1
|
Silva JBNF, Calcia TBB, Silva CP, Guilherme RF, Almeida-Souza F, Lemos FS, Calabrese KS, Caruso-Neves C, Neves JS, Benjamim CF. ATRvD1 Attenuates Renal Tubulointerstitial Injury Induced by Albumin Overload in Sepsis-Surviving Mice. Int J Mol Sci 2021; 22:ijms222111634. [PMID: 34769064 PMCID: PMC8583751 DOI: 10.3390/ijms222111634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Novel strategies for the prevention and treatment of sepsis-associated acute kidney injury and its long-term outcomes have been required and remain a challenge in critical care medicine. Therapeutic strategies using lipid mediators, such as aspirin-triggered resolvin D1 (ATRvD1), can contribute to the resolution of acute and chronic inflammation. In this study, we examined the potential effect of ATRvD1 on long-term kidney dysfunction after severe sepsis. Fifteen days after cecal ligation and puncture (CLP), sepsis-surviving BALB/c mice were subjected to a tubulointerstitial injury through intraperitoneal injections of bovine serum albumin (BSA) for 7 days, called the subclinical acute kidney injury (subAKI) animal model. ATRvD1 treatment was performed right before BSA injections. On day 22 after CLP, the urinary protein/creatinine ratio (UPC), histologic parameters, fibrosis, cellular infiltration, apoptosis, inflammatory markers levels, and mRNA expression were determined. ATRvD1 treatment mitigated tubulointerstitial injury by reducing proteinuria excretion, the UPC ratio, the glomerular cell number, and extracellular matrix deposition. Pro-fibrotic markers, such as transforming growth factor β (TGFβ), type 3 collagen, and metalloproteinase (MMP)-3 and -9 were reduced after ATRvD1 administration. Post-septic mice treated with ATRvD1 were protected from the recruitment of IBA1+ cells. The interleukin-1β (IL-1β) levels were increased in the subAKI animal model, being attenuated by ATRvD1. Tumor necrosis factor-α (TNF-α), IL-10, and IL-4 mRNA expression were increased in the kidney of BSA-challenged post-septic mice, and it was also reduced after ATRvD1. These results suggest that ATRvD1 protects the kidney against a second insult such as BSA-induced tubulointerstitial injury and fibrosis by suppressing inflammatory and pro-fibrotic mediators in renal dysfunction after sepsis.
Collapse
Affiliation(s)
- José Bruno N. F. Silva
- Institute of Microbiology Paulo de Góes (IMPG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.B.N.F.S.); (R.F.G.)
| | - Thayanne B. B. Calcia
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (T.B.B.C.); (C.C.-N.)
| | - Cyntia P. Silva
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.P.S.); (F.S.L.); (J.S.N.)
| | - Rafael F. Guilherme
- Institute of Microbiology Paulo de Góes (IMPG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.B.N.F.S.); (R.F.G.)
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute (IOC), Fiocruz, Rio de Janeiro 21040-900, Brazil; (F.A.-S.); (K.S.C.)
- Postgraduate in Animal Science, State University of Maranhão, São Luís 65055-310, Brazil
| | - Felipe S. Lemos
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.P.S.); (F.S.L.); (J.S.N.)
| | - Kátia S. Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute (IOC), Fiocruz, Rio de Janeiro 21040-900, Brazil; (F.A.-S.); (K.S.C.)
| | - Celso Caruso-Neves
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (T.B.B.C.); (C.C.-N.)
| | - Josiane S. Neves
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.P.S.); (F.S.L.); (J.S.N.)
| | - Claudia F. Benjamim
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (T.B.B.C.); (C.C.-N.)
- Correspondence: or ; Tel.: +55-21-3938-6709
| |
Collapse
|
2
|
Brennan E, Kantharidis P, Cooper ME, Godson C. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat Rev Nephrol 2021; 17:725-739. [PMID: 34282342 PMCID: PMC8287849 DOI: 10.1038/s41581-021-00454-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Obesity, diabetes mellitus, hypertension and cardiovascular disease are risk factors for chronic kidney disease (CKD) and kidney failure. Chronic, low-grade inflammation is recognized as a major pathogenic mechanism that underlies the association between CKD and obesity, impaired glucose tolerance, insulin resistance and diabetes, through interaction between resident and/or circulating immune cells with parenchymal cells. Thus, considerable interest exists in approaches that target inflammation as a strategy to manage CKD. The initial phase of the inflammatory response to injury or metabolic dysfunction reflects the release of pro-inflammatory mediators including peptides, lipids and cytokines, and the recruitment of leukocytes. In self-limiting inflammation, the evolving inflammatory response is coupled to distinct processes that promote the resolution of inflammation and restore homeostasis. The discovery of endogenously generated lipid mediators - specialized pro-resolving lipid mediators and branched fatty acid esters of hydroxy fatty acids - which promote the resolution of inflammation and attenuate the microvascular and macrovascular complications of obesity and diabetes mellitus highlights novel opportunities for potential therapeutic intervention through the targeting of pro-resolution, rather than anti-inflammatory pathways.
Collapse
Affiliation(s)
- Eoin Brennan
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Phillip Kantharidis
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Mark E. Cooper
- grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| | - Catherine Godson
- grid.7886.10000 0001 0768 2743Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Lipoxin A4-Mediated p38 MAPK Signaling Pathway Protects Mice Against Collagen-Induced Arthritis. Biochem Genet 2020; 59:346-365. [PMID: 33221976 DOI: 10.1007/s10528-020-10016-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
The aim of the article was to study the mechanism of Lipoxin A4 (LXA4)-mediated p38 MAPK pathway protecting mice against collagen-induced arthritis (CIA). The impact of LXA4 (0, 5, 10, 15 nM) on synoviocytes proliferation of CIA mice was detected using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. CIA mice were treated with LXA4, SB203580 (a p38 inhibitor), and/or anisomycin (a p38 agonist), and the arthritis severity score in each mouse was determined. The gene or protein expressions were detected with Western Blotting, ELISA, or qRT-PCR. LXA4 inhibited the synoviocytes proliferation of CIA mice with decreased levels of TNF-α, IL-6, IL-1β, and IFN-γ and reduced p-p38/total p38 expression in synoviocytes in a dose-dependent manner. LXA4 levels were decreased in synovial tissues and plasma of CIA mice, but p-p38/total p38 expression was increased in synovial tissues. LXA4 could downregulate p-p38/total p38 expression in synovial tissues of CIA mice. Both LXA4 and SB203580 reduced arthritis severity score of CIA mice with the reduction of synovial tissue hyperplasia and inflammatory cell infiltration. CIA mice treated with LXA4 and SB203580 had lower levels of TNF-α, IL-6, IL-1β, and IFN-γ, accompanying decreased MDA as well as increased SOD, CAT,and GPx. However, anisomycin could reverse the protect effects of LXA4 on CIA mice regarding the abovementioned inflammatory factors and oxidative stress indexes. LXA4 protected mice against collagen-induced arthritis via inhibiting p38 MAPK signaling pathway, which may be a potential new therapeutic target for rheumatoid arthritis.
Collapse
|
4
|
Yan L, Sun A, Xu X. Zafirlukast, a Cysteinyl Leukotriene Receptor 1 Antagonist, Reduces the Effect of Advanced Glycation End-Products in Rat Renal Mesangial Cells In Vitro. Med Sci Monit 2019; 25:8753-8763. [PMID: 31745068 PMCID: PMC6880630 DOI: 10.12659/msm.918187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Zafirlukast is an antagonist of cysteinyl leukotriene receptor 1 (CysLTR1). Advanced glycation end-products (AGEs) are formed by the glycation of lipids and proteins in hyperglycemia, including diabetes mellitus. Zafirlukast has not previously been studied in diabetic nephropathy. This study aimed to investigate the effects of zafirlukast on rat renal mesangial cells cultured with AGEs in vitro. Material/Methods Mesangial cells were cultured in AGEs (0, 20, 50, 100 μg/ml), and with AGEs (100 μg/ml) and zafirlukast (2.5 μm, 5 μm, and 100 μm). An enzyme-linked immunoassay (ELISA) was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1). Reactive oxygen species (ROS) were assessed by intracellular fluorescence measurement of 2′-7′-dichlorodihydrