1
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
2
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
3
|
Salim E, Hori A, Matsubara K, Takano-Shimizu T, Pratomo AR, Marianne M, Syahputra A, Husori DI, Inoue A, Abdullah MA, Shamsudin NF, Rullah K, Kuraishi T. Detection of Human GPCR Activity in Drosophila S2 Cells Using the Tango System. Int J Mol Sci 2024; 26:202. [PMID: 39796060 PMCID: PMC11720185 DOI: 10.3390/ijms26010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Drosophila Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into Drosophila S2 cells and stimulated with dopamine. Receptor activation was measured by quantifying the luciferase activity. The system showed high specificity for dopamine, with no activation in response to octopamine, a non-ligand for DRD4. Furthermore, the system effectively detects activation by a novel compound. These results demonstrate that Drosophila S2 cells, coupled with the Tango assay, provide a viable model for studying human GPCR function and ligand specificity. This system enables the rapid screening of potential GPCR ligands in a cost-effective cellular model.
Collapse
Affiliation(s)
- Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.M.); (D.I.H.)
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
| | - Kohei Matsubara
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Saga Ippongi-cho 1, Ukyo-ku, Kyoto 616-8354, Japan; (K.M.); (T.T.-S.)
| | - Toshiyuki Takano-Shimizu
- KYOTO Drosophila Stock Center, Kyoto Institute of Technology, Saga Ippongi-cho 1, Ukyo-ku, Kyoto 616-8354, Japan; (K.M.); (T.T.-S.)
| | - Andre Rizky Pratomo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
| | - Marianne Marianne
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.M.); (D.I.H.)
| | - Armia Syahputra
- Departement of Periodontology, Faculty of Dentistry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Dadang Irfan Husori
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.M.); (D.I.H.)
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Maryam Aisyah Abdullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia; (M.A.A.); (N.F.S.); (K.R.)
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia; (M.A.A.); (N.F.S.); (K.R.)
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia; (M.A.A.); (N.F.S.); (K.R.)
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan; (A.H.); (A.R.P.)
| |
Collapse
|
4
|
Rodrigues RS, Moreira JB, Mateus JM, Barateiro A, Paulo SL, Vaz SH, Lourenço DM, Ribeiro FF, Soares R, Loureiro-Campos E, Bielefeld P, Sebastião AM, Fernandes A, Pinto L, Fitzsimons CP, Xapelli S. Cannabinoid type 2 receptor inhibition enhances the antidepressant and proneurogenic effects of physical exercise after chronic stress. Transl Psychiatry 2024; 14:170. [PMID: 38555299 PMCID: PMC10981758 DOI: 10.1038/s41398-024-02877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic stress is a major risk factor for neuropsychiatric conditions such as depression. Adult hippocampal neurogenesis (AHN) has emerged as a promising target to counteract stress-related disorders given the ability of newborn neurons to facilitate endogenous plasticity. Recent data sheds light on the interaction between cannabinoids and neurotrophic factors underlying the regulation of AHN, with important effects on cognitive plasticity and emotional flexibility. Since physical exercise (PE) is known to enhance neurotrophic factor levels, we hypothesised that PE could engage with cannabinoids to influence AHN and that this would result in beneficial effects under stressful conditions. We therefore investigated the actions of modulating cannabinoid type 2 receptors (CB2R), which are devoid of psychotropic effects, in combination with PE in chronically stressed animals. We found that CB2R inhibition, but not CB2R activation, in combination with PE significantly ameliorated stress-evoked emotional changes and cognitive deficits. Importantly, this combined strategy critically shaped stress-induced changes in AHN dynamics, leading to a significant increase in the rates of cell proliferation and differentiation of newborn neurons, overall reduction in neuroinflammation, and increased hippocampal levels of BDNF. Together, these results show that CB2Rs are crucial regulators of the beneficial effects of PE in countering the effects of chronic stress. Our work emphasises the importance of understanding the mechanisms behind the actions of cannabinoids and PE and provides a framework for future therapeutic strategies to treat stress-related disorders that capitalise on lifestyle interventions complemented with endocannabinoid pharmacomodulation.
Collapse
Affiliation(s)
- R S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - J B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Barateiro
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - S L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - S H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - F F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - R Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - E Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Fernandes
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - S Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Scott-Dennis M, Rafani FA, Yi Y, Perera T, Harwood CR, Guba W, Rufer AC, Grether U, Veprintsev DB, Sykes DA. Development of a membrane-based Gi-CASE biosensor assay for profiling compounds at cannabinoid receptors. Front Pharmacol 2023; 14:1158091. [PMID: 37637423 PMCID: PMC10450933 DOI: 10.3389/fphar.2023.1158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: The cannabinoid receptor (CBR) subtypes 1 (CB1R) and 2 (CB2R) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CB1R and CB2R are Gαi protein-coupled receptors but detecting Gαi protein signalling activity reliably and reproducibly is challenging. This is due to the inherent variability in live cell-based assays and restrictions around the use of radioactive [35S]-GTPγS, a favoured technology for developing higher-throughput membrane-based Gαi protein activity assays. Methods: Here, we describe the development of a membrane-based Gαi signalling system, produced from membrane preparations of HEK293TR cells, stably overexpressing CB1R or CB2R, and components of the Gαi-CASE biosensor. This BRET-based system allows direct detection of Gαi signalling in both cells and membranes by monitoring bioluminescence resonance energy transfer (BRET) between the α and the βγ subunits. Cells and membranes were subject to increasing concentrations of reference cannabinoid compounds, with 10 μM furimazine added to generate RET signals, which were detected on a PHERAstar FSX plate reader, then processed using MARS software and analysed in GraphPad PRISM 9.2. Results: In membranes expressing the Gi-CASE biosensor, the cannabinoid ligands profiled were found to show agonist and inverse agonist activity. Agonist activity elicited a decrease in the BRET signal, indicative of receptor activation and G protein dissociation. Inverse agonist activity caused an increase in BRET signal, indicative of receptor inactivation, and the accumulation of inactive G protein. Our membrane-based Gi-CASE NanoBRET system successfully characterised the potency (pEC50) and efficacy (Emax) of CBR agonists and inverse agonists in a 384-well screening format. Values obtained were in-line with whole-cell Gi-CASE assays and consistent with literature values obtained in the GTPγS screening format. Discussion: This novel, membrane-based Gαi protein activation assay is applicable to other Gαi-coupled GPCRs, including orphan receptors, allowing real-time higher-throughput measurements of receptor activation.
Collapse
Affiliation(s)
- Morgan Scott-Dennis
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Fikri A. Rafani
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Yicheng Yi
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Themiya Perera
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Clare R. Harwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Arne C. Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dmitry B. Veprintsev
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| | - David A. Sykes
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| |
Collapse
|
7
|
New LE, Yanagawa Y, McConkey GA, Deuchars J, Deuchars SA. GABAergic regulation of cell proliferation within the adult mouse spinal cord. Neuropharmacology 2023; 223:109326. [PMID: 36336067 DOI: 10.1016/j.neuropharm.2022.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.
