1
|
Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 2020; 25:94-113. [PMID: 31249382 DOI: 10.1038/s41380-019-0448-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Bipolar disorder (BD) is a chronic affective disorder with extreme mood swings that include mania or hypomania and depression. Though the exact mechanism of BD is unknown, neuroinflammation is one of the numerous investigated etiopathophysiological causes of BD. This article presents a systematic review of the data regarding brain inflammation evaluating microglia, astrocytes, cytokines, chemokines, adhesion molecules, and other inflammatory markers in postmortem BD brain samples. This systematic review was performed according to PRISMA recommendations, and relevant studies were identified by searching the PubMed/MEDLINE, PsycINFO, EMBASE, LILACS, IBECS, and Web of Science databases for peer-reviewed journal articles published by March 2019. Quality of included studies appraised using the QUADAS-2 tool. Among the 1814 articles included in the primary screening, 51 articles measured inflammatory markers in postmortem BD brain samples. A number of studies have shown evidence of inflammation in BD postmortem brain samples. However, an absolute statement cannot be concluded whether neuroinflammation is present in BD due to the large number of studies did not evaluate the presence of infiltrating peripheral immune cells in the central nervous system (CNS) parenchyma, cytokines levels, and microglia activation in the same postmortem brain sample. For example, out of 15 studies that evaluated microglia cells markers, 8 studies found no effect of BD on these cells. Similarly, 17 out of 51 studies evaluating astrocytes markers, 9 studies did not find any effect of BD on astrocyte cells, whereas 8 studies found a decrease and 2 studies presented both increase and decrease in different brain regions. In addition, multiple factors account for the variability across the studies, including postmortem interval, brain area studied, age at diagnosis, undergoing treatment, and others. Future analyses should rectify these potential sources of heterogeneity and reach a consensus regarding the inflammatory markers in postmortem BD brain samples.
Collapse
|
2
|
Nali LHS, Oliveira ACS, Alves DO, Caleiro GS, Nunes CF, Gerhardt D, Succi RCM, Romano CM, Machado DM. Expression of human endogenous retrovirus K and W in babies. Arch Virol 2016; 162:857-861. [PMID: 27885560 DOI: 10.1007/s00705-016-3167-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/03/2016] [Indexed: 01/09/2023]
Abstract
Here we determined the relative expression of HERV-K and W proviruses in HIV infected and non-infected mothers as well as their respective babies up to 1 year-old. HIV-infected mothers, their babies and uninfected control groups presented expression of both HERV-K and HERV-W with relatively high frequency. While the level of HERV-K expression was similar among groups, the level of HERV-W expression in HIV-infected mothers was four-fold higher than the uninfected mothers from the control group (p < 0.01). HERV-W was down regulated in HIV-exposed babies in comparison to non-exposed babies. To our knowledge, this is the first report of HERV transcriptional activity in babies from 0-1 year-old.
Collapse
Affiliation(s)
- L H S Nali
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - A C S Oliveira
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - D O Alves
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - G S Caleiro
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - C F Nunes
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - D Gerhardt
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil.,Departamento de Pediatria, Universidade Federal de São Paulo, Rua Sena Madureira 1500, São Paulo, 04021-001, Brazil
| | - R C M Succi
- Departamento de Pediatria, Universidade Federal de São Paulo, Rua Sena Madureira 1500, São Paulo, 04021-001, Brazil
| | - Camila M Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil.
| | - D M Machado
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil.,Departamento de Pediatria, Universidade Federal de São Paulo, Rua Sena Madureira 1500, São Paulo, 04021-001, Brazil
| |
Collapse
|
3
|
Khodosevich K, Lebedev Y, Sverdlov E. Endogenous retroviruses and human evolution. Comp Funct Genomics 2010; 3:494-8. [PMID: 18629260 PMCID: PMC2448423 DOI: 10.1002/cfg.216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/09/2002] [Indexed: 11/12/2022] Open
Abstract
Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be
caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs)
comprise ∼ 5% of the human genome. The LTRs of ERVs contain many regulatory
sequences, such as promoters, enhancers, polyadenylation signals and factor-binding
sites. Thus, they can influence the expression of nearby human genes. All known
human-specific LTRs belong to the HERV-K (human ERV) family, the most active
family in the human genome. It is likely that some of these ERVs could have integrated
into regulatory regions of the human genome, and therefore could have had an impact
on the expression of adjacent genes, which have consequently contributed to human
evolution. This review discusses possible functional consequences of ERV integration
in active coding regions.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya, Moscow 117997, Russia.
