1
|
Abazarikia A, Luan Y, So W, Becker M, Panda S, Swenson SA, Kosmacek EA, Oberley-Deegan RE, Xiao S, Hyde RK, Kim SY. Leukemic Cells Infiltrate the Ovaries Without Damaging Ovarian Reserve in an Acute Myeloid Leukemia Mouse Model. Endocrinology 2025; 166:bqaf022. [PMID: 39888387 PMCID: PMC11890401 DOI: 10.1210/endocr/bqaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Leukemia is one of the most common cancers in prepubertal girls and adolescents, with advances improving survival rates. However, treatments like chemotherapy and radiation are highly gonadotoxic, often causing ovarian insufficiency, early menopause, infertility, and endocrine disorders. Fertility preservation for young female patients with cancer, especially prepubertal girls without mature germ cells, relies heavily on ovarian tissue cryopreservation. Yet, a major concern is the potential presence of leukemic cells within preserved tissue, posing a risk of reintroducing malignancy upon grafting. Additionally, the direct effects of leukemia on ovarian function remain unclear. In this study, we used an acute myeloid leukemia (AML) mouse model to explore the impact of leukemia on ovarian function. Leukemic cells infiltrated the ovaries, particularly the stromal regions and granulosa layers of antral follicles, while also being present in the spleen and liver. Despite this infiltration, ovarian structure, follicular counts, and primordial follicle reserves were largely preserved, with the notable absence of corpus luteum indicating impaired ovulation. Furthermore, leukemic infiltration induced inflammatory cytokines TNF-α and COX-2, potentially influencing ovarian health. These findings suggest opportunities for fertility preservation by selectively removing leukemic cells, though risks of malignancy remain. This model offers a platform for advancing fertility-preservation strategies during gonadotoxic cancer therapies.
Collapse
Affiliation(s)
- Amirhossein Abazarikia
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yi Luan
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wonmi So
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle Becker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sipra Panda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samantha A Swenson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Ricia Katherine Hyde
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Tricotteaux-Zarqaoui S, Lahimer M, Abou Diwan M, Corona A, Candela P, Cabry R, Bach V, Khorsi-Cauet H, Benkhalifa M. Endocrine disruptor chemicals exposure and female fertility declining: from pathophysiology to epigenetic risks. Front Public Health 2024; 12:1466967. [PMID: 39735741 PMCID: PMC11672798 DOI: 10.3389/fpubh.2024.1466967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Over the last decades, human infertility has become a major concern in public health, with severe societal and health consequences. Growing evidence shows that endocrine disruptors chemicals (EDCs) have been considered as risk factors of infertility. Their presence in our everyday life has become ubiquitous because of their universal use in food and beverage containers, personal care products, cosmetics, phytosanitary products. Exposure to these products has an impact on human reproductive health. Recent studies suggest that women are more exposed to EDCs than men due to higher chemical products use. The aim of this review is to understand the possible link between reproductive disorders and EDCs such as phthalates, bisphenol, dioxins, and pesticides. In women, the loss of endocrine balance leads to altered oocyte maturation, competency, anovulation and uterine disorders, endometriosis, premature ovarian insufficiency (POI) or embryonic defect and decreases the in vitro fertilization outcomes. In this review, we consider EDCs effects on the women's reproductive system, embryogenesis, with a focus on associated reproductive pathologies.
Collapse
Affiliation(s)
- Sophian Tricotteaux-Zarqaoui
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Aurélie Corona
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, Lens, France
| | - Rosalie Cabry
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| | - Moncef Benkhalifa
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Amiens, France
| |
Collapse
|
3
|
Ding N, Wang X, Harlow SD, Randolph JF, Gold EB, Park SK. Heavy Metals and Trajectories of Anti-Müllerian Hormone During the Menopausal Transition. J Clin Endocrinol Metab 2024; 109:e2057-e2064. [PMID: 38271266 DOI: 10.1210/clinem/dgad756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Experimental and epidemiological studies have linked metals with women's reproductive aging, but the mechanisms are not well understood. Disrupted ovarian folliculogenesis and diminished ovarian reserve could be a pathway through which metals impact reproductive hormones and outcomes. OBJECTIVE The study aimed to evaluate the associations of heavy metals with anti-Müllerian hormone (AMH), a marker of ovarian reserve. METHODS The study included 549 women from the Study of Women's Health Across the Nation with 2252 repeated AMH measurements from 10 to 0 years before the final menstrual period (FMP). Serum AMH concentrations were measured using picoAMH ELISA. Urinary concentrations of arsenic, cadmium, mercury, and lead were measured using high-resolution inductively coupled plasma mass spectrometry. Multivariable linear mixed regressions modeled AMH as a function of time before the FMP interaction terms between metals and time to the FMP were also included. RESULTS Adjusting for confounders, compared with those in the lowest tertile, women in the highest tertile of urinary arsenic or mercury concentrations had lower AMH concentrations at the FMP (percent change: -32.1%; 95% CI, -52.9 to -2.2, P-trend = .03 for arsenic; percent change: -40.7%; 95% CI, -58.9 to -14.5, P-trend = .005 for mercury). Higher cadmium and mercury were also associated with accelerated rates of decline in AMH over time (percent change per year: -9.0%; 95% CI, -15.5 to -1.9, P-trend = .01 for cadmium; -7.3%; 95% CI, -14.0 to -0.1, P-trend = .04 for mercury). CONCLUSION Heavy metals including arsenic, cadmium, and mercury may act as ovarian toxicants by diminishing ovarian reserve in women approaching the FMP.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John F Randolph
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Leem J, Lee C, Choi DY, Oh JS. Distinct characteristics of the DNA damage response in mammalian oocytes. Exp Mol Med 2024; 56:319-328. [PMID: 38355825 PMCID: PMC10907590 DOI: 10.1038/s12276-024-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
DNA damage is a critical threat that poses significant challenges to all cells. To address this issue, cells have evolved a sophisticated molecular and cellular process known as the DNA damage response (DDR). Among the various cell types, mammalian oocytes, which remain dormant in the ovary for extended periods, are particularly susceptible to DNA damage. The occurrence of DNA damage in oocytes can result in genetic abnormalities, potentially leading to infertility, birth defects, and even abortion. Therefore, understanding how oocytes detect and repair DNA damage is of paramount importance in maintaining oocyte quality and preserving fertility. Although the fundamental concept of the DDR is conserved across various cell types, an emerging body of evidence reveals striking distinctions in the DDR between mammalian oocytes and somatic cells. In this review, we highlight the distinctive characteristics of the DDR in oocytes and discuss the clinical implications of DNA damage in oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Crystal Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Da Yi Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
5
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
6
|
Alinia T, Sabour S, Hashemipour M, Hovsepian S, Pour HR, Jahanfar S. Relationship between vitamin D levels and age of menopause and reproductive lifespan: Analysis based on the National health and nutrition examination survey (NHANES) 2001-2018. Eur J Obstet Gynecol Reprod Biol 2023; 289:183-189. [PMID: 37690281 DOI: 10.1016/j.ejogrb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/01/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES To determine the association between serum vitamin D levels and age at menopause and reproductive lifespan in a group of US postmenopausal women. STUDY DESIGN Data from 6,326 postmenopausal US women in the National Health and Nutrition Examination Survey (NHANES) database 2001-2018 were obtained. Weighted multinomial logistic regression models were used to obtain odds ratios (OR) and 95% confidence intervals (CI). Statistical analyzes were performed using SAS (version 9.4; SAS Institute), and complex survey designs were considered. RESULTS Vitamin D deficiency was associated with a higher likelihood of early menopause (OR = 1.34, 95% CI: 1.15, 1.58; p = 0.008) and lower odds of late menopause (OR = 0.79, 95% CI: 0.52, 0.95) in the unadjusted model but not in the adjusted model. Lower vitamin D levels were associated with a higher risk of a shorter reproductive lifespan. The strongest association was seen in the first tertile of vitamin D deficiency (OR = 1.54; 95% CI: 1:29-1:83). After adjustment, the associations were somewhat weakened but remained statistically significant. CONCLUSIONS The results of this study suggest that vitamin D deficiency and inadequacy might be associated with earlier age at menopause. It may also reduce the reproductive lifespan in women. Given the cross-sectional nature of the NHANES dataset, these results should be interpreted with caution due to temporality bias. Menopausal age is a multifactorial phenomenon, and the identification of factors and their interactions should be evaluated in future studies.
Collapse
Affiliation(s)
- Tahereh Alinia
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siamak Sabour
- Department of Clinical Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran
| | - Mahin Hashemipour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Silva Hovsepian
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Homeyra Rais Pour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shayesteh Jahanfar
- Tufts School of Medicine, Department of Public Health and Community Medicine, Boston, USA
| |
Collapse
|
7
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
8
|
Wang S, Yang W, Li X, Wang Z, Zhang L, Wang J, Qi X, Dove A, Xu W. Association of lifespan reproductive duration with depression in Swedish twins: The role of hormone replacement therapy. Int J Gynaecol Obstet 2023; 162:309-316. [PMID: 36645342 DOI: 10.1002/ijgo.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To examine the association between reproductive duration and postmenopausal depression (taking the use of hormone replacement therapy [HRT] into account). METHODS In this population-based cohort study, 11 320 postmenopausal women (mean age 63.6 years) were followed for up to 18 years. Reproductive duration was categorized into three groups: short (≤34 years), average (35-39 years), and long (≥40 years). Depression was ascertained from the Sweden National Patient Registry. RESULTS During the follow up, 593 (5.24%) women developed depression. In the multi-adjusted generalized estimating equation model, the odds ratios (ORs) of depression were 1.28 (95% confidence interval [CI] 1.05-1.55) and 1.25 (95% CI 1.01-1.55) for women with short and long reproductive durations, respectively, compared with those women with average reproductive duration. Women with a non-typical reproductive duration (≤34 or ≥40 years) who received HRT were at a higher risk of depression (OR 1.82, 95% CI 1.42-2.33). There was a significant additive interaction between non-typical reproductive duration and the use of HRT on depression (attributable proportion 0.26, 95% CI 0.03-0.50). CONCLUSION Women with a short or long reproductive duration, especially those with a history of HRT use, have a higher risk of depression after menopause compared with those with an average reproductive duration.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Wenzhe Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Xuerui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Zhiyu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Lulu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Jiao Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Xiuying Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Abigail Dove
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Weili Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Tezak B, Straková B, Fullard DJ, Dupont S, McKey J, Weber C, Capel B. Higher temperatures directly increase germ cell number, promoting feminization of red-eared slider turtles. Curr Biol 2023:S0960-9822(23)00758-3. [PMID: 37354900 DOI: 10.1016/j.cub.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/09/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
In many reptile species, gonadal sex is affected by environmental temperature during a critical period of embryonic development-a process known as temperature-dependent sex determination (TSD).1 The oviparous red-eared slider turtle, Trachemys scripta, has a warm-female/cool-male TSD system and is among the best-studied members of this group.2 When incubated at low temperatures, the somatic cells of the bipotential gonad differentiate into Sertoli cells, the support cells of the testis, whereas at high temperatures, they differentiate into granulosa cells, the support cells of the ovary.3 Here, we report the unexpected finding that temperature independently affects the number of primordial germ cells (GCs) in the embryonic gonad at a time before somatic cell differentiation has initiated. Specifically, embryos incubated at higher, female-inducing temperatures have more GCs than those incubated at the male-inducing temperature. Furthermore, elimination of GCs in embryos incubating at intermediate temperatures results in a strong shift toward male-biased sex ratios. This is the first evidence that temperature affects GC number and the first evidence that GC number influences sex determination in amniotes. This observation has two important implications. First, it supports a new model in which temperature can impact sex determination in incremental ways through multiple cell types. Second, the findings have important implications for a major unresolved question in the fields of ecology and evolutionary biology-the adaptive significance of TSD. We suggest that linking high GC number with female development improves female reproductive potential and provides an adaptive advantage for TSD.
