factors such as environmental pollutants. An emerging body of evidence has associated an exposure to pollutants with male infertility. Although telomeric DNA may be one of the important targets of environmental pollutants, only a few authors have considered it as a conventional parameter for sperm function. The aim of this review is to provide comprehensive and up-to-date data on the research carried out so far on the structure/function of telomeres in spermatogenesis and the influence of environmental pollutants on their functionality. The link between pollutant-induced oxidative stress and telomere length in germ cells is discussed.
Collapse
Affiliation(s)
- Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | | | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Brian Dale
- Centro Fecondazione Assistita (CFA-Italia), 80127 Napoli, Italy
| |
Collapse
|
13
|
Single-Cell RNA Sequencing of the Testis of Ciona intestinalis Reveals the Dynamic Transcriptional Profile of Spermatogenesis in Protochordates. Cells 2022; 11:cells11243978. [PMID: 36552742 PMCID: PMC9776925 DOI: 10.3390/cells11243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a complex and continuous process of germ-cell differentiation. This complex process is regulated by many factors, of which gene regulation in spermatogenic cells plays a decisive role. Spermatogenesis has been widely studied in vertebrates, but little is known about spermatogenesis in protochordates. Here, for the first time, we performed single-cell RNA sequencing (scRNA-seq) on 6832 germ cells from the testis of adult Ciona intestinalis. We identified six germ cell populations and revealed dynamic gene expression as well as transcriptional regulation during spermatogenesis. In particular, we identified four spermatocyte subtypes and key genes involved in meiosis in C. intestinalis. There were remarkable similarities and differences in gene expression during spermatogenesis between C. intestinalis and two other vertebrates (Chinese tongue sole and human). We identified many spermatogenic-cell-specific genes with functions that need to be verified. These findings will help to further improve research on spermatogenesis in chordates.
Collapse
|
14
|
Zhu X, Fu H, Sun J, Di Q, Xu Q. N6-methyladenosine modification on Hmbox1 is related to telomere dysfunction in DEHP-induced male reproductive injury. Life Sci 2022; 309:121005. [PMID: 36174712 DOI: 10.1016/j.lfs.2022.121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS Di (2-ethylhexyl) phthalate (DEHP), as an environmental endocrine-disrupting chemical (EDC), can induce male reproductive injury. N6-methyladenosine (m6A) plays a vital role in environmental exposure-induced diseases by regulating gene expression. Therefore, we aim to investigate the role of m6A in DEHP-induced reproductive injury. MAIN METHODS We established an in vivo model of mice exposed to DEHP to explore the effect of DEHP on reproductive injury and m6A. To further explore the molecular mechanism of DEHP toxicity, we built a model of GC-2 cells exposed to mono-(2-ethylhexyl) phthalate (MEHP) in vitro and further silenced Mettl3 in GC-2cells. Besides, we also conducted MeRIP-qPCR and RIP assays to identify the target genes for m6A modification. KEY FINDINGS DEHP induced testicular injury and senescence. And telomeres shortening, reduced levels of telomere repeat-binding factor 1 (TRF1), TRF2, protection of telomeres 1 (POT1), and telomerase reverse transcriptase (TERT) can be observed in DEHP-treated testes. MEHP also induced GC-2 cellular senescence and telomere dysfunction. Besides, increased m6A mediated by METTL3 stabilized homeobox containing 1 (Hmbox1) in an m6A-dependent manner in MEHP-exposed GC-2 cells. Mettl3 knockdown led to lower m6A modification and reduced Hmbox1 stability, resulting in further shortening of telomere length. SIGNIFICANCE our work uncovered that DEHP led to male reproductive injury by telomere dysfunction and m6A modified Hmbox1 contributed to maintaining telomere homeostasis in this process, suggesting that accurate regulation of m6A modification level by drugs has potential value in the treatment of DEHP-induced male reproductive injury.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
Huda N, Kusumanchi P, Perez K, Jiang Y, Skill NJ, Sun Z, Ma J, Yang Z, Liangpunsakul S. Telomere length in patients with alcohol-associated liver disease: a brief report. J Investig Med 2022; 70:1438-1441. [PMID: 35246468 PMCID: PMC9378353 DOI: 10.1136/jim-2021-002213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 01/17/2023]
Abstract
The intact telomere structure is essential for the prevention of the chromosome end-to-end fusions and maintaining genomic integrity. The maintenance of telomere length is critical for cellular homeostasis. The shortening of telomeres has been reported in patients with chronic liver diseases. The telomere length has not been systemically studied in patients with alcohol-associated liver disease (ALD) at different stages, such as alcoholic hepatitis and alcoholic cirrhosis. In this brief report, we observed evidence of telomere shortening without changes in the telomerase activity in the liver of patients with alcoholic hepatitis and alcoholic cirrhosis when compared with controls. The alterations in the genes associated with telomere binding proteins were only observed in patients with alcoholic cirrhosis. Future studies are required to determine the mechanism of how alcohol affects the length of the telomere and if the shortening impacts the disease progression in ALD.
Collapse
Affiliation(s)
- Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Perez
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas J Skill
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltiore, MD, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
16
|
Tissier ML, Bergeron P, Garant D, Zahn S, Criscuolo F, Réale D. Telomere length positively correlates with pace-of-life in a sex- and cohort-specific way and elongates with age in a wild mammal. Mol Ecol 2022; 31:3812-3826. [PMID: 35575903 DOI: 10.1111/mec.16533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
Understanding ageing and the diversity of life histories is a cornerstone in biology. Telomeres, the protecting caps of chromosomes, are thought to be involved in ageing, cancer risks and life-history strategies. They shorten with cell division and age in somatic tissues of most species, possibly limiting lifespan. The resource allocation trade-off hypothesis predicts that short telomeres have thus co-evolved with early reproduction, proactive behaviour and reduced lifespan, i.e. a fast Pace-of-Life Syndrome (POLS). Conversely, since short telomeres may also reduce the risks of cancer, the anti-cancer hypothesis advances that they should be associated with slow POLS. Conclusion on which hypothesis best supports the role of telomeres as mediators of life-history strategies is hampered by a lack of study on wild short-lived vertebrates, apart from birds. Using seven years of data on wild Eastern chipmunks Tamias striatus, we highlighted that telomeres elongate with age (n = 204 and n = 20) and do not limit lifespan in this species (n = 51). Furthermore, short telomeres correlated with a slow POLS in a sex-specific way (n = 37). Females with short telomeres had a delayed age at first breeding and a lower fecundity rate than females with long telomeres, while we found no differences in males. Our findings support most predictions adapted from the anti-cancer hypothesis, but none of those from the resource allocation trade-off hypothesis. Results are in line with an increasing body of evidence suggesting that other evolutionary forces than resource allocation trade-offs shape the diversity of telomere length in adult somatic cells and the relationships between telomere length and life-histories.
Collapse
Affiliation(s)
- Mathilde L Tissier
- Biological Sciences, Bishop's University, 2600 Rue College, Québec, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Patrick Bergeron
- Biological Sciences, Bishop's University, 2600 Rue College, Québec, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Liu X, Shi Q, Fan X, Chen H, Chen N, Zhao Y, Qi K. Associations of Maternal Polyunsaturated Fatty Acids With Telomere Length in the Cord Blood and Placenta in Chinese Population. Front Nutr 2022; 8:779306. [PMID: 35155512 PMCID: PMC8831827 DOI: 10.3389/fnut.2021.779306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
Few studies have investigated the correlation between maternal polyunsaturated fatty acids (PUFAs) and telomeres in offspring, and the underlying influential mechanisms. In this study, we assessed the associations of maternal PUFAs with telomere length (TL) and DNA methylation of the telomerase reverse transcriptase (TERT) promoter in the cord blood and the placenta. A total of 274 pregnant women and their newborn babies were enrolled in this study. Maternal blood before delivery, the cord blood, and the placenta at birth were collected. Fatty acids in maternal erythrocytes and cord blood cells were measured by gas chromatography (GC). TL in the cord blood and the placenta was determined using real-time quantitative PCR (qPCR) by calculating the product ratio of telomeric DNA to the single-copy gene β-globin. The TERT promoter methylation was analyzed by DNA bisulfite sequencing. The associations of maternal fatty acids with TL were analyzed by univariate and multivariate regression. We found that low concentrations of docosapentaenoci acid (DPA, C22: 5n-3) and total n-3 PUFAs, adrenic acid (ADA, C22: 4n-6), and osbond acid (OA, C22: 5n-6) and high concentrations of linoleic acid (LA, C18: 2n-6) in maternal erythrocytes were associated with the shortened TL in cord blood cells (estimated difference in univariate analysis −0.36 to −0.46 for extreme quintile compared with middle quintile), and that low concentrations of cord blood docosahexaenoic acid (DHA, C22: 6n-3) were related to the shortened TL in cord blood cells. Differently, high concentrations of α-linolenic acid (LNA, C18: 3n-3), eicosatrienoic acid (EA, C20: 3n-3), DHA, and γ-linoleic acid (GLA, C18:3n-6) in maternal erythrocytes were associated with the shortened TL in the placenta (estimated difference in univariate analysis −0.36 to −0.45 for higher quintiles compared with the middle quintile). Further examination demonstrated that the concentrations of DHA and total n-3 PUFAs in maternal erythrocytes had positive associations with DNA methylation of the TERT promoter in the cord blood instead of the placenta. These data suggest that maternal PUFAs are closely correlated to infant TL and the TERT promoter methylation, which are differently affected by maternal n-3 PUFAs between the cord blood and the placenta. Therefore, keeping higher levels of maternal n-3 PUFAs during pregnancy may help to maintain TL in the offspring, which is beneficial to long-term health.
Collapse
Affiliation(s)
- Xuanyi Liu
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiaoyu Shi
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiuqin Fan
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hang Chen
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yurong Zhao
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yurong Zhao
| | - Kemin Qi
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Kemin Qi
| |
Collapse
|
18
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Panner Selvam MK, Baskaran S, Sikka SC. Telomere Signaling and Maintenance Pathways in Spermatozoa of Infertile Men Treated With Antioxidants: An in silico Approach Using Bioinformatic Analysis. Front Cell Dev Biol 2021; 9:768510. [PMID: 34708049 PMCID: PMC8542908 DOI: 10.3389/fcell.2021.768510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Telomere shortening is considered as a marker of cellular senescence and it is regulated by various signaling pathways. Sperm telomere appears to play important role in its longevity and function. Antioxidant intake has been known to prevent the shortening of telomere. In the management of male infertility, antioxidants are commonly used to counterbalance the seminal oxidative stress. It is important to understand how antioxidants treatment may modulate telomere signaling in sperm. In the current study, we have identified 377 sperm proteins regulated by antioxidants based on data mining of published literature. Bioinformatic analysis revealed involvement of 399 upstream regulators and 806 master regulators associated with differentially expressed sperm proteins. Furthermore, upstream regulator analysis indicated activation of kinases (EGFR and MAPK3) and transcription factors (CCNE1, H2AX, MYC, RB1, and TP53). Hence, it is evident that antioxidant supplementation activates molecules associated with telomere function in sperm. The outcome of this in silico study suggests that antioxidant therapy has beneficial effects on certain transcription factors and kinases associated with sperm telomere maintenance and associated signaling pathways that may play an important role in the management of male factor infertility.
Collapse
Affiliation(s)
| | | | - Suresh C. Sikka
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
20
|
Wang F, Chamani IJ, Luo D, Chan K, Navarro PA, Keefe DL. Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development. J Assist Reprod Genet 2021; 38:3145-3153. [PMID: 34618297 DOI: 10.1007/s10815-021-02331-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate whether inhibition of LINE-1 affects telomere reprogramming during 2-cell embryo development. METHODS Mouse zygotes were cultured with or without 1 µM azidothymidine (AZT) for up to 15 h (early 2-cell, G1/S) or 24 h (late 2-cell, S/G2). Gene expression and DNA copy number were determined by RT-qPCR and qPCR respectively. Immunostaining and telomeric PNA-FISH were performed for co-localization between telomeres and ZSCAN4 or LINE-1-Orf1p. RESULTS LINE-1 copy number was remarkably reduced in later 2-cell embryos by exposure to 1 µM AZT, and telomere lengths in late 2-cell embryos with AZT were significantly shorter compared to control embryos (P = 0.0002). Additionally, in the absence of LINE-1 inhibition, Dux, Zscan4, and LINE-1 were highly transcribed in early 2-cell embryos, as compared to late 2-cell embryos (P < 0.0001), suggesting that these 2-cell genes are activated at the early 2-cell stage. However, in early 2-cell embryos with AZT treatment, mRNA levels of Dux, Zscan4, and LINE-1 were significantly decreased. Furthermore, both Zscan4 and LINE-1 encoded proteins localized to telomere regions in 2-cell embryos, but this co-localization was dramatically reduced after AZT treatment (P < 0.001). CONCLUSIONS Upon inhibition of LINE-1 retrotransposition in mouse 2-cell embryos, Dux, Zscan4, and LINE-1 were significantly downregulated, and telomere elongation was blocked. ZSCAN4 foci and their co-localization with telomeres were also significantly decreased, indicating that ZSCAN4 is an essential component of the telomere reprogramming that occurs in mice at the 2-cell stage. Our findings also suggest that LINE-1 may directly contribute to telomere reprogramming in addition to regulating gene expression.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Isaac J Chamani
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Danxia Luo
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kasey Chan
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paula Andrea Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
21
|
Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, Oliver TRW, Leongamornlert D, Ellis P, Noorani A, Mitchell TJ, Butler TM, Hooks Y, Warren AY, Jorgensen M, Dawson KJ, Menzies A, O'Neill L, Latimer C, Teng M, van Boxtel R, Iacobuzio-Donahue CA, Martincorena I, Heer R, Campbell PJ, Fitzgerald RC, Stratton MR, Rahbari R. The mutational landscape of human somatic and germline cells. Nature 2021; 597:381-386. [PMID: 34433962 DOI: 10.1038/s41586-021-03822-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
Over the course of an individual's lifetime, normal human cells accumulate mutations1. Here we compare the mutational landscape in 29 cell types from the soma and germline using multiple samples from the same individuals. Two ubiquitous mutational signatures, SBS1 and SBS5/40, accounted for the majority of acquired mutations in most cell types, but their absolute and relative contributions varied substantially. SBS18, which potentially reflects oxidative damage2, and several additional signatures attributed to exogenous and endogenous exposures contributed mutations to subsets of cell types. The rate of mutation was lowest in spermatogonia, the stem cells from which sperm are generated and from which most genetic variation in the human population is thought to originate. This was due to low rates of ubiquitous mutational processes and may be partially attributable to a low rate of cell division in basal spermatogonia. These results highlight similarities and differences in the maintenance of the germline and soma.