| | | | | |
Collapse
|
4
|
Tandon R, Cattori V, Pepin AC, Riond B, Meli ML, McDonald M, Doherr MG, Lutz H, Hofmann-Lehmann R. Association between endogenous feline leukemia virus loads and exogenous feline leukemia virus infection in domestic cats. Virus Res 2008; 135:136-43. [DOI: 10.1016/j.virusres.2008.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 11/25/2022]
|
5
|
Kudaka W, Oda T, Jinno Y, Yoshimi N, Aoki Y. Cellular Localization of Placenta-Specific Human Endogenous Retrovirus (HERV) Transcripts and their Possible Implication in Pregnancy-Induced Hypertension. Placenta 2008; 29:282-9. [DOI: 10.1016/j.placenta.2007.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/15/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
|
6
|
Tandon R, Cattori V, Willi B, Meli ML, Gomes-Keller MA, Lutz H, Hofmann-Lehmann R. Copy number polymorphism of endogenous feline leukemia virus-like sequences. Mol Cell Probes 2007; 21:257-66. [PMID: 17329079 DOI: 10.1016/j.mcp.2007.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 11/25/2022]
Abstract
In the cat genome, endogenous feline leukemia virus (enFeLV) exists as multiple, nearly full-length proviral sequences. Even though no infectious virus is produced from enFeLV sequences, transcription and translation have been demonstrated in tissues of healthy cats and in feline cell lines. To test the hypothesis that the enFeLV loads play a role in exogenous FeLV-A infection and pathogenesis, we designed three real-time PCR assays to quantify U3 and env enFeLV loads (two within U3 amplifying different sequences; one within env). Applying these assays, we investigated the loads in blood samples derived from Swiss privately owned domestic cats, specific pathogen-free (SPF) cats and European wildcats (Felis silvestris silvestris). Significant differences in enFeLV loads were observed between privately owned cats and SPF cats as well as among SPF cats originating from different catteries and among domestic cats of different breeds. Within privately owned cats, FeLV-infected cats had higher loads than uninfected cats. In addition, higher enFeLV loads were found in wildcats compared to domestic cats. The assays described herein are important prerequisites to quantify enFeLV loads and thus to investigate the influence of enFeLV loads on the course of FeLV infection.
Collapse
Affiliation(s)
- Ravi Tandon
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
7
|
Weis S, Llenos IC, Sabunciyan S, Dulay JR, Isler L, Yolken R, Perron H. Reduced expression of human endogenous retrovirus (HERV)-W GAG protein in the cingulate gyrus and hippocampus in schizophrenia, bipolar disorder, and depression. J Neural Transm (Vienna) 2007; 114:645-55. [PMID: 17219017 DOI: 10.1007/s00702-006-0599-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 10/28/2006] [Indexed: 12/01/2022]
Abstract
The human endogenous retrovirus (HERV)-W multicopy family was identified in human DNA from the previously characterized multiple sclerosis associated retroviral element (MSRV). Upregulation of the HERV-W POL has been reported in cerebrospinal fluid of patients with schizophrenia. The expression of capsid (GAG) protein of HERV-W was studied by immunohistochemistry and western blotting in postmortem brain tissue of the anterior cingulate cortex and hippocampal formation of normal controls and of patients with schizophrenia, bipolar disorder and major depression. A physiological expression of GAG protein was detected in neurons as well as astroglial cells in normal brain both in the anterior cingulate cortex and in the hippocampal formation. There was a statistically significant reduction of this expression in neurons and astroglial cells in brains from individuals with schizophrenia, major depression, and bipolar disorder. The results from the present study confirm that GAG protein encoded by the HERV-W multicopy gene family is expressed in cells of the central nervous system under normal conditions. Our findings of a cell type-, brain region- and disease-specific reduced expression in schizophrenia, major depression, and bipolar disorder are compatible with a pathophysiological role of HERVs in human brain disorders. The causes and biological consequences of this differential regulation will be the subject of further investigations.
