1
|
Motomura K, Morita H, Naruse K, Saito H, Matsumoto K. Implication of viruses in the etiology of preeclampsia. Am J Reprod Immunol 2024; 91:e13844. [PMID: 38627916 DOI: 10.1111/aji.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhiko Naruse
- Department of Obstetrics and Gynecology, Dokkyo Medical University, Tochigi, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
2
|
Peng C, Zhu J, Guo H, Zhao L, Wu F, Liu B. Long non-coding RNA TLR8-AS1 induces preeclampsia through increasing TLR8/STAT1 axis. J Hypertens 2023; 41:1245-1257. [PMID: 37199563 DOI: 10.1097/hjh.0000000000003410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Our current study tried to assay the role of long noncoding RNAs (lncRNAs) TLR8-AS1 in regulating preeclampsia. METHODS TLR8-AS1 expression was examined in the clinical placental tissues of preeclampsia patients and the trophoblast cells induced by lipopolysaccharide (LPS). Then, different lentivirus was infected into trophoblast cells to study the role of TLR8-AS1 in cell functions. Furthermore, interactions among TLR8-AS1, signal transducer and activator of transcription 1 (STAT1) and toll-like receptor 8 (TLR8) were determined. A rat model of preeclampsia induced by N(omega)-nitro-L-arginine methyl ester was developed to validate the in-vitro findings. RESULTS High expression of TLR8-AS1 was detected in placental tissues of preeclampsia patients and LPS-induced trophoblast cells. In addition, overexpression of TLR8-AS1 arrested the proliferation, migration and invasion of trophoblast cells, which was related to the upregulation of TLR8 expression. Mechanistically, TLR8-AS1 recruited STAT1 to bind to the TLR8 promoter region, and thus promoted the transcription of TLR8. Meanwhile, overexpression of TLR8-AS1 was shown to aggravate preeclampsia by elevating TLR8 in vivo . CONCLUSION Our study confirmed that TLR8-AS1 aggravated the progression of preeclampsia through increasing the expression of STAT1 and TLR8.
Collapse
Affiliation(s)
- Chuyu Peng
- Department of Obstetrics, The Haining Maternal and Child Health Hospital, Haining
| | - Jianbin Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Hong Guo
- Department of Obstetrics, Changsha Ning Er Maternity Hospital, Changsha
| | - Ling Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Feifei Wu
- Department of Obstetrics, Changsha Ning Er Maternity Hospital, Changsha
| | - Bo Liu
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
3
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
4
|
Motomura K, Hara M, Ito I, Morita H, Matsumoto K. Roles of human trophoblasts' pattern recognition receptors in host defense and pregnancy complications. J Reprod Immunol 2023; 156:103811. [PMID: 36669386 DOI: 10.1016/j.jri.2023.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
The immune system in pregnancy is able to protect pregnant mothers and fetuses from pathogenic microorganisms even while permitting the mother to tolerate the semi-allogenic fetus. Trophoblasts, which are fetal-derived placental cells, play a central role on both sides of this duality at the maternal-fetal interface. In brief, the trophoblasts express pattern recognition receptors (PRRs) and are involved in the local innate immune response in the placenta. That response eliminates pathogenic microbes but also causes tissue damage. In this review, we summarize the research findings to date regarding the roles of those human trophoblast PRRs. Multiple types of PRRs (Toll-like receptors, Nod-like receptors, and RIG-I-like receptors) are expressed in the placenta and on trophoblasts. Trophoblasts' PRRs participate in protecting the fetus against viruses, bacteria, and parasites by triggering production of proinflammatory cytokines and chemokines in the placenta. On the negative side, PRR signaling in trophoblasts can also initiate inflammation and trophoblast cell death, which can lead to placental inflammation-associated pregnancy complications such as preeclampsia, anti-phospholipid antibody syndrome, and miscarriage. Further elucidation of these dual roles of trophoblasts' PRRs may shed light on the mechanisms by which fetuses are protected against congenital infections and also give us a better understanding of the etiologies of pregnancy complications, which can help us prevent/reduce adverse prenatal/neonatal outcomes.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan.
| | - Mariko Hara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Department of Otorhinolaryngology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Ikuyo Ito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Department of Pediatrics, School of Medicine, Yokohama City University, Kanagawa 236-0004, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
5
|
Rice M, Nicol A, Nuovo GJ. The differential expression of toll like receptors and RIG-1 in the placenta of neonates with in utero infections. Ann Diagn Pathol 2023; 62:152080. [PMID: 36535188 DOI: 10.1016/j.anndiagpath.2022.152080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Novel biomarkers of in utero infections are needed to help guide early therapy. The toll like receptors (TLRs) and retinoic acid-inducible gene 1 (RIG-1) are proteins involved in the initial reaction of the innate immune system to infectious diseases. This study tested the hypothesis that a panel of TLRs and RIG-1 in the placenta could serve as an early biomarker of in utero infections. The TLRs and RIG-1 expression as determined by immunohistochemistry was scored in 10 control placentas (normal delivery or neonatal damage from known non-infectious cause), 8 placentas from documented in utero bacterial infection, and 7 placentas from documented in utero viral infections blinded to the clinical information. The non-infected placentas showed the following profile: no expression (TLR1, TLR3, TLR4, TLR7, TLR8), moderate expression (TLR2), and strong expression (RIG-1). The bacterial and viral infection cases shared the following profile: no to mild expression (TLR 2, TLR7, and RIG1), moderate expression (TLR4), and strong expression (TLR1, TLR3, and TLR8). The histologic findings in the chorionic villi were equivalent in the infected cases and controls, underscoring the need for molecular testing by the surgical pathologist when in utero infection is suspected. The results suggest that a panel of TLRs/RIG-1 analyses can allow the pathologist and/or clinician to diagnose in utero infections soon after birth. Also, treatments to antagonize the effects of TLR1, 3, and 8 may help abrogate in utero neonatal damage.
