1
|
Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F, Hartshorne GM. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017; 153:R43-R58. [PMID: 27799626 DOI: 10.1530/rep-16-0240] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2025]
Abstract
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1-3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model.
Collapse
Affiliation(s)
- Ali A Fouladi-Nashta
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Kabir A Raheem
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of Veterinary Surgery and TheriogenologyMichael Okpara University of Agriculture, Umudike, Nigeria
| | - Waleed F Marei
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of TheriogenologyFaculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fataneh Ghafari
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Geraldine M Hartshorne
- Warwick Medical SchoolUniversity of Warwick, Coventry, UK and Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
2
|
Martin-DeLeon PA. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface. Asian J Androl 2016; 17:720-5. [PMID: 26112481 PMCID: PMC4577579 DOI: 10.4103/1008-682x.155538] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A variety of glycosylphosphatidylinositol (GPI)-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF) during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP) which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM) proteins, including plasma membrane Ca 2 + -ATPase 4 (PMCA4). Synthesized in the testis, PMCA4 is an essential protein and the major Ca 2 + efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion-competent sites on membranes. On the basis of knowledge of PMCA4's interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca 2 + -dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach.
Collapse
|
3
|
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Republic of China
| |
Collapse
|
4
|
Smith MA, Michael R, Aravindan RG, Dash S, Shah SI, Galileo DS, Martin-DeLeon PA. Anatase titanium dioxide nanoparticles in mice: evidence for induced structural and functional sperm defects after short-, but not long-, term exposure. Asian J Androl 2015; 17:261-8. [PMID: 25370207 PMCID: PMC4650460 DOI: 10.4103/1008-682x.143247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 11/12/2022] Open
Abstract
Titanium dioxide (TiO 2 ) nanoparticles (TNPs) are widely used commercially and exist in a variety of products. To determine if anatase TNPs (ATNPs) in doses smaller than previously used reach the scrotum after entry in the body at a distant location and induce sperm defects, 100% ATNP (2.5 or 5 mg kg-1 body weight) was administered intraperitoneally to adult males for three consecutive days, followed by sacrifice 1, 2, 3, or 5 weeks later (long-) or 24, 48 or 120 h (short-term exposure). Transmission electron microscopy revealed the presence of ANTP in scrotal adipose tissues collected 120 h postinjection when cytokine evaluation showed an inflammatory response in epididymal tissues and fluid. At 120 h and up to 3 weeks postinjection, testicular histology revealed enlarged interstitial spaces. Significantly increased numbers of terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling-positive (apoptotic) germ (P = 0.002) and interstitial space cells (P = 0.04) were detected in treated males. Caudal epididymal sperm from the short-term, but not a long-term, arm showed significantly (P < 0.001) increased frequencies of flagellar abnormalities, excess residual cytoplasm (ERC), and unreacted acrosomes in treated versus controls (dose-response relationship). A novel correlation between ERC and unreacted acrosomes was uncovered. At 120 h, there were significant decreases in hyperactivated motility (P < 0.001) and mitochondrial membrane potential (P < 0.05), and increased reactive oxygen species levels (P < 0.00001) in treated versus control sperm. These results indicate that at 4-8 days postinjection, ANTP induce structural and functional sperm defects associated with infertility, and DNA damage via oxidative stress. Sperm defects were transient as they were not detected 10 days to 5 weeks postinjection.
Collapse
Affiliation(s)
- Michelle A Smith
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Rowan Michael
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Syed I Shah
- Departments of Physics and Astronomy and of Material Science, Engineering, University of Delaware, Newark, DE, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
5
|
Patel R, Al-Dossary AA, Stabley DL, Barone C, Galileo DS, Strehler EE, Martin-DeLeon PA. Plasma membrane Ca2+-ATPase 4 in murine epididymis: secretion of splice variants in the luminal fluid and a role in sperm maturation. Biol Reprod 2013; 89:6. [PMID: 23699388 DOI: 10.1095/biolreprod.113.108712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plasma membrane Ca(2+)-ATPase isoform 4 (PMCA4) is the primary Ca(2+) efflux pump in murine sperm, where it regulates motility. In Pmca4 null sperm, motility loss results in infertility. We have shown that murine sperm PMCA4b interacts with Ca(2+)/CaM-dependent serine kinase (CASK) in regulating Ca(2+) homeostasis and motility. However, recent work indicated that the bovine PMCA4a splice variant (missing in testis) is epididymally expressed, along with 4b, and may be transferred to sperm. Here we show, via conventional and in situ RT-PCR, that both the splice variants of Pmca4 mRNA are expressed in murine testis and throughout the epididymis. Immunofluorescence localized PMCA4a to the apical membrane of the epididymal epithelium, and Western analysis not only confirmed its presence but showed for the first time that PMCA4a and PMCA4b are secreted in the epididymal luminal fluid (ELF), from which epididymosomes containing PMCA4a were isolated. Flow cytometry indicated the presence of PMCA4a on mature caudal sperm where it was increased ~5-fold compared to caput sperm (detected by Western blotting) and ~2-fold after incubation in ELF, revealing in vitro uptake and implicating PMCA4a in epididymal sperm maturation. Coimmunoprecipitation using pan-PMCA4 antibodies, revealed that both variants associate with CASK, suggesting their presence in a complex. Because they have different kinetic properties for Ca(2+) transport and different abilities to bind to CASK, our study suggests a mechanism for combining the functional attributes of both PMCA4 variants, leading to heightened efficiency of the pump in the maintenance of Ca(2+) homeostasis, which is crucial for normal motility and male fertility.