Collapse
Affiliation(s)
- B Tezak
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27701, USA
| | - B Straková
- Department of Ecology, Faculty of Science Charles University, Viničná 7, Praha 2 12844, Czech Republic
| | - D J Fullard
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27701, USA
| | - S Dupont
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27701, USA
| | - J McKey
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27701, USA
| | - C Weber
- Division of Biological Sciences, Section of Cell and Developmental Biology, UC San Diego, La Jolla, CA 92093, USA
| | - B Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
10
|
Valtetsiotis K, Valsamakis G, Charmandari E, Vlahos NF. Metabolic Mechanisms and Potential Therapeutic Targets for Prevention of Ovarian Aging: Data from Up-to-Date Experimental Studies. Int J Mol Sci 2023; 24:9828. [PMID: 37372976 DOI: 10.3390/ijms24129828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Female infertility and reproduction is an ongoing and rising healthcare issue, resulting in delaying the decision to start a family. Therefore, in this review, we examine potential novel metabolic mechanisms involved in ovarian aging according to recent data and how these mechanisms may be addressed through new potential medical treatments. We examine novel medical treatments currently available based mostly on experimental stem cell procedures as well as caloric restriction (CR), hyperbaric oxygen treatment and mitochondrial transfer. Understanding the connection between metabolic and reproductive pathways has the potential to offer a significant scientific breakthrough in preventing ovarian aging and prolonging female fertility. Overall, the field of ovarian aging is an emerging field that may expand the female fertility window and perhaps even reduce the need for artificial reproductive techniques.
Collapse
Affiliation(s)
- Konstantinos Valtetsiotis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Georgios Valsamakis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Evangelia Charmandari
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Nikolaos F Vlahos
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| |
Collapse
|
11
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Isa AM, Sun Y, Li Y, Wang Y, Ni A, Yuan J, Ma H, Shi L, Tesfay HH, Fan J, Wang P, Chen J. MicroRNAs with non-additive expression in the ovary of hybrid hens target genes enriched in key reproductive pathways that may influence heterosis for egg laying traits. Front Genet 2022; 13:974619. [PMID: 36246615 PMCID: PMC9563710 DOI: 10.3389/fgene.2022.974619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Heterosis has been extensively exploited in chicken breeding to improve laying traits in commercial hybrid stock. However, the molecular mechanisms underlying it remains elusive. This study characterizes the miRNAome in the pre-hierarchical follicles of purebred and hybrid laying hens, and investigate the functions of miRNAs with non-additive expression in the pre-hierarchical follicles as they modulate heterosis for egg number and clutch size. To achieve that aim, White Leghorn and Rhode Island Red chicken lines were reciprocally crossed to generate hybrids. The crossbreds demonstrated heterosis for egg number and clutch size, and pre-hierarchical follicles from 4 birds of each genotype were collected at 53 weeks of age. Mode of miRNA expression was characterized after miRNA sequencing. A total of 50 miRNAs including 30 novel ones, were found to exhibit non-additive expression. Dominance was the predominant mode of expression exhibited by majority of the miRNAs. Functional analysis of target genes of the known miRNAs with non-additive expression revealed Gene Ontology terms related to regulation of transcription, metabolic processes and gene expression. KEGG and REACTOME pathways including hedgehog, cellular senescence, wnt, TGF-β, progesterone-mediated oocyte maturation, oocyte meiosis, GnRH signaling, signal transduction and generic transcription, which can be linked to primordial follicle activation, growth and ovulation, were significantly enriched by target genes of miRNAs with non-additive expression. Majority of the genes enriched in these biological pathways were targeted by gga-miR-19a, gga-miR-19b, gga-miR-375, gga-miR-135a, and gga-miR-7 and 7b, thus, revealing their synergistic roles in enhancing processes that could influence heterosis for egg number and clutch size in hybrid hens.
Collapse
Affiliation(s)
- Adamu Mani Isa
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yanyan Sun, ; Jilan Chen,
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailai Hagos Tesfay
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panlin Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agricultural and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yanyan Sun, ; Jilan Chen,
| |
Collapse
|
13
|
Frost ER, Ford EA, Peters AE, Lovell-Badge R, Taylor G, McLaughlin EA, Sutherland JM. A New Understanding, Guided by Single-Cell Sequencing, of the Establishment and Maintenance of the Ovarian Reserve in Mammals. Sex Dev 2022; 17:145-155. [PMID: 36122567 DOI: 10.1159/000526426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oocytes are a finite and non-renewable resource that are maintained in primordial follicle structures. The ovarian reserve is the totality of primordial follicles, present from birth, within the ovary and its establishment, size, and maintenance dictates the duration of the female reproductive lifespan. Understanding the cellular and molecular dynamics relevant to the establishment and maintenance of the reserve provides the first steps necessary for modulating both individual human and animal reproductive health as well as population dynamics. SUMMARY This review details the key stages of establishment and maintenance of the ovarian reserve, encompassing germ cell nest formation, germ cell nest breakdown, and primordial follicle formation and activation. Furthermore, we spotlight several formative single-cell sequencing studies that have significantly advanced our knowledge of novel molecular regulators of the ovarian reserve, which may improve our ability to modulate female reproductive lifespans. KEY MESSAGES The application of single-cell sequencing to studies of ovarian development in mammals, especially when leveraging genetic and environmental models, offers significant insights into fertility and its regulation. Moreover, comparative studies looking at key stages in the development of the ovarian reserve across species has the potential to impact not just human fertility, but also conservation biology, invasive species management, and agriculture.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Emmalee A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Güneş Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
14
|
Tijerina A, Barrera Y, Solis-Pérez E, Salas R, Jasso JL, López V, Ramírez E, Pastor R, Tur JA, Bouzas C. Nutritional Risk Factors Associated with Vasomotor Symptoms in Women Aged 40-65 Years. Nutrients 2022; 14:2587. [PMID: 35807766 PMCID: PMC9268510 DOI: 10.3390/nu14132587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Vasomotor symptoms (VMS) are the most common symptoms among menopausal women; these include hot flashes and night sweats, and palpitations often occur along with hot flashes. Some studies in Mexico reported that around 50% of women presented with VMS mainly in the menopausal transition. It has been proven that VMS are not only triggered by an estrogen deficiency, but also by nutritional risk factors. Evidence of an association between nutritional risk factors and VMS is limited in Mexican women. The aim of this study is to identify nutritional risk factors associated with VMS in women aged 40−65 years. This is a comparative cross-sectional study, undertaken in a retrospective way. A sample group (n = 406 women) was divided into four stages according to STRAW+10 (Stages of Reproductive Aging Workshop): late reproductive, menopausal transition, early postmenopause, and late postmenopause. Hot flashes were present mainly in the early postmenopause stage (38.1%, p ≤ 0.001). Two or more VMS were reported in 23.2% of women in the menopausal transition stage and 29.3% in the early postmenopause stage (p < 0.001). The presence of VMS was associated with different nutritional risk factors (weight, fasting glucose levels, cardiorespiratory fitness, and tobacco use) in women living in the northeast of Mexico.
Collapse
Affiliation(s)
- Alexandra Tijerina
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.T.); (Y.B.); (E.S.-P.); (R.S.); (J.L.J.); (V.L.); (E.R.)
| | - Yamile Barrera
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.T.); (Y.B.); (E.S.-P.); (R.S.); (J.L.J.); (V.L.); (E.R.)
| | - Elizabeth Solis-Pérez
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.T.); (Y.B.); (E.S.-P.); (R.S.); (J.L.J.); (V.L.); (E.R.)
| | - Rogelio Salas
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.T.); (Y.B.); (E.S.-P.); (R.S.); (J.L.J.); (V.L.); (E.R.)
| | - José L. Jasso
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.T.); (Y.B.); (E.S.-P.); (R.S.); (J.L.J.); (V.L.); (E.R.)
| | - Verónica López
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.T.); (Y.B.); (E.S.-P.); (R.S.); (J.L.J.); (V.L.); (E.R.)
| | - Erik Ramírez
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.T.); (Y.B.); (E.S.-P.); (R.S.); (J.L.J.); (V.L.); (E.R.)
| | - Rosario Pastor
- Faculty of Health Sciences, Catholic University of Avila, 05005 Avila, Spain; (R.P.); (C.B.)
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands–IUNICS, 07122 Palma de Mallorca, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands–IUNICS, 07122 Palma de Mallorca, Spain
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Bouzas
- Faculty of Health Sciences, Catholic University of Avila, 05005 Avila, Spain; (R.P.); (C.B.)
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands–IUNICS, 07122 Palma de Mallorca, Spain
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
15
|
Xi W, Mao H, Cui Z, Yao H, Shi R, Gao Y. Scream Sound-induced Chronic Psychological Stress Results in Diminished Ovarian Reserve in Adult Female Rat. Endocrinology 2022; 163:6580263. [PMID: 35536288 DOI: 10.1210/endocr/bqac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 01/09/2023]
Abstract
It is well established that chronic psychological stress (PS) induces female reproductive dysfunction. However, the studies on the consequences of chronic PS exposure precisely targeting ovarian reserve are lacking. In the present study, we employed a chronic scream sound-induced PS model to investigate the potential effect of pure psychosocial stressors on ovary reserve. Female rats were subjected to scream sound stress, white noise, or background for 3 weeks. Animals were euthanized by cervical dislocation after stress for collection of blood or ovaries. Sex hormones were analyzed by enzyme-linked immunosorbent assay. The follicle number was examined by histopathology. Granulosa cell apoptosis of the ovaries was examined by in situ cell death detection kit. Finally, rats were mated with proven fertile male rats to study fertility parameters. Female rats exposed to scream sound were presented with reduced weight gain and sucrose preference, while immobility time in forced swim test and serum corticosterone concentration were significantly increased. Scream sound stress sequentially decreased plasma anti-Müllerian hormone and estradiol concentration, induced primordial and preantral follicles loss, augmented granulosa cell apoptosis in ovarian growing follicles, and eventually decreased litter sizes. Based on these results, we suggest that chronic PS induced loss of ovarian reserve by accelerated primordial follicle activation and destruction of growing follicles, which results in follicle depletion and decreased fertility.
Collapse
Affiliation(s)
- Wenyan Xi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Hui Mao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Zhiwei Cui
- The First Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Haoyan Yao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Ruiting Shi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Yane Gao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| |
Collapse
|
16
|
Goktepe O, Balcioglu E, Baran M, Cengiz O, Ceyhan A, Suna PA, Bolat D, Yalcin B, Yay A. Protective effects of melatonin on female rat ovary treated with nonylphenol. Biotech Histochem 2022; 98:13-19. [PMID: 35611760 DOI: 10.1080/10520295.2022.2075566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated using histochemistry and immunohistochemistry ovarian damage caused by nonylphenol (NP) and the protective effect of melatonin treatment of NP induced ovarian damage. We used 21 female rats divided randomly into three groups: control, NP and melatonin + NP. Histopathological examination of the ovaries, and counting and classification of follicles were performed using Masson's trichrome staining. Expression of anti-Mullerian hormone (AMH), Bax, Bcl-2 and caspase-3 was detected in the ovaries using immunohistochemistry. Melatonin had an ameliorative effect on NP induced follicular atresia and absence of corpora lutea. More follicles were observed in the ovaries of animals treated with melatonin prior to treatment with NP. AMH immunoreactivity was significantly lower in the NP group than in the melatonin + NP group. NP increased immunostaining for Bax, Bcl-2 and caspase-3. Melatonin significantly reduced the increased expression of Bax, Bcl-2 and caspase-3 due to NP exposure. We found that pretreatment with melatonin is beneficial for protecting the ovaries from damage by NP.
Collapse
Affiliation(s)
- Ozge Goktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayse Ceyhan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Pinar Alisan Suna
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Demet Bolat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Betul Yalcin
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
17
|
Gottschalk MS, Eskild A, Hofvind S, Bjelland EK. The relation of number of childbirths with age at natural menopause: a population study of 310 147 women in Norway. Hum Reprod 2022; 37:333-340. [PMID: 34791235 PMCID: PMC8804328 DOI: 10.1093/humrep/deab246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
STUDY QUESTION Does age at natural menopause increase with increasing of number of childbirths? SUMMARY ANSWER Age at menopause increased with increasing number of childbirths up to three childbirths; however, we found no further increase in age at menopause beyond three childbirths. WHAT IS KNOWN ALREADY Pregnancies interrupt ovulation, and a high number of pregnancies have therefore been assumed to delay menopause. Previous studies have had insufficient statistical power to study women with a high number of childbirths. Thus, the shape of the association of number of childbirths with age at menopause remains unknown. STUDY DESIGN, SIZE, DURATION A retrospective population study of 310 147 women in Norway who were 50-69 years old at data collection. PARTICIPANTS/MATERIALS, SETTING, METHODS The data were obtained by two self-administered questionnaires completed by women attending BreastScreen Norway, a population-based screening program for breast cancer. The associations of number of childbirths with age at menopause were estimated as hazard ratios by applying Cox proportional hazard models, adjusting for the woman's year of birth, cigarette smoking, educational level, country of birth, oral contraceptive use and body mass index. MAIN RESULTS AND THE ROLE OF CHANCE Women with three childbirths had the highest mean age at menopause (51.36 years; 95% CI: 51.33-51.40 years), and women with no childbirths had the lowest (50.55 years; 95% CI: 50.48-50.62 years). Thus, women with no childbirths had higher hazard ratio of reaching menopause compared to women with three childbirths (reference group) (adjusted hazard ratio, 1.24; 95% CI: 1.22-1.27). Beyond three childbirths, we estimated no further increase in age at menopause. These findings were confirmed in sub-analyses among (i) women who had never used hormonal intrauterine device and/or systemic menopausal hormonal therapy; (ii) women who were born before 1950 and (iii) women who were born in 1950 or after. LIMITATIONS, REASONS FOR CAUTION Information about age at menopause was based on self-reports. WIDER IMPLICATIONS OF THE FINDINGS If pregnancies truly delay menopause, one would expect that women with the highest number of childbirths had the highest age at menopause. Our results question the assumption that interrupted ovulation during pregnancy delays menopause. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the South-Eastern Norway Regional Health Authority [2016112 to M.S.G.] and by the Norwegian Cancer Society [6863294-2015 to E.K.B.]. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marthe S Gottschalk
- Department of Obstetrics and Gynecology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Eskild
- Department of Obstetrics and Gynecology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Solveig Hofvind
- Section of Mammographic Screening, Cancer Registry of Norway, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Elisabeth K Bjelland
- Department of Obstetrics and Gynecology, Akershus University Hospital, Lørenskog, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
18
|
Moslehi N, Mirmiran P, Marzbani R, Rezadoost H, Mirzaie M, Azizi F, Tehrani FR. Serum metabolomics study of women with different annual decline rates of anti-Müllerian hormone: an untargeted gas chromatography-mass spectrometry-based study. Hum Reprod 2021; 36:721-733. [PMID: 33320198 DOI: 10.1093/humrep/deaa279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Indexed: 01/09/2023] Open
Abstract
STUDY QUESTION Which metabolites are associated with varying rates of ovarian aging, measured as annual decline rates of anti-Müllerian hormone (AMH) concentrations? SUMMARY ANSWER Higher serum concentrations of metabolites of phosphate, N-acetyl-d-glucosamine, branched chained amino acids (BCAAs), proline, urea and pyroglutamic acid were associated with higher odds of fast annual decline rate of AMH. WHAT IS KNOWN ALREADY Age-related rate of ovarian follicular loss varies among women, and the factors underlying such inter-individual variations are mainly unknown. The rate of ovarian aging is clinically important due to its effects on both reproduction and health of women. Metabolomics, a global investigation of metabolites in biological samples, provides an opportunity to study metabolites or metabolic pathways in relation to a physiological/pathophysiological condition. To date, no metabolomics study has been conducted regarding the differences in the rates of ovarian follicular loss. STUDY DESIGN, SIZE, DURATION This prospective study was conducted on 186 reproductive-aged women with regular menstrual cycles and history of natural fertility, randomly selected using random case selection option in SPSS from the Tehran Lipid and Glucose Study. PARTICIPANTS/MATERIALS, SETTING, METHODS AMH concentrations were measured at baseline (1999-2001) and the fifth follow-up examination (2014-2017), after a median follow-up of 16 years, by immunoassay using Gen II kit. The annual decline rate of AMH was calculated by dividing the AMH decline rate by the follow-up duration (percent/year). The women were categorized based on the tertiles of the annual decline rates. Untargeted metabolomics analysis of the fasting-serum samples collected during the second follow-up examination cycle (2005-2008) was performed using gas chromatography-mass spectrometry. A combination of univariate and multivariate approaches was used to investigate the associations between metabolites and the annual decline rates of AMH. MAIN RESULTS AND THE ROLE OF CHANCE After adjusting the baseline values of age, AMH and BMI, 29 metabolites were positively correlated with the annual AMH decline rates. The comparisons among the tertiles of the annual decline rate of AMH revealed an increase in the relative abundance of 15 metabolites in the women with a fast decline (tertile 3), compared to those with a slow decline (tertile 1). There was no distinct separation between women with slow and fast decline rates while considering 41 metabolites simultaneously using the principal component analysis and the partial least-squares discriminant analysis models. The odds of fast AMH decline was increased with higher serum metabolites of phosphate, N-acetyl-d-glucosamine, BCAAs, proline, urea and pyroglutamic acid. Amino sugar and nucleotide sugar metabolism, BCAAs metabolism and aminoacyl tRNA biosynthesis were among the most significant pathways associated with the fast decline rate of AMH. LIMITATIONS, REASONS FOR CAUTION Estimating the annual decline rates of AMH using the only two measures of AMH is the main limitation of the study which assumes a linear fixed reduction in AMH during the study. Since using the two-time points did not account for the variability in the decline rate of AMH, the annual decline rates estimated in this study may not accurately show the trend of the reduction in AMH. In addition, despite the longitudinal nature of the study and statistical adjustment of the participants' ages, it is difficult to distinguish the AMH-related metabolites observed in this study can accelerate ovarian aging or they are reflections of different rates of the aging process. WIDER IMPLICATIONS OF THE FINDINGS Some metabolite features related to the decline rates of AMH have been suggested in this study; further prospective studies with multiple measurements of AMH are needed to confirm the findings of this study and to better understand the molecular process underlying variations in ovarian aging. STUDY FUNDING/COMPETING INTEREST(S) This study, as a part of PhD thesis of Ms Nazanin Moslehi, was supported by Shahid Beheshti University of Medical Sciences (10522-4). There were no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Nazanin Moslehi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Marzbani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Rodgers RJ, Laven JSE. Genetic relationships between early menopause and the behaviour of theca interna during follicular atresia. Hum Reprod 2021; 35:2185-2187. [PMID: 32790872 DOI: 10.1093/humrep/deaa173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variants are known to contribute to about 50% of the heritability of the age of menopause and recent studies suggest that genes associated with genome maintenance are involved. The idea that increased rates of follicular atresia could lead to depletion of the primoridial follicle reserve and early menopause has also been canvassed, but there is no direct evidence of this. In studies of the transcriptomics of follicular atresia, it was found that in the theca interna, the largest group of genes are in fact down-regulated and associated with 'cell cycle and DNA replication', in contrast with the up-regulation of apoptosis-associated genes which occurs in granulosa cells. Many of the genes down-regulated in the theca interna are the same as or related to the genes in loci associated with early menopause. From these findings, we suggest that early menopause could be due to increased rates of follicular atresia initiated from the theca interna.
Collapse
Affiliation(s)
- Raymond J Rodgers
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Cho J, Kim TH, Seok J, Jun JH, Park H, Kweon M, Lim JY, Kim GJ. Vascular remodeling by placenta-derived mesenchymal stem cells restores ovarian function in ovariectomized rat model via the VEGF pathway. J Transl Med 2021; 101:304-317. [PMID: 33303971 PMCID: PMC7892345 DOI: 10.1038/s41374-020-00513-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis plays an important role in damaged organ or tissue and cell regeneration and ovarian development and function. Primary ovarian insufficiency (POI) is a prevalent pathology in women under 40. Conventional treatment for POI involves hormone therapy. However, due to its side effects, an alternative approach is desirable. Human mesenchymal stem cells (MSCs) from various sources restore ovarian function; however, they have many limitations as stem cell sources. Therefore, it is desirable to study the efficacy of placenta-derived MSCs (PD-MSCs), which possess many advantages over other MSCs, in a rat model of ovarian dysfunction. Here, we investigated the restorative effect of PD-MSCs on injured ovaries in ovariectomized (OVX) rats and the ability of intravenous transplantation (Tx) of PD-MSCs (5 × 105) to enhance ovarian vasculature and follicular development. ELISA analysis of serum revealed that compared to the non-transplantation (NTx) group, the Tx group showed significantly increased levels of anti-Müllerian hormone, follicle stimulating hormone, and estradiol (E2) (*P < 0.05). In addition, histological analysis showed more mature follicles and less atresia and restoration of expanded blood vessels in the ovaries of the OVX PD-MSC Tx group than those of the NTx group (*P < 0.05). Furthermore, folliculogenesis-related gene expression was also significantly increased in the PD-MSC Tx group (*P < 0.05). Vascular endothelial growth factor (VEGF) and VEGF receptor 2 expressions were increased in the ovaries of the OVX PD-MSC Tx group compared to the NTx group through PI3K/AKT/mTOR and GSK3β/β-catenin pathway activation. Interestingly, ex vivo cocultivation of damaged ovaries and PD-MSCs or treatment with recombinant VEGF (50 ng/ml) increased folliculogenic factors and VEGF signaling pathways. Notably, compared to recombinant VEGF, PD-MSCs significantly increased folliculogenesis and angiogenesis (*P < 0.05). These findings suggest that VEGF secreted by PD-MSCs promotes follicular development and ovarian function after OVX through vascular remodeling. Therefore, these results provide fundamental data for understanding the therapeutic effects and mechanism of stem cell therapy based on PD-MSCs and provide a theoretical foundation for their application for obstetrical and gynecological diseases, including infertility and menopause.
Collapse
Affiliation(s)
- Jinki Cho
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine Hospital, Bucheon, Gyunggi-do, 14584, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Hyeri Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea
| | - Minyeoung Kweon
- College of Life Science, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Ja-Yun Lim
- Department of Health and Environmental Science, Korea University, Seoul, 02481, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
21
|
Aserlind A, Martini A, Dong J, Zolton J, Carpinello O, DeCherney A. Fertility preservation before hematopoetic stem cell transplantation: a case series of women with GATA binding protein 2 deficiency, dedicator of cytokinesis 8 deficiency, and sickle cell disease. F S Rep 2020; 1:287-293. [PMID: 34223258 PMCID: PMC8244317 DOI: 10.1016/j.xfre.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To describe fertility characteristics, outcomes of oocyte cryopreservation cycles, and safety of ovarian stimulation in patients with GATA binding protein 2 (GATA2) deficiency, dedicator of cytokinesis 8 (DOCK8) deficiency, and sickle cell disease (SCD) preparing for hematopoetic stem cell transplantation (HSCT). DESIGN Retrospective case series. SETTING The National Institutes of Health. PATIENTS Female patients with GATA2 deficiency, DOCK8 deficiency, and SCD aged between 13 and 38 years. INTERVENTIONS None. MAIN OUTCOME MEASURES Demographic and ovarian reserve parameters, stimulation outcomes, and adverse event occurrences were collected through chart review. Descriptive statistics were used to identify trends within disease subcategories. RESULTS Twenty-one women with GATA2 deficiency, DOCK8 deficiency, and SCD underwent fertility preservation prior to HSCT. Patients with DOCK8 deficiency had the lowest mean age (16.5 years old) and antimüllerian hormone (0.85 ng/mL). Patients with GATA2 deficiency had the highest antral follicle count and antimüllerian hormone (25.77 and 5.07 ng/mL, respectively). Baseline follicle-stimulating hormone, luteinizing hormone, and estradiol were comparable between the cohorts. The duration of stimulation was similar (10.43 to 11.25 days) across all groups. Comparable peak estradiol levels were achieved across the cohorts. Patients with SCD had the highest mature (MII) oocyte yield (10.71). Three patients experienced complications related to stimulation: pain crisis in a patient with SCD, pulmonary embolism, and zero oocytes cryopreserved in a patient with GATA2 deficiency. CONCLUSIONS This study offers insight into controlled ovarian stimulation in patients with these conditions prior to HSCT. Oocyte cryopreservation can be performed successfully, although adverse events must be considered. Following the outcomes of gamete use in this cohort will serve to further our knowledge of the true reproductive potential of this population.
Collapse
Affiliation(s)
- Alexandra Aserlind
- Department of Obstetrics, Gynecology and Reproductive Services, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Anne Martini
- Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Zolton
- Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Olivia Carpinello
- Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Alan DeCherney
- Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Abrahami N, Izhaki I, Younis JS. Is there a difference in ovarian reserve biomarkers and ovarian response between the right and left ovaries? Reprod Biomed Online 2020; 41:416-424. [DOI: 10.1016/j.rbmo.2020.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/10/2020] [Indexed: 01/30/2023]
|
23
|
Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update 2020; 26:43-57. [PMID: 31822904 DOI: 10.1093/humupd/dmz043] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Oocyte aging has significant clinical consequences, and yet no treatment exists to address the age-related decline in oocyte quality. The lack of progress in the treatment of oocyte aging is due to the fact that the underlying molecular mechanisms are not sufficiently understood. BRCA1 and 2 are involved in homologous DNA recombination and play essential roles in ataxia telangiectasia mutated (ATM)-mediated DNA double-strand break (DSB) repair. A growing body of laboratory, translational and clinical evidence has emerged within the past decade indicating a role for BRCA function and ATM-mediated DNA DSB repair in ovarian aging. OBJECTIVE AND RATIONALE Although there are several competing or complementary theories, given the growing evidence tying BRCA function and ATM-mediated DNA DSB repair mechanisms in general to ovarian aging, we performed this review encompassing basic, translational and clinical work to assess the current state of knowledge on the topic. A clear understanding of the mechanisms underlying oocyte aging may result in targeted treatments to preserve ovarian reserve and improve oocyte quality. SEARCH METHODS We searched for published articles in the PubMed database containing key words, BRCA, BRCA1, BRCA2, Mutations, Fertility, Ovarian Reserve, Infertility, Mechanisms of Ovarian Aging, Oocyte or Oocyte DNA Repair, in the English-language literature until May 2019. We did not include abstracts or conference proceedings, with the exception of our own. OUTCOMES Laboratory studies provided robust and reproducible evidence that BRCA1 function and ATM-mediated DNA DSB repair, in general, weakens with age in oocytes of multiple species including human. In both women with BRCA mutations and BRCA-mutant mice, primordial follicle numbers are reduced and there is accelerated accumulation of DNA DSBs in oocytes. In general, women with BRCA1 mutations have lower ovarian reserves and experience earlier menopause. Laboratory evidence also supports critical role for BRCA1 and other ATM-mediated DNA DSB repair pathway members in meiotic function. When laboratory, translational and clinical evidence is considered together, BRCA-related ATM-mediated DNA DSB repair function emerges as a likely regulator of ovarian aging. Moreover, DNA damage and repair appear to be key features in chemotherapy-induced ovarian aging. WIDER IMPLICATIONS The existing data suggest that the BRCA-related ATM-mediated DNA repair pathway is a strong candidate to be a regulator of oocyte aging, and the age-related decline of this pathway likely impairs oocyte health. This knowledge may create an opportunity to develop targeted treatments to reverse or prevent physiological or chemotherapy-induced oocyte aging. On the immediate practical side, women with BRCA or similar mutations may need to be specially counselled for fertility preservation.
Collapse
Affiliation(s)
- Volkan Turan
- Department of Obstetrics and Gynecology, Uskudar University School of Medicine, Istanbul, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Kutluk Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Tang R, Yu Q. The significance of FMR1 CGG repeats in Chinese women with premature ovarian insufficiency and diminished ovarian reserve. Reprod Biol Endocrinol 2020; 18:82. [PMID: 32787884 PMCID: PMC7422563 DOI: 10.1186/s12958-020-00645-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previous studies have shown that there is an association between FMR1 CGG repeats and ovarian dysfunction. The aim of this study is to assess the association between the number of CGG repeats in FMR1 in Chinese patients with premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). METHODS This is a cross-sectional, case-control study, which enrolled 124 patients with POI, 57 patients with DOR and 111 normal menopausal controls. The demographic details along with other clinical data were recorded. The FMR1 CGG repeats were analyzed by polymerase chain reaction and microfluidic capillary electrophoresis. RESULTS We could detect two premutation carriers in the POI group (1.6%) and one in the control group (0.9%). No premutation carriers were identified in the DOR group. The frequency of FMR1 premutations was not different between POI or DOR and controls. The most common CGG repeat was 29 and 30, and the repeat length for allele 2 had a secondary peak around 36-39 repeats. The CGG repeats were divided into groups of five consecutive values, and the distribution of allele 1 in the POI group was different from that in the control group (P < 0.001). No statistically significant differences were found for allele 1 between DOR group vs. controls, and for allele 2 between three groups (P > 0.05). CONCLUSIONS The study shows that the frequency of FMR1 premutations is relatively low (1.6%) in Chinese women with POI. The distribution of allele 1 CGG repeat in patients with POI showed difference from that in healthy women.
Collapse
Affiliation(s)
- Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, No 1 Shuaifuyuan, Wangfujing, Beijing, 100730, DongCheng District, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, No 1 Shuaifuyuan, Wangfujing, Beijing, 100730, DongCheng District, China.
| |
Collapse
|
25
|
Fugiel J, Ignasiak Z, Skrzek A, Sławińska T. Evaluation of Relationships between Menopause Onset Age and Bone Mineral Density and Muscle Strength in Women from South-Western Poland. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5410253. [PMID: 32596326 PMCID: PMC7303744 DOI: 10.1155/2020/5410253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/02/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The onset of the menopause entails numerous changes, both physical and mental, in the functioning of the bodies of women. Moreover, the early menopause increases the risk of occurrence of many civilization-related diseases. Major factors contributing to health deficits include lowered bone mineral density and sarcopenia, which can result in serious functional limitations and the acceleration of ageing processes in the body. The aim of this study was to determine how the menopause onset age is linked with bone mineral density and the strength of selected muscles of the limbs and the trunk. Material and Methods. 756 women aged 50-80 years were subjected to tests. The subjects were divided into three groups: (I) from 50 to 59 years, (II) from 60 to 69 years, and (III) from 70 to 79 years. Each of the women specified the age when her final menstrual period occurred. On this basis, groups of women with (1) the early menopause-before the 50th year of life-and (2) with the late menopause-after the 50th year of life-were distinguished. Bone mineral density (BMD), dominant hand grip strength, knee extensor and flexor strength, and functional upper and lower body muscle strength were determined in each of the women. RESULTS The test results indicate differences in levels of muscle strength and BMD between the 50-year-old early- and late-menopausal women. The late-menopausal women score better motor ability test results and higher BMD values. The differences decrease in the groups of 60-year-old women, whereas the 70-year-old early- and late-menopausal women score similar results. CONCLUSIONS A higher percentage of women with a lowered bone mass and a lower strength level was found in the group of early-menopausal subjects. The rate of decline in hand grip strength, the functional efficiency of the upper and lower limbs, and BMD is faster in the late-menopausal women, whereby the two groups of 70-year-old women score similar test results.