Collapse
Affiliation(s)
| | - Alcina Nicol
- National Institute of Infectology (INI - FIOCRUZ), Rio de Janeiro, Brazil
| | - Gerard J Nuovo
- GnomeDX, Powell, OH, USA; Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
6
|
Lye P, Bloise E, Matthews SG. Effects of bacterial and viral pathogen-associated molecular patterns (PAMPs) on multidrug resistance (MDR) transporters in brain endothelial cells of the developing human blood-brain barrier. Fluids Barriers CNS 2023; 20:8. [PMID: 36721242 PMCID: PMC9887585 DOI: 10.1186/s12987-023-00409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building Room 3207, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Enrrico Bloise
- Departamento de Morfologia, Instituto de Ciências Biológicas, N3-292, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building Room 3207, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Gao Y, Zhou M, Zhang W, Jiang J, Ouyang Z, Zhu Y, Li N. NLRP3 mediates trophoblastic inflammasome activation and protects against Listeria monocytogenes infection during pregnancy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1202. [PMID: 36544643 PMCID: PMC9761141 DOI: 10.21037/atm-22-4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Background Intrauterine Listeria monocytogenes (L. monocytogenes) infections pose a major threat during pregnancy via affecting placental immune responses. However, the underlying mechanisms of placental defense against this pathogen remain ill-defined. Therefore, this study aims to investigate the function and the mechanism of inflammasomes on against L. monocytogenes infection during pregnancy. Methods A listeriosis murine model and cell culture system was used to investigate the role of trophoblastic nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) in orchestrating innate immune responses to L. monocytogenes infection. Caspase-1 activity was determined using a caspase-1 activity colorimetric kit. NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC) in placental tissue was detected by immunohistochemistry. NLRP3 in HTR-8/SVneo cells was also detected by immunofluorescence. The expression of interleukin 1β (IL-1β), NLRP3, ASC, and caspase-1 was detected by Western blot. We characterized the NLRP3 inflammasome in trophoblast cells according to whether L. monocytogenes infection increased the activation of caspase-1 and the release of IL-1β. For human or mouse IL-1β in the culture supernatants and mouse tissue lysates were analyzed using ELISA Kits. Results Trophoblast cells constitutively expressed the components of the NLRP3 inflammasome. In vitro, L. monocytogenes triggers NLRP3 inflammasome activation in trophoblast cells by inducing caspase-1 activation, increasing the NLRP3 protein levels, IL-1β maturation and secretion in HTR-8/SVneo cells. In vivo, L. monocytogenes induces fetal resorption and IL-1β processing in pregnant mice. In addition, NLRP3-deficient mice were more prone to fetal loss than their wild-type counterparts following infection with L. monocytogenes at a lower infective dose. Conclusions We conclude that trophoblast cells respond to L. monocytogenes infection through the NLRP3 receptor, resulting in inflammasome activation and IL-1β production, which prevents listeriosis during pregnancy.
Collapse
Affiliation(s)
- Yu Gao
- Obstetrics and Gynecology, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Min Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China;,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wen Zhang
- Emergency Department, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Jinxing Jiang
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Zhibin Ouyang
- Cytotherapy Laboratory, The Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Yuanfang Zhu
- Obstetrics and Gynecology, Shenzhen Bao’an Maternal and Child Health Hospital Affiliated to Jinan University, Jinan University, Shenzhen, China;,Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ning Li
- Biotherapy Research Center, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China;,Biotherapy Research Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon-stimulated genes signaling during pregnancy. Immunol Rev 2022; 308:9-24. [PMID: 35306673 PMCID: PMC9189063 DOI: 10.1111/imr.13077] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Abstract
Pregnancy is a unique condition where the maternal immune system is continuously adapting in response to the stages of fetal development and signals from the environment. The placenta is a key mediator of the fetal/maternal interaction by providing signals that regulate the function of the maternal immune system as well as provides protective mechanisms to prevent the exposure of the fetus to dangerous signals. Bacterial and/or viral infection during pregnancy induce a unique immunological response by the placenta, and type I interferon is one of the crucial signaling pathways in the trophoblast cells. Basal expression of type I interferon-β and downstream ISGs harbors physiological functions to maintain the homeostasis of pregnancy, more importantly, provides the placenta with the adequate awareness to respond to infections. The disruption of type I interferon signaling in the placenta will lead to pregnancy complications and can compromise fetal development. In this review, we focus the important role of placenta-derived type I interferon and its downstream ISGs in the regulation of maternal immune homeostasis and protection against viral infection. These studies are helping us to better understand placental immunological functions and provide a new perspective for developing better approaches to protect mother and fetus during infections.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