Collapse
Affiliation(s)
- Ramkrishna Patel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Li J, Liu F, Liu X, Liu J, Zhu P, Wan F, Jin S, Wang W, Li N, Liu J, Wang H. Mapping of the human testicular proteome and its relationship with that of the epididymis and spermatozoa. Mol Cell Proteomics 2010; 10:M110.004630. [PMID: 21178120 DOI: 10.1074/mcp.m110.004630] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The testis produces male gametes in the germinal epithelium through the development of spermatogonia and spermatocytes into spermatids and immature spermatozoa with the support of Sertoli cells. The flow of spermatozoa into the epididymis is aided by testicular secretions. In the epididymal lumen, spermatozoa and testicular secretions combine with epididymal secretions that promote sperm maturation and storage. We refer to the combined secretions in the epididymis as the sperm-milieu. With two-dimensional-PAGE matrix-assisted laser desorption ionization time-of-flight MS analysis of healthy testes from fertile accident victims, 725 unique proteins were identified from 1920 two-dimensional-gel spots, and a corresponding antibody library was established. This revealed the presence of 240 proteins in the sperm-milieu by Western blotting and the localization of 167 proteins in mature spermatozoa by ICC. These proteins, and those from the epididymal proteome (Li et al. 2010), form the proteomes of the sperm-milieu and the spermatozoa, comprising 525 and 319 proteins, respectively. Individual mapping of the 319 sperm-located proteins to various testicular cell types by immunohistochemistry suggested that 47% were intrinsic sperm proteins (from their presence in spermatids) and 23% were extrinsic sperm proteins, originating from the epididymis and acquired during maturation (from their absence from the germinal epithelium and presence in the epididymal tissue and sperm-milieu). Whereas 408 of 525 proteins in the sperm-milieu proteome were previously identified as abundant epididymal proteins, the remaining 22%, detected by the use of new testicular antibodies, were more likely to be minor proteins common to the testicular proteome, rather than proteins of testicular origin added to spermatozoa during maturation in the epididymis. The characterization of the sperm-milieu proteome and testicular mapping of the sperm-located proteins presented here provide the molecular basis for further studies on the production and maturation of spermatozoa. This could be the basis of development of diagnostic markers and therapeutic targets for infertility or targets for male contraception.
Collapse
Affiliation(s)
- JianYuan Li
- Shandong Research Centre for Stem Cell Engineering, Yu Huang Ding Hospital and Yan Tai University, Yantai, Shandong Province, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reese KL, Aravindan RG, Griffiths GS, Shao M, Wang Y, Galileo DS, Atmuri V, Triggs-Raine BL, Martin-Deleon PA. Acidic hyaluronidase activity is present in mouse sperm and is reduced in the absence of SPAM1: evidence for a role for hyaluronidase 3 in mouse and human sperm. Mol Reprod Dev 2010; 77:759-72. [PMID: 20586096 DOI: 10.1002/mrd.21217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular mechanisms underlying sperm penetration of the physical barriers surrounding the oocyte have not been completely delineated. Although neutral-active or "reproductive" hyaluronidases (hyases), exemplified by Sperm Adhesion Molecule 1 (SPAM1), are thought to be responsible for hyaluronan digestion in the egg vestments and for sperm-zona binding, their roles in mouse sperm have been recently questioned. Here we report that acidic "somatic" Hyaluronidase 3 (HYAL3), a homolog of SPAM1 with 74.6% structural similarity, exists in two isoforms in human ( approximately 47 and approximately 55 kDa) and mouse ( approximately 44 and approximately 47 kDa) sperm, where it resides on the plasma membrane over the head and midpiece. Mouse isoforms are differentially distributed in the soluble (SAP), membrane (MBP), and acrosome-reacted (AR) fraction where they are most abundant. Comparisons of zymography of Hyal3 null and wild-type (WT) AR and MBP fractions show significant HYAL3 activity at pH 3 and 4, and less at pH 7. At pH 4, a second acid-active hyase band at approximately 57 kDa is present in the AR fraction. HYAL3 activity was confirmed using immunoprecipitated HYAL3 and spectrophotometry. In total proteins, hyase activity was higher at pH 6 than at 4, where Spam1 nulls had significantly (P < 0.01) diminished activity implicating an acidic optima for murine SPAM1. Although fully fertile, Hyal3 null sperm showed delayed cumulus penetration and reduced acrosomal exocytosis. HYAL3 is expressed in epididymal tissue/fluid, from where it is acquired by caudal mouse sperm in vitro. Our results reveal concerted activity of both neutral- and acid-active hyaluronidases in sperm.