Collapse
Affiliation(s)
- Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University, Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Susan A Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
8
|
Tokano M, Matsushita S, Takagi R, Yamamoto T, Kawano M. Extracellular adenosine induces hypersecretion of IL-17A by T-helper 17 cells through the adenosine A2a receptor. Brain Behav Immun Health 2022; 26:100544. [PMID: 36467126 PMCID: PMC9712818 DOI: 10.1016/j.bbih.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
Extracellular adenosine, produced from ATP secreted by neuronal or immune cells, may play a role in endogenous regulation of inflammatory responses. Studies show that adenosine induces hypersecretion of IL-17A by CD4+ T cells upon treatment with an A2aR agonist (PSB0777), and that adenosine-mediated IL-17A hypersecretion is suppressed by the A2aR antagonist (Istradefylline) in humans. However, it is unclear whether A2aR downstream signaling is involved in IL-17A hypersecretion. Here, we show that inhibitors of adenyl cyclase (AC), protein kinase A (PKA), and cAMP response element binding protein (CREB) (which are signaling molecules downstream of the Gs protein coupled to the A2aR), suppress IL-17A production, suggesting that activation of A2aR signaling induces IL-17A production by CD4+ T cells. Furthermore, immune subset studies revealed that adenosine induces hypersecretion of IL-17A by T-helper (Th)17 cells. These results indicate that adenosine is an endogenous modulator of neutrophilic inflammation. Administration of an A2aR antagonist to mice with experimental autoimmune encephalomyelitis led to marked amelioration of symptoms. Thus, inhibitors of the novel A2aR-AC-cAMP-PKA-CREB signaling pathway for IL-17A hypersecretion by TCR-activated Th17 cells suppresses adenosine-mediated IL-17A production, suggesting that it may be an effective treatment for Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Mieko Tokano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Toshimasa Yamamoto
- Department of Neurology, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
9
|
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092658. [PMID: 35566006 PMCID: PMC9101874 DOI: 10.3390/molecules27092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.
Collapse
|
10
|
Finlay DB, Nguyen T, Gamage TF, Chen S, Barrus DG, Patel PR, Thomas BF, Wiley JL, Zhang Y, Glass M. Exploring determinants of agonist efficacy at the CB1 cannabinoid receptor: Analogues of the synthetic cannabinoid receptor agonist EG-018. Pharmacol Res Perspect 2022; 10:e00901. [PMID: 35041297 PMCID: PMC8929370 DOI: 10.1002/prp2.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Neutral antagonists of GPCRs remain relatively rare—indeed, a large majority of GPCR antagonists are actually inverse agonists. The synthetic cannabinoid receptor agonist (SCRA) EG‐018 was recently reported as a low efficacy cannabinoid receptor agonist. Here we report a comparative characterization of EG‐018 and 13 analogues along with extant putative neutral antagonists of CB1. In HEK cells stably expressing human CB1, assays for inhibition of cAMP were performed by real‐time BRET biosensor (CAMYEL), G protein cycling was quantified by [35S]GTPγS binding, and stimulation of pERK was characterized by AlphaLISA (PerkinElmer). Signaling outcomes for the EG‐018 analogues were highly variable, ranging from moderate efficacy agonism with high potency, to marginal agonism at lower potency. As predicted by differing pathway sensitivities to differences in ligand efficacy, most EG‐018‐based compounds were completely inactive in pERK alone. The lowest efficacy analogue in cAMP assays, 157, had utility in antagonism assay paradigms. Developing neutral antagonists of the CB1 receptor has been a long‐standing research goal, and such compounds would have utility both as research tools and in therapeutics. Although these results emphasize again the importance of system factors in determining signaling outcomes, some compounds characterized in this study appear among the lowest efficacy agonists described to date and therefore suggest that development of neutral antagonists is an achievable goal for CB1.
Collapse
Affiliation(s)
- David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Thuy Nguyen
- RTI International, Research Triangle Park, North Carolina, USA
| | - Thomas F Gamage
- RTI International, Research Triangle Park, North Carolina, USA
| | - Shuli Chen
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel G Barrus
- RTI International, Research Triangle Park, North Carolina, USA
| | - Purvi R Patel
- RTI International, Research Triangle Park, North Carolina, USA
| | - Brian F Thomas
- RTI International, Research Triangle Park, North Carolina, USA
| | - Jenny L Wiley
- RTI International, Research Triangle Park, North Carolina, USA
| | - Yanan Zhang
- RTI International, Research Triangle Park, North Carolina, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
12
|
Amara Babu NLA, Koganti K, Palakeeti B, Srinivas KSV, Rao KP. Development of an efficient stability-indicating LC-MS/MS method for the analysis of selexipag and characterization of its degradation products. Biomed Chromatogr 2021; 35:e5178. [PMID: 33998014 DOI: 10.1002/bmc.5178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
A new RP-HPLC method with a quick, sensitive and stable indication for the quantitative measurement of selexipag and its associated substances was developed and validated in the present study. In this new method, using the impurity-spiked solution, the chromatographic approach was optimized. Similarly, using the X-bridge phenyl column with isocratic elution of mobile phase containing acetonitrile and formic acid, selexipag and its impurities were separated. Recovery experiments obtained were satisfactory, and also the calibration graphs plotted for selexipag and its five impurities were found to be linear. The system validation parameters such as specificity, linearity, precision, accuracy and robustness were determined successfully. The obtained results indicated that the developed method was found to be useful for analyzing selexipag from its impurities. Further, using stress tests against acid, alkali, peroxide, reduction, thermal, hydrolysis and UV conditions, the present established method of HPLC was assessed and validated as per ICH Q2(R1) guidelines.
Collapse
Affiliation(s)
- Namburi L A Amara Babu
- New Generation Materials Lab (NGML), Department of Science and Humanities, Vignan's Foundation for Science, Technology and Research (VFSTR) (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Kalyani Koganti
- New Generation Materials Lab (NGML), Department of Science and Humanities, Vignan's Foundation for Science, Technology and Research (VFSTR) (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Babji Palakeeti
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Koya Prabhakara Rao
- New Generation Materials Lab (NGML), Department of Science and Humanities, Vignan's Foundation for Science, Technology and Research (VFSTR) (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| |
Collapse
|
13
|
Marsh DT, Smid SD. Cannabis Phytochemicals: A Review of Phytocannabinoid Chemistry and Bioactivity as Neuroprotective Agents. Aust J Chem 2021. [DOI: 10.1071/ch20183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the advent of medical cannabis usage globally, there has been a renewed interest in exploring the chemical diversity of this unique plant. Cannabis produces hundreds of unique phytocannabinoids, which not only have diverse chemical structures but also a range of cellular and molecular actions, interesting pharmacological properties, and biological actions. In addition, it produces other flavonoids, stilbenoids, and terpenes that have been variably described as conferring additional or so-called entourage effects to whole-plant extracts when used in therapeutic settings. This review explores this phytochemical diversity in relation to specific bioactivity ascribed to phytocannabinoids as neuroprotective agents. It outlines emergent evidence for the potential for selected phytocannabinoids and other cannabis phytochemicals to mitigate factors such as inflammation and oxidative stress as drivers of neurotoxicity, in addition to focusing on specific interactions with pathological misfolding proteins, such as amyloid β, associated with major forms of neurodegenerative diseases such as Alzheimer’s disease.
Collapse
|
14
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
15
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
16
|
Hong JY, Lee JS, Woo HW, Om AS, Kwock CK, Kim MK. Meta-analysis of randomized controlled trials on calcium supplements and dairy products for changes in body weight and obesity indices. Int J Food Sci Nutr 2020; 72:615-631. [PMID: 33292017 DOI: 10.1080/09637486.2020.1856794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This meta-analysis was performed to investigate whether calcium supplements and dairy products change obesity indices including fat mass. Original articles published in English between July 2009 and August 2019 were identified. Ten and 14 randomised controlled trials (RCTs) with ≥ 12 weeks interventions of calcium supplements and dairy products among overweight or obese adults aged ≥18 were critically reviewed. Mean difference (MD) or standardised mean difference (SMD) with 95% confidence interval (CI) were obtained using a random effect meta-analysis. Dairy products significantly changed fat mass (SMD, 95% CI; -0.40 [-0.77, -0.02]) and BMI (MD, 95% CI: -0.46 kg/m2 [-0.67, -0.26]), and calcium supplements also showed changes in fat mass (SMD, 95% CI; -0.15[-0.28, -0.02]). However, in the analysis of RCTs with low risk of bias scores, the significant changes remained only in the dairy-products intervention. Our findings suggest that dairy products without distinction of fat percentage may help reduce fat mass and BMI, but calcium supplements may not.