DeSpenza RA, Jones DM, Chamley LW, Abrahams VM. Antiphospholipid antibody-induced trophoblast responses are differentially modulated by viral dsRNA and viral ssRNA. Am J Reprod Immunol 2021; 87:e13516. [PMID: 34904767 DOI: 10.1111/aji.13516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Women with antiphospholipid antibodies (aPL) are at increased risk for pregnancy loss and preeclampsia. aPL target the trophoblast and induce a pro-inflammatory, anti-angiogenic and anti-migratory profile. Since infection during pregnancy can increase the risk for preeclampsia, a viral infection could further increase this in women with aPL. The goal of this study was to characterize the effect of viral components on trophoblast responses to aPL. METHOD OF STUDY A human first trimester trophoblast cell line was treated with or without aPL or control IgG in the presence of media, viral dsRNA or viral ssRNA. Supernatants were measured for inflammatory IL-1β and IL-8; inflammasome-associated uric acid and caspase-1 activity; and anti-angiogenic sFlt-1. Trophoblast migration was measured using a two-chamber assay. RESULTS Viral dsRNA augmented aPL-induced trophoblast caspase-1 activity, and IL-1β and IL-8 secretion in an additive manner. Viral ssRNA inhibited aPL-induced uric acid, IL-1β and sFlt-1 secretion, and further exacerbated aPL-inhibition of trophoblast migration. CONCLUSION While viral ssRNA may have some protective effects on aPL-induced inflammation and anti-angiogenic responses, viral dsRNA exacerbated aPL-mediated inflammation and viral ssRNA further limited cell migration, which could prove detrimental to placentation. Thus, viral infections may contribute to adverse pregnancy outcomes in women with aPL.
Collapse
Affiliation(s)
- Rachel A DeSpenza
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, Connecticut, USA
| | - Deidre M Jones
- Department of Obstetrics & Gynecology, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics & Gynecology, University of Auckland, Auckland, New Zealand
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Abstract
In this article, the authors provide a general overview of the major immune cells present at the maternal-fetal interface, describe the key mechanisms used by the placenta to promote maternal immune regulation, tolerance, and adaptation, and discuss how dysregulation of these pathways could lead to obstetric complications such as pregnancy loss and preeclampsia. Finally, they conclude with a description of the innate immune properties of the human placenta that not only serve to protect the pregnancy from infection but also contribute to pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 309A, New Haven, CT 06510, USA
| | - Vikki M Abrahams
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 305C, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Potter JA, Tong M, Aldo P, Kwon JY, Pitruzzello M, Mor G, Abrahams VM. Viral infection dampens human fetal membrane type I interferon responses triggered by bacterial LPS. J Reprod Immunol 2020; 140:103126. [PMID: 32289593 DOI: 10.1016/j.jri.2020.103126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
The maternal-fetal interface possesses innate immune strategies to protect against infections. We previously reported that prior viral infection of human fetal membranes (FMs) in vitro and mouse FMs in vivo sensitized the tissue to low dose bacterial LPS leading to augmented inflammation. The objective of this study was to examine FM production of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in the context of this polymicrobial model. Human FM explants and pregnant C57BL/6 mice were treated with or without low dose LPS following exposure to media or the γ-herpes virus, MHV-68. FM RNA was analyzed by qRT-PCR for type I IFNs, ISGs, upstream signaling, and MHV-68 open reading frames (ORFs). Pre-exposure to MHV-68 followed by LPS treatment inhibited the ability of LPS to induce human FM type I IFNs (IFNA, IFNB); ISGs (OAS, MxA, APOBEC3G) and upstream signaling mediators (RIG-I, TBK-1). Signaling mediators IRF-3 and IRF-7 were also reduced. In mouse FMs, pre-exposure to MHV-68 followed by LPS treatment reduced the ability of LPS to upregulate Ifna, Ifnb, Mxa, Irf7, and also reduced Irf3. MHV-68 infection of FMs induced ORF45 which targets IRF-7, and this was further augmented in response to a combination of MHV-68 and LPS. Together, these findings indicate that a viral infection blunts FM type I IFN production and signaling in response to LPS leading to a suppressed ISG response. Our studies suggest that a viral infection inhibits this protective FM response by negatively regulating IRF-7 through ORF45, leaving the maternal-fetal interface vulnerable to further viral attack.