Collapse
Affiliation(s)
- Jarosław Fugiel
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Zofia Ignasiak
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Anna Skrzek
- Department of Physiotherapy in Motor Organ Dysfunctions, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Teresa Sławińska
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| |
Collapse
|
26
|
Abstract
Objective: Recent evidence suggests that early or induced menopause increases the risk for cognitive impairment and dementia. Given the potential for different cognitive outcomes due to menopause types, it is important that present research on menopause and cognition distinguishes between types. The aim of this project was to determine to what extent research looking at cognition in postmenopausal women published in one year, 2016, accounted for menopausal type. Methods: We searched MEDLINE, EMBASE, and PsychINFO using keywords and MeSH terms for menopause and cognition. We included any research paper reporting a cognitive outcome measure in a menopausal human population. Differentiation between the types of menopause was defined by four categories: undifferentiated, demographic differentiation (menopause type reported but not analyzed), partial differentiation (some but not all types analyzed), and full differentiation (menopause types factored into analysis, or recruitment of only one type). Results: Fifty research articles were found and analyzed. Differentiation was distributed as follows: undifferentiated, 38% (19 articles); demographic differentiation, 16% (8); partial differentiation, 28% (14); and full differentiation, 18% (9). Conclusions: This review revealed that although some clinical studies differentiated between the many menopauses, most did not. This may limit their relevance to clinical practice. We found that when menopause types are distinguished, the differing cognitive outcomes of each type are clarified, yielding the strongest evidence, which in turn will be able to inform best clinical practice for treating all women.
Collapse
|
27
|
Tang R, Chen R, Luo M, Lin S, Yu Q. Chinese women with 29-30 FMR1 CGG repeats have an earlier menopause. Climacteric 2020; 23:298-305. [PMID: 32107944 DOI: 10.1080/13697137.2020.1727877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: A strong, well-established non-linear relationship exists between fragile X mental retardation (FMR1) premutation and menopausal age. The aim of this study is to evaluate whether this relationship continues into the normal CGG repeat range.Methods: FMR1 CGG repeats of 111 Chinese postmenopausal women from a prospective cohort and the relationship with age at menopause were analyzed. Associations of FMR1 genotypes with annually measured estradiol and follicle stimulating hormone (FSH) levels were also assessed.Results: One premutation and two intermediate carriers were identified, with a prevalence of 0.90% and 1.80%, respectively. The age at menopause differed with statistical significance (p = 0.007) between women carrying bi-allelic 29-30 repeats (49.66 ± 3.26 years) and those carrying a different number of repeats (51.26 ± 2.74 years). Age at menopause among subgroups (≤28, 29-30, and ≥31 repeats) of alleles 1 and 2 were also different (p = 0.014, p = 0.044). FSH trajectories to final menstrual period differed between women with the bi-allelic 29-30 repeats and others (p = 0.019).Conclusions: Women with 29-30 FMR1 CGG repeats may experience menopause approximately 2 years earlier than those carrying ≤28 or ≥31 CGG repeats, and have a longer FSH fluctuant period.
Collapse
Affiliation(s)
- R Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - R Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - M Luo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - S Lin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Q Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
28
|
Lacombe V, Lacout C, Lozac'h P, Ghali A, Gury A, Lavigne C, Urbanski G. Unstimulated whole saliva flow for diagnosis of primary Sjögren's syndrome: time to revisit the threshold? Arthritis Res Ther 2020; 22:38. [PMID: 32093745 PMCID: PMC7041275 DOI: 10.1186/s13075-020-2132-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Unstimulated whole saliva (UWS) flow rate is one of the ACR/EULAR 2016 criteria for primary Sjögren’s syndrome (pSS). With a single threshold of ≤ 0.1 mL/min, UWS flow does not take into account the age- and sex-related physiological variations. Furthermore, it has a low sensitivity for the diagnosis of pSS (about 50%), contrary to the screening test for xerophthalmia, Schirmer’s test (sensitivity of about 70%). We aimed to identify UWS thresholds allowing better performances for a screening test for pSS comparable to Schirmer’s test, and considering age- and sex-related variations. Methods A prospective cohort of 185 patients with oral and/or ocular dryness was classified into 3 groups: men, women < 50 (< 50 years old), and women ≥ 50 (≥ 50 years old). The diagnostic performances of UWS flow rate in these groups were compared in terms of sensitivity, specificity, positive and negative predictive values, and ROC curves. The identification of thresholds that optimize diagnostic performances was carried out using Youden’s index. Results The diagnostic performances of UWS flow rate varied according to age and sex. UWS had poor diagnostic performances whatever the threshold in the women ≥ 50 group. The threshold of 0.2 mL/min had a sensitivity of ≥ 70% and a specificity of ≥ 50% in both men and women < 50 groups. In the whole population and compared to the current cutoff, a threshold of 0.2 mL/min increased sensitivity (+ 19.8%) and positive (+ 2.3%) and negative (+ 7.0%) predictive values, with a better specificity (65.2%) than Schirmer’s test. Conclusion For objective assessment of xerostomia, raising the threshold of the UWS flow rate to 0.2 mL/min would optimize its screening performances for pSS.
Collapse
Affiliation(s)
- Valentin Lacombe
- Department of Internal Medicine, University Hospital, 4 rue Larrey, 49000, Angers, France
| | - Carole Lacout
- Department of Internal Medicine, University Hospital, 4 rue Larrey, 49000, Angers, France
| | - Pierre Lozac'h
- Department of Internal Medicine, University Hospital, 4 rue Larrey, 49000, Angers, France
| | - Alaa Ghali
- Department of Internal Medicine, University Hospital, 4 rue Larrey, 49000, Angers, France
| | - Aline Gury
- Department of Internal Medicine, University Hospital, 4 rue Larrey, 49000, Angers, France
| | - Christian Lavigne
- Department of Internal Medicine, University Hospital, 4 rue Larrey, 49000, Angers, France
| | - Geoffrey Urbanski
- Department of Internal Medicine, University Hospital, 4 rue Larrey, 49000, Angers, France.
| |
Collapse
|
29
|
Ye M, Yeh J, Kosteria I, Li L. Progress in Fertility Preservation Strategies in Turner Syndrome. Front Med (Lausanne) 2020; 7:3. [PMID: 32039223 PMCID: PMC6993200 DOI: 10.3389/fmed.2020.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Growth retardation and gonadal dysgenesis are two of the most important clinical manifestations of Turner syndrome (TS). As premature ovarian failure generally occurs early in life in women with TS, these patients should be counseled and evaluated as early as possible for discussion of optimal and individualized fertility preservation strategies. Infertility seriously affects the quality of life of women with TS. For those who have ovarian reserve, the theoretical options for future fertility in TS patients include cryopreservation of oocytes, ovarian tissues, and embryos. For those who have already lost their ovarian reserve, oocyte or embryo donation, gestational surrogacy, and adoption are strategies that allow fulfillment of desire for parenting. This review describes the etiologies of infertility and reviews the fertility preservation strategies for women with TS.
Collapse
Affiliation(s)
- Mudan Ye
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - John Yeh
- Department of Gynecology, Obstetrics and Reproductive Biology, Harvard Medical School, Boston, MA, United States
| | - Ioanna Kosteria
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Agia Sophia Children's Hospital, Athens, Greece
| | - Li Li
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Tharp ME, Malki S, Bortvin A. Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nat Commun 2020; 11:330. [PMID: 31949138 PMCID: PMC6965193 DOI: 10.1038/s41467-019-14055-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Female reproductive success critically depends on the size and quality of a finite ovarian reserve. Paradoxically, mammals eliminate up to 80% of the initial oocyte pool through the enigmatic process of fetal oocyte attrition (FOA). Here, we interrogate the striking correlation of FOA with retrotransposon LINE-1 (L1) expression in mice to understand how L1 activity influences FOA and its biological relevance. We report that L1 activity triggers FOA through DNA damage-driven apoptosis and the complement system of immunity. We demonstrate this by combined inhibition of L1 reverse transcriptase activity and the Chk2-dependent DNA damage checkpoint to prevent FOA. Remarkably, reverse transcriptase inhibitor AZT-treated Chk2 mutant oocytes that evade FOA initially accumulate, but subsequently resolve, L1-instigated genotoxic threats independent of piRNAs and differentiate, resulting in an increased functional ovarian reserve. We conclude that FOA serves as quality control for oocyte genome integrity, and is not obligatory for oogenesis nor fertility.
Collapse
Affiliation(s)
- Marla E Tharp
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Safia Malki
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
| |
Collapse
|
31
|
Moslehi N, Mirmiran P, Azizi F, Tehrani FR. Do dietary intakes influence the rate of decline in anti-Mullerian hormone among eumenorrheic women? A population-based prospective investigation. Nutr J 2019; 18:83. [PMID: 31791350 PMCID: PMC6889581 DOI: 10.1186/s12937-019-0508-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Dietary intakes are suggested to affect age at menopause but associations between dietary factors and ovarian reserve reduction have not yet been investigated. We aimed to examine dietary intakes in relation to the rate of decline in anti-Mullerian hormone (AMH), an indicator of ovarian reserve, in a generally healthy cohort of women. METHODS This prospective investigation was conducted among 227 eumenorrheic women, aged 20-50 years, from the Tehran Lipid and Glucose study, who were followed over a mean of 16 years. AMH was measured twice, at baseline and the 5th follow-up examination cycle, and yearly rate of decline in AMH was calculated. Rapid decline in AMH was defined as the annual percent change AMH > 5.9%/year based on tertile 3 of the variable. Average usual dietary intakes were estimated using the food frequency questionnaires administered at the second, third, and the fourth follow-up examinations. After adjusting for potential covariates, the association between dietary factors and both risk of rapid decline in AMH and also annual percent decline of AMH (as a continuous variable) were examined using logistic regression and the Spearman correlation, respectively. RESULTS The baseline age of the participants and the median rate of decline in AMH were 37.2 years and was 5.7% yearly, respectively. The odds of rapid decline in AMH was reduced by 47% for dairy products (95% CIs = 0.36, 0.79; p = 0.002), 38% for milk (95% CIs = 0.41, 0.93; p = 0.020), and 36% for fermented dairy (95% CIs = 0.45, 0.93, p = 0.018) per one standard deviation (SD) increase in their dietary intakes. The odds of rapid decline in AMH was significantly reduced with higher intakes of fat, carbohydrate, protein, and calcium intakes from dairy sources, lactose and galactose. Annual rate of AMH decline was inversely correlated with dairy products, milk, fermented dairy, fruits, dairy carbohydrate, dairy fat, dairy protein, total calcium and dairy calcium, lactose and galactose, and positively correlated with organ meats. CONCLUSION Dairy foods consumption may reduce the rate of AMH decline in regularly menstruating women. Life style modification in terms of dietary advice may be considered as a preventive strategy for reduction in the rate of ovarian reserve loss.
Collapse
Affiliation(s)
- Nazanin Moslehi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Rodriguez A, Briley SM, Patton BK, Tripurani SK, Rajapakshe K, Coarfa C, Rajkovic A, Andrieux A, Dejean A, Pangas SA. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice. Development 2019; 146:dev.176701. [PMID: 31704792 PMCID: PMC6918767 DOI: 10.1242/dev.176701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023]
Abstract
The number and quality of oocytes within the ovarian reserve largely determines fertility and reproductive lifespan in mammals. An oocyte-specific transcription factor cascade controls oocyte development, and some of these transcription factors, such as newborn ovary homeobox gene (NOBOX), are candidate genes for primary ovarian insufficiency in women. Transcription factors are frequently modified by the post-translational modification SUMOylation, but it is not known whether SUMOylation is required for function of the oocyte-specific transcription factors or if SUMOylation is required in oocytes during their development within the ovarian follicle. To test this, the sole E2 SUMO-conjugating enzyme, Ube2i, was ablated in mouse oocytes beginning in primordial follicles. Loss of oocyte Ube2i resulted in female infertility with major defects in stability of the primordial follicle pool, ovarian folliculogenesis, ovulation and meiosis. Transcriptomic profiling of ovaries suggests that loss of oocyte Ube2i caused defects in both oocyte- and granulosa cell-expressed genes, including NOBOX and some of its known target genes. Together, these studies show that SUMOylation is required in the mammalian oocyte during folliculogenesis for both oocyte development and communication with ovarian somatic cells.