Collapse
Affiliation(s)
- Luiza Moore
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alex Cagan
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Matthew D C Neville
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Rashesh Sanghvi
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Thomas R W Oliver
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Peter Ellis
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Inivata, Cambridge, UK
| | - Ayesha Noorani
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mette Jorgensen
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kevin J Dawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mabel Teng
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Urology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | | | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
22
|
Schroder JD, de Araújo JB, de Oliveira T, de Moura AB, Fries GR, Quevedo J, Réus GZ, Ignácio ZM. Telomeres: the role of shortening and senescence in major depressive disorder and its therapeutic implications. Rev Neurosci 2021; 33:227-255. [PMID: 34388328 DOI: 10.1515/revneuro-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.
Collapse
Affiliation(s)
- Jessica Daniela Schroder
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Julia Beatrice de Araújo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Airam Barbosa de Moura
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Gabriel Rodrigo Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| |
Collapse
|
23
|
Erdem HB, Bahsi T, Ergün MA. Function of telomere in aging and age related diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103641. [PMID: 33774188 DOI: 10.1016/j.etap.2021.103641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Telomeres consist of specialized non-coding DNA repeat sequences. They are essential for preserving the integrity of the genome during cancer development, senescence. Mammalian telomeres might have 1-50 kb of telomeric DNA, which becomes 40-200 base pairs shorter after per cell cycle, and becomes 5-8 kilobase shorter during senescence. There are many studies on the correlation of telomere length and aging rate. However, as the differences in the methods used in the studies and the scarcity of prospective studies, factors affecting telomere length are not really well understood. Some of the age related diseases may develop due to telomere dysfunction and telomere shortness. The short telomere structure detected in both peripheral blood leukocytes and cells of the disease-related tissue has the feature of being a predictive marker for many age-related diseases. It is expected that with future research, telomere length analysis is expected to enter clinical practice.
Collapse
Affiliation(s)
- Haktan Bağış Erdem
- Department of Medical Genetics, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Yenimahalle, Ankara, Turkey.
| | - Taha Bahsi
- Department of Medical Genetics, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Yenimahalle, Ankara, Turkey.
| | - Mehmet Ali Ergün
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey.
| |
Collapse
|
24
|
Wang Y, Iwamori T, Kaneko T, Iida H, Iwamori N. Comparative distributions of RSBN1 and methylated histone H4 Lysine 20 in the mouse spermatogenesis. PLoS One 2021; 16:e0253897. [PMID: 34185806 PMCID: PMC8241091 DOI: 10.1371/journal.pone.0253897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
During spermatogenesis, nuclear architecture of male germ cells is dynamically changed and epigenetic modifications, in particular methylation of histones, highly contribute to its regulation as well as differentiation of male germ cells. Although several methyltransferases and demethylases for histone H3 are involved in the regulation of spermatogenesis, roles of either histone H4 lysine 20 (H4K20) methyltransferases or H4K20 demethylases during spermatogenesis still remain to be elucidated. Recently, RSBN1 which is a testis-specific gene expressed in round spermatids was identified as a demethylase for dimethyl H4K20. In this study, therefore, we confirm the demethylase function of RSBN1 and compare distributions between RSBN1 and methylated H4K20 in the seminiferous tubules. Unlike previous report, expression analyses for RSBN1 reveal that RSBN1 is not a testis-specific gene and is expressed not only in round spermatids but also in elongated spermatids. In addition, RSBN1 can demethylate not only dimethyl H4K20 but also trimethyl H4K20 and could convert both dimethyl H4K20 and trimethyl H4K20 into monomethyl H4K20. When distribution pattern of RSBN1 in the seminiferous tubule is compared to that of methylated H4K20, both dimethyl H4K20 and trimethyl H4K20 but not monomethyl H4K20 are disappeared from RSBN1 positive germ cells, suggesting that testis-specific distribution patterns of methylated H4K20 might be constructed by RSBN1. Thus, novel expression and function of RSBN1 could be useful to comprehend epigenetic regulation during spermatogenesis.
Collapse
Affiliation(s)
- Youtao Wang
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Tokuko Iwamori
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Takane Kaneko
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
25
|
Morgan HL, Ampong I, Eid N, Rouillon C, Griffiths HR, Watkins AJ. Low protein diet and methyl-donor supplements modify testicular physiology in mice. Reproduction 2021; 159:627-641. [PMID: 32163913 PMCID: PMC7159163 DOI: 10.1530/rep-19-0435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
The link between male diet and sperm quality has received significant investigation. However, the impact diet and dietary supplements have on the testicular environment has been examined to a lesser extent. Here, we establish the impact of a sub-optimal low protein diet (LPD) on testicular morphology, apoptosis and serum fatty acid profiles. Furthermore, we define whether supplementing a LPD with specific methyl donors abrogates any detrimental effects of the LPD. Male C57BL6 mice were fed either a control normal protein diet (NPD; 18% protein; n = 8), an isocaloric LPD (LPD; 9% protein; n = 8) or an LPD supplemented with methyl donors (MD-LPD; choline chloride, betaine, methionine, folic acid, vitamin B12; n = 8) for a minimum of 7 weeks. Analysis of male serum fatty acid profiles by gas chromatography revealed elevated levels of saturated fatty acids and lower levels of mono- and polyunsaturated fatty acids in MD-LPD males when compared to NPD and/or LPD males. Testes of LPD males displayed larger seminiferous tubule cross section area when compared to NPD and MD-LPD males, while MD-LPD tubules displayed a larger luminal area. Furthermore, TUNNEL staining revealed LPD males possessed a reduced number of tubules positive for apoptosis, while gene expression analysis showed MD-LPD testes displayed decreased expression of the pro-apoptotic genes Bax, Csap1 and Fas when compared to NPD males. Finally, testes from MD-LPD males displayed a reduced telomere length but increased telomerase activity. These data reveal the significance of sub-optimal nutrition for paternal metabolic and reproductive physiology.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Isaac Ampong
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, UK
| | - Nader Eid
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Charlène Rouillon
- INRA, Fish Physiology and Genomics, Bat 16A, Campus de Beaulieu, Rennes, France
| | - Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
26
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
27
|
Berby B, Bichara C, Rives-Feraille A, Jumeau F, Pizio PD, Sétif V, Sibert L, Dumont L, Rondanino C, Rives N. Oxidative Stress Is Associated with Telomere Interaction Impairment and Chromatin Condensation Defects in Spermatozoa of Infertile Males. Antioxidants (Basel) 2021; 10:antiox10040593. [PMID: 33921485 PMCID: PMC8069055 DOI: 10.3390/antiox10040593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Telomere length can be influenced by reactive oxygen species (ROS) generated by lifestyle factors or environmental exposure. We sought to determine whether oxidative stress has an impact on sperm nuclear alterations, especially on chromatin organization and telomere interactions in the spermatozoa of infertile males. We performed an observational and prospective study including fifty-two males, allocated in the "case group" (30 infertile males presenting conventional semen parameter alterations) and the "control group" (22 males with normal conventional semen parameters). ROS detection was determined on spermatozoa using CellROX© probes. Sperm nuclear damage was assessed using quantitative fluorescence in situ hybridization (Q-FISH) for relative telomere length and telomere number, aniline blue staining for chromatin condensation, terminal deoxynucleotidyl transferase dUTP nick-end labeling for DNA fragmentation, and FISH for aneuploidy and 8-hydroxy-2'-deoxyguanosine immunostaining for oxidative DNA damages. Infertile males had significantly increased levels of cytoplasmic ROS and chromatin condensation defects as well as a higher mean number of telomere signals per spermatozoon in comparison with controls. In addition, the mean number of sperm telomere signals were positively correlated with the percentage of spermatozoa with chromatin condensation defect. In infertile males with conventional semen parameter alterations, oxidative stress is associated with telomere interaction impairment and chromatin condensation defects.
Collapse
Affiliation(s)
- Benoit Berby
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Cynthia Bichara
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Aurélie Rives-Feraille
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Fanny Jumeau
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Pierre Di Pizio
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Véronique Sétif
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
| | - Louis Sibert
- Department of Urology—Andrology, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France;
| | - Ludovic Dumont
- Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (L.D.); (C.R.)
| | - Chistine Rondanino
- Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (L.D.); (C.R.)
| | - Nathalie Rives
- Biology of Reproduction—CECOS Laboratory, Rouen University Hospital, Normandie University, UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”, F 76000 Rouen, France; (B.B.); (C.B.); (A.R.-F.); (F.J.); (P.D.P.); (V.S.)
- Correspondence: ; Tel.: +33-2-3288-8225
| |
Collapse
|
28
|
Nersisyan L, Simonyan A, Binder H, Arakelyan A. Telomere Maintenance Pathway Activity Analysis Enables Tissue- and Gene-Level Inferences. Front Genet 2021; 12:662464. [PMID: 33897770 PMCID: PMC8058386 DOI: 10.3389/fgene.2021.662464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
Telomere maintenance is one of the mechanisms ensuring indefinite divisions of cancer and stem cells. Good understanding of telomere maintenance mechanisms (TMM) is important for studying cancers and designing therapies. However, molecular factors triggering selective activation of either the telomerase dependent (TEL) or the alternative lengthening of telomeres (ALT) pathway are poorly understood. In addition, more accurate and easy-to-use methodologies are required for TMM phenotyping. In this study, we have performed literature based reconstruction of signaling pathways for the ALT and TEL TMMs. Gene expression data were used for computational assessment of TMM pathway activities and compared with experimental assays for TEL and ALT. Explicit consideration of pathway topology makes bioinformatics analysis more informative compared to computational methods based on simple summary measures of gene expression. Application to healthy human tissues showed high ALT and TEL pathway activities in testis, and identified genes and pathways that may trigger TMM activation. Our approach offers a novel option for systematic investigation of TMM activation patterns across cancers and healthy tissues for dissecting pathway-based molecular markers with diagnostic impact.
Collapse
Affiliation(s)
- Lilit Nersisyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Pathverse, Yerevan, Armenia
| | - Arman Simonyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Pathverse, Yerevan, Armenia
| |
Collapse
|
29
|
Kosebent EG, Ozturk S. The spatiotemporal expression of TERT and telomere repeat binding proteins in the postnatal mouse testes. Andrologia 2021; 53:e13976. [PMID: 33544428 DOI: 10.1111/and.13976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/06/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Telomeres consist of repetitive DNA sequences and telomere-associated proteins. Telomeres located at the ends of eukaryotic chromosomes undergo shortening due to DNA replication, genotoxic factors and reactive oxygen species. The short telomeres are elongated by the enzyme telomerase expressed in the germ line, embryonic and stem cells. Telomerase is in the structure of ribonucleoprotein composed of telomerase reverse transcriptase (TERT), telomerase RNA component (Terc) and other components. Among telomere-associated proteins, telomeric repeat binding factor 1 (TRF1) and 2 (TRF2) exclusively bind to the double-stranded telomeric DNA to regulate its length. However, protection of telomeres 1 (POT1) interacts with the single-stranded telomeric DNA to protect from DNA damage response. Herein, we characterised the spatial and temporal expression of the TERT, TRF1, TRF2 and POT1 proteins in the postnatal mouse testes at the ages of 6, 8, 16, 20, 29, 32 and 88 days by using immunohistochemistry. Significant differences in the spatiotemporal expression patterns and levels of these proteins were determined in the postnatal testes (p < .05). These findings indicate that TERT and telomere repeat binding proteins seem to be required for maintaining the length and structural integrity of telomeres in the spermatogenic cells from newborn to adult terms.
Collapse
Affiliation(s)
- Esra G Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
30
|
Liu X, Liu X, Shi Q, Fan X, Qi K. Association of telomere length and telomerase methylation with n-3 fatty acids in preschool children with obesity. BMC Pediatr 2021; 21:24. [PMID: 33413203 PMCID: PMC7788823 DOI: 10.1186/s12887-020-02487-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Telomeres play a crucial role in cellular survival and its length is a predictor for onset of chronic non-communicable diseases. Studies on association between telomeres and obesity in children have brought discrepant results and the underlying mechanisms and influential factors are to be elucidated. This study aimed to investigate changes in telomere length and telomerase reverse transcriptase (TERT) DNA methylation, and further to determine their correlation with n-3 polyunsaturated fatty acids (PUFAs) in preschool children with obesity. METHODS Forty-six preschool children with obesity aged 3 to 4 years were included in the study, with equal numbers of age- and gender-matched children with normal weight as control. Leukocyte telomere length was determined by the ratio of telomeric product and single copy gene obtained using real-time qPCR. DNA methylation of TERT promoter was analyzed by bisulfite sequencing. Fatty acids in erythrocytes were measured by gas chromatography with a total of 15 fatty acids analyzed. The total saturated fatty acids (SFAs), total n-6 PUFAs, total n-3 PUFAs, and the ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) were calculated. Then the correlation between leukocyte telomere length, TERT promoter methylation and fatty acids was determined. RESULTS In preschool children with obesity, leukocyte telomeres were shortened and had a negative association with the body mass index. The methylated fractions in 13 of 25 CpG sites in the TERT promoter were increased by approximately 3 to 35% in the children with obesity compared to the normal weight children. Erythrocyte lauric acid and total SFAs, lenoleic acid and total n-6 PUFAs were higher, and DHA was lower in the children with obesity than those in the children with normal weight. Correlative analysis showed that leukocyte telomere length had a positive association with total SFAs and DHA, and a negative association with the AA/DHA ratio. However, no association between erythrocyte DHA and the TERT promoter methylation was found. CONCLUSION These data indicate that the reduced body DHA content and increased AA/DHA ratio may be associated with shortened leukocyte telomeres in child obesity, which is probably not involved in the TERT promoter methylation.