Collapse
Affiliation(s)
- Julie A Potter
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Mancy Tong
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ja Young Kwon
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mary Pitruzzello
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA; C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
12
|
Breast Cancer Resistance Protein (BCRP/ ABCG2) Inhibits Extra Villous Trophoblast Migration: The Impact of Bacterial and Viral Infection. Cells 2019; 8:cells8101150. [PMID: 31561453 PMCID: PMC6829363 DOI: 10.3390/cells8101150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Extravillous trophoblasts (EVT) migration into the decidua is critical for establishing placental perfusion and when dysregulated, may lead to pre-eclampsia (PE) and intrauterine growth restriction (IUGR). The breast cancer resistance protein (BCRP; encoded by ABCG2) regulates the fusion of cytotrophoblasts into syncytiotrophoblasts and protects the fetus from maternally derived xenobiotics. Information about BCRP function in EVTs is limited, however placental exposure to bacterial/viral infection leads to BCRP downregulation in syncitiotrophoblasts. We hypothesized that BCRP is involved in the regulation of EVT function and is modulated by infection/inflammation. We report that besides syncitiotrophoblasts and cytotrophoblasts, BCRP is also expressed in EVTs. BCRP inhibits EVT cell migration in HTR8/SVneo (human EVT-like) cells and in human EVT explant cultures, while not affecting cell proliferation. We have also shown that bacterial-lipopolysaccharide (LPS)-and viral antigens-single stranded RNA (ssRNA)-have a profound effect in downregulating ABCG2 and BCRP levels, whilst simultaneously increasing the migration potential of EVT-like cells. Our study reports a novel function of BCRP in early placentation and suggests that exposure of EVTs to maternal infection/inflammation could disrupt their migration potential via the downregulation of BCRP. This could negatively influence placental development/function, contribute to existing obstetric pathologies, and negatively impact pregnancy outcomes and maternal/neonatal health.
Collapse
|
13
|
Pfeifer E, Parrott J, Lee GT, Domalakes E, Zhou H, He L, Mason CW. Regulation of human placental drug transporters in HCV infection and their influence on direct acting antiviral medications. Placenta 2018; 69:32-39. [PMID: 30213482 PMCID: PMC6140346 DOI: 10.1016/j.placenta.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The objectives of this study were to determine how HCV infection affects placental drug transporters, and to determine the role of drug transporters on the cellular accumulation of direct-acting antiviral drugs in human trophoblasts. METHODS Eighty-four ABC and SLC transporter genes were first screened in normal and HCV infected pregnant women using PCR profiler array. The changes in expression were confirmed by qPCR and Western blot. The impact of selected drug transporters on the cellular accumulation of radiolabeled antiviral drugs sofosbuvir, entecavir, and tenofovir was measured in primary human trophoblasts (PHT) and BeWo b30 cells in the presence or absence of transporter-specific inhibitors. PHT were then treated with CL097, ssRNA40, and imquimod to determine the impact of Toll-like receptor (TLR) 7/8 activation on drug transporter expression. RESULTS The expression of the ABC efflux transporters ABCB1/P-gp and ABCG2/BCRP was increased in placenta of women with HCV, while the nucleoside transporters SLC29A1/ENT1 and SLC29A2/ENT2 remained unchanged. The accumulation of sofosbuvir and tenofovir was unaffected by inhibition of these transporters in trophoblast cells. Entecavir accumulation was decreased by the inhibition of ENT2. P-gp and BCRP inhibition enhanced entecavir accumulation in BeWo b30, but not PHT. Overall, there was little effect of TLR7/8 activation on these drug transporters, and the accumulation of entecavir in PHT. DISCUSSION The data suggest that expression of placental drug transporters and selection of antiviral drug may impact fetal drug exposure in pregnancies complicated by HCV infections.
Collapse
Affiliation(s)
- Emily Pfeifer
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Jessica Parrott
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Gene T Lee
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Ericka Domalakes
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Helen Zhou
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Lily He
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Clifford W Mason
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA; Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, 66208, USA.
| |
Collapse
|
14
|
Chen J, Liang Y, Yi P, Xu L, Hawkins HK, Rossi SL, Soong L, Cai J, Menon R, Sun J. Outcomes of Congenital Zika Disease Depend on Timing of Infection and Maternal-Fetal Interferon Action. Cell Rep 2018; 21:1588-1599. [PMID: 29117563 DOI: 10.1016/j.celrep.2017.10.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy in humans results in intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we found that fetus-derived type I interferon (IFN-I) signaling can enhance anti-ZIKV responses and provide clinical benefits to the fetus. Because IFN-λ shares signaling cascades and antiviral functions with IFN-I, we investigated the in vivo effects of IFN-λ in ZIKV-infected pregnant mice. IFN-λ administration during mid-pregnancy reduced ZIKV burden in maternal and fetal organs and alleviated placental injuries and fetal demise. In addition, prophylactic and therapeutic treatment of IFN-λ1 in a human trophoblast line, as well as in primary human amniotic epithelial cells, greatly reduced the ZIKV burden. Our data highlight IFN-λ1 as a potential therapeutic useful for women at risk for congenital Zika disease.