Collapse
Affiliation(s)
- Kristen L Reese
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morin G, Sullivan R, Laflamme I, Robert C, Leclerc P. SPAM1 Isoforms from Two Tissue Origins Are Differentially Localized Within Ejaculated Bull Sperm Membranes and Have Different Roles During Fertilization1. Biol Reprod 2010; 82:271-81. [DOI: 10.1095/biolreprod.109.079582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Griffiths GS, Galileo DS, Reese K, Martin-Deleon PA. Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev 2008; 75:1627-36. [PMID: 18384048 DOI: 10.1002/mrd.20907] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sperm uptake of glycosyl phosphatidylinositol (GPI)-linked proteins from luminal fluids has been shown to occur in male and estrous female reproductive tracts. In males, this is attributed to membranous vesicles secreted into the epididymis and prostate. While epididymosomes have been characterized, there have been no reports of the presence of vesicles in female luminal fluids. Here we report the presence of vesicles, characterized as "uterosomes," in the murine estrous female reproductive fluid; and use Sperm Adhesion Molecule 1 (SPAM1/PH-20), a well-known hyaluronidase found in male and female fluids, as a model to investigate vesicle-mediated GPI-linked protein transfer to sperm. Epididymosomes and uterosomes isolated after ultracentrifugation of epididymal (ELF) and uterine luminal fluid (ULF) were analyzed by electron microscopy and shown to be approximately 10-70 and approximately 15-50 nm in diameter. The structural integrity of uterosomes was confirmed by their resistance to hypo-osmotic and freeze/thaw stresses; and immunogold labeling localized SPAM1 to their outer membrane surface, as was the case for epididymosomes. SPAM1 was acquired by caudal sperm during incubation in epididymosomes and uterosomes; uptake was abolished when the GPI anchor was enzymatically cleaved. Sperm analyzed by confocal and transmission electron microscopy (TEM) after incubation in fluorescently labeled vesicles revealed the label on the membrane over the acrosome and midpiece of the flagella, where SPAM1 normally resides. High magnification TEM images demonstrated vesicles juxtaposed to the sperm plasma membrane potentially transferring SPAM1. Taken together, these results implicate vesicular docking as the mechanism of vesicle-mediated GPI-linked protein transfer to sperm from murine reproductive fluids.
Collapse
Affiliation(s)
- Genevieve S Griffiths
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
11
|
Biellmann F, Henion TR, Bürki K, Hennet T. Impaired sexual behavior in male mice deficient for the beta1-3 N-acetylglucosaminyltransferase-I gene. Mol Reprod Dev 2008; 75:699-706. [PMID: 18008318 DOI: 10.1002/mrd.20828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The beta1-3 N-acetylglucosaminyltransferase-1 (B3gnt1) gene encodes a poly-N-acetyllactosamine synthase which can initiate and extend poly-N-acetyllactosamine chains [Gal(beta1-4)GlcNAc (beta1-3)(n)]. Previous investigations with heterozygous and homozygous null mice for this gene have revealed the importance of poly-N-acetyllactosamine chains for the formation of olfactory axon connections with the olfactory bulb and the migration of gonadotropin releasing hormone neurons to the hypothalamus. The possible long-term effects of these developmental defects, however, has not yet been studied. Here we have examined a reproductive phenotype observed in B3gnt1-null mice. Whereas the B3gnt1 null females were fertile, the B3gnt1 null males were not able to sire litters at the expected rate when mated to either wildtype or B3gnt1-null females. We assessed male sexual behavior as well as male reproduction parameters such as testes size, spermatogenesis, sperm number, morphology, and the development of early embryos in order to identify the source of a reduced rate of reproduction. Our findings show that the B3gnt1 null male reproductive organs were functional and could not account for the lower rate at which they produced offspring with wildtype conspecifics. Hence, we propose that the phenotype observed resulted from an impaired sexual response to female mating partners.
Collapse
Affiliation(s)
- Franziska Biellmann
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
12
|
Cibulková E, Manásková P, Jonáková V, Tichá M. Preliminary characterization of multiple hyaluronidase forms in boar reproductive tract. Theriogenology 2007; 68:1047-54. [PMID: 17881045 DOI: 10.1016/j.theriogenology.2007.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 06/27/2007] [Accepted: 08/02/2007] [Indexed: 12/23/2022]
Abstract
Hyaluronidases play an important role in gamete interaction and fertility in mammals. The objectives of the present study were to investigate multiple forms of the enzyme in boar reproductive tract using electrophoretic methods. Two forms of hyaluronidase (EC 3.2.1.35) were detected in boar seminal plasma (relative molecular masses of 55,000 and 65,000) using hyaluronic acid-substrate polyacrylamide gel electrophoresis in the presence of SDS. These two forms can be separated by means of affinity chromatography on Heparin-Sepharose. They differ, besides their affinity to heparin, also in the pH optimum of their enzymatic activity. The form with relative molecular mass of 55,000 was active both at the acidic (pH 3.7) and the neutral pH (pH 7.4) and was bound to immobilized heparin. The second form (relative molecular mass 65,000) was active only at acidic pH and did not interact with heparin. The same acidic-active form (65,000) was found in seminal vesicle fluids. The hyaluronidase form which is active both at the acidic and the neutral pH (51,000) was detected in epididymal fluid. In the detergent extracts of boar sperm, three active forms of the enzyme were found (relative molecular masses 55,000, 70,000 and 80,000). The form of relative molecular mass 55,000 was active in a wide range of pH (pH 3-8). The forms of relative molecular masses 70,000 and 80,000 were active only at neutral pH.