Collapse
Affiliation(s)
- Xuanyi Liu
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xiaozhou Liu
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Qiaoyu Shi
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China.
| |
Collapse
|
31
|
Laurentino S, Cremers J, Horsthemke B, Tüttelmann F, Czeloth K, Zitzmann M, Pohl E, Rahmann S, Schröder C, Berres S, Redmann K, Krallmann C, Schlatt S, Kliesch S, Gromoll J. A germ cell-specific ageing pattern in otherwise healthy men. Aging Cell 2020; 19:e13242. [PMID: 32951333 PMCID: PMC7576283 DOI: 10.1111/acel.13242] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Life‐long sperm production leads to the assumption that male fecundity remains unchanged throughout life. However, recently it was shown that paternal age has profound consequences for male fertility and offspring health. Paternal age effects are caused by an accumulation of germ cell mutations over time, causing severe congenital diseases. Apart from these well‐described cases, molecular patterns of ageing in germ cells and their impact on DNA integrity have not been studied in detail. In this study, we aimed to assess the effects of ‘pure’ ageing on male reproductive health and germ cell quality. We assembled a cohort of 198 healthy men (18–84 years) for which end points such as semen and hormone profiles, sexual health and well‐being, and sperm DNA parameters were evaluated. Sperm production and hormonal profiles were maintained at physiological levels over a period of six decades. In contrast, we identified a germ cell‐specific ageing pattern characterized by a steady increase of telomere length in sperm and a sharp increase in sperm DNA instability, particularly after the sixth decade. Importantly, we found sperm DNA methylation changes in 236 regions, mostly nearby genes associated with neuronal development. By in silico analysis, we found that 10 of these regions are located in loci which can potentially escape the first wave of genome‐wide demethylation after fertilization. In conclusion, human male germ cells present a unique germline‐specific ageing process, which likely results in diminished fecundity in elderly men and poorer health prognosis for their offspring.
Collapse
Affiliation(s)
- Sandra Laurentino
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | | | - Bernhard Horsthemke
- Institute of Human Genetics University of Duisburg‐EssenUniversity Hospital Essen Essen Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics University of Münster Münster Germany
| | - Karen Czeloth
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | - Michael Zitzmann
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | - Eva Pohl
- Institute of Human Genetics University of Münster Münster Germany
| | - Sven Rahmann
- Genome Informatics University of Duisburg‐EssenUniversity Hospital Essen Essen Germany
| | - Christopher Schröder
- Genome Informatics University of Duisburg‐EssenUniversity Hospital Essen Essen Germany
| | - Sven Berres
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | - Klaus Redmann
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology University of Münster Münster Germany
| |
Collapse
|
32
|
Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, Delgado D, Zhang C, Shinkle J, Sabarinathan M, Lin H, Ramirez E, Oliva M, Kim-Hellmuth S, Stranger BE, Lai TP, Aviv A, Ardlie KG, Aguet F, Ahsan H, Doherty JA, Kibriya MG, Pierce BL. Determinants of telomere length across human tissues. Science 2020; 369:eaaz6876. [PMID: 32913074 PMCID: PMC8108546 DOI: 10.1126/science.aaz6876] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Telomere shortening is a hallmark of aging. Telomere length (TL) in blood cells has been studied extensively as a biomarker of human aging and disease; however, little is known regarding variability in TL in nonblood, disease-relevant tissue types. Here, we characterize variability in TLs from 6391 tissue samples, representing >20 tissue types and 952 individuals from the Genotype-Tissue Expression (GTEx) project. We describe differences across tissue types, positive correlation among tissue types, and associations with age and ancestry. We show that genetic variation affects TL in multiple tissue types and that TL may mediate the effect of age on gene expression. Our results provide the foundational knowledge regarding TL in healthy tissues that is needed to interpret epidemiological studies of TL and human health.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Hannah Lin
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Eduardo Ramirez
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
| | - Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, USA
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | | | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
33
|
Zhang ZP, Zhang JT, Huang SC, He XY, Deng LX. Double sperm cloning (DSC) is a promising strategy in mammalian genetic engineering and stem cell research. Stem Cell Res Ther 2020; 11:388. [PMID: 32894201 PMCID: PMC7487873 DOI: 10.1186/s13287-020-01907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) derived from somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) are promising tools for meeting the personalized requirements of regenerative medicine. However, some obstacles need to be overcome before clinical trials can be undertaken. First, donor cells vary, and the reprogramming procedures are diverse, so standardization is a great obstacle regarding SCNT and iPSCs. Second, somatic cells derived from a patient may carry mitochondrial DNA mutations and exhibit telomere instability with aging or disease, and SCNT-ESCs and iPSCs retain the epigenetic memory or epigenetic modification errors. Third, reprogramming efficiency has remained low. Therefore, in addition to improving their success rate, other alternatives for producing ESCs should be explored. Producing androgenetic diploid embryos could be an outstanding strategy; androgenic diploid embryos are produced through double sperm cloning (DSC), in which two capacitated sperms (XY or XX, sorted by flow cytometer) are injected into a denucleated oocyte by intracytoplasmic sperm injection (ICSI) to reconstruct embryo and derive DSC-ESCs. This process could avoid some potential issues, such as mitochondrial interference, telomere shortening, and somatic epigenetic memory, all of which accompany somatic donor cells. Oocytes are naturally activated by sperm, which is unlike the artificial activation that occurs in SCNT. The procedure is simple and practical and can be easily standardized. In addition, DSC-ESCs can overcome ethical concerns and resolve immunological response matching with sperm providers. Certainly, some challenges must be faced regarding imprinted genes, epigenetics, X chromosome inactivation, and dosage compensation. In mice, DSC-ESCs have been produced and have shown excellent differentiation ability. Therefore, the many advantages of DSC make the study of this process worthwhile for regenerative medicine and animal breeding.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun-Tao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiu-Yuan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Li-Xin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
34
|
The altered expression of telomerase components and telomere-linked proteins may associate with ovarian aging in mouse. Exp Gerontol 2020; 138:110975. [DOI: 10.1016/j.exger.2020.110975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 12/27/2022]
|
35
|
Brieño-Enríquez MA, Moak SL, Abud-Flores A, Cohen PE. Characterization of telomeric repeat-containing RNA (TERRA) localization and protein interactions in primordial germ cells of the mouse†. Biol Reprod 2020; 100:950-962. [PMID: 30423030 DOI: 10.1093/biolre/ioy243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures capping the physical ends of linear eukaryotic chromosomes. They consist of telomeric DNA repeats (TTAGGG), the shelterin protein complex, and telomeric repeat-containing RNA (TERRA). Proposed TERRA functions are wide ranging and include telomere maintenance, telomerase inhibition, genomic stability, and alternative lengthening of telomere. However, the presence and role of TERRA in primordial germ cells (PGCs), the embryonic precursors of germ cells, is unknown. Using RNA-fluorescence in situ hybridization, we identify TERRA transcripts in female PGCs at 11.5, 12.5, and 13.5 days postcoitum. In male PGCs, the earliest detection TERRA was at 12.5 dpc where we observed cells with either zero or one TERRA focus. Using qRT-PCR, we evaluated chromosome-specific TERRA expression. Female PGCs showed TERRA expression at 11.5 dpc from eight different chromosome subtelomeric regions (chromosomes 1, 2, 7, 9, 11, 13, 17, and 18) while in male PGCs, TERRA expression was confined to the chromosome 17. Most TERRA transcription in 13.5 dpc male PGCs arose from chromosomes 2 and 6. TERRA interacting proteins were evaluated using identification of direct RNA interacting proteins (iDRiP), which identified 48 in female and 26 in male protein interactors from PGCs at 13.5 dpc. We validated two different proteins: the splicing factor, proline- and glutamine-rich (SFPQ) in PGCs and non-POU domain-containing octamer-binding protein (NONO) in somatic cells. Taken together, our data indicate that TERRA expression and interactome during PGC development are regulated in a dynamic fashion that is dependent on gestational age and sex.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Steffanie L Moak
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Anyul Abud-Flores
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
36
|
Comparative Cytogenetic Mapping and Telomere Analysis Provide Evolutionary Predictions for Devil Facial Tumour 2. Genes (Basel) 2020; 11:genes11050480. [PMID: 32354058 PMCID: PMC7290341 DOI: 10.3390/genes11050480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 01/20/2023] Open
Abstract
The emergence of a second transmissible tumour in the Tasmanian devil population, devil facial tumour 2 (DFT2), has prompted questions on the origin and evolution of these transmissible tumours. We used a combination of cytogenetic mapping and telomere length measurements to predict the evolutionary trajectory of chromosome rearrangements in DFT2. Gene mapping by fluorescence in situ hybridization (FISH) provided insight into the chromosome rearrangements in DFT2 and identified the evolution of two distinct DFT2 lineages. A comparison of devil facial tumour 1 (DFT1) and DFT2 chromosome rearrangements indicated that both started with the fusion of a chromosome, with potentially critically short telomeres, to chromosome 1 to form dicentric chromosomes. In DFT1, the dicentric chromosome resulted in breakage–fusion–bridge cycles leading to highly rearranged chromosomes. In contrast, the silencing of a centromere on the dicentric chromosome in DFT2 stabilized the chromosome, resulting in a less rearranged karyotype than DFT1. DFT2 retains a bimodal distribution of telomere length dimorphism observed on Tasmanian devil chromosomes, a feature lost in DFT1. Using long term cell culture, we observed homogenization of telomere length over time. We predict a similar homogenization of telomere lengths occurred in DFT1, and that DFT2 is unlikely to undergo further substantial rearrangements due to maintained telomere length.