Collapse
Affiliation(s)
- Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Panpan Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lanman Xu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Hal K Hawkins
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shannan L Rossi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
15
|
Mulla MJ, Weel IC, Potter JA, Gysler SM, Salmon JE, Peraçoli MTS, Rothlin CV, Chamley LW, Abrahams VM. Antiphospholipid Antibodies Inhibit Trophoblast Toll-Like Receptor and Inflammasome Negative Regulators. Arthritis Rheumatol 2018; 70:891-902. [PMID: 29342502 DOI: 10.1002/art.40416] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Women with antiphospholipid antibodies (aPL) are at risk for pregnancy complications associated with poor placentation and placental inflammation. Although these antibodies are heterogeneous, some anti-β2 -glycoprotein I (anti-β2 GPI) antibodies can activate Toll-like receptor 4 (TLR-4) and NLRP3 in human first-trimester trophoblasts. The objective of this study was to determine the role of negative regulators of TLR and inflammasome function in aPL-induced trophoblast inflammation. METHODS Human trophoblasts were not treated or were treated with anti-β2 GPI aPL or control IgG in the presence or absence of the common TAM (TYRO3, AXL, and Mer tyrosine kinase [MERTK]) receptor ligand growth arrest-specific protein 6 (GAS6) or the autophagy-inducer rapamycin. The expression and function of the TAM receptor pathway and autophagy were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Antiphospholipid antibody-induced trophoblast inflammation was measured by qRT-PCR, activity assays, and ELISA. RESULTS Anti-β2 GPI aPL inhibited trophoblast TAM receptor function by reducing cellular expression of the receptor tyrosine kinases AXL and MERTK and the ligand GAS6. The addition of GAS6 blocked the effects of aPL on the TLR-4-mediated interleukin-8 (IL-8) response. However, the NLRP3 inflammasome-mediated IL-1β response was not affected by GAS6, suggesting that another regulatory pathway was involved. Indeed, anti-β2 GPI aPL inhibited basal trophoblast autophagy, and reversing this with rapamycin inhibited aPL-induced inflammasome function and IL-1β secretion. CONCLUSION Basal TAM receptor function and autophagy may serve to inhibit trophoblast TLR and inflammasome function, respectively. Impairment of TAM receptor signaling and autophagy by anti-β2 GPI aPL may allow subsequent TLR and inflammasome activity, leading to a robust inflammatory response.
Collapse
Affiliation(s)
| | - Ingrid C Weel
- Yale University, New Haven, Connecticut, and São Paulo State University, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo H, Winkelmann ER, Fernandez-Salas I, Li L, Mayer SV, Danis-Lozano R, Sanchez-Casas RM, Vasilakis N, Tesh R, Barrett AD, Weaver SC, Wang T. Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells. Antiviral Res 2018; 151:55-62. [PMID: 29331320 DOI: 10.1016/j.antiviral.2018.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with severe neonatal birth defects, but the causative mechanism is incompletely understood. ZIKV shares sequence homology and early clinical manifestations with yellow fever virus (YFV) and dengue virus (DENV) and are all transmitted in urban cycles by the same species of mosquitoes. However, YFV and DENV have been rarely reported to cause congenital diseases. Here, we compared infection with a contemporary ZIKV strain (FSS13025) to YFV17D and DENV-4 in human monocytic cells (THP-1) and first-trimester trophoblasts (HTR-8). Our results suggest that all three viruses have similar tropisms for both cells. Nevertheless, ZIKV induced strong type 1 IFN and inflammatory cytokine and chemokine production in monocytes and peripheral blood mononuclear cells. Furthermore, ZIKV infection in trophoblasts induced lower IFN and higher inflammatory immune responses. Placental inflammation is known to contribute to the risk of brain damage in preterm newborns. Inhibition of toll-like receptor (TLR)3 and TLR8 each abrogated the inflammatory cytokine responses in ZIKV-infected trophoblasts. Our findings identify a potential link between maternal immune activation and ZIKV-induced congenital diseases, and a potential therapeutic strategy that targets TLR-mediated inflammatory responses in the placenta.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Evandro R Winkelmann
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Li Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sandra V Mayer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rogelio Danis-Lozano
- Centro Regional de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Mexico
| | | | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
17
|
Fernández AG, Hielpos MS, Ferrero MC, Fossati CA, Baldi PC. Proinflammatory response of canine trophoblasts to Brucella canis infection. PLoS One 2017; 12:e0186561. [PMID: 29036184 PMCID: PMC5643107 DOI: 10.1371/journal.pone.0186561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/03/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella canis infection is an important cause of late-term abortion in pregnant bitches. The pathophysiological mechanisms leading to B. canis-induced abortion are unknown, but heavily infected trophoblasts are consistently observed. As trophoblasts responses to other pathogens contribute to placental inflammation leading to abortion, the aim of the present study was to characterize the cytokine response of canine trophoblasts to B. canis infection. To achieve this, trophoblasts isolated from term placenta of healthy female dogs were infected with B. canis, culture supernatants were harvested for cytokine determinations, and the load of intracellular viable B. canis was determined at different times post-infection. Additionally, cytokine responses were assessed in non-infected trophoblasts stimulated with conditioned media (CM) from B. canis-infected canine monocytes and neutrophils. Finally, cytokine response and bacteria replication were assessed in canine placental explants infected ex vivo. B. canis successfully infected and replicated in primary canine trophoblasts, eliciting an increase in IL-8 and RANTES (CCL5) secretion. Moreover, the stimulation of trophoblasts with CM from B. canis-infected monocytes and neutrophils induced a significant increase in IL-8, IL-6 and RANTES secretion. B. canis replication was confirmed in infected placental explants and the infection elicited an increased secretion of TNF-α, IL-8, IL-6 and RANTES. This study shows that canine trophoblasts produce proinflammatory cytokines in response to B. canis infection and/or to stimulation with factors produced by infected monocytes and neutrophils. These cytokines may contribute to placental inflammation leading to abortion in B. canis-infected pregnant bitches.