Collapse
Affiliation(s)
- E Cibulková
- Laboratory of Diagnostics for Reproductive Medicine, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220, Prague 4, Czech Republic
| | | | | | | |
Collapse
|
13
|
Grigorieva A, Griffiths GS, Zhang H, Laverty G, Shao M, Taylor L, Martin-DeLeon PA. Expression of SPAM1 (PH-20) in the Murine Kidney Is Not Accompanied by Hyaluronidase Activity: Evidence for Potential Roles in Fluid and Water Reabsorption. Kidney Blood Press Res 2007; 30:145-55. [PMID: 17446714 DOI: 10.1159/000101856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 02/13/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A role for Sperm Adhesion Molecule 1 (SPAM1) hyaluronidase in murine kidney, where Spam1 transcript levels have been reported to be higher in males, has not been clarified. METHODS Spam1 RNA and protein were studied using RT-PCR, in situhybridization, Western blotting, immunohistochemistry and hyaluronic acid substrate gel electrophoresis. Urine volume and osmolality were studied in wild-type and Spam1 null mice. RESULTS While RT-PCR supported a tendency of higher RNA expression in males, no sex difference for the protein was detectable in the cortex, medulla, and urine. Transcripts were predominantly localized in the proximal tubules and glomeruli, with lower levels in the medulla. Similarly, Western blotting and immunohistochemistry revealed that SPAM1 is more abundant in the cortex. Hyaluronidase activity was absent at neutral and acidic pH: suggesting non-enzymatic role(s) for SPAM1. Wild-type and Spam1 null mice given free access to water showed significantly reduced urine volumes (p < 0.01; n = 12) in the latter. Baseline urine osmolality was similar in both, leading to a significantly (p < 0.05) lower osmolar output in the nulls. After water deprivation (24 h), a significant (p < 0.01) increase in urine osmolality was seen only for wild-type mice. CONCLUSION SPAM1 is implicated in fluid reabsorption and urine concentration.
Collapse
Affiliation(s)
- Anastasia Grigorieva
- Department of Biological Sciences, University of Delaware, Newark, NJ 19716, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The most widely conserved mammalian sperm antigen is sperm adhesion molecule 1, SPAM1/PH-20, which is also the major testicular hyaluronidase. This multifunctional glycosyl phosphatidylinositol (GPI)-linked protein plays several roles in fertilization and is encoded by a gene that resides among hyaluronidase family members in a cluster on human 7q31/mouse 6A2. In the human cluster, SPAM1 is the only functional hyaluronidase and of all six hyaluronidases in the genome it is the best characterized, both structurally and functionally. While SPAM1 transcripts are abundantly expressed only in the testis, specifically in spermatids, the RNA and protein are present in the male reproductive tract and accessory organs and in the female tract of mice. Our investigation of the post-testicular expression of SPAM1 shows that the protein is widely expressed in the epididymis. Like testicular SPAM1, epididymal SPAM1 (ES) has hyaluronidase activity and is conserved in at least five species (mouse, rat, bull, macaque, and human) all of which have putative androgen response elements in the gene promoters, consistent with androgen regulation. Testicular lumicrine factors have also been implicated in ES regulation. Based on regional expression, the protein is likely to play a role in both sperm maturation and storage. A minor secretory glycoprotein, ES is present in the epididymal luminal fluid in both a soluble and insoluble form (epididymosomes), with the latter having an intact lipid anchor. Genetic approaches have provided evidence for sperm uptake of ES in vivo, and in vitro uptake has been demonstrated with the use of Spam1 null mice. In vitro acquisition of ES on the sperm surface results in a pattern that mimics the wild-type distribution. More importantly it significantly increases the ability of null sperm to penetrate the cumulus of oocytes via hyaluronidase activity, directly relating ES uptake with fertilizing ability and indicating that ES is a marker of sperm maturation.
Collapse
|
15
|
Zhang H, Shertok S, Miller K, Taylor L, Martin-Deleon PA. Sperm dysfunction in the Rb(6.16)- and Rb(6.15)-bearing mice revisited: involvement of Hyalp1 and Hyal5. Mol Reprod Dev 2006; 72:404-10. [PMID: 16078272 DOI: 10.1002/mrd.20360] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Earlier we showed that Sperm adhesion molecule1 (Spam1), the best studied sperm hyaluronidase, is involved in the sperm dysfunction associated with Robertsonian translocations (Rb). The dysfunction results in reduced fertility in mice homozygous for the Rb(6.16) or the Rb(6.15) translocation and transmission ratio distortion (TRD) in heterozygous males. This conclusion was based on the finding that Spam1 in the Rbs harbors multiple point mutations and a genomic alteration at the locus [in the case of Rb(6.16)]; and is accompanied by reduced steady-state levels of the RNA and protein. Here we show that closely linked family members in the hyaluronidase gene cluster on mouse chromosome 6, Hyalp1 and Hyal5, also harbor point mutations in these Rbs, leading to nonconservative substitutions in both the encoded proteins. To test if Spam1 by itself is capable of producing TRD we analyzed the transmission of wild-type and null alleles of the gene in the progeny of carriers and show that there is no significant TRD. This lack of TRD in null carriers argues for only a contributory role of Spam1 in the TRD seen in the Rb-bearing mice, and supports the involvement of Hyalp1 and/or Hyal5 in the sperm dysfunction and the resulting TRD. It is proposed that the clustering of point mutations in all three genes results from the cumulative effect of spontaneous mutations that do not disperse in the population due to suppression of recombination that occurs at Rb junctions.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
16
|
Chen H, Griffiths G, Galileo DS, Martin-DeLeon PA. Epididymal SPAM1 is a marker for sperm maturation in the mouse. Biol Reprod 2006; 74:923-30. [PMID: 16436526 DOI: 10.1095/biolreprod.105.048587] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sperm adhesion molecule 1 (SPAM1), is a glycosyl phoshatidylinositol-linked sperm membrane protein that is dually expressed in testis and epididymis. Epididymal SPAM1 is secreted in all three regions of the epididymis in all mammalian species studied, including humans. It shares the same molecular mass and neutral hyaluronidase activity as the testicular and sperm isoforms that are responsible for the penetration of the cumulus during fertilization. Using wild-type (W/T) sperm and those from mice homozygous for either a null (Spam1-/-) or mutant Spam1 allele, which results in decreased mRNA and protein, we demonstrate that sperm binding of epididymal SPAM1 occurs in vitro after exposure to W/T sperm-free epididymal luminal fluid (ELF). Binding or adsorption that occurred after incubation at room temperature or 32 degrees C was detected immunocytochemically and confirmed quantitatively using flow cytometry. The localization of SPAM1 on the plasma membrane of Spam1-null sperm mimicked that seen in the W/T. The remarkable increase in binding on W/T caudal sperm indicates that they are not fully saturated with SPAM1 during storage, and suggests that uptake of epididymal SPAM1 in vivo augments testicular SPAM1. Spam1-null sperm exposed to W/T ELF for 45-60 min during in vitro capacitation to allow epididymal SPAM1 binding showed a highly significant (P < 0.001) increase in cumulus penetration after 6-7 h compared to those incubated in ELF from null males. Similarly, the number of cumulus-free oocytes was also highly significantly greater (P < 0.001) than that for sperm capacitated in W/T SPAM1-antibody-inhibited ELF. Because epididymal SPAM1 uptake significantly increases cumulus penetration, we conclude that it is a marker of sperm maturation.
Collapse
Affiliation(s)
- Hong Chen
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
17
|
Kim E, Baba D, Kimura M, Yamashita M, Kashiwabara SI, Baba T. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proc Natl Acad Sci U S A 2005; 102:18028-33. [PMID: 16330764 PMCID: PMC1312394 DOI: 10.1073/pnas.0506825102] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A glycosylphosphatidylinositol (GPI)-anchored hyaluronidase, PH-20, on the sperm surface has long been believed to assist sperm penetration through the cumulus mass surrounding the eggs. However, mouse sperm lacking PH-20 were still capable of penetrating the cumulus mass despite a delayed dispersal of cumulus cells. Intriguingly, a 55-kDa hyaluronan-hydrolyzing protein was abundantly present in wild-type and PH-20-deficient mouse sperm. In this study, we purified the 55-kDa mouse protein from soluble protein extracts released from epididymal sperm by acrosome reaction and identified as a hyaluronidase, Hyal5. Hyal5 was exclusively expressed in the testis and formed a 160-kbp gene cluster together with Hyalp1, Hyal4, and Ph-20 on mouse chromosome 6. Hyal5 was a single-chain hyaluronidase present on the plasma and acrosomal membranes of sperm presumably as a GPI-anchored protein. Moreover, hyaluronan zymography revealed that Hyal5 is enzymatically active in the pH range 5-7 and inactive at pH 3 and 4. Both Hyal5-enriched PH-20-free soluble protein extracts and PH-20-deficient mouse sperm were capable of dispersing cumulus cells from the cumulus mass. Cumulus cell dispersal was strongly inhibited by the presence of a hyaluronidase inhibitor, apigenin. These results suggest that in the mouse, Hyal5 may function principally as a "cumulus matrix depolymerase" in the sperm penetration through the cumulus mass and in the local hyaluronan hydrolysis near or on the surface of the egg zona pellucida to enable the proximal region of sperm tail to move freely. PH-20 may compensate in part for the functional roles of Hyal5.
Collapse
Affiliation(s)
- Ekyune Kim
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Morin G, Lalancette C, Sullivan R, Leclerc P. Identification of the bull sperm p80 protein as a PH-20 ortholog and its modification during the epididymal transit. Mol Reprod Dev 2005; 71:523-34. [PMID: 15892045 DOI: 10.1002/mrd.20308] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have identified an 80 kDa protein in ejaculated bull spermatozoa (p80) which is found in acrosomal and post-acrosomal areas of the head. It has a hyaluronidase activity and shares homologies with PH-20, a sperm surface glycoprotein involved in sperm-egg interaction. The aim of the present study was to characterize bull sperm p80 protein at the nucleic and amino acid levels to determine whether it is the bovine PH-20 ortholog. The complete nucleotide sequence determined by RT-PCR, 3' and 5' RACE show that bull p80, displays identity with the PH-20 nucleotide and amino acid sequences. Messenger RNA and protein expressions determined by Northern blot and immunohistochemistry revealed that the protein is testicular (expressed in spermatocytes and spermatids). The localization of p80 on spermatozoa, determined by indirect immunofluorescence using a monoclonal antibody, shows the protein in acrosomal and post acrosomal areas of the head with an increase in the signal intensity as sperm progress through the epididymis. Post-translational modifications of the protein were investigated during the epididymal maturation by Western blot on protein extracts from sperm collected in the caput, corpus and cauda portions of bull epididymis. Glycolysation status of sperm p80 protein on proteins from ejaculated and epididymidal sperm was investigated. Result show that the glycosylation status is modified as spermatozoa migrate through the epididymis. Hyaluronidase activity evaluated in protein extracts from spermatozoa of the three different epididymal sections revealed that the activity is higher at pH 7 than 4 and is not affected by epididymal maturation. These data strongly suggest that p80 is the bovine PH-20.
Collapse
Affiliation(s)
- Guillaume Morin
- Département d'Obstétrique/Gynécologie, Université Laval, Centre de recherche du CHUQ, Québec, Canada
| | | | | | | |
Collapse
|
19
|
Dunn CA, Mager DL. Transcription of the human and rodent SPAM1 / PH-20 genes initiates within an ancient endogenous retrovirus. BMC Genomics 2005; 6:47. [PMID: 15804358 PMCID: PMC1079825 DOI: 10.1186/1471-2164-6-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 04/01/2005] [Indexed: 12/20/2022] Open
Abstract
Background Sperm adhesion molecule 1 (SPAM1) is the major mammalian testicular hyaluronidase and is expressed at high levels in sperm cells. SPAM1 protein is important for penetration of the cumulus cell layer surrounding the ovum, and is also involved in zona pellucida binding and sperm intracellular signalling. A previous study had identified SPAM1 as one of the many human genes that initiate within a transposable element. Results Examination of the human, mouse and rat SPAM1 loci revealed that transcripts initiate within the pol gene of an endogenous retrovirus (ERV) element. This is highly unusual, as all previously identified ERV-initiated cellular gene transcripts initiate within the viral long terminal repeat promoter. The SPAM1 locus therefore represents an example of the evolution of a promoter from protein-coding sequence. We have identified novel alternative promoter and splicing variants of human and murine SPAM1. We show that all transcript variants are expressed primarily in the testis and are predicted to encode identical proteins. Conclusion The testis-specific promoters of the human and mouse SPAM1 genes are derived from sequence that was originally part of an ERV pol gene. This represents the first known example of an ERV-derived promoter acting in a gender-specific manner.
Collapse
Affiliation(s)
- Catherine A Dunn
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Zhang H, Jones R, Martin-DeLeon PA. Expression and secretion of rat SPAM1(2B1 or PH-20) in the epididymis: role of testicular lumicrine factors. Matrix Biol 2005; 22:653-61. [PMID: 15062858 DOI: 10.1016/j.matbio.2003.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 11/17/2003] [Accepted: 11/24/2003] [Indexed: 11/23/2022]
Abstract
Rat sperm surface antigen Sperm Adhesion Molecule1, SPAM1 (a.k.a. 2B1 or PH-20) is a plasma membrane-bound glycoprotein with hyaluronidase activity and putative roles during fertilization. Previously the antigen was thought to be testis-specific but recently it has been shown to be synthesized in the epididymis (mouse, macaque and human). Using the efferent ductule ligated (EDL) rat as a model to produce a sperm-free androgen-maintained epididymis, we have examined the factors regulating the expression of epididymal 2B1. RT-PCR and in situ transcript hybridization (ISH) studies showed that 2B1 mRNA is transcribed in the principal cells in all three regions of the epididymis. Its cognate protein was also detected by Western blot analysis in sperm-free cytosols from normal epididymis and found to undergo endoproteolytic cleavage into 2 subunits of similar size to the sperm-bound form. Immunohistochemistry with a monoclonal antibody to 2B1 confirmed that the protein is present in the epididymal epithelium and luminal secretions. The intensity of staining was much stronger in the sperm-free EDL epididymis than that in the normal (sperm-present) epididymis. The protein was shown to have hyaluronidase activity at neutral pH and both its quantity and activity appeared to be greater in the EDL epididymis. It is suggested that a soluble form of SPAM1 glycoprotein is synthesized and released in the epididymis and that in addition to androgens, its regulation may involve a cross-talk between the tubule epithelium and lumicrine factors, the latter possibly of testicular origin.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA
| | | | | |
Collapse
|
21
|
Zhang H, Morales CR, Badran H, El-Alfy M, Martin-DeLeon PA. Spam1 (PH-20) expression in the extratesticular duct and accessory organs of the mouse: a possible role in sperm fluid reabsorption. Biol Reprod 2004; 71:1101-7. [PMID: 15175239 DOI: 10.1095/biolreprod.104.030403] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A widely conserved sperm antigen, the sperm adhesion molecule 1 (SPAM1 or PH-20) is a glycosylphosphatidyl inositol-linked protein with multiple roles in mammalian fertilization. It has been shown to be dually expressed in testis and epididymis and this is conserved in the four species (mouse, rat, macaques, humans) that have been studied to date. Here, we report Spam1 RNA and protein expression in the murine vas deferens and efferent ducts. In situ hybridization and immunohistochemistry indicate that transcript and protein are distributed in the nonciliated epithelial cells and that the efferent ducts have the most intense staining of all three regions of the excurrent ducts. Spam1 products were also present in the accessory organs, the prostate, and seminal vesicles and its fluid. Using hyaluronic acid substrate gel electrophoresis, hyaluronidase activity at pH 7.0 was detected in the vas deferens but was absent from the efferent ducts, the prostate, and the seminal vesicles/fluid. This suggests that Spam1 may play a nonenzymatic role in these organs. In the efferent ducts, where Spam1 is enriched in the apical (but not basolateral) membrane of nonciliated cells, it is likely to play a role in sperm concentration, which is the established function of that organ.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | | | |
Collapse
|
22
|
Hardy CM, Clydesdale G, Mobbs KJ, Pekin J, Lloyd ML, Sweet C, Shellam GR, Lawson MA. Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20. Reproduction 2004; 127:325-34. [PMID: 15016952 DOI: 10.1530/rep.1.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mouse PH20 (mPH20), the mouse homologue to guinea pig hyaluronidase protein PH20 (gpPH20), was used to produce contraceptive vaccines that target both sexes of mice. Previously, immunization with a female gamete antigen (the zona pellucida subunit 3 protein) delivered in a recombinant murine cytomegalovirus (MCMV), or as a purified recombinant protein, has been shown to induce infertility in female mice. There is evidence, however, that sperm protein antigens could provide broader contraceptive coverage by affecting both males and females, and the most promising has been gpPH20 when tested in a guinea pig model. Mice were therefore either inoculated with a recombinant MCMV expressing mPH20 or immunized directly with purified recombinant mPH20 protein fused to maltose-binding protein. Mice treated with either vaccine formulation developed serum antibodies that cross-reacted to a protein band of 55 kDa corresponding to mPH20 in Western blots of mouse sperm. However, there was no significant reduction in the fertility of males or females compared with control animals with either formulation. We conclude from our data that recombinant mPH20 is not a useful antigen for inclusion in immunocontraceptive vaccines that target mice.
Collapse
Affiliation(s)
- Christopher M Hardy
- Pest Animal Control Cooperative Research Centre, CSIRO Sustainable Ecosystems, GPO Box 284, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Morales CR, Badran H, El-Alfy M, Men H, Zhang H, Martin-DeLeon PA. Cytoplasmic localization during testicular biogenesis of the murine mRNA for Spam1 (PH-20), a protein involved in acrosomal exocytosis. Mol Reprod Dev 2004; 69:475-82. [PMID: 15457544 DOI: 10.1002/mrd.20177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Sperm Adhesion Molecule1 (SPAM1) is the most widely conserved sperm antigen with important roles in mammalian fertilization. Light and electron microscopy were used to localize, by in situ hybridization, the cellular and subcellular sites of Spam1 mRNA in the murine testis. Transcripts were first detected in step 3 round spermatids, gradually increased until step 8 and abruptly decreased between steps 9-11. They were predominantly localized near the ER and were not dispersed throughout the cytoplasm. Immunohistochemistry revealed that Spam1 is present on both the head and tail of sperm in the seminiferous tubules, and provided support for transcriptional regulation of its transcript. Immunocytochemistry confirmed the location of Spam1 on the tail of testicular sperm and demonstrated that it is localized to both the principal piece and the midpiece. Spam1 on epididymal sperm is localized to the midpiece of the tail and changes from a uniform distribution on the head in the caput to a regionalized pattern, first on the posterior and then on the anterior head, in caudal sperm. Spam1 on the surface of caudal sperm was shown to mediate the increase in acrosome reactions induced by the synergistic effects of HA and progesterone, as confirmed in sperm from the Rb(6.16) translocation-bearing mice which are Spam1 mutants. The similar response of human and mouse sperm to these agonists of the acrosome reaction, underscores the usefulness of the mouse as a model to study physiological aspects of SPAM1 in humans where, unlike the mouse, it is the only sperm hyaluronidase.
Collapse
Affiliation(s)
- Carlos R Morales
- Department of Anatomy and Cell Biology, McGill University, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|
24
|
Evans EA, Zhang H, Martin-DeLeon PA. SPAM1 (PH-20) protein and mRNA expression in the epididymides of humans and macaques: utilizing laser microdissection/RT-PCR. Reprod Biol Endocrinol 2003; 1:54. [PMID: 12932297 PMCID: PMC184449 DOI: 10.1186/1477-7827-1-54] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 08/06/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Sperm Adhesion Molecule 1 (SPAM1) is an important sperm surface hyaluronidase with at least three functions in mammalian fertilization. Previously our laboratory reported that in the mouse, in addition to its expression in the testis, Spam1 is synthesized in the epididymis where it is found in membranous vesicles in the principal cells of the epithelium in all three regions. Since SPAM1 is widely conserved among mammals the aim of the study was to determine if its expression pattern in the epididymis is conserved in rodents and primates. METHODS We used laser microdissection (LM)/RT-PCR on frozen and paraffin-embedded epididymal sections of humans (n = 3) and macaques (n = 2) as well as in situ transcript hybridization to determine if transcripts are present in the epididymal epithelium. Western analysis and immunohistochemistry were used to detect and confirm the protein expression, and hyaluronic acid substrate gel electrophoresis analyzed its hyaluronidase activity. An in silico analysis of the proximal promoter of SPAM1 was also performed to identify relevant putative transcription binding sites for the androgen receptor. RESULTS We demonstrate that mRNA unique to SPAM1 is present in the principal cells of the epididymal epithelium in all individuals of both species studied. SPAM1 protein is present in all three regions of the epididymis, as well as the vas deferens, and is localized similarly to the transcripts. SPAM1 was shown to have hyaluronidase activity at pH 7.0. In the proximal promoter of SPAM1 were uncovered putative epididymal transcription factor binding sites including androgen receptor elements (AREs), consistent with epididymal expression. CONCLUSIONS These findings allow us to conclude that epididymal SPAM1 is conserved in at least two mammalian classes, rodents and primates. This conservation of expression suggests that the protein is likely to play an important function, possibly in sperm maturation.