Collapse
Affiliation(s)
- Jee Yeon Hong
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Korea.,Institute for Health and Society, Hanyang University, Seoul, Korea.,Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
| | - Ji Seon Lee
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Korea.,Institute for Health and Society, Hanyang University, Seoul, Korea
| | - Hye Won Woo
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Korea.,Institute for Health and Society, Hanyang University, Seoul, Korea
| | - Ae Son Om
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
| | | | - Mi Kyung Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Korea.,Institute for Health and Society, Hanyang University, Seoul, Korea
| |
Collapse
|
17
|
In Vitro Effects of Ligand Bias on Primate Mu Opioid Receptor Downstream Signaling. Int J Mol Sci 2020; 21:ijms21113999. [PMID: 32503269 PMCID: PMC7312292 DOI: 10.3390/ijms21113999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Interest has emerged in biased agonists at the mu opioid receptor (MOR) as a possible means for maintaining potent analgesis with reduced side effect profiles. While approaches measuring in vitro biased agonism are used in the development of these compounds, their therapeutic utility will ultimately be determined by in vivo functional effects. Nonhuman primates (NHPs) are the most translational model for evaluating the behavioral effects of candidate medications, but biased signaling of these drugs at NHP MOR receptors has been unstudied. The goal of the current work was to characterize MOR ligand bias in rhesus macaques, focusing on agonists that have previously been reported to show different patterns of biased agonism in rodents and humans. Downstream signaling pathways that responded to MOR activation were identified using a luciferase reporter array. Concentration-response curves for specific pathways (cAMP, NF-ĸB, MAPK/JNK) were generated using six agonists previously reported to differ in terms of signaling bias at rodent and human MORs. Using DAMGO as a reference ligand, relative cAMP, NF-ĸB and MAPK/JNK signaling by morphine, endomorphin-1, and TRV130 were found to be comparable between species. Further, the bias patterns of across ligands for NF-ĸB and MAPK/JNK were largely similar between species. There was a high degree of concordance between rhesus macaque and human MOR receptor signaling bias for all agonists tested, further demonstrating their utility for future translational behavioral studies.
Collapse
|
18
|
Zádor F, Nagy-Grócz G, Dvorácskó S, Bohár Z, Cseh EK, Zádori D, Párdutz Á, Szűcs E, Tömböly C, Borsodi A, Benyhe S, Vécsei L. Long-term systemic administration of kynurenic acid brain region specifically elevates the abundance of functional CB 1 receptors in rats. Neurochem Int 2020; 138:104752. [PMID: 32445659 DOI: 10.1016/j.neuint.2020.104752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Kynurenic acid (KYNA) is one of the most significant metabolite of the kynurenine pathway both in terms of functional and potential therapeutic value. It is an N-methyl-D-aspartate (NMDA) receptor antagonist, but it can also activate the G-protein coupled receptor 35 (GPR35), which shares several structural and functional properties with cannabinoid receptors. Previously our group demonstrated that systemic chronic KYNA treatment altered opioid receptor G-protein activity. Opioid receptors also overlap in many features with cannabinoid receptors. Thus, our aim was to examine the direct in vitro and systemic, chronic in vivo effect of KYNA on type 1 cannabinoid receptor (CB1R) binding and G-protein activity. Based on competition and [35S]GTPγS G-protein binding assays in rat brain, KYNA alone did not show significant binding towards the CB1R, nor did it alter CB1R ligand binding and agonist activity in vitro. When rats were chronically treated with KYNA (single daily, i.p., 128 mg/kg for 9 days), the KYNA plasma and cerebrospinal fluid levels significantly increased compared to vehicle treated group. Furthermore, in G-protein binding assays, in the whole brain the amount of G-proteins in basal and in maximum activity coupled to the CB1R also increased due to the treatment. At the same time, the overall stimulatory properties of the receptor remained unaltered in vehicle and KYNA treated samples. Similar observations were made in rat hippocampus, but not in the cortex and brainstem. In saturation binding assays the density of CB1Rs in rat whole brain and hippocampus were also significantly enhanced after the same treatment, without significantly affecting ligand binding affinity. Thus, KYNA indirectly and brain region specifically increases the abundance of functional CB1Rs, without modifying the overall binding and activity of the receptor. Supposedly, this can be a compensatory mechanism on the part of the endocannabinoid system induced by the long-term KYNA exposure.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary.
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Temesvári krt. 31, H-6726, Hungary; Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Department of Medical Chemistry University of Szeged, Szeged, Dóm tér 8, H-6720, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| |
Collapse
|
19
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
20
|
Tannic acid acts as an agonist of the dopamine D2L receptor, regulates immune responses, and ameliorates experimentally induced colitis in mice. Brain Behav Immun Health 2020; 5:100071. [PMID: 34589853 PMCID: PMC8474654 DOI: 10.1016/j.bbih.2020.100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tannic acid (TA) is an herbal polyphenol containing a galloyl group that has been prescribed to treat gastroenteritis, diarrhea, and irritable bowel syndrome. TA has anti-inflammatory, anti-cancer, and anti-viral properties; however, the molecular mechanisms of these potential therapeutic effects are still largely unknown. Here, we examined the ability of TA to induce anti-inflammatory responses. TA was found to be an agonist of the dopamine D2L receptor. TA reduced interferon (IFN)-γ and interleukin (IL)-1β secretion but upregulated tumor necrosis factor α and IL-10 secretion from lipopolysaccharide (LPS)-stimulated mouse splenocytes. TA also reduced IFN-γ secretion but enhanced IL-10 secretion from anti-cluster of differentiation (CD) 3/CD28 antibody-stimulated splenocytes. An immune subset study confirmed that TA regulated cytokine secretion by various types of immune cells in the context of stimulation with LPS or anti-CD3/CD28 antibodies. Administration of TA to mice with experimentally induced colitis strikingly suppressed weight loss, colon shrinkage, and IL-17 secretion from mesenteric lymph node lymphocytes in response to CD3/CD28 stimulation. These data suggest that TA suppresses inflammatory responses in colitis by regulating cytokine secretion by immune cells in the colon. Tannic acid is an agonist of the dopamine D2L receptor. Tannic acid suppresses IFN-γ secretion by LPS-stimulated splenocytes. Tannic acid modulates anti-CD3/CD28 antibody-stimulated cytokine levels in CD4+ T cells. Tannic acid ameliorates dextran sodium salt (DSS)-induced colitis in C57BL/6 mice. Tannic acid reduces production of IL-17 in DSS-induced colitis.
Collapse
|
21
|
Hirayama S, Fujii H. δ Opioid Receptor Inverse Agonists and their In Vivo Pharmacological Effects. Curr Top Med Chem 2020; 20:2889-2902. [PMID: 32238139 DOI: 10.2174/1568026620666200402115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
The discovery of δ opioid receptor inverse agonist activity induced by ICI-174,864, which was previously reported as an δ opioid receptor antagonist, opened the door for the investigation of inverse agonism/constitutive activity of the receptors. Various peptidic or non-peptidic δ opioid receptor inverse agonists have since been developed. Compared with the reports dealing with in vitro inverse agonist activities of novel compounds or known compounds as antagonists, there have been almost no publications describing the in vivo pharmacological effects induced by a δ opioid receptor inverse agonist. After the observation of anorectic effects with the δ opioid receptor antagonism was discussed in the early 2000s, the short-term memory improving effects and antitussive effects have been very recently reported as possible pharmacological effects induced by a δ opioid receptor inverse agonist. In this review, we will survey the developed δ opioid receptor inverse agonists and summarize the possible in vivo pharmacological effects by δ opioid receptor inverse agonists. Moreover, we will discuss important issues involved in the investigation of the in vivo pharmacological effects produced by a δ opioid receptor inverse agonist.