Collapse
Affiliation(s)
- Andrea G. Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - M. Soledad Hielpos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Mariana C. Ferrero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Carlos A. Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo C. Baldi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| |
Collapse
|
18
|
León-Juárez M, Martínez–Castillo M, González-García LD, Helguera-Repetto AC, Zaga-Clavellina V, García-Cordero J, Flores-Pliego A, Herrera-Salazar A, Vázquez-Martínez ER, Reyes-Muñoz E. Cellular and molecular mechanisms of viral infection in the human placenta. Pathog Dis 2017; 75:4056146. [PMID: 28903546 PMCID: PMC7108519 DOI: 10.1093/femspd/ftx093] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The placenta is a highly specialized organ that is formed during human gestation for conferring protection and generating an optimal microenvironment to maintain the equilibrium between immunological and biochemical factors for fetal development. Diverse pathogens, including viruses, can infect several cellular components of the placenta, such as trophoblasts, syncytiotrophoblasts and other hematopoietic cells. Viral infections during pregnancy have been associated with fetal malformation and pregnancy complications such as preterm labor. In this minireview, we describe the most recent findings regarding virus-host interactions at the placental interface and investigate the mechanisms through which viruses may access trophoblasts and the pathogenic processes involved in viral dissemination at the maternal-fetal interface.
Collapse
Affiliation(s)
- Moises León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Macario Martínez–Castillo
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Luis Didier González-García
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. Av. I.P.N 2508 Col. San Pedro Zacatenco, CP 07360 Ciudad de México, México
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Alma Herrera-Salazar
- Departamento de Infectología e Inmunología Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química UNAM, Ciudad de México, México
| | - Enrique Reyes-Muñoz
- Coordinación de Endocrinología, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México. México
| |
Collapse
|
19
|
Cross SN, Potter JA, Aldo P, Kwon JY, Pitruzzello M, Tong M, Guller S, Rothlin CV, Mor G, Abrahams VM. Viral Infection Sensitizes Human Fetal Membranes to Bacterial Lipopolysaccharide by MERTK Inhibition and Inflammasome Activation. THE JOURNAL OF IMMUNOLOGY 2017; 199:2885-2895. [PMID: 28916522 DOI: 10.4049/jimmunol.1700870] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/21/2017] [Indexed: 01/12/2023]
Abstract
Chorioamnionitis, premature rupture of fetal membranes (FMs), and subsequent preterm birth are associated with local infection and inflammation, particularly IL-1β production. Although bacterial infections are commonly identified, other microorganisms may play a role in the pathogenesis. Because viral pandemics, such as influenza, Ebola, and Zika, are becoming more common, and pregnant women are at increased risk for associated complications, this study evaluated the impact that viral infection had on human FM innate immune responses. This study shows that a herpes viral infection of FMs sensitizes the tissue to low levels of bacterial LPS, giving rise to an exaggerated IL-1β response. Using an ex vivo human FM explant system and an in vivo mouse model of pregnancy, we report that the mechanism by which this aggravated inflammation arises is through the inhibition of the TAM receptor, MERTK, and activation of the inflammasome. The TAM receptor ligand, growth arrest specific 6, re-establishes the normal FM response to LPS by restoring and augmenting TAM receptor and ligand expression, as well as by preventing the exacerbated IL-1β processing and secretion. These findings indicate a novel mechanism by which viruses alter normal FM immune responses to bacteria, potentially giving rise to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Sarah N Cross
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Julie A Potter
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Ja Young Kwon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Mary Pitruzzello
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Carla V Rothlin
- Department of Immunobiology and Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; and
| |
Collapse
|
20
|
Maternal Immunoreactivity to Herpes Simplex Virus 2 and Risk of Autism Spectrum Disorder in Male Offspring. mSphere 2017; 2:mSphere00016-17. [PMID: 28251181 PMCID: PMC5322345 DOI: 10.1128/msphere.00016-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 02/03/2023] Open
Abstract
The cause (or causes) of most cases of autism spectrum disorder is unknown. Evidence from epidemiological studies and work in animal models of neurodevelopmental disorders suggest that both genetic and environmental factors may be implicated. The latter include gestational infection and immune activation. In our cohort, high levels of antibodies to herpes simplex virus 2 at midpregnancy were associated with an elevated risk of autism spectrum disorder in male offspring. These findings provide support for the hypothesis that gestational infection may contribute to the pathogenesis of autism spectrum disorder and have the potential to drive new efforts to monitor women more closely for cryptic gestational infection and to implement suppressive therapy during pregnancy. Maternal infections during pregnancy are associated with risk of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Proposed pathogenetic mechanisms include fetal infection, placental inflammation, and maternal cytokines or antibodies that cross the placenta. The Autism Birth Cohort comprises mothers, fathers, and offspring recruited in Norway in 1999 to 2008. Through questionnaire screening, referrals, and linkages to a national patient registry, 442 mothers of children with ASD were identified, and 464 frequency-matched controls were selected. Immunoglobulin G (IgG) antibodies to Toxoplasma gondii, rubella virus, cytomegalovirus (CMV), herpes simplex virus 1 (HSV-1), and HSV-2 in plasma collected at midpregnancy and after delivery were measured by multiplexed immunoassays. High levels of HSV-2 IgG antibodies in maternal midpregnancy plasma were associated with increased risk of ASD in male offspring (an increase in HSV-2 IgG levels from 240 to 640 arbitrary units/ml was associated with an odds ratio of 2.07; 95% confidence interval, 1.06 to 4.06; P = 0.03) when adjusted for parity and child’s birth year. No association was found between ASD and the presence of IgG antibodies to Toxoplasma gondii, rubella virus, CMV, or HSV-1. Additional studies are needed to test for replicability of risk and specificity of the sex effect and to examine risk associated with other infections. IMPORTANCE The cause (or causes) of most cases of autism spectrum disorder is unknown. Evidence from epidemiological studies and work in animal models of neurodevelopmental disorders suggest that both genetic and environmental factors may be implicated. The latter include gestational infection and immune activation. In our cohort, high levels of antibodies to herpes simplex virus 2 at midpregnancy were associated with an elevated risk of autism spectrum disorder in male offspring. These findings provide support for the hypothesis that gestational infection may contribute to the pathogenesis of autism spectrum disorder and have the potential to drive new efforts to monitor women more closely for cryptic gestational infection and to implement suppressive therapy during pregnancy.
Collapse
|
21
|
Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 2017; 147:3-10. [PMID: 27852870 PMCID: PMC5177735 DOI: 10.3945/jn.116.238949] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are limited.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ana Aguilar-Lozano
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonia Manca
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
22
|
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol 2016; 215:S1-S46. [PMID: 26972897 DOI: 10.1016/j.ajog.2016.03.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Ekaterini Tsilou
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Susan Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Vikki M Abrahams
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine; New Haven, CT
| | - Michael J Soares
- Institute of Reproductive Health and Regenerative Medicine and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - James C Cross
- Comparative Biology and Experimental Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX
| | - Christine Colvis
- Therapeutics Discovery Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - David M Haas
- Department of Obstetrics and Gynecology Indiana University, Indianapolis, IN
| | | | - Carl Weiner
- University of Kansas Medical Center, Kansas City, KS
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Gene Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
23
|
Abstract
An increasing body of literature is addressing the immuno-modulating functions of miRNAs which include paracrine signaling via exosome-mediated intercellular miRNA. In view of the recent evidence of intake and bioavailability of dietary miRNAs in humans and animals we explored the immuno-modulating capacity of plant derived miRNAs. Here we show that transfection of synthetic miRNAs or native miRNA-enriched fractions obtained from a wide range of plant species and organs modifies dendritic cells ability to respond to inflammatory agents by limiting T cell proliferation and consequently dampening inflammation. This immuno-modulatory effect appears associated with binding of plant miRNA on TLR3 with ensuing impairment of TRIF signaling. Similarly, in vivo, plant small RNAs reduce the onset of severity of Experimental Autoimmune Encephalomyelities by limiting dendritic cell migration and dampening Th1 and Th17 responses in a Treg-independent manner. Our results indicate a potential for therapeutic use of plant miRNAs in the prevention of chronic-inflammation related diseases.
Collapse
|
24
|
Mhatre MV, Potter JA, Lockwood CJ, Krikun G, Abrahams VM. Thrombin Augments LPS-Induced Human Endometrial Endothelial Cell Inflammation via PAR1 Activation. Am J Reprod Immunol 2016; 76:29-37. [PMID: 27108773 DOI: 10.1111/aji.12517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/07/2016] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Risk factors for preterm birth include placental abruption, giving rise to excessive decidual thrombin, and intrauterine bacterial infection. Human endometrial endothelial cells (HEECs) express Toll-like receptors (TLRs), and infection-derived agonists trigger HEECs to generate specific inflammatory responses. As thrombin, in addition to inducing coagulation, can contribute to inflammation, its effect on HEEC inflammatory responses to the TLR4 agonist, bacterial lipopolysaccharide (LPS), was investigated. METHOD OF STUDY HEECs were pre-treated with or without thrombin or specific protease-activated receptor (PAR) agonists, followed by treatment with or without LPS. Supernatants were measured for cytokines and chemokines by ELISA and multiplex analysis. RESULTS Thrombin significantly and synergistically augmented LPS-induced HEEC secretion of interleukin (IL)-6, IL-8, granulocyte colony-stimulating factor (G-CSF), and growth-regulated oncogene-alpha (GRO-α), and significantly augmented monocyte chemotactic protein (MCP)-1, tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF) secretion additively. Similar to thrombin, a PAR1 agonist synergistically augmented the LPS-induced HEEC secretion of inflammatory IL-6, IL-8, G-CSF, and GRO-α. CONCLUSION Thrombin, via PAR1 activation, synergistically augments LPS-induced HEEC production of chemokines involved in immune cell recruitment and survival, suggesting a mechanism by which intrauterine abruption and bacterial infection may together be associated with an aggravated uterine inflammatory response.
Collapse
Affiliation(s)
- Mohak V Mhatre
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Julie A Potter
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Charles J Lockwood
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Graciela Krikun
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev 2016; 99:85-96. [PMID: 26576719 DOI: 10.1016/j.addr.2015.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022]
Abstract
Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines.