Collapse
Affiliation(s)
- Eric A Evans
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA 94305-6120, USA
| | - Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | |
Collapse
|
25
|
Zhang H, Martin-DeLeon PA. Mouse Spam1 (PH-20) is a multifunctional protein: evidence for its expression in the female reproductive tract. Biol Reprod 2003; 69:446-54. [PMID: 12672666 DOI: 10.1095/biolreprod.102.013854] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sperm adhesion molecule 1 (Spam1) is a widely conserved sperm surface protein with multiple roles in mammalian fertilization. Although the gene for this protein has been thought to be testis specific based on Northern blot analysis, there is evidence for nontesticular expression when transcripts are analyzed by more sensitive techniques. In the present investigation, results of a reverse transcription polymerase chain reaction assay, an RNase-protection assay (RPA), and an in situ transcript hybridization assay revealed that the murine Spam1 gene is transcribed in the female genital tract. RPA revealed that Spam1 transcripts are synthesized in a region-dependent manner, with the oviduct having lower transcript levels than the uterus and vagina. The transcripts levels were 3- to 10-fold lower in the female genital tract than in the testis. In situ transcript hybridization assay revealed RNA in the luminal epithelium in all three regions of the genital tract and in the uterine myometrium and the oviductal mesothelium. Western blot analysis and immunohistochemistry demonstrated that the protein concentration is 1.5- to 3-fold lower in female tissues than in sperm, and localization is similar to that of the transcripts. The protein has hyaluronidase activity at neutral pH, which is unique for sperm hyaluronidase, but not at acidic pH. In the uterus, Spam1 expression fluctuated during the estrous cycle. Its localization suggests that in addition to functioning as a secretory protein, it may be involved in hyaluronic acid metabolism or turnover in the female genital tract. Our results provide further evidence that Spam1 is a multifunctional protein and that it is less restricted in its expression than previously reported.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
26
|
Yudin AI, Li MW, Robertson KR, Tollner T, Cherr GN, Overstreet JW. Identification of a novel GPI-anchored CRISP glycoprotein, MAK248, located on the posterior head and equatorial segment of cynomolgus macaque sperm. Mol Reprod Dev 2002; 63:488-99. [PMID: 12412052 DOI: 10.1002/mrd.10193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To identify a sperm-surface component that is highly antigenic, we immunized female cynomolgus macaques with glycosylphosphatidylinositol (GPI)-anchored sperm surface proteins that were released following treatment with phosphatidylinositol-specific phospholipase C (PI-PLC). Five different adjuvants were used in combination with the PI-PLC-released proteins, and three of these proteins (24, 48, and 53 kDa) were shown to be potent antigens for immunization of female monkeys. The 53 kDa protein was found to be a surface coating protein and not a GPI-anchored protein. Polyclonal antibodies to the 24 kDa protein and the 48 kDa protein were produced in rabbits. The two antibodies recognized both proteins on Western blots. The same rabbit antibodies recognized 28, 18, and 10 kDa bands on a Western blot of chemically reduced PI-PLC-released proteins, suggesting that the 48 kDa protein is a dimer of the 24 kDa protein, which we refer to as MAK248. Rabbit polyclonal antibodies developed to reduced fragments of the 24 kDa protein showed that the 18 and 10 kDa bands are proteolytic peptide fragments of the 24 kDa protein. Screening of tissues from male macaques showed that MAK248 is expressed only in the epididymis. Microsequencing of two proteolytic fragments of the 18 kDa component showed 100% amino acid homology to a 233 deduced amino acid sequence previously identified in human testes genome. Antibodies to MAK248 recognized a 24 kDa protein released from human sperm exposed to PI-PLC. Antibodies to MAK248 recognized the equatorial segment and posterior head regions of capacitated cynomolgus macaque sperm. Structural analysis suggests that MAK248 is a novel CRISP protein and a member of the CAP (CRISP, Ag 5, PR-1) family of proteins. Based on amino acid sequence homology, it is possible that MAK248 functions as a protease inhibitor.
Collapse
Affiliation(s)
- A I Yudin
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, University of California, Davis, California, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Cherr GN, Yudin AI, Overstreet JW. The dual functions of GPI-anchored PH-20: hyaluronidase and intracellular signaling. Matrix Biol 2001; 20:515-25. [PMID: 11731269 DOI: 10.1016/s0945-053x(01)00171-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ovulated mammalian oocyte is surrounded by the "cumulus ECM", composed of cells embedded in an extracellular matrix that is rich in hyaluronic acid (HA). The cumulus ECM is a viscoelastic gel that sperm must traverse prior to fertilization. Mammalian sperm have a GPI-anchored hyaluronidase which is known as PH-20 and also as SPAM 1. PH-20 is located on the sperm surface, and in the lysosome-derived acrosome, where it is bound to the inner acrosomal membrane. PH-20 appears to be a multifunctional protein; it is a hyaluronidase, a receptor for HA-induced cell signaling, and a receptor for the zona pellucida surrounding the oocyte. The zona pellucida recognition function of PH-20 was discovered first. This function is ascribed to the inner acrosomal membrane PH-20, which appears to differ biochemically from the PH-20 on the sperm surface. Later, when bee venom hyaluronidase was cloned, a marked cDNA sequence homology with PH-20 was recognized, and it is now apparent that PH-20 is the hyaluronidase of mammalian sperm. PH-20 is unique among the hyaluronidases in that it has enzyme activity at both acid and neutral pH, and these activities appear to involve two different domains in the protein. The neutral enzyme activity of plasma membrane PH-20 is responsible for local degradation of the cumulus ECM during sperm penetration. Plasma membrane PH-20 mediates HA-induced sperm signaling via a HA binding domain that is separate from the hyaluronidase domains. This signaling is associated with an increase in intracellular calcium and as a consequence, the responsiveness of sperm to induction of the acrosome reaction by the zona pellucida is increased. There is extensive evidence that GPI-anchored proteins are involved in signal transduction initiated by a diverse group of cell surface receptors. GPI-anchored proteins involved in signaling are often associated with signaling proteins bound to the cytoplasmic leaflet of the plasma membrane, typically Src family, non-receptor protein tyrosine kinases. PH-20 appears to initiate intracellular signaling by aggregating in the plasma membrane, and a 92-kDa protein may be the cell signaling molecule linked to PH-20.
Collapse
Affiliation(s)
- G N Cherr
- Department of Environmental Toxicology, Bodega Marine Laboratory, University of California Davis, P.O. Box 247, Bodega Bay, CA 94923, USA.
| | | | | |
Collapse
|