Collapse
Affiliation(s)
- Shigeto Hirayama
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
22
|
Di Giovanni G, Chagraoui A, Bharatiya R, De Deurwaerdère P. Serotonergic control of excitability: from neuron to networks. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020. [DOI: 10.1016/b978-0-444-64125-0.00010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Allosteric Modulation of Cannabinoid Receptor 1-Current Challenges and Future Opportunities. Int J Mol Sci 2019; 20:ijms20235874. [PMID: 31771126 PMCID: PMC6928801 DOI: 10.3390/ijms20235874] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
The cannabinoid receptor type 1 (CB1R), a G protein-coupled receptor (GPCR), plays an essential role in the control of many physiological processes such as hunger, memory loss, gastrointestinal activity, catalepsy, fear, depression, and chronic pain. Therefore, it is an attractive target for drug discovery to manage pain, neurodegenerative disorders, obesity, and substance abuse. However, the psychoactive adverse effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R ligands as drugs. The discovery of CB1R allosteric modulators during the last decade provided new tools to target the CB1R. Moreover, application of the site-directed mutagenesis in combination with advanced physical methods, especially X-ray crystallography and computational modeling, has opened new horizons for understanding the complexity of the structure, function, and activity of cannabinoid receptors. In this paper, we present the latest advances in research on the CB1R, its allosteric modulation and allosteric ligands, and their translational potential. We focused on structural essentials of the cannabinoid 1 receptor- ligand (drug) interactions, as well as modes of CB1R signaling regulation.
Collapse
|
24
|
Wifling D, Pfleger C, Kaindl J, Ibrahim P, Kling RC, Buschauer A, Gohlke H, Clark T. Basal Histamine H 4 Receptor Activation: Agonist Mimicry by the Diphenylalanine Motif. Chemistry 2019; 25:14613-14624. [PMID: 31498478 PMCID: PMC7687114 DOI: 10.1002/chem.201902801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/08/2019] [Indexed: 12/20/2022]
Abstract
Histamine H4 receptor (H4 R) orthologues are G-protein-coupled receptors (GPCRs) that exhibit species-dependent basal activity. In contrast to the basally inactive mouse H4 R (mH4 R), human H4 R (hH4 R) shows a high degree of basal activity. We have performed long-timescale molecular dynamics simulations and rigidity analyses on wild-type hH4 R, the experimentally characterized hH4 R variants S179M, F169V, F169V+S179M, F168A, and on mH4 R to investigate the molecular nature of the differential basal activity. H4 R variant-dependent differences between essential motifs of GPCR activation and structural stabilities correlate with experimentally determined basal activities and provide a molecular explanation for the differences in basal activation. Strikingly, during the MD simulations, F16945.55 dips into the orthosteric binding pocket only in the case of hH4 R, thus adopting the role of an agonist and contributing to the stabilization of the active state. The results shed new light on the molecular mechanism of basal H4 R activation that are of importance for other GPCRs.
Collapse
Affiliation(s)
- David Wifling
- Department of Pharmaceutical/Medicinal Chemistry IIInstitute of PharmacyUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Jonas Kaindl
- Computer Chemistry CenterDepartment of Chemistry and PharmacyUniversity of Erlangen-NürnbergNägelsbachstr. 2591052ErlangenGermany
| | - Passainte Ibrahim
- Computer Chemistry CenterDepartment of Chemistry and PharmacyUniversity of Erlangen-NürnbergNägelsbachstr. 2591052ErlangenGermany
| | - Ralf C. Kling
- Computer Chemistry CenterDepartment of Chemistry and PharmacyUniversity of Erlangen-NürnbergNägelsbachstr. 2591052ErlangenGermany
| | - Armin Buschauer
- Department of Pharmaceutical/Medicinal Chemistry IIInstitute of PharmacyUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
- John von Neumann Institute for Computing (NIC)Jülich Supercomputing Centre (JSC) &Institute for Complex Systems—Structural Biochemistry (ICS 6)Forschungszentrum Jülich GmbHWilhelm-Johnen-Str.52425JülichGermany
| | - Timothy Clark
- Computer Chemistry CenterDepartment of Chemistry and PharmacyUniversity of Erlangen-NürnbergNägelsbachstr. 2591052ErlangenGermany
| |
Collapse
|
25
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
26
|
Abstract
A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs. Although this is a fairly newly discovered phenomenon, theoretical and experimental data suggest that it is a ubiquitous behavior of ligands and receptors and to be expected. Biased signaling is simple to detect in vitro and there are numerous methods to quantify the effect with scales that can be used to optimize this activity in structure-activity medicinal chemistry studies. At present, the major hurdle in the application of this mechanism to therapeutics is the translation of in vitro bias to in vivo effect; this is because of the numerous factors that can modify measures of bias in natural physiologic systems. In spite of this, biased signaling still has the potential to justify revisiting of receptor targets previously thought to be intractable and also furnishes the means to pursue targets previously thought to be forbidden due to deleterious physiology (as these may be eliminated through biased signaling).
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Fukushima K, Otagaki S, Takahashi K, Minami K, Ishimoto K, Fukushima N, Honoki K, Tsujiuchi T. Promotion of cell-invasive activity through the induction of LPA receptor-1 in pancreatic cancer cells. J Recept Signal Transduct Res 2018; 38:367-371. [DOI: 10.1080/10799893.2018.1531889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kaori Fukushima
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Shiho Otagaki
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Kaede Takahashi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Kanako Minami
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Kaichi Ishimoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
28
|
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:169-192. [PMID: 28828731 DOI: 10.1007/5584_2017_92] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Parravicini
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
29
|
Abstract
Opioids are the most commonly used and effective analgesic treatments for severe pain, but they have recently come under scrutiny owing to epidemic levels of abuse and overdose. These compounds act on the endogenous opioid system, which comprises four G protein-coupled receptors (mu, delta, kappa, and nociceptin) and four major peptide families (β-endorphin, enkephalins, dynorphins, and nociceptin/orphanin FQ). In this review, we first describe the functional organization and pharmacology of the endogenous opioid system. We then summarize current knowledge on the signaling mechanisms by which opioids regulate neuronal function and neurotransmission. Finally, we discuss the loci of opioid analgesic action along peripheral and central pain pathways, emphasizing the pain-relieving properties of opioids against the affective dimension of the pain experience.
Collapse
Affiliation(s)
- Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA
| | - Daniel C Castro
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA; .,Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA.,New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, California 94304, USA
| |
Collapse
|
30
|
Takkinen JS, López-Picón FR, Kirjavainen AK, Pihlaja R, Snellman A, Ishizu T, Löyttyniemi E, Solin O, Rinne JO, Haaparanta-Solin M. [ 18F]FMPEP-d 2 PET imaging shows age- and genotype-dependent impairments in the availability of cannabinoid receptor 1 in a mouse model of Alzheimer's disease. Neurobiol Aging 2018; 69:199-208. [PMID: 29909177 DOI: 10.1016/j.neurobiolaging.2018.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
Contradictory findings on the role of the type 1 cannabinoid receptor (CB1R) during the pathogenesis of Alzheimer's disease (AD) have been reported. Here, we evaluated the CB1R brain profile in an AD mouse model using longitudinal positron emission tomography with an inverse agonist for CB1R, [18F]FMPEP-d2. APP/PS1-21 and wild-type (n = 8 in each group) mice were repeatedly imaged between 6 to 15 months of age, accompanied by brain autoradiography, western blot, and CB1R immunohistochemistry with additional mice. [18F]FMPEP-d2 positron emission tomography demonstrated lower (p < 0.05) binding ratios in the parietotemporal cortex and hippocampus of APP/PS1-21 mice compared with age-matched wild-type mice. Western blot demonstrated no differences between APP/PS1-21 and wild-type mice in the CB1R abundance, whereas significantly lower (p < 0.05) receptor expression was observed in male than female mice. The results provide the first demonstration that [18F]FMPEP-d2 is a promising imaging tool for AD research in terms of CB1R availability, but not expression. This finding may further facilitate the development of novel therapeutic approaches based on endocannabinoid regulation.
Collapse
Affiliation(s)
- Jatta S Takkinen
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland; Doctoral Programme in Clinical Research, University of Turku, Turku, Finland.
| | - Francisco R López-Picón
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Anna K Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Rea Pihlaja
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Anniina Snellman
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Tamiko Ishizu
- MediCity Research Laboratory, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland; Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Merja Haaparanta-Solin
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
31
|
Guo D, Peletier LA, Bridge L, Keur W, de Vries H, Zweemer A, Heitman LH, IJzerman AP. A two-state model for the kinetics of competitive radioligand binding. Br J Pharmacol 2018; 175:1719-1730. [PMID: 29486053 PMCID: PMC5913406 DOI: 10.1111/bph.14184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose Ligand–receptor binding kinetics is receiving increasing attention in the drug research community. The Motulsky and Mahan model, a one‐state model, offers a method for measuring the binding kinetics of an unlabelled ligand, with the assumption that the labelled ligand has no preference while binding to distinct states or conformations of a drug target. As such, the one‐state model is not applicable if the radioligand displays biphasic binding kinetics to the receptor. Experimental Approach We extended the Motulsky and Mahan model to a two‐state model, in which the kinetics of the unlabelled competitor binding to different receptor states (R1 and R2) can be measured. With this extended model, we determined the binding kinetics of unlabelled N‐5′‐ethylcarboxamidoadenosine (NECA), a representative agonist for the adenosine A1 receptor. Subsequently, an application of the model was exemplified by measuring the binding kinetics of other A1 receptor ligands. In addition, limitations of the model were investigated as well. Key Results The kinetic rate constants of unlabelled NECA were comparable with the results of kinetic radioligand binding assays in which [3H]‐NECA was used. The model was further validated by good correlation between simulated results and the experimental data. Conclusion The two‐state model is sufficient to analyse the binding kinetics of an unlabelled ligand, when a radioligand shows biphasic association characteristics. We expect this two‐state model to have general applicability for other targets as well.
Collapse
Affiliation(s)
- Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | | | - Lloyd Bridge
- Department of Mathematics, Swansea University, Swansea, UK.,Department of Engineering Design and Mathematics, University of the West of England, Bristol, UK
| | - Wesley Keur
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Henk de Vries
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Annelien Zweemer
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| |
Collapse
|
32
|
Tréfier A, Pellissier LP, Musnier A, Reiter E, Guillou F, Crépieux P. G Protein-Coupled Receptors As Regulators of Localized Translation: The Forgotten Pathway? Front Endocrinol (Lausanne) 2018; 9:17. [PMID: 29456523 PMCID: PMC5801404 DOI: 10.3389/fendo.2018.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptors (GPCRs) exert their physiological function by transducing a complex signaling network that coordinates gene expression and dictates the phenotype of highly differentiated cells. Much is known about the gene networks they transcriptionally regulate upon ligand exposure in a process that takes hours before a new protein is synthesized. However, far less is known about GPCR impact on the translational machinery and subsequent mRNA translation, although this gene regulation level alters the cell phenotype in a strikingly different timescale. In fact, mRNA translation is an early response kinetically connected to signaling events, hence it leads to the synthesis of a new protein within minutes following receptor activation. By these means, mRNA translation is responsive to subtle variations of the extracellular environment. In addition, when restricted to cell subcellular compartments, local mRNA translation contributes to cell micro-specialization, as observed in synaptic plasticity or in cell migration. The mechanisms that control where in the cell an mRNA is translated are starting to be deciphered. But how an extracellular signal triggers such local translation still deserves extensive investigations. With the advent of high-throughput data acquisition, it now becomes possible to review the current knowledge on the translatome that some GPCRs regulate, and how this information can be used to explore GPCR-controlled local translation of mRNAs.
Collapse
Affiliation(s)
- Aurélie Tréfier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Lucie P. Pellissier
- Déficit de Récompense, GPCR et sociabilité, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Astrid Musnier
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Eric Reiter
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Florian Guillou
- Plasticité Génomique et Expression Phénotypique, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Pascale Crépieux
- Biologie et Bioinformatique des Systèmes de Signalisation, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
- *Correspondence: Pascale Crépieux,
| |
Collapse
|
33
|
Chen W, Ennes HS, McRoberts JA, Marvizón JC. Mechanisms of μ-opioid receptor inhibition of NMDA receptor-induced substance P release in the rat spinal cord. Neuropharmacology 2017; 128:255-268. [PMID: 29042318 DOI: 10.1016/j.neuropharm.2017.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 01/17/2023]
Abstract
The interaction between NMDA receptors and μ-opioid receptors in primary afferent terminals was studied by using NMDA to induce substance P release, measured as neurokinin 1 receptor internalization. In rat spinal cord slices, the μ-opioid receptor agonists morphine, DAMGO and endomorphin-2 inhibited NMDA-induced substance P release, whereas the antagonist CTAP right-shifted the concentration response of DAMGO. In vivo, substance P release induced by intrathecal NMDA after priming with BDNF was inhibited by DAMGO. ω-Conotoxins MVIIC and GVIA inhibited about half of the NMDA-induced substance P release, showing that it was partially mediated by the opening of voltage-gated calcium (Cav) channels. In contrast, DAMGO or ω-conotoxins did not inhibit capsaicin-induced substance P release. In cultured DRG neurons, DAMGO but not ω-conotoxin inhibited NMDA-induced increases in intracellular calcium, indicating that μ-opioid receptors can inhibit NMDA receptor function by mechanisms other than inactivation of Cav channels. Moreover, DAMGO decreased the ω-conotoxin-insensitive component of the substance P release. Potent inhibition by ifenprodil showed that these NMDA receptors have the NR2B subunit. Activators of adenylyl cyclase and protein kinase A (PKA) induced substance P release and this was decreased by the NMDA receptor blocker MK-801 and by DAMGO. Conversely, inhibitors of adenylyl cyclase and PKA, but not of protein kinase C, decreased NMDA-induced substance P release. Hence, these NMDA receptors are positively modulated by the adenylyl cyclase-PKA pathway, which is inhibited by μ-opioid receptors. In conclusion, μ-opioid receptors inhibit NMDA receptor-induced substance P release through Cav channel inactivation and adenylyl cyclase inhibition.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA 90073, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Helena S Ennes
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - James A McRoberts
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA 90073, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Molecular Pharmacology of Phytocannabinoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 103:61-101. [PMID: 28120231 DOI: 10.1007/978-3-319-45541-9_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cannabis sativa has been used for recreational, therapeutic and other uses for thousands of years. The plant contains more than 120 C21 terpenophenolic constituents named phytocannabinoids. The Δ9-tetrahydrocannabinol type class of phytocannabinoids comprises the largest proportion of the phytocannabinoid content. Δ9-tetrahydrocannabinol was first discovered in 1971. This led to the discovery of the endocannabinoid system in mammals, including the cannabinoid receptors CB1 and CB2. Δ9-Tetrahydrocannabinol exerts its well-known psychotropic effects through the CB1 receptor but this effect of Δ9-tetrahydrocannabinol has limited the use of cannabis medicinally, despite the therapeutic benefits of this phytocannabinoid. This has driven research into other targets outside the endocannabinoid system and has also driven research into the other non-psychotropic phytocannabinoids present in cannabis. This chapter presents an overview of the molecular pharmacology of the seven most thoroughly investigated phytocannabinoids, namely Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabivarin, cannabinol, cannabidiol, cannabidivarin, cannabigerol, and cannabichromene. The targets of these phytocannabinoids are defined both within the endocannabinoid system and beyond. The pharmacological effect of each individual phytocannabinoid is important in the overall therapeutic and recreational effect of cannabis and slight structural differences can elicit diverse and competing physiological effects. The proportion of each phytocannabinoid can be influenced by various factors such as growing conditions and extraction methods. It is therefore important to investigate the pharmacology of these seven phytocannabinoids further, and characterise the large number of other phytocannabinoids in order to better understand their contributions to the therapeutic and recreational effects claimed for the whole cannabis plant and its extracts.