Collapse
|
26
|
Gysler SM, Mulla MJ, Guerra M, Brosens JJ, Salmon JE, Chamley LW, Abrahams VM. Antiphospholipid antibody-induced miR-146a-3p drives trophoblast interleukin-8 secretion through activation of Toll-like receptor 8. Mol Hum Reprod 2016; 22:465-74. [PMID: 27029214 DOI: 10.1093/molehr/gaw027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/23/2016] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION What is the role of microRNAs (miRs) in antiphospholipid antibody (aPL)-induced trophoblast inflammation? SUMMARY ANSWER aPL-induced up-regulation of trophoblast miR-146a-3p is mediated by Toll-like receptor 4 (TLR4), and miR-146a-3p in turn drives the cells to secrete interleukin (IL)-8 by activating the RNA sensor, TLR8. WHAT IS KNOWN ALREADY Obstetric antiphospholipid syndrome (APS) is an autoimmune disorder characterized by circulating aPL and an increased risk of pregnancy complications. We previously showed that aPL recognizing beta2 glycoprotein I (β2GPI) elicit human first trimester trophoblast secretion of IL-8 by activating TLR4. Since some miRs control TLR responses, their regulation in trophoblast cells by aPL and functional role in the aPL-mediated inflammatory response was investigated. miRs can be released from cells via exosomes, and therefore, miR exosome expression was also examined. A panel of miRs was selected based on their involvement with TLR signaling: miR-9; miR-146a-5p and its isomiR, miR-146a-3p; miR-155, miR-210; and Let-7c. Since certain miRs can activate the RNA sensor, TLR8, this was also investigated. STUDY DESIGN, SIZE, DURATION For in vitro studies, the human first trimester extravillous trophoblast cell line, HTR8 was studied. HTR8 cells transfected to express a TLR8 dominant negative (DN) were also used. Plasma was evaluated from pregnant women who have aPL, either with or without systemic lupus erythematous (SLE) (n = 39); SLE patients without aPL (n = 30); and healthy pregnant controls (n = 20). PARTICIPANTS/MATERIALS, SETTING, METHODS Trophoblast HTR8 wildtype and TLR8-DN cells were incubated with or without aPL (mouse anti-human β2GPI mAb) for 48-72 h. HTR8 cells were also treated with or without aPL in the presence and the absence of a TLR4 antagonist (lipopolysaccharide from Rhodobacter sphaeroides; LPS-RS), specific miR inhibitors or specific miR mimics. miR expression levels in trophoblast cells, trophoblast-derived exosomes and exosomes isolated from patient plasma were measured by qPCR. Trophoblast IL-8 secretion was measured by ELISA. MAIN RESULTS AND THE ROLE OF CHANCE aPL significantly increased trophoblast cellular and exosome expression of miR-146a-5p, miR-146a-3p, miR-155 and miR-210. aPL-induced up-regulation of trophoblast miR-146a-5p, miR-146a-3p and miR-210, but not miR-155, was inhibited by the TLR4 antagonist, LPS-RS. While inhibition or overexpression of miR-146a-5p had no effect on aPL-induced trophoblast IL-8 secretion, miR-146a-3p inhibition significantly reduced this response. aPL-induced trophoblast IL-8 secretion was inhibited by the presence of the TLR8-DN. In the absence of aPL, transfection of trophoblast cells with a miR-146a-3p mimic significantly increased IL-8 secretion and this was inhibited by the presence of the TLR8-DN. Patients with aPL and adverse pregnancy outcomes (APOs) expressed significantly higher levels of circulating miR-146a-3p compared with healthy pregnant controls with no pregnancy complications (P < 0.05). LIMITATIONS, REASONS FOR CAUTION While the enrichment of miR-146a-3p in trophoblast-derived exosomes support the role of this miR acting in a paracrine or endocrine manner through exosome delivery, this has not been demonstrated. However, miR-146a-3p may also exert its pro-inflammatory effect intracellularly within the same trophoblast cell targeted by aPL. WIDER IMPLICATIONS OF THE FINDINGS These findings provide a novel mechanism of trophoblast inflammation through miRs activating RNA-sensing receptors. Furthermore, circulating exosomal-associated miR-146a-3p in APS patients may serve clinically as a biomarker for related APOs. STUDY FUNDING/COMPETING INTERESTS This study was supported in part by grants from the American Heart Association (#10GRNT3640032 to V.M.A.), the March of Dimes Foundation (Gene Discovery and Translational Research Grant #6-FY12-255 to V.M.A.), NICHD, NIH (R01HD049446 to V.M.A.), the Gina M. Finzi Memorial Student Summer Fellowship from the Lupus Foundation of America (to S.M.G.), and the Yale University School of Medicine Medical Student Fellowship (to S.M.G.). The authors declare no competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Stefan M Gysler
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| | - Melissa J Mulla
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| | - Marta Guerra
- Department of Medicine and Program in Inflammation and Autoimmunity, Hospital for Special Surgery and Weill Cornell Medical College, New York, NY 10065, USA
| | - Jan J Brosens
- Division of Reproductive Health, Clinical Sciences Research Laboratories, Warwick Medical School, Coventry CV4 7AL, UK
| | - Jane E Salmon
- Department of Medicine and Program in Inflammation and Autoimmunity, Hospital for Special Surgery and Weill Cornell Medical College, New York, NY 10065, USA
| | - Lawrence W Chamley
- Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1142, New Zealand
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|