Collapse
|
37
|
Lara-Cerrillo S, Gual-Frau J, Benet J, Abad C, Prats J, Amengual MJ, Ribas-Maynou J, García-Peiró A. Microsurgical varicocelectomy effect on sperm telomere length, DNA fragmentation and seminal parameters. HUM FERTIL 2020; 25:135-141. [PMID: 31916507 DOI: 10.1080/14647273.2019.1711204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Varicocele is one of the main causes of male infertility and microsurgical varicocelectomy (MV) seems to be the best procedure for its repair and to reduce testicular oxidative stress (ROS). As ROS causes guanine modifications, we postulated that DNA damage could be more intense in telomeres due to their G-rich nature. We studied the effect of MV on sperm telomere length (TL), single- and double-strand DNA fragmentation (ssSDF and dsSDF) and seminal parameters. Sperm telomeres from 12 fertile donors and 20 varicocele patients before and nine months after MV were labelled using FITC-PNA qFISH (a new method to obtain absolute TL from relative fluorescence intensity using FITC-fluorescent spheres). Both ssSDF and dsSDF were analysed using the alkaline and neutral Comet assays, respectively. The results showed that varicocele and MV had no effect on TL. Seminal parameters, ssSDF and dsSDF of varicocele patients were altered. Although these parameters improved after MV, values did not reach those seen in fertile donors. A good estimation of absolute TL was developed based on FITC-fluorescent spheres. The results showed that TL is not affected by varicocele or surgery. However, MV is able to partially reduce altered seminal parameters, ssSDF and dsSDF values in varicocele patients.
Collapse
Affiliation(s)
| | - Josep Gual-Frau
- Servei d'Urologia, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Benet
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carlos Abad
- Servei d'Urologia, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Juan Prats
- Servei d'Urologia, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - Universitat Autònoma de Barcelona, Sabadell, Spain
| | - María José Amengual
- Centre Diagnòstic UDIAT, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - UAB, Sabadell, Spain
| | - Jordi Ribas-Maynou
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
38
|
Monaghan P, Metcalfe NB. The deteriorating soma and the indispensable germline: gamete senescence and offspring fitness. Proc Biol Sci 2019; 286:20192187. [PMID: 31847776 DOI: 10.1098/rspb.2019.2187] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The idea that there is an impenetrable barrier that separates the germline and soma has shaped much thinking in evolutionary biology and in many other disciplines. However, recent research has revealed that the so-called 'Weismann Barrier' is leaky, and that information is transferred from soma to germline. Moreover, the germline itself is now known to age, and to be influenced by an age-related deterioration of the soma that houses and protects it. This could reduce the likelihood of successful reproduction by old individuals, but also lead to long-term deleterious consequences for any offspring that they do produce (including a shortened lifespan). Here, we review the evidence from a diverse and multidisciplinary literature for senescence in the germline and its consequences; we also examine the underlying mechanisms responsible, emphasizing changes in mutation rate, telomere loss, and impaired mitochondrial function in gametes. We consider the effect on life-history evolution, particularly reproductive scheduling and mate choice. Throughout, we draw attention to unresolved issues, new questions to consider, and areas where more research is needed. We also highlight the need for a more comparative approach that would reveal the diversity of processes that organisms have evolved to slow or halt age-related germline deterioration.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
39
|
Diet-induced leukocyte telomere shortening in a baboon model for early stage atherosclerosis. Sci Rep 2019; 9:19001. [PMID: 31831784 PMCID: PMC6908639 DOI: 10.1038/s41598-019-55348-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Reported associations between leukocyte telomere length (LTL) attrition, diet and cardiovascular disease (CVD) are inconsistent. This study explores effects of prolonged exposure to a high cholesterol high fat (HCHF) diet on LTL in a baboon model of atherosclerosis. We measured LTL by qPCR in pedigreed baboons fed a chow (n = 105) or HCHF (n = 106) diet for 2 years, tested for effects of diet on LTL, and association between CVD risk factors and atherosclerotic lesions with LTL. Though not different at baseline, after 2 years median LTL is shorter in HCHF fed baboons (P < 0.0001). Diet predicts sex- and age-adjusted LTL and LTL attrition (P = 0.0009 and 0.0156, respectively). Serum concentrations of CVD biomarkers are associated with LTL at the 2-year endpoint and LTL accounts approximately 6% of the variance in aortic lesions (P = 0.04). Although heritable at baseline (h2 = 0.27, P = 0.027) and after 2 years (h2 = 0.46, P = 0.0038), baseline LTL does not predict lesion extent after 2 years. Atherogenic diet influences LTL, and LTL is a potential biomarker for early atherosclerosis. Prolonged exposure to an atherogenic diet decreases LTL and increases LTL attrition, and shortened LTL is associated with early-stage atherosclerosis in pedigreed baboons.