Collapse
|
35
|
De Min A, Matera C, Bock A, Holze J, Kloeckner J, Muth M, Traenkle C, De Amici M, Kenakin T, Holzgrabe U, Dallanoce C, Kostenis E, Mohr K, Schrage R. A New Molecular Mechanism To Engineer Protean Agonism at a G Protein-Coupled Receptor. Mol Pharmacol 2017; 91:348-356. [PMID: 28167741 DOI: 10.1124/mol.116.107276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/02/2017] [Indexed: 02/14/2025] Open
Abstract
Protean agonists are of great pharmacological interest as their behavior may change in magnitude and direction depending on the constitutive activity of a receptor. Yet, this intriguing phenomenon has been poorly described and understood, due to the lack of stable experimental systems and design strategies. In this study, we overcome both limitations: First, we demonstrate that modulation of the ionic strength in a defined experimental set-up allows for analysis of G protein-coupled receptor activation in the absence and presence of a specific amount of spontaneous receptor activity using the muscarinic M2 acetylcholine receptor as a model. Second, we employ this assay system to show that a dualsteric design principle, that is, molecular probes, carrying two pharmacophores to simultaneously adopt orthosteric and allosteric topography within a G protein-coupled receptor, may represent a novel approach to achieve protean agonism. We pinpoint three molecular requirements within dualsteric compounds that elicit protean agonism at the muscarinic M2 acetylcholine receptor. Using radioligand-binding and functional assays, we posit that dynamic ligand binding may be the mechanism underlying protean agonism of dualsteric ligands. Our findings provide both new mechanistic insights into the still enigmatic phenomenon of protean agonism and a rationale for the design of such compounds for a G protein-coupled receptor.
Collapse
Affiliation(s)
- Anna De Min
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Carlo Matera
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Andreas Bock
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Janine Holze
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Jessica Kloeckner
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Mathias Muth
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Christian Traenkle
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Marco De Amici
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Ulrike Holzgrabe
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Clelia Dallanoce
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Evi Kostenis
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Ramona Schrage
- Pharmacology and Toxicology Section, Institute of Pharmacy (A.D.M., J.H., C.T., K.M., R.S.), Research Training Group 1873 (A.D.M., E.K., K.M.), and Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology (E.K.), University of Bonn, Bonn, Germany; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (C.M., M.D.A., C.D.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (A.B.); Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., M.M., U.H.); and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
36
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Regulation of cannabinoid CB 2 receptor constitutive activity in vivo: repeated treatments with inverse agonists reverse the acute activation of JNK and associated apoptotic signaling in mouse brain. Psychopharmacology (Berl) 2017; 234:925-941. [PMID: 28127623 DOI: 10.1007/s00213-017-4537-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/07/2017] [Indexed: 01/29/2023]
Abstract
RATIONALE CB2 receptors express constitutive activity and inverse agonists regulate receptor basal activity, which might be involved in death mechanisms. This study assessed the effects of a selective CB2 agonist (JWH133) and different CB2 inverse agonists (AM630, JTE907, raloxifene) on death pathways in brain. OBJECTIVES The acute (JWH13) and the acute/chronic effects (AM630, JTE907, raloxifene) of CB2 ligands regulating pro-apoptotic c-Jun NH2-terminal kinase (p-JNK/JNK ratio) and associated signaling of extrinsic (Fas receptor, Fas-Associated death domain protein, FADD) and intrinsic (Bax, cytochrome c) death pathways (nuclear poly (ADP-ribose) polymerase PARP) were investigated in mouse brain. METHODS Mice were treated with CB2 drugs and target protein contents were assessed by western blot analysis. RESULTS JWH133 reduced cortical JNK (-27-45%) whereas AM630 acutely increased JNK in cortex (+61-148%), cerebellum (+34-40%), and striatum (+33-42%). JTE907 and raloxifene also increased cortical JNK (+31%-57%). Acute AM630, but not JWH133, increased cortical FADD, Bax, cytochrome c, and PARP cleavage. Repeated treatments with the three CB2 inverse agonists were associated with a reversal of the acute effects resulting in decreases in cortical JNK (AM630: -36%; JTE907: -25%; raloxifene: -11%). Chronic treatments also induced a reversal with down-regulation (AM630) or only tolerance (JTE907 and raloxifene) on other apoptotic markers (FADD, Bax, cytochrome c, PARP). CONCLUSIONS AM630 and JTE907 are CB2 protean ligands. Thus, chronic inverse agonists abolished CB2 constitutive activity and then the ligands behaved as agonists reducing (like JWH133) JNK activity. Acute and chronic treatments with CB2 inverse agonists regulate in opposite directions brain death markers.
Collapse
Affiliation(s)
- Glòria Salort
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - María Álvaro-Bartolomé
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
37
|
Park YJ, Lee SK, Jung YS, Lee M, Lee HY, Kim SD, Park JS, Koo J, Hwang JS, Bae YS. Promotion of formyl peptide receptor 1-mediated neutrophil chemotactic migration by antimicrobial peptides isolated from the centipede Scolopendra subspinipes mutilans. BMB Rep 2017; 49:520-5. [PMID: 27502013 PMCID: PMC5227146 DOI: 10.5483/bmbrep.2016.49.9.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
We investigated the effects of two antimicrobial peptides (AMPs) isolated from Scolopendra subspinipes mutilans on neutrophil activity. Stimulation of mouse neutrophils with the two AMPs elicited chemotactic migration of the cells in a pertussis toxin-sensitive manner. The two AMPs also stimulated activation of ERK and Akt, which contribute to chemotactic migration of neutrophils. We found that AMP-stimulated neutrophil chemotaxis was blocked by a formyl peptide receptor (FPR) 1 antagonist (cyclosporin H); moreover the two AMPs stimulated the chemotactic migration of FPR1-expressing RBL-2H3 cells but not of vector-expressing RBL-2H3 cells. We also found that the two AMPs stimulate neutrophil migration in vivo, and that this effect is blocked in FPR1-deficient mice. Taken together, our results suggest that the two AMPs stimulate neutrophils, leading to chemotactic migration through FPR1, and the two AMPs will be useful for the study of FPR1 signaling and neutrophil activation. [BMB Reports 2016; 49(9): 520-525]
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sung Kyun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Young Su Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Doo Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
38
|
Liu Y, Canal CE, Cordova-Sintjago TC, Zhu W, Booth RG. Mutagenesis Analysis Reveals Distinct Amino Acids of the Human Serotonin 5-HT 2C Receptor Underlying the Pharmacology of Distinct Ligands. ACS Chem Neurosci 2017; 8:28-39. [PMID: 27580242 DOI: 10.1021/acschemneuro.6b00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While exploring the structure-activity relationship of 4-phenyl-2-dimethylaminotetralins (PATs) at serotonin 5-HT2C receptors, we discovered that relatively minor modification of PAT chemistry impacts function at 5-HT2C receptors. In HEK293 cells expressing human 5-HT2C-INI receptors, for example, (-)-trans-3'-Br-PAT and (-)-trans-3'-Cl-PAT are agonists regarding Gαq-inositol phosphate signaling, whereas (-)-trans-3'-CF3-PAT is an inverse agonist. To investigate the ligand-receptor interactions that govern this change in function, we performed site-directed mutagenesis of 14 amino acids of the 5-HT2C receptor based on molecular modeling and reported G protein-coupled receptor crystal structures, followed by molecular pharmacology studies. We found that S3.36, T3.37, and F5.47 in the orthosteric binding pocket are critical for affinity (Ki) of all PATs tested, we also found that F6.44, M6.47, C7.45, and S7.46 are primarily involved in regulating EC/IC50 functional potencies of PATs. We discovered that when residue S5.43, N6.55, or both are mutated to alanine, (-)-trans-3'-CF3-PAT switches from inverse agonist to agonist function, and when N6.55 is mutated to leucine, (-)-trans-3'-Br-PAT switches from agonist to inverse agonist function. Notably, most point-mutations that affected PAT pharmacology did not significantly alter affinity (KD) of the antagonist radioligand [3H]mesulergine, but every mutation tested negatively impacted serotonin binding. Also, amino acid mutations differentially affected the pharmacology of other commercially available 5-HT2C ligands tested. Collectively, the data show that functional outcomes shared by different ligands are mediated by different amino acids and that some 5-HT2C receptor residues important for pharmacology of one ligand are not necessarily important for another ligand.