Collapse
Affiliation(s)
- S Weis
- Laboratory of Brain Research and Neuropathology, Departments of Psychiatry and Pathology, Uniformed Services University of the Health Sciences, and Stanley Medical Research Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Contreras-Galindo R, López P, Vélez R, Yamamura Y. HIV-1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro. AIDS Res Hum Retroviruses 2007; 23:116-22. [PMID: 17263641 DOI: 10.1089/aid.2006.0117] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies to HERV-K antigens have been linked to HIV-1 infection and expression of HERV-K proteins generates T-cell cytotoxic responses in many cancers. HERV-K RNA and protein abundance was measured in HIV-1-infected and control cells. In vitro exposure of HIV-1 laboratory-adapted and primary isolates on U87MG cells increased the expression of HERV-K RNA in a dose-dependent manner. HERV-K RNA and protein burdens were significantly increased in HIV-1-producing H9 cell lines compared to H9 cells. The expression of HERV-K was synergistically increased in HIV-1-infected PBMCs after stimulation with PMA/ionomycin. Furthermore, the expression of HERV-K in PBMCs, and particularly in CD4(+) T cells, was higher in HIV-1 patients compared to control subjects. The expression of HERV-K might be related to HIV-1 pathogenesis and AIDS-associated cancers.
Collapse
|
9
|
Muir A, Lever AML, Moffett A. Human endogenous retrovirus-W envelope (syncytin) is expressed in both villous and extravillous trophoblast populations. J Gen Virol 2006; 87:2067-2071. [PMID: 16760410 DOI: 10.1099/vir.0.81412-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The placenta is unique amongst normal tissues in transcribing numerous different human endogenous retroviruses at high levels. In this study, RT-PCR and immunohistochemistry were used to investigate the expression of syncytin in human trophoblast. Syncytin transcripts were found in first-trimester trophoblast cells with both villous and extravillous phenotypes and also in the JAR and JEG-3 choriocarcinoma cell lines. Syncytin protein was detected in villous trophoblast and in all extravillous trophoblast subpopulations of first- and second-trimester placental tissues. It was also present in ectopic trophoblast from tubal implantations. This study confirms that syncytin is expressed widely by a variety of normal human trophoblast populations, as well as choriocarcinoma cell lines.
Collapse
Affiliation(s)
- A Muir
- Research Group in Human Reproductive Immunobiology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - A M L Lever
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - A Moffett
- Research Group in Human Reproductive Immunobiology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
10
|
Abstract
Transgenic animal technology is one of the most fascinating technologies developed in the last two decades. It allows us to address questions in life sciences that no other methods have achieved. The impact on biomedical and biological research, as well as commercial interests are overwhelming. The questions accompanying this fast growing technology and its diversified applications attract the attention from a variety of entities. Still, one of the most fundamental problems remaining is the search for an efficient and reliable gene delivery system for creating transgenic animals. The traditional method of pronuclear microinjection has displayed great variability in success among species. While an acceptable efficiency in the production of transgenic mice has been attained, the relative low efficiency (<1%) in creating transgenic livestock has become one of the barriers for its application. In the past decades, improvements in producing transgenic livestock have made a slow progression, however, the recent advancement in cloning technology and the ability to create transgenic livestock in a highly efficient manner, have opened the gate to a new era in transgenic technology. Discoveries of new gene delivery systems have created an enthusiastic atmosphere that has made this technology so unique. This review focuses on gene delivery strategies as well as various approaches that may assist the advancement of transgenic efficiency in large animals.