Collapse
|
40
|
Berneau SC, Shackleton J, Nevin C, Altakroni B, Papadopoulos G, Horne G, Brison DR, Murgatroyd C, Povey AC, Carroll M. Associations of sperm telomere length with semen parameters, clinical outcomes and lifestyle factors in human normozoospermic samples. Andrology 2019; 8:583-593. [PMID: 31769603 DOI: 10.1111/andr.12734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many studies have demonstrated that lifestyle factors can affect sperm quality and fertility. Sperm telomere length (STL) has been reported as potential biomarker or sperm quality. However, no studies have investigated how lifestyle factors can affect STL and associated clinical outcomes. OBJECTIVES The purpose of this manuscript is to investigate any association between STL with lifestyle factors, semen parameters and clinical outcomes. MATERIALS AND METHODS Sperm telomere length was measured using real-time PCR in normozoospermic male partners (n = 66) of couples undergoing ART treatment. Each participant also completed a detailed questionnaire about general lifestyle. Linear regression univariate analysis and ANCOVA were performed to respectively determine correlations between STL and study parameters or identify statistically significant differences in STL while controlling for age, BMI and other factors. RESULTS Using a linear regression model, STL is positively correlated with in vitro fertilization success (n = 65, r = 0.37, P = .004) but not with embryo cleavage rates and post-implantation clinical outcomes including gestational age-adjusted birth weight. No associations were observed between STL and sperm count, concentration or progressive motility. We further found that STL did not associate age, BMI, health or lifestyle factors. DISCUSSION In somatic cells, the rate of telomere shortening is influenced by a number of lifestyle factors such as smoking, diet and occupation. However, little is known about how lifestyle factors affect STL and subsequently reproductive outcome. Out data suggest that STL might have an important role mechanistically for fertilization rate regardless of sperm parameters and lifestyle factors. CONCLUSION The results of this study demonstrate that STL is associated with in vitro fertilization rates, but not with semen parameters nor lifestyle factors. Further investigations are warranted to identify the potential variation of STL overtime to clarify its significance as a potential biomarker in ART.
Collapse
Affiliation(s)
- Stephane C Berneau
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jennifer Shackleton
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Clare Nevin
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Basher Altakroni
- Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - George Papadopoulos
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Gregory Horne
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.,Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Christopher Murgatroyd
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Andy C Povey
- Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Michael Carroll
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
41
|
Denham J. Telomere regulation: lessons learnt from mice and men, potential opportunities in horses. Anim Genet 2019; 51:3-13. [PMID: 31637754 DOI: 10.1111/age.12870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 11/26/2022]
Abstract
Telomeres are genetically conserved nucleoprotein complexes located at the ends of chromosomes that preserve genomic stability. In large mammals, somatic cell telomeres shorten with age, owing to the end replication problem and lack of telomere-lengthening events (e.g. telomerase and ALT activity). Therefore, telomere length reflects cellular replicative reserve and mitotic potential. Environmental insults can accelerate telomere attrition in response to cell division and DNA damage. As such, telomere shortening is considered one of the major hallmarks of ageing. Much effort has been dedicated to understanding the environmental perturbations that accelerate telomere attrition and therapeutic strategies to preserve or extend telomeres. As telomere dynamics seem to reflect cumulative cellular stress, telomere length could serve as a biomarker of animal welfare. The assessment of telomere dynamics (i.e. rate of shortening) in conjunction with telomere-regulating genes and telomerase activity in racehorses could monitor long-term animal health, yet it could also provide some unique opportunities to address particular limitations with the use of other animal models in telomere research. Considering the ongoing efforts to optimise the health and welfare of equine athletes, the purpose of this review is to discuss the potential utility of assessing telomere length in Thoroughbred racehorses. A brief review of telomere biology in large and small mammals will be provided, followed by discussion on the biological implications of telomere length and environmental (e.g. lifestyle) factors that accelerate or attenuate telomere attrition. Finally, the utility of quantifying telomere dynamics in horses will be offered with directions for future research.
Collapse
Affiliation(s)
- J Denham
- School of Health and Biomedical Sciences, Bundoora West Campus, RMIT University, Room 53, Level 4, Building 202, Bundoora, VIC, 3083, Australia
| |
Collapse
|
42
|
Ramos-Ibeas P, Pericuesta E, Peral-Sanchez I, Heras S, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Longitudinal analysis of somatic and germ-cell telomere dynamics in outbred mice. Mol Reprod Dev 2019; 86:1033-1043. [PMID: 31209959 DOI: 10.1002/mrd.23218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022]
Abstract
Although telomere length (TL) shortens with age in most tissues, an age-related increase in length has been described in sperm through a mechanism that is not yet fully understood. Changes in TL with age in the same individual have not been explored. This longitudinal study examines TL dynamics in somatic tissue and gametes during an entire lifespan in an outbred mouse population (from 8 to up to 114 weeks of age). Our findings indicate a reduced life expectancy in males compared to females (84.75 ± 9.23 vs. 113.16 ± 0.20 weeks) and significant variability in TL dynamics between individuals. While with aging, a clear reduction in TL was produced in somatic cells and oocytes, telomeres in sperm cells significantly lengthened. Finally, we found evidence indicating that telomere elongation in sperm during aging may be dependent on different mechanisms, such as the survival of spermatogonia with longer telomeres and the alternative lengthening of telomeres mechanism in meiotic and postmeiotic spermatogenic cells.
Collapse
Affiliation(s)
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - Sonia Heras
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Should we consider telomere length and telomerase activity in male factor infertility? Curr Opin Obstet Gynecol 2019; 30:197-202. [PMID: 29664790 DOI: 10.1097/gco.0000000000000451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to analyze what is known to date about the relation between telomeres and male fertility, and if it is possible for telomeres, or elements related to them, to be used as new prognostic biomarkers in fertility treatment. RECENT FINDINGS Cells in germ series, including spermatozoids, have longer telomeres (10-20 kb), and do not seem to undergo the shortening that takes place in somatic cells with age as they present telomerase activity. Longer telomere length found in the sperm of older fathers, influences their offspring possessing cells with longer telomere length. Infertile patients have spermatozoids with shorter telomere length than fertile people, but telomere length does neither correlate with the sperm concentration, mobility or morphology, nor with the DNA fragmentation indices (DFI) of spermatozoids. Embryo quality rate and transplantable embryo rate are related with the telomere length of spermatozoids (STL), but pregnancy rates are not affected. SUMMARY Telomere length and telomerase levels can be used as biomarkers of male fertility. Higher STL can have beneficial effects on fertility, thus the use of spermatozoids with longer telomere length in an assisted reproduction technique (ART) could be one way of solving some infertility cases.
Collapse
|
44
|
Kohn TP, Pastuszak AW. Non-obstructive azoospermia and shortened leukocyte telomere length: further evidence linking poor health and infertility. Fertil Steril 2019; 110:629-630. [PMID: 30196950 DOI: 10.1016/j.fertnstert.2018.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Taylor P Kohn
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander W Pastuszak
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Scott Department of Urology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
45
|
Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length. Sci Rep 2019; 9:850. [PMID: 30696885 PMCID: PMC6351625 DOI: 10.1038/s41598-018-37164-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 11/08/2022] Open
Abstract
Telomeres, the protective structures at the ends of chromosomes, can be shortened when individuals are exposed to stress. In some species, the enzyme telomerase is expressed in adult somatic tissues, and potentially protects or lengthens telomeres. Telomeres can be damaged by ionizing radiation and oxidative stress, although the effect of chronic exposure to elevated levels of radiation on telomere maintenance is unknown for natural populations. We quantified telomerase expression and telomere length (TL) in different tissues of the bank vole Myodes glareolus, collected from the Chernobyl Exclusion Zone, an environment heterogeneously contaminated with radionuclides, and from uncontaminated control sites elsewhere in Ukraine. Inhabiting the Chernobyl Exclusion Zone was associated with reduced TL in the liver and testis, and upregulation of telomerase in brain and liver. Thus upregulation of telomerase does not appear to associate with longer telomeres but may reflect protective functions other than telomere maintenance or an attempt to maintain shorter telomeres in a stressful environment. Tissue specific differences in the rate of telomere attrition and apparent radiosensitivity weaken the intra-individual correlation in telomere length among tissues in voles exposed to radionuclides. Our data show that ionizing radiation alters telomere homeostasis in wild animal populations in tissue specific ways.