Collapse
Affiliation(s)
- Yue Liu
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, and Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Clinton E. Canal
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, and Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tania C. Cordova-Sintjago
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, and Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Wanying Zhu
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, and Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Raymond G. Booth
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, and Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
39
|
|
40
|
Dore A, Asproni B, Scampuddu A, Gessi S, Murineddu G, Cichero E, Fossa P, Merighi S, Bencivenni S, Pinna GA. Synthesis, molecular modeling and SAR study of novel pyrazolo[5,1-f][1,6]naphthyridines as CB 2 receptor antagonists/inverse agonists. Bioorg Med Chem 2016; 24:5291-5301. [PMID: 27624523 DOI: 10.1016/j.bmc.2016.08.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/05/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023]
Abstract
Pyrazolo[5,1-f][1,6]naphthyridine-carboxamide derivatives were synthesized and evaluated for the affinity at CB1 and CB2 receptors. Based on the AgOTf and proline-cocatalyzed multicomponent methodology, the ethyl 5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (12) and ethyl 5-(2,4-dichlorophenyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (13) intermediates were synthesized from the appropriate o-alkynylaldehydes, p-toluenesulfonyl hydrazide and ethyl pyruvate. Most of the novel compounds feature a p-tolyl (8a-i) or a 2,4-dichlorophenyl (8j) motif at the C5-position of the tricyclic pyrazolo[5,1-f][1,6]naphthyridine scaffold. Structural variation on the carboxamide moiety at the C2-position includes basic monocyclic, terpenoid and adamantine-based amines. Among these derivatives, compound 8h (N-adamant-1-yl-5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxamide) exhibited the highest CB2 receptor affinity (Ki=33nM) and a high degree of selectivity (KiCB1/KiCB2=173:1), whereas a similar trend in the near nM range was seen for the bornyl analogue (compound 8f, Ki=53nM) and the myrtanyl derivative 8j (Ki=67nM). Effects of 8h, 8f and 8j on forskolin-stimulated cAMP levels were determined, showing antagonist/inverse agonist properties for such compounds. Docking studies conducted for these derivatives and the reference antagonist/inverse agonist compound 4 (SR144528) disclosed the specific pattern of interactions probably related to the pyrazolo[5,1-f][1,6]naphthyridine scaffold as CB2 inverse agonists.
Collapse
Affiliation(s)
- Antonio Dore
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Battistina Asproni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy.
| | - Alessia Scampuddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Stefania Gessi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| | - Gabriele Murineddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV n. 3, 16132 Genova, Italy
| | - Paola Fossa
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV n. 3, 16132 Genova, Italy
| | - Stefania Merighi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Serena Bencivenni
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Gérard A Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| |
Collapse
|
41
|
Mechanism of action of pimavanserin in Parkinson's disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectr 2016; 21:271-5. [PMID: 27503570 DOI: 10.1017/s1092852916000407] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pimavanserin, a novel agent approved for the treatment of Parkinson's disease psychosis, has potent actions as an antagonist/inverse agonist at serotonin 5HT2A receptors and less potent antagonist/inverse agonist actions at 5HT2C receptors.
Collapse
|
42
|
Kent TC, Thompson KSJ, Naylor LH. Development of a Generic Dual-Reporter Gene Assay for Screening G-Protein-Coupled Receptors. ACTA ACUST UNITED AC 2016; 10:437-46. [PMID: 16093553 DOI: 10.1177/1087057105275033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple assay formats have been developed for the pharmacological characterization of G-protein-coupled receptors (GPCRs) and for screening orphan receptors. However, the increased pace of target identification and the rapid expansion of compound libraries present the need to develop novel assay formats capable of screeningmultipleGPCRs simultaneously. To address this need, the authors have developed a generic dual-reporter gene assay that can detect ligand activity at 2 GPCRs within the same assay. Two stableHEK293 cell lineswere generated expressing either a firefly ( Photinus) luciferase gene under the control ofmultiple cAMP-response elements (CREs) or a Renillaluciferase gene under the control ofmultiple 12-Otetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs). Coseeded reporter cells were used to assess ligandbinding activity at bothGβ s-and Gβ q-coupled receptors. By selectively coexpressing receptors with a chimeric G-protein, agonist activitywas assessed atGβ i/o-coupled receptors in combinationwith eitherGβ s-or Gβ q-coupled receptors. The dual-reporter gene assaywas shown to be capable of simultaneously performing duplexed screens for a variety of agonist and/or antagonist combinations. The data generated from the duplexed reporter assays were pharmacologically relevant, and Zβ factor analysis indicated the suitability of both agonist and antagonist screens for use in high-throughput screening.
Collapse
Affiliation(s)
- Toby C Kent
- Research School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | |
Collapse
|
43
|
Sullivan LC, Clarke WP, Berg KA. Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des 2016; 21:3732-8. [PMID: 26044975 DOI: 10.2174/1381612821666150605111236] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
It is now well accepted that receptors can regulate cellular signaling pathways in the absence of a stimulating ligand, and inverse agonists can reduce this ligand-independent or "constitutive" receptor activity. Both the serotonin 5-HT2A and 5-HT2C receptors have demonstrated constitutive receptor activity in vitro and in vivo. Each has been identified as a target for treatment of schizophrenia. Further, most, if not all, atypical antipsychotic drugs have inverse agonist properties at both 5-HT2A and 5-HT2C receptors. This paper describes our current knowledge of inverse agonism of atypical antipsychotics at 5-HT2A/2C receptor subtypes in vitro and in vivo. Exploiting inverse agonist properties of APDs may provide new avenues for drug development.
Collapse
Affiliation(s)
| | | | - Kelly A Berg
- Department of Pharmacology - MS 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
44
|
Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity. J Neurosci 2016; 36:204-21. [PMID: 26740662 DOI: 10.1523/jneurosci.1751-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6β-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser(375) phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. SIGNIFICANCE STATEMENT Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent sensitization is a phenomenon studied in rodents that has many key features of chronic pain: it is initiated by a variety of noxious stimuli, has indefinite duration, and pain appears in episodes that can be triggered by stress. Here, we show that, during latent sensitization, there is a sustained state of pain hypersensitivity that is continuously suppressed by the activation of μ-, δ-, and κ-opioid receptors and by adrenergic α2A receptors in the spinal cord. Furthermore, we show that the activation of μ-opioid receptors is not due to the release of endogenous opioids, but rather to its ligand-independent constitutive activity.
Collapse
|
45
|
From biased signalling to polypharmacology: unlocking unique intracellular signalling using pepducins. Biochem Soc Trans 2016; 44:555-61. [DOI: 10.1042/bst20150230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 01/06/2023]
Abstract
For over a decade, pepducins have been utilized to develop unique pharmacological profiles that have been particularly challenging for traditional drug discovery methods. It is becoming increasingly clear that these cell-penetrating lipopeptides can access receptor conformations that are currently not accessible through orthosteric targeting. This review addresses the emerging concepts in the development of pepducins including the elicitation of biased signalling, pepducin polypharmacology and recent insight into their mechanism of action.
Collapse
|
46
|
Kim SH, MacIntyre DA, Hanyaloglu AC, Blanks AM, Thornton S, Bennett PR, Terzidou V. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via G(αi) signalling. Mol Cell Endocrinol 2016; 420:11-23. [PMID: 26586210 DOI: 10.1016/j.mce.2015.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022]
Abstract
Oxytocin (OT) plays an important role in the onset of human labour by stimulating uterine contractions and promoting prostaglandin/inflammatory cytokine synthesis in amnion via oxytocin receptor (OTR) coupling. The OTR-antagonist, Atosiban, is widely used as a tocolytic for the management of acute preterm labour. We found that in primary human amniocytes, Atosiban (10 μM) signals via PTX-sensitive Gαi to activate transcription factor NF-κB p65, ERK1/2, and p38 which subsequently drives upregulation of the prostaglandin synthesis enzymes, COX-2 and phospho-cPLA2 and excretion of prostaglandins (PGE2) (n = 6; p < 0.05, ANOVA). Moreover, Atosiban treatment increased expression and excretion of the inflammatory cytokines, IL-6 and CCL5. We also showed that OT-simulated activation of NF-κB, ERK1/2, and p38 and subsequent prostaglandin and inflammatory cytokine synthesis is via Gαi-2 and Gαi-3 but not Gαq, and is not inhibited by Atosiban. Activation or exacerbation of inflammation is not a desirable effect of tocolytics. Therefore therapeutic modulation of the OT/OTR system for clinical management of term/preterm labour should consider the effects of differential G-protein coupling of the OTR and the role of OT or selective OTR agonists/antagonists in activating proinflammatory pathways.