Collapse
Affiliation(s)
- A W Chan
- Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
11
|
Rote NS, Chakrabarti S, Stetzer BP. The role of human endogenous retroviruses in trophoblast differentiation and placental development. Placenta 2005; 25:673-83. [PMID: 15450384 DOI: 10.1016/j.placenta.2004.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2004] [Indexed: 11/29/2022]
Abstract
A major portion of the human genome appears to be of retroviral origin. These endogenous retroviral elements are expressed in a variety of normal tissues and during disease states, such as autoimmune and malignant conditions. Recently, potential roles have been described for endogenous retroviral envelope proteins in normal differentiation of human villous cytotrophoblast into syncytiotrophoblast. This article provides a brief critical review of the current state of knowledge concerning the expression of the env regions of three endogenous retroviral elements: ERV-3, HERV-W, and HERV-FRD. A testable model of villous cytotrophoblast differentiation is constructed, in which a complementary expression of endogenous retroviral envelope proteins initiates hCG production, decreased cell proliferation, and intercellular fusion.
Collapse
Affiliation(s)
- N S Rote
- Department of Obstetrics and Gynecology, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
12
|
Seifarth W, Frank O, Zeilfelder U, Spiess B, Greenwood AD, Hehlmann R, Leib-Mösch C. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol 2005; 79:341-52. [PMID: 15596828 PMCID: PMC538696 DOI: 10.1128/jvi.79.1.341-352.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retrovirus-like sequences account for 8 to 9% of the human genome. Among these sequences, about 8,000 pol-containing proviral elements have been identified to date. As part of our ongoing search for active and possibly disease-relevant human endogenous retroviruses (HERVs), we have recently developed an oligonucleotide-based microarray. The assay allows for both the detection and the identification of most known retroviral reverse transcriptase (RT)-related nucleic acids in biological samples. In the present study, we have investigated the transcriptional activity of representative members of 20 HERV families in 19 different normal human tissues. Qualitative evaluation of chip hybridization signals and quantitative analysis by real-time RT-PCR revealed distinct HERV activity in the human tissues under investigation, suggesting that HERV elements are active in human cells in a tissue-specific manner. Most active members of HERV families were found in mRNA prepared from skin, thyroid gland, placenta, and tissues of reproductive organs. In contrast, only few active HERVs were detectable in muscle cells. Human tissues that lack HERV transcription could not be found, confirming that human endogenous retroviruses are permanent components of the human transcriptome. Distinct activity patterns may reflect the characteristics of the regulatory machinery in these cells, e.g., cell type-dependent occurrence of transcriptional regulatory factors.
Collapse
Affiliation(s)
- Wolfgang Seifarth
- Medical Clinic III, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moffett A, Loke YW. The Immunological Paradox of Pregnancy: A Reappraisal. Placenta 2004; 25:1-8. [PMID: 15013633 DOI: 10.1016/s0143-4004(03)00167-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 06/17/2003] [Accepted: 06/17/2003] [Indexed: 10/27/2022]
Abstract
The survival of the allogeneic conceptus has long been an immunological paradox. Medawar was the first to propose an evasive mechanism based on the concept of self/non-self recognition described in classical transplantation immunology. Since then, several newer models of self/non-self recognition have been proposed, such as the PAMP/PRR system, the Missing Self and the Danger Hypothesis. The present paper considers the fetal-maternal relationship in the context of all these models. The conclusion reached is that none of them is really appropriate because the interface between trophoblast cells of the fetal placenta and the leukocytes of the maternal decidua is unique. Pregnancy is not simply a case of acceptance or rejection like a transplant. The immunological mechanism must provide a balanced environment whereby the conceptus is nurtured by the mother and yet prevented from excessive invasion. Future identification of trophoblast ligands and their respective receptors on uterine Natural Killer cells and other leukocytes is likely to offer the best insight as to how this symbiotic state is achieved.
Collapse
Affiliation(s)
- A Moffett
- Research Group in Human Reproductive Immunobiology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
14
|
Abstract
The fetus is considered to be an allograft that, paradoxically, survives pregnancy despite the laws of classical transplantation immunology. There is no direct contact of the mother with the embryo, only with the extraembryonic placenta as it implants in the uterus. No convincing evidence of uterine maternal T-cell recognition of placental trophoblast cells has been found, but instead, there might be maternal allorecognition mediated by uterine natural killer cells that recognize unusual fetal trophoblast MHC ligands.
Collapse
Affiliation(s)
- Ashley Moffett-King
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
15
|
Dejucq N, Jégou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev 2001; 65:208-31 ; first and second pages, table of contents. [PMID: 11381100 PMCID: PMC99025 DOI: 10.1128/mmbr.65.2.208-231.2001] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review describes the various viruses identified in the semen and reproductive tracts of mammals (including humans), their distribution in tissues and fluids, their possible cell targets, and the functional consequences of their infectivity on the reproductive and endocrine systems. The consequences of these viral infections on the reproductive tract and semen can be extremely serious in terms of organ integrity, development of pathological and cancerous processes, and transmission of diseases. Furthermore, of essential importance is the fact that viral infection of the testicular cells may result not only in changes in testicular function, a serious risk for the fertility and general health of the individual (such as a fall in testosteronemia leading to cachexia), but also in the possible transmission of virus-induced mutations to subsequent generations. In addition to providing an exhaustive account of the data available in these domains, this review focuses attention on the fact that the interface between endocrinology and virology has so far been poorly explored, particularly when major health, social and economical problems are posed. Our conclusions highlight the research strategies that need to be developed. Progress in all these domains is essential for the development of new treatment strategies to eradicate viruses and to correct the virus-induced dysfunction of the endocrine system.
Collapse
Affiliation(s)
- N Dejucq
- GERM-INSERM U435, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | |
Collapse
|
16
|
Graham KM, Ko C, Park KS, Sarge K, Park-Sarge OK. Expression of an intracisternal A-particle-like element in rat ovary. Biochem Biophys Res Commun 2000; 278:48-57. [PMID: 11071854 DOI: 10.1006/bbrc.2000.3759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have isolated a rat intracisternal-A particle element (IAP)-like element (IAP-LE) from ovarian granulosa cells that appears to be identical to the rat EST clone AA964260. The compiled cDNA sequences contain several putative in-frame translation initiation codons with the largest capable of encoding a 365 amino acid protein with a reverse transcriptase domain in the N-terminus as well as a bipartite nuclear localization signal sequence in the middle. Northern blotting shows a major approximately 7 Kb transcript and a minor approximately 5 Kb transcript that are abundantly expressed in the ovary. In situ hybridization histochemistry using ovaries from gonadotropin-treated immature rats and regularly cycling adult rats show that this transcript is predominantly localized to granulosa cells of all healthy follicles, including primary follicles, and to newly-formed and healthy corpora lutea. This cell-specific expression pattern of the IAP-LE gene is distinct from those of the several known retroviral elements, suggesting the potentially novel functional importance of the IAP-LE gene. Taken together, our results demonstrate abundant and cell-specific expression of a novel IAP-LE in rat granulosa cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cell Cycle
- Cell Nucleus/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Expressed Sequence Tags
- Female
- Genes, Intracisternal A-Particle/genetics
- Gonadotropins/pharmacology
- Gonadotropins, Equine/pharmacology
- Granulosa Cells/metabolism
- In Situ Hybridization
- Molecular Sequence Data
- Ovary/metabolism
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- RNA-Directed DNA Polymerase/chemistry
- Rats
- Rats, Sprague-Dawley
- Sequence Homology, Nucleic Acid
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- K M Graham
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The shortage of cadaveric human organs for transplantation may, be alleviated by the use of xenografts as a therapeutic option for end-stage organ failure. Successful attempts have been made to prevent rejection of xenograft tissues in humans. The potential spread of animal-derived pathogens to the xenograft recipient is a complication of xenotransplantation, which must be addressed. This can be complicated further by, the presence of new pathogens, new clinical syndromes, and altered behaviour of these organisms in the immunocompromised recipient. There is concern over the possible activation of latent viruses, including retroviruses, from xenograft tissues. This paper discusses the possible dangers of transmission of animal viruses to humans via xenotransplantation.
Collapse
Affiliation(s)
- D K Langat
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi
| | | |
Collapse
|