Collapse
|
46
|
Simard M, Laprise C, Girard SL. Impact of Paternal Age at Conception on Human Health. Clin Chem 2019; 65:146-152. [DOI: 10.1373/clinchem.2018.294421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Abstract
BACKGROUND
The effect of maternal age at conception on various aspects of offspring health is well documented and often discussed. We seldom hear about the paternal age effect on offspring health, although the link is now almost as solid as with maternal age. The causes behind this, however, are drastically different between males and females.
CONTENT
In this review article, we will first examine documented physiological changes linked to paternal age effect. We will start with all morphological aspects of the testis that have been shown to be altered with aging. We will then move on to all the parameters of spermatogenesis that are linked with paternal age at conception. The biggest part of this review will focus on genetic changes associated with paternal age effects. Several studies that have established a strong link between paternal age at conception and the rate of de novo mutations will be reviewed. We will next discuss paternal age effects associated with telomere length and try to better understand the seemingly contradictory results. Finally, severe diseases that affect brain functions and normal development have been associated with older paternal age at conception. In this context, we will discuss the cases of autism spectrum disorder and schizophrenia, as well as several childhood cancers.
SUMMARY
In many Western civilizations, the age at which parents have their first child has increased substantially in recent decades. It is important to summarize major health issues associated with an increased paternal age at conception to better model public health systems.
Collapse
Affiliation(s)
- Mathieu Simard
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Catherine Laprise
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Simon L Girard
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Chicoutimi, Canada
| |
Collapse
|
47
|
Heidary H, Pouresmaeili F, Mirfakhraie R, Omrani MD, Ghaedi H, Fazeli Z, Sayban S, Ghafouri-Fard S, Azargashb E, Shokri F. An Association Study between Longitudinal Changes of Leukocyte Telomere and the Risk of Azoospermia in a Population of Iranian Infertile Men. IRANIAN BIOMEDICAL JOURNAL 2018; 22:231-6. [PMID: 29704891 PMCID: PMC5949125 DOI: 10.22034/ibj.22.4.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: Telomeres are evolutionary, specialized terminal structures at the ends of eukaryotic chromosomes containing TTAGGG repeats in human. Several human diseases have been known to be associated with dramatic changes in telomere length. The aim of the present study was to assess the correlation between the relative leukocyte telomere length (LTL) and infertility in a group of Iranian azoospermic males. Methods: In this case-control pilot study, relative telomere length (RTL) of peripheral blood leukocytes from a total of 30 idiopathic non-obstructive azoospermic males and 30 healthy fertile males was evaluated using real-time PCR. RTL was calculated as T (telomere)/S (single copy gene) ratio and compared between infertile and fertile groups. Results: Patients with azoospermia showed significantly shorter RTL than fertile males (0.54 vs. 0.84, p < 0.05). The area under the receiver operating characteristic (ROC) curve was estimated to be 99.8%, suggesting LTL as a potential marker for the diagnosis of azoospermia. Conclusion: Our findings demonstrated a probable association between telomere shortening and azoospermia in a population of Iranian infertile men affected by idiopathic azoospermia.
Collapse
Affiliation(s)
- Hamed Heidary
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Sayban
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Eznollah Azargashb
- Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazlollah Shokri
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Abstract
In recent years, male infertility has become a growing social problem. Standard diagnostic procedures, based on assessing seminological parameters, are often insufficient to explain the causes of male infertility. Because of this, new markers with better clinical application are being sought. One of the promising markers seems to be an assessment of telomere length of sperm. Sperm telomeres, in contrast to somatic cells, are elongated as men age. The results of some studies suggest that telomere length may be relevant in the case of fertilization and normal embryo development. Literature reports indicate that there is a correlation between telomere length of sperm and abnormal sperm parameters. The measurement of telomere length using the method of quantitative PCR could become a new marker of spermatogenesis, which can be useful for evaluating male reproductive age.
Collapse
Affiliation(s)
- Ewa Boniewska-Bernacka
- a Department of Biotechnology and Molecular Biology , University of Opole , Opole , Poland
| | - Anna Pańczyszyn
- a Department of Biotechnology and Molecular Biology , University of Opole , Opole , Poland
| | - Natalia Cybulska
- b GMW - Center for Gynecological and Obstetric Diagnosis , Opole , Poland
| |
Collapse
|
49
|
Torra-Massana M, Barragán M, Bellu E, Oliva R, Rodríguez A, Vassena R. Sperm telomere length in donor samples is not related to ICSI outcome. J Assist Reprod Genet 2018; 35:649-657. [PMID: 29335812 DOI: 10.1007/s10815-017-1104-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Variations in sperm telomere length (STL) have been associated with altered sperm parameters, poor embryo quality, and lower pregnancy rates, but for normozoospermic men, STL relevance in IVF/ICSI is still uncertain. Moreover, in all studies reported so far, each man's STL was linked to the corresponding female partner characteristics. Here, we study STL in sperm donor samples, each used for up to 12 women, in order to isolate and determine the relationship between STL and reproductive outcomes. METHODS Relative STL was determined by qPCR in 60 samples used in a total of 676 ICSI cycles. Univariable and multivariable statistical analyses were used to study the STL effect on fertilization rate; embryo morphology; biochemical, clinical, and ongoing pregnancy rates; and live birth (LB) rates. RESULTS The average STL value was 4.5 (relative units; SD 1.9; range 2.4-14.2). Locally weighted scatterplot smoothing regression and the rho-Spearman test did not reveal significant correlations between STL and the outcomes analyzed. STL was not different between cycles resulting or not in pregnancy and LB (Mann-Whitney U test, p > 0.05). No significant effect of STL on reproductive outcomes was found, with the OR for each unit increase in STL (95% CI) of 0.94 (0.86-1-04), 0.99 (0.9-1.09), 0.98 (0.89-1.09), and 0.93 (0.8-1.06) for biochemical, clinical, and ongoing pregnancy and LB, respectively. The multilevel analysis confirmed that the effect of STL on fertilization; biochemical, clinical, and ongoing pregnancy; and LB was not significant (p > 0.05). CONCLUSION After addressing STL independently from female variables, results show that STL measurement is not useful to predict reproductive outcomes in ICSI cycles using donor semen.
Collapse
Affiliation(s)
- Marc Torra-Massana
- Clínica EUGIN, Travessera de les Corts 322, 08029, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Emanuela Bellu
- Clínica EUGIN, Travessera de les Corts 322, 08029, Barcelona, Spain.,Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Rafael Oliva
- Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Amelia Rodríguez
- Clínica EUGIN, Travessera de les Corts 322, 08029, Barcelona, Spain
| | - Rita Vassena
- Clínica EUGIN, Travessera de les Corts 322, 08029, Barcelona, Spain.
| |
Collapse
|
50
|
Oblette A, Rives N, Dumont L, Rives A, Verhaeghe F, Jumeau F, Rondanino C. Assessment of sperm nuclear quality after in vitro maturation of fresh or frozen/thawed mouse pre-pubertal testes. Mol Hum Reprod 2017; 23:674-684. [DOI: 10.1093/molehr/gax048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/17/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- A Oblette
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
| | - N Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
| | - L Dumont
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
| | - A Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
| | - F Verhaeghe
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
| | - F Jumeau
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
| | - C Rondanino
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
| |
Collapse
|