Collapse
Affiliation(s)
- Sung Hye Kim
- Imperial College London, Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - David A MacIntyre
- Imperial College London, Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Aylin C Hanyaloglu
- Imperial College London, Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Andrew M Blanks
- University of Warwick, Clinical Sciences Research Institute, Warwick Medical School, UHCW, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Steven Thornton
- The University of Exeter Medical School, Main Medical School Building, St Luke's Campus, Magdalen Road, Exeter, EX1 2LU, UK
| | - Phillip R Bennett
- Imperial College London, Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Vasso Terzidou
- Imperial College London, Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK; Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
47
|
Cannabinoid receptor 1 ligands revisited: Pharmacological assessment in the ACTOne system. Anal Biochem 2016; 498:8-28. [PMID: 26772161 DOI: 10.1016/j.ab.2015.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/22/2015] [Accepted: 12/29/2015] [Indexed: 11/23/2022]
Abstract
In vitro cannabinoid pharmacology has evolved over time from simple receptor binding to include [(35)S]GTPγ, β-arrestin, and cAMP assays. Each assay has benefits and drawbacks; however, no single functional system has been used for high-throughput evaluation of compounds from binding to pharmacological functionality and antagonist assessment in a well-characterized human cell line. In this study, we evaluated and validated one system-ACTOne human embryonic kidney cells transfected with a cyclic nucleotide gated channel and cannabinoid receptor 1 (CB1)-and compared human CB1 affinity, functional, and antagonistic effects on cAMP with previously published results. The study was conducted on a diverse group of CB1 ligands, including endocannabinoids and related compounds, 2-AG, AEA, MAEA, and ACEA, the phytocannabinoid Δ(9) THC, and synthetic cannabinoids CP 55,940, WIN 55,212-2, SR 141716A, CP 945,598, and WIN 55,212-3. Our results were compared with literature values where human CB1 was used for affinity determination and cAMP was used as a functional readout. Here we report the first detailed evaluation of the ACTOne assay for the pharmacological evaluation of CB1 ligands. The results from the study reveal some interesting deviations from previously reported functional activities of the aforementioned ligands.
Collapse
|
48
|
Palmesino E, Apuzzo T, Thelen S, Mueller B, Langen H, Thelen M. Association of eukaryotic translation initiation factor eIF2B with fully solubilized CXCR4. J Leukoc Biol 2015; 99:971-8. [PMID: 26609049 DOI: 10.1189/jlb.2ma0915-415r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/31/2015] [Indexed: 12/31/2022] Open
Abstract
Chemokine receptors are key regulators of leukocyte trafficking but also have an important role in development, tumor growth, and metastasis. Among the chemokine receptors, CXCR4 is the only one that leads to perinatal death when genetically ablated in mice, indicating a more-widespread function in development. To identify pathways that are activated downstream of CXCR4, a solubilization protocol was elaborated, which allows for the isolation of the endogenous receptor from human cells in its near-native conformation. Solubilized CXCR4 is recognized by the conformation-sensitive monoclonal antibody 12G5 and retains the ability to bind CXCL12 in solution, which was abolished in the presence of receptor antagonists. Mass spectrometry of CXCR4 immunoprecipitates revealed a specific interaction with the pentameric eukaryotic translation initiation factor 2B. The observation that the addition of CXCL12 leads to the dissociation of eukaryotic translation initiation factor 2B from CXCR4 suggests that stimulation of the receptor may trigger the local protein synthesis required for efficient cell movement.
Collapse
Affiliation(s)
- Elena Palmesino
- Institute for Research in Biomedicine, Bellinzona, Switzerland; and
| | - Tiziana Apuzzo
- Institute for Research in Biomedicine, Bellinzona, Switzerland; and
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Bellinzona, Switzerland; and
| | - Bernd Mueller
- Protein and Metabolite Technologies, F. Hoffmann-La Roche Ltd, Pharmaceutical Sciences Roche Innovation Center, Basel, Switzerland
| | - Hanno Langen
- Protein and Metabolite Technologies, F. Hoffmann-La Roche Ltd, Pharmaceutical Sciences Roche Innovation Center, Basel, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Bellinzona, Switzerland; and
| |
Collapse
|
49
|
Sadek B, Stark H. Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology 2015; 106:56-73. [PMID: 26581501 DOI: 10.1016/j.neuropharm.2015.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
Histamine, a biogenic amine, is considered as a principle mediator of multiple physiological effects through binding to its H1, H2, H3, and H4 receptors (H1-H4Rs). Currently, the HRs have gained attention as important targets for the treatment of several diseases and disorders ranging from allergy to Alzheimer's disease and immune deficiency. Accordingly, medicinal chemistry studies exploring histamine-like molecules and their physicochemical properties by binding and interacting with the four HRs has led to the development of a diversity of agonists and antagonists that display selectivity for each HR subtype. An overview on H1-R4Rs and developed ligands representing some key steps in development is provided here combined with a short description of structure-activity relationships for each class. Main chemical diversities, pharmacophores, and pharmacological profiles of most innovative H1-H4R agonists and antagonists are highlighted. Therefore, this overview should support the rational choice for the optimal ligand selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates.
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
50
|
Heusler P, Tardif S, Cussac D. Agonist stimulation at human μ opioid receptors in a [(35)S]GTPγS incorporation assay: observation of "bell-shaped" concentration-response relationships under conditions of strong receptor G protein coupling. J Recept Signal Transduct Res 2015; 36:158-66. [PMID: 26466637 DOI: 10.3109/10799893.2015.1069845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT The appearance of "bell"- (or "inverted U"-) shaped agonist concentration-response curves (CRCs) in in vitro pharmacological experiments is a frequently observed but poorly communicated phenomenon. In the context of G protein coupled receptor research, it is commonly attributed to the recruitment of secondary targets or to desensitization or feedback processes, but the concrete background of these observations often remains intriguing. OBJECTIVE Here, we addressed the subject of bell-shaped agonist CRCs at the µ opioid receptor (µOR) by testing the impact of experimental conditions favoring G protein coupling. METHODS G protein activation by recombinant human µORs heterologously expressed in CHO cells was assessed in [(35)S]GTPγS binding assays using the opioid ligands DAMGO, morphine, fentanyl and naloxone. Experimental conditions were varied by changing the NaCl (10-300 mM) and the GDP concentration (0.3-30 µM). RESULTS Both the sodium and the GDP concentration were inversely related to G protein coupling, as evident by an increase in basal [(35)S]GTPγS incorporation at low sodium and low GDP levels and by the concomitant appearance of the partial agonist activity of the µOR antagonist, naloxone. Bell-shaped CRCs were observed for the efficacious agonists DAMGO, fentanyl and morphine, and this phenomenon was promoted by low sodium as well as by low GDP concentrations. CONCLUSION µOR agonist CRCs show a non-monotonic behavior with a decline of maximal stimulation under conditions of strong receptor-G protein coupling, and this behavior is visible at the level of G protein activation itself.
Collapse
Affiliation(s)
- Peter Heusler
- a Department of Cellular and Molecular Biology , Pierre Fabre Research Center , Castres Cedex , France
| | - Stéphanie Tardif
- a Department of Cellular and Molecular Biology , Pierre Fabre Research Center , Castres Cedex , France
| | - Didier Cussac
- a Department of Cellular and Molecular Biology , Pierre Fabre Research Center , Castres Cedex , France
| |
Collapse
|