Collapse
Affiliation(s)
- Amanda Rodriguez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shawn M. Briley
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bethany K. Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swamy K. Tripurani
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aleksander Rajkovic
- Department of Pathology, University of California, San Francisco, CA 94134, USA
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Pasteur Institute, 75015 Paris, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Pasteur Institute, 75015 Paris, France
| | - Stephanie A. Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Author for correspondence ()
| |
Collapse
|
33
|
Dynamic Changes of DNA Methylation and Transcriptome Expression in Porcine Ovaries during Aging. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8732023. [PMID: 31781648 PMCID: PMC6874880 DOI: 10.1155/2019/8732023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
The biological function of human ovaries declines along with aging. To identify the underlying molecular changes during ovarian aging, pigs were used as model animals. Genome-wide DNA methylation and transcriptome-wide RNA expression analyses were performed via high-throughput sequencing of ovaries from young pigs (180 days, puberty stage of first ovulation) and old pigs (eight years, reproductive exhaustion stage). The results identified 422 different methylation regions between old and young pigs; furthermore, a total of 2,243 mRNAs, 95 microRNAs, 248 long noncoding RNAs (lncRNAs), and 116 circular RNAs (circRNAs) were differentially expressed during both developmental stages. Gene ontology analysis showed that these genes related to different methylation and expression are involved in the ovarian aging cycle. Specifically, these are involved in cell apoptosis, death effector domain binding, embryonic development, reproduction and fertilization process, ovarian cumulus expansion, and the ovulation cycle. Multigroup cooperative control relationships were also assessed, and competing endogenous RNA (ceRNA) networks were constructed in the ovarian aging cycle. These data will help to clarify ovary age-associated potential molecular changes in DNA methylation and transcriptional patterns over time.
Collapse
|
34
|
Bae H, Lunetta KL, Murabito JM, Andersen SL, Schupf N, Perls T, Sebastiani P. Genetic associations with age of menopause in familial longevity. Menopause 2019; 26:1204-1212. [PMID: 31188284 PMCID: PMC7008937 DOI: 10.1097/gme.0000000000001367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We hypothesize that mechanisms associated with extended reproductive age may overlap with mechanisms for the selection of genetic variants that slow aging and decrease risk for age-related diseases. Therefore, the goal of this analysis is to search for genetic variants associated with delayed age of menopause (AOM) among women in a study of familial longevity. METHODS We performed a meta-analysis of genome-wide association studies for AOM in 1,286 women in the Long Life Family Study (LLFS) and 3,151 women in the Health and Retirement Study, and then sought replication in the Framingham Heart Study (FHS). We used Cox proportional hazard regression of AOM to account for censoring, with a robust variance estimator to adjust for within familial relations. RESULTS In the meta-analysis, a single nucleotide polymorphism (SNP) previously associated with AOM reached genome-wide significance (rs16991615; HR = 0.74, P = 6.99 × 10). A total of 35 variants reached >10 level of significance and replicated in the FHS and in a 2015 large meta-analysis (ReproGen Consortium). We also identified several novel SNPs associated with AOM including rs3094005: MICB, rs13196892: TXNDC5 | MUTED, rs72774935: SSBP2 | ATG10, rs9447453: COL12A1, rs114298934: FHL2 | NCK2, rs6467223: TNPO3, rs9666274 and rs10766593: NAV2, and rs7281846: HSPA13. CONCLUSIONS This work indicates novel associations and replicates known associations between genetic variants and AOM. A number of these associations make sense for their roles in aging. VIDEO SUMMARY Supplemental Digital Content 1, http://links.lww.com/MENO/A420.
Collapse
Affiliation(s)
- Harold Bae
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Joanne M Murabito
- Section of General Internal Medicine, Department of Medicine, and the Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | - Stacy L Andersen
- Geriatrics Section, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health, Columbia University, NY
| | - Thomas Perls
- Geriatrics Section, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| |
Collapse
|
35
|
Aiken CE, Tarry-Adkins JL, Spiroski AM, Nuzzo AM, Ashmore TJ, Rolfo A, Sutherland MJ, Camm EJ, Giussani DA, Ozanne SE. Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats. FASEB J 2019; 33:7758-7766. [PMID: 30888848 PMCID: PMC6529349 DOI: 10.1096/fj.201802772r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic fetal hypoxia is a common complication observed in human pregnancy, impacting pregnancies across global contexts. Exposure to chronic intrauterine hypoxia has major short- and long-term consequences for offspring health. However, the impact of chronic gestational hypoxia on female reproductive system development is unknown. We aimed to understand the impact of exposure to chronic fetal hypoxia on the developing female reproductive system. Wistar rat dams underwent normoxia (21%) or hypoxia (13%) during pregnancy. Postnatally, all female offspring were maintained in normoxic conditions into early adulthood. Female rats exposed to chronic gestational hypoxia (13%) during their intrauterine development had decreased ovarian primordial follicular reserve compared to controls (P < 0.05). Adult females who had been exposed to chronic fetal hypoxia had significantly reduced somatic ovarian telomere length (P < 0.05) and reduced ovarian protein expression of KU70, a critical component of the DNA-activated protein kinase repair complex (P < 0.01). Gene expression of NADPH oxidase 2-mediated oxidative stress markers was increased (P < 0.05). Exposure to chronic hypoxia during fetal development leads to accelerated aging of the somatic ovary and decreased ovarian reserve in adulthood. Ovarian aging is highly sensitive to gestational hypoxia, with implications for future fertility in next-generation offspring of high-risk pregnancies.-Aiken, C. E., Tarry-Adkins, J. L., Spiroski, A.-M., Nuzzo, A. M., Ashmore, T. J., Rolfo, A., Sutherland, M. J., Camm, E. J., Giussani, D. A., Ozanne, S. E. Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats.
Collapse
Affiliation(s)
- Catherine E. Aiken
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom;,Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom;,Correspondence: University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom. E-mail:
| | - Jane L. Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anna M. Nuzzo
- Dipartimento di Scienze Chirurgiche, Universita degli Studi di Torino, Turin, Italy
| | - Thomas J. Ashmore
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Alessandro Rolfo
- Dipartimento di Scienze Chirurgiche, Universita degli Studi di Torino, Turin, Italy
| | - Megan J. Sutherland
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J. Camm
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
36
|
Association of birth weight with functional ovarian reserve during menacme estimated by serum concentration of anti-Müllerian hormone. Sci Rep 2019; 9:8071. [PMID: 31147558 PMCID: PMC6542825 DOI: 10.1038/s41598-019-44016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
To investigate the relationship of birth weight (BW) of females born at full term with functional ovarian reserve (FOR) during menacme, based on serum level of anti-Müllerian hormone (AMH), among women who were 34–35 years old. This prospective birth cohort study assessed all women who were born in Ribeirão Preto City, State of São Paulo (Brazil) between June 1, 1978 and May 31, 1979. The primary endpoint was serum AMH, a marker of FOR, and its correlation with the BW of females classified as small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational (LGA). We included 274 women in this study, 19 were SGA, 238 were AGA, and 17 were LGA. The average of AMH concentration was not significantly different (p = 0.11) among women in the SGA group (2.14 ng/mL), AGA group (2.13 ng/mL), and LGA group (2.57 ng/mL). An analysis of variance indicated that the three groups also had no significant differences in the percentage of women who had adequate AMH levels (1 ng/mL; p = 0.11). There were no significant differences in the serum concentrations of AMH among 34 and 35 year-old women who were born at full term and classified as SGA, AGA, and LGA. Our sample size allowed detection of major differences between these groups (effect size of 0.8). Association of birth weight of females born at full term with functional ovarian reserve during menacme estimated by serum concentration of anti-Müllerian hormone.
Collapse
|
37
|
Aiken CE, Tarry‐Adkins JL, Spiroski A, Nuzzo AM, Ashmore TJ, Rolfo A, Sutherland MJ, Camm EJ, Giussani DA, Ozanne SE. Chronic fetal hypoxia disrupts the peri-conceptual environment in next-generation adult female rats. J Physiol 2019; 597:2391-2401. [PMID: 30791124 PMCID: PMC6487938 DOI: 10.1113/jp277431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/15/2019] [Indexed: 02/02/2023] Open
Abstract
KEY POINTS Exposure to chronic hypoxia during gestation influences long-term health and development, including reproductive capacity, across generations. If the peri-conceptual environment in the developing oviduct is affected by gestational hypoxia, then this could have implications for later fertility and the health of future generations. In the present study, we show that the oviducts of female rats exposed to chronic hypoxia in utero have reduced telomere length, decreased mitochondrial DNA biogenesis and increased oxidative stress The results of the present study show that exposure to chronic gestational hypoxia leads to accelerated ageing of the oviduct in early adulthood and they help us understand how exposure to hypoxia during development could influence reproductive health across generations. ABSTRACT Exposure to chronic hypoxia during fetal development has important effects on immediate and long-term outcomes in offspring. Adverse impacts in adult offspring include impairment of cardiovascular function, metabolic derangement and accelerated ovarian ageing. However, it is not known whether other aspects of the female reproductive system may be similarly affected. In the present study, we examined the impact of chronic gestational hypoxia on the developing oviduct. Wistar rat dams were randomized to either normoxia (21%) or hypoxia (13%) from day 6 post-mating until delivery. Post-delivery female offspring were maintained in normoxia until 4 months of age. Oviductal gene expression was assayed at the RNA (quantitative RT-PCR) and protein (western blotting) levels. Oviductal telomere length was assayed using Southern blotting. Oviductal telomere length was reduced in the gestational hypoxia-exposed animals compared to normoxic controls (P < 0.01). This was associated with a specific post-transcriptional reduction in the KU70 subunit of DNA-pk in the gestational hypoxia-exposed group (P < 0.05). Gestational hypoxia-exposed oviducts also showed evidence of decreased mitochondrial DNA biogenesis, reduced mtDNA copy number (P < 0.05) and reduced gene expression of Tfam (P < 0.05) and Pgc1α (P < 0.05). In the hypoxia-exposed oviducts, there was upregulation of mitochondrial-specific anti-oxidant defence enzymes (MnSOD; P < 0.01). Exposure to chronic gestational hypoxia leads to accelerated ageing of the oviduct in adulthood. The oviduct plays a central role in early development as the site of gamete transport, syngamy, and early development; hence, accelerated ageing of the oviductal environment could have important implications for fertility and the health of future generations.
Collapse
Affiliation(s)
- Catherine E. Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases UnitWellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's HospitalCambridgeUK
- University Department of Obstetrics and GynaecologyUniversity of Cambridge, CambridgeUK
| | - Jane L. Tarry‐Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases UnitWellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's HospitalCambridgeUK
| | - Ana‐Mishel Spiroski
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Anna M. Nuzzo
- Dipartimento di Scienze ChirurgicheUniversita degli Studi di TorinoTurinItaly
| | - Thomas J. Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases UnitWellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's HospitalCambridgeUK
| | - Alessandro Rolfo
- Dipartimento di Scienze ChirurgicheUniversita degli Studi di TorinoTurinItaly
| | - Megan J. Sutherland
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Emily J. Camm
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases UnitWellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's HospitalCambridgeUK
| |
Collapse
|
38
|
Wang T, Sun Z, Lim JP, Yu Y. Comparison of luteal phase ovulation induction and ultra-short gonadotropin-releasing hormone agonist protocols in older patients undergoing in vitro fertilization. Libyan J Med 2019; 14:1597327. [PMID: 30935302 PMCID: PMC6450513 DOI: 10.1080/19932820.2019.1597327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many undergoing in vitro fertilization-embryo transfer (IVF-ET) procedures treatments have been tried for older infertile patients, but still can not reverse the aging effect on oocyte, and infertility treatment is expensive, even for people in developed countries. The study aimed to compare outcomes following the application of luteal phase ovulation induction (LPOI) and ultra-short gonadotropin-releasing hormone agonist (GnRH-a) protocols in patients aged more than 40 years undergoing IVF-ET and to examine the effectiveness and feasibility of LPOI. A total of 266 IVF-ET cycles in 155 patients aged 40 years and over were retrospectively analyzed. Of these patients, 105 underwent the ultra-short GnRH-a protocol (GnRH-a group) and 50 underwent LPOI (LPOI group). Various clinical outcomes were compared between these two groups using either t-tests or the chi-square test. The study showed patients in the LPOI group required a higher dosage of human menopausal gonadotropin and a lower dosage of recombinant follicle stimulating hormone than those in the GnRH-a group. Furthermore, though the total dosage of gonadotropin was higher in the LPOI, its cost was lower. Finally, fertilization rates were higher and high-quality embryo rates were lower in the LPOI group, and the live birth rate of LPOI group is higher than (GnRH-a group) . These between-group differences were all significant (P < 0.05). Compared with the ultra-short GnRH-a protocol, LPOI may enable higher 2-pronuclear embryo fertilization rates and lower gonadotropin costs to be achieved, indicating that LPOI might be an ideal choice for older patients undergoing IVF-ET.
Collapse
Affiliation(s)
- Tianqi Wang
- a Traditional Chinese Medicine History and Literature, Institute for Literature and Culture of Chinese Medicine , Shandong University of Traditional Chinese Medicine , Jinan , China
| | - Zhengao Sun
- b Department of Gynecology and Obstetrics of Traditional Chinese Medicine , The First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan , China
| | - June Ping Lim
- c Bachelor of Traditional Chinese Medicine (Hons.)- First class Degree , INTI International University , Nilai , Malaysia
| | - Yi Yu
- b Department of Gynecology and Obstetrics of Traditional Chinese Medicine , The First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan , China
| |
Collapse
|
39
|
Yang Y, Lei L, Wang S, Sheng X, Yan G, Xu L, Liu J, Liu M, Zhen X, Ding L, Sun H. Transplantation of umbilical cord-derived mesenchymal stem cells on a collagen scaffold improves ovarian function in a premature ovarian failure model of mice. In Vitro Cell Dev Biol Anim 2019; 55:302-311. [PMID: 30820812 DOI: 10.1007/s11626-019-00337-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
Premature ovarian failure (POF) is a refractory disease; one of the most important goals of treatment is to improve fertility. In the study, collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells (collagen/UC-MSCs) transplantation in POF mice preserved ovarian function, as supported by increased estrogen (E2) and anti-Mullerian hormone (AMH) levels, increased ovarian volume, and an increased number of antral follicles. Immunohistochemistry results of Ki67 indicated transplantation of collagen/UC-MSCs promoted granulosa cell proliferation, which is crucial to oocyte maturation and follicular development. Additionally, transplantation of collagen/UC-MSCs significantly promoted ovarian angiogenesis with the increased expression of CD31. In general, collagen/UC-MSCs transplantation probably is an effective therapeutic strategy of POF.
Collapse
Affiliation(s)
- Yanjun Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Lei Lei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Department of Obstetrics and Gynecology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Shanshan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Lu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Jingyu Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Mengyuan Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xin Zhen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
- Clinical Center for Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
40
|
Yang W, Xie Y, Song B, Xia C, Tang C, Li J. Effects of aging and menopause on pancreatic fat fraction in healthy women population: A strobe-compliant article. Medicine (Baltimore) 2019; 98:e14451. [PMID: 30762758 PMCID: PMC6408125 DOI: 10.1097/md.0000000000014451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 02/05/2023] Open
Abstract
Pancreatic fat fraction has been shown to increase in many pathological situations. However, pancreatic fat fraction and its physiological changes in healthy women are still unclear. The aim of this study is to investigate the effect of aging and menopause on pancreatic fat fraction in healthy female population.This was a cross-sectional study. A phantom of fat-water mixtures was established. One hundred sixty-seven healthy women (20-70 years) were recruited. Fat fraction was quantified with double-echo chemical shift magnetic resonance imaging with T1 and T2* correction. The association between measured and actual fat fractions was determined with Pearson correlation. Linear regression analysis was used to establish the calibration curve. Fat fractions were analyzed via analysis of variance.A significant positive linear correlation was revealed between the measured and actual fat fractions on the phantom (r = 0.991, P < .001). There was no significant difference in fat fractions among caput, corpus, and cauda of the pancreas. Pancreatic fat fraction remained constant during the age of 20 to 40 years (4.41 ± 0.79%) but significantly increased during the ages of 41 to 50 and 51 to 70 years (7.49 ± 1.10% and 9.43 ± 1.51%, respectively, P < .001). Moreover, pancreatic fat fractions of the healthy women aged 41 to 70 years were still significantly higher than these in the groups aged 20 to 40 years when postmenopausal healthy women were removed (P < .001). For volunteers aged 46 to 49 years, pancreatic fat fraction of the postmenopausal women was significantly increased compared with that of their premenopausal counterparts (P < .001).We found that an even distribution of pancreatic fat in healthy women, aging and menopause as 2 independent risk factors for pancreatic steatosis, a fatty infiltration in the pancreas beginning in the fifth decade in women.
Collapse
Affiliation(s)
| | - Yi Xie
- Department of Gastroenterology
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | | | - Jing Li
- Department of Gastroenterology
| |
Collapse
|
41
|
Seitz J, Kubicki M, Jacobs EG, Cherkerzian S, Weiss BK, Papadimitriou G, Mouradian P, Buka S, Goldstein JM, Makris N. Impact of sex and reproductive status on memory circuitry structure and function in early midlife using structural covariance analysis. Hum Brain Mapp 2018; 40:1221-1233. [PMID: 30548738 DOI: 10.1002/hbm.24441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Research on age-related memory alterations traditionally targets individuals aged ≥65 years. However, recent studies emphasize the importance of early aging processes. We therefore aimed to characterize variation in brain gray matter structure in early midlife as a function of sex and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal, and 32 postmenopausal) and 99 demographically comparable men from the New England Family Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner. Sex and reproductive-dependent structural differences were evaluated using Box's M test and analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex (ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex differences in volume of hippocampus with women of all groups having higher volumes than men relative to cerebrum size, we also found significant differences in the covariance matrices of perimenopausal women compared with postmenopausal women. Associations between ACC and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better memory performance. Findings in this study underscore the importance of sex and reproductive status in early midlife for understanding memory function with aging.
Collapse
Affiliation(s)
- Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Emily G Jacobs
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara Cherkerzian
- Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Blair K Weiss
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George Papadimitriou
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Palig Mouradian
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Stephen Buka
- Department of Community Health, Brown University, Providence, Rhode Island
| | - Jill M Goldstein
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
42
|
Szegda KL, Whitcomb BW, Purdue-Smithe AC, Boutot ME, Manson JE, Hankinson SE, Rosner BA, Bertone-Johnson ER. Adult adiposity and risk of early menopause. Hum Reprod 2018; 32:2522-2531. [PMID: 29087465 DOI: 10.1093/humrep/dex304] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/18/2017] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is adult adiposity associated with early menopause? SUMMARY ANSWER Overall and abdominal adiposity were non-linearly associated with odds for early natural menopause with elevated odds observed among women who were underweight in early or mid-adulthood compared to lean-normal weight women. WHAT IS KNOWN ALREADY High and low adiposity have been associated with reproductive function and may potentially impact timing of menopause. It is unclear whether various aspects of adiposity are associated with risk of early menopause. STUDY DESIGN, SIZE, DURATION Prospective cohort study that examined data from 78 759 premenopausal women from the Nurses' Health Study II who were followed from 1989 to 2011 for incidence of early natural menopause. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants were aged 25-42 years and premenopausal at baseline in 1989, when information on menopausal status, height and weight was reported via questionnaire. Information on menopausal status, type of menopause (natural, surgical, radiation/chemotherapy), hormone therapy use and weight was updated every two years along with information on smoking, physical activity and other behavioral and health-related factors. Multivariable logistic regression was used to estimate odds ratios for early menopause, defined as natural menopause before age 45 years, by aspects of adiposity. MAIN RESULTS AND THE ROLE OF CHANCE Early natural menopause was reported by 2804 participants. Body mass index (BMI) was non-linearly associated with risk for early menopause. Compared to women with BMI = 18.5-22.4 kg/m2, those with BMI < 18.5 kg/m2 had a significant 30% higher odds of early menopause (95% confidence interval (CI) = 1.08, 1.57), while women with BMIs between 25.0-29.9 kg/m2 had significant 21-30% lower odds. Odds were not higher in women with BMI ≥ 35.0 kg/m2 in fully adjusted analysis. Non-linear associations with higher odds in underweight women were also observed for age 18 and age 35 BMI, though lower odds for overweight women was only observed for age 35 BMI. Odds were highest among women with age 18 BMI < 18.5 kg/m2 reporting severe weight cycling. LIMITATIONS, REASONS FOR CAUTION Though weight and early menopause status were self-reported, validation studies conducted among Nurses' Health Study participants suggest that self-reported weight is highly correlated with directly measured weight, and prospective self-reported menopausal status is highly reproducible. It is possible that underweight women may have been misclassified with an earlier age at menopause if being underweight led to amenorrhea. WIDER IMPLICATIONS OF THE FINDINGS In one of the few studies to prospectively examine a variety of adiposity measures and risk for early menopause, our findings that women who were underweight in early or mid-adulthood had elevated risk for early menopause can assist in efforts to better understand the etiology of early menopause. Additional prospective research is needed to understand how low adiposity may physiologically impact timing of menopause. STUDY FUNDING/COMPETING INTEREST(S) This study was conducted with funding from NIH UM1CA176726 and R01HD078517. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- K L Szegda
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003-9304, USA.,Partners for a Healthier Community, Springfield, MA 01101, USA.,Baystate Health System, Springfield, MA 01109, USA
| | - B W Whitcomb
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003-9304, USA
| | - A C Purdue-Smithe
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003-9304, USA
| | - M E Boutot
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003-9304, USA
| | - J E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Harvard Medical School, Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - S E Hankinson
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003-9304, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - B A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - E R Bertone-Johnson
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003-9304, USA
| |
Collapse
|
43
|
Peluso JJ, Liu X, Uliasz T, Pru CA, Kelp NC, Pru JK. PGRMC1/2 promotes luteal vascularization and maintains the primordial follicles of mice. Reproduction 2018; 156:365-373. [PMID: 30306772 PMCID: PMC6348134 DOI: 10.1530/rep-18-0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
To determine whether conditional depletion of progesterone receptor membrane component (PGRMC) 1 and PGRMC2 affected ovarian follicle development, follicle distribution was assessed in ovaries of young (≈3-month-old) and middle-aged (≈6-month-old) control (Pgrmc1/2fl/fl) and double conditional PGRMC1/2-knockout (Pgrmc1/2d/d) mice. This study revealed that the distribution of primary, preantral and antral follicles was not altered in Pgrmc1/2d/d mice, regardless of the age. Although the number of primordial follicles was similar at ≈3 months of age, their numbers were reduced by ≈80% in 6-month-old Pgrmc1/2d/d mice compared to age-matched Pgrmc1/2fl/fl mice. The Pgrmc1/2d/d mice were generated using Pgr-cre mice, so ablation of Pgrmc1 and Pgrmc2 in the ovary was restricted to peri-ovulatory follicles and subsequent corpora lutea (CL). In addition, the vascularization of CL was attenuated in Pgrmc1/2d/d mice, although mRNA levels of vascular endothelial growth factor A (Vegfa) were elevated. Moreover, depletion of Pgrmc1 and Pgrmc2 altered the gene expression profile in the non-luteal component of the ovary such that Vegfa expression, a stimulator of primordial follicle growth, was elevated; Kit Ligand expression, another stimulator of primordial follicle growth, was suppressed and anti-Mullerian hormone, an inhibitor of primordial follicle growth, was enhanced compared to Pgrmc1/2fl/fl mice. These data reveal that luteal cell depletion of Pgrmc1 and 2 alters the expression of growth factors within the non-luteal component of the ovary, which could account for the premature demise of the adult population of primordial follicles. In summary, the survival of adult primordial follicles is dependent in part on progesterone receptor membrane component 1 and 2.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030
| | - Xiufang Liu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Tracy Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Cindy A. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Nicole C. Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - James K. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
44
|
Liu S, Ding T, Liu H, Jian L. GPER was Associated with Hypertension in Post-Menopausal Women. Open Med (Wars) 2018; 13:338-343. [PMID: 30155521 PMCID: PMC6110139 DOI: 10.1515/med-2018-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Objective To explore the relationship between G protein-coupled estrogen receptor (GPER) and hypertension in post-menopausal women. Methods Using a matched case-control design, clinical and laboratory data were collected. Conditional logistic regression with stratified analysis was conducted to identify the association between GPER and hypertension. Results The GPER level was significantly lower in the case group than in the control group (126.3 ± 21.6 vs. 133.6 ± 27.3, P=0.000). The GPER levels of the hypertension cases with and those without menopause were significant (120.5 ± 11.8 and 127.2 ± 12.1, P=0.000). No significant difference in the GPER level between the controls with and those without menopause was observed (P=0.241). Logistic regression revealed that the GPER quartile was related to hypertension (odds ratio [OR]: 0.63, 95% confidence interval [CI]: 0.13–0.93, P=0.018) after adjusting for potential confounding factors. Stratified analysis revealed that the GPER quartile was not associated with hypertension in premenopausal women, and the fourth GPER quartile showed a predictive association with hypertension (OR: 0.43, 95% CI: 0.29–0.90) in menopausal women. Conclusions GPER level is associated with hypertension and is a protective factor for hypertension in menopausal women but not premenopausal women. Further research is required due to study limitations.
Collapse
Affiliation(s)
- Shichao Liu
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450014 China
| | - Tongbin Ding
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450014 China
| | - Hang Liu
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450014 China
| | - Liguo Jian
- Department of Cardiovascular, the Second Affiliated Hospital of Zhengzhou University, NO. 2, Jing-ba Road, Jinshui District, Zhengzhou City, Henan Province 4500014 China
| |
Collapse
|
45
|
Kim SY, Kurita T. New Insights into the Role of Phosphoinositide 3-Kinase Activity in the Physiology of Immature Oocytes: Lessons from Recent Mouse Model Studies. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10310672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The immature oocytes within primordial follicles are arrested at Prophase I of meiosis and remain dormant until awakened by an increase in intracellular levels of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Oocyte PIP3 level is determined by the balance between the activity of phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homologue (PTEN). When this balance favours PI3K, PIP3 levels elevate and trigger the cascade of PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, leading to activation of primordial follicles. This short review aims to provide new insights into the physiological functions of PI3K and PTEN in immature oocytes by summarising recent findings from murine model studies, including oocyte-specific transgenic mice with constitutively-active mutant PI3K.
Collapse
Affiliation(s)
- So-Youn Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
46
|
Kim SY, Kurita T. New Insights into the Role of Phosphoinositide 3-Kinase Activity in the Physiology of Immature Oocytes: Lessons from Recent Mouse Model Studies. EUROPEAN MEDICAL JOURNAL. REPRODUCTIVE HEALTH 2018; 3:119-125. [PMID: 30245862 PMCID: PMC6147255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The immature oocytes within primordial follicles are arrested at Prophase I of meiosis and remain dormant until awakened by an increase in intracellular levels of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Oocyte PIP3 level is determined by the balance between the activity of phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homologue (PTEN). When this balance favours PI3K, PIP3 levels elevate and trigger the cascade of PI3K/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR) pathway, leading to activation of primordial follicles. This short review aims to provide new insights into the physiological functions of PI3K and PTEN in immature oocytes by summarising recent findings from murine model studies, including oocyte-specific transgenic mice with constitutively-active mutant PI3K.
Collapse
Affiliation(s)
- So-Youn Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Telomere attrition and dysfunction has become a well established pathway involved in organismal aging, not only because it imposes a limitation to cell division and therefore, tissue regeneration but also because telomere homeostasis influences other pathways involved in aging. However, the implication of telomere biology in ovarian aging and fertility is barely starting to be unveiled. RECENT FINDINGS During the last years, mounting evidence in favor of the relationship between the accumulation of short telomeres and ovarian senescence has emerged. Telomere attrition and the loss of telomerase activity in ovarian cell types is a common characteristic of female infertility. SUMMARY Recent findings regarding telomere attrition in the ovary open the possibility of both, finding new molecular biomarkers related to telomere homeostasis that make possible the early detection of ovarian dysfunction before the ovarian reserve has vanished, and the search of new therapies to preserve or set up ovarian cell types so that new and better quality oocytes can be generated in aged ovaries to improve IVF outcomes.
Collapse
|
48
|
Silva LHFME, Silva JMDEME, Salama M, Pinheiro LGP, Lunardi FO, Silva PGBDA, Hirth CG, Lucena IFDE, Gomes GJDAC, Leite JAD. Criopreserved ovarian tissue transplantation and bone restoration metabolism in castrated rats. Rev Col Bras Cir 2018; 45:e1577. [PMID: 29451647 DOI: 10.1590/0100-6991e-20181577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES to evaluate estradiol levels and autotransplantation heated ovarian tissue effects, after vitrification, on rats bone metabolism previously oophorectomized bilaterally. METHODS experimental study with 27 rats aged 11 to 12 weeks and weighing 200g to 300g, submitted to bilateral oophorectomy and ovarian tissue cryopreservation for subsequent reimplantation. Animals were divided into two groups, A and B, with 8 and 19 rats, respectively. Autotransplantation occurred in two periods according to castration time: after one week, in group A, and after one month in group B. Serum estradiol measurements and ovary and tibia histological analysis were performed before and after oophorectomy period (early or late) and one month after reimplantation. RESULTS in groups A and B, tibia median cortical thickness was 0.463±0.14mm (mean±SD) at the baseline, 0.360±0.14mm after oophorectomy and 0.445±0.17mm one month after reimplantation p<0.005). Trabecular means were 0.050±0.08mm (mean±SD) at baseline, 0.022±0.08mm after oophorectomy and 0.049±0.032mm one month after replantation (p<0.005). There was no statistical difference in estradiol variation between the two study groups (p=0.819). CONCLUSION cryopreserved ovarian tissue transplantation restored bone parameters, and these results suggest that ovarian reimplantation in women may have the same beneficial effects on bone metabolism.
Collapse
|
49
|
Moslehi N, Mirmiran P, Tehrani FR, Azizi F. Current Evidence on Associations of Nutritional Factors with Ovarian Reserve and Timing of Menopause: A Systematic Review. Adv Nutr 2017; 8:597-612. [PMID: 28710146 PMCID: PMC5502869 DOI: 10.3945/an.116.014647] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ovarian aging is thought to be influenced by environmental factors, including nutrition. The aim of this study was to systematically review current evidence on the associations between nutritional factors, ovarian reserve, and age at menopause. PubMed and Scopus were structurally searched until May 2016. Original studies, with either observational or interventional designs, that examined the associations of nutritional factors (serum or dietary nutrients, food groups, and/or dietary patterns) with different ovarian reserve markers and/or timing of menopause were considered eligible. Twenty-six studies met the inclusion criteria: 17 studies on ovarian reserve markers and 9 studies on menopausal age. Significant diversity was observed in nutritional factors examined across studies. In the study of nutritional factors, associations of serum 25-hydroxyvitamin D [25(OH)D] concentration and intakes of soy or soy products with ovarian reserve have been the most investigated. For associations with menopausal age, intakes of total fat, fiber, and soy products have been mainly examined. Significant associations with ovarian reserve markers were found in 4 of 7 studies on serum 25(OH)D, 2 of 6 studies on soy or soy products, 1 of 2 studies on fiber intake, 1 study on serum zinc and copper concentrations, and 1 study on serum antioxidant concentrations. Studies on nutritional factors and menopausal age provided inconsistent findings, some of which suggested modest associations. Although there is some promising evidence on the influential role of nutrition in ovarian aging, a limited number of studies, heterogeneous in their design and study of nutritional factors, makes it difficult to draw definite conclusions. To better understand this issue, examination of associations of dietary intakes or dietary patterns with more precise markers of ovarian reserve, such as anti-mullerian hormone and antral follicle count, with age at menopause is needed. In addition, to explore whether nutritional factors alter the process of ovarian aging, an examination of changes in ovarian reserve markers should be considered.
Collapse
Affiliation(s)
| | - Parvin Mirmiran
- Department of Nutrition and Clinical Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences; and
| |
Collapse
|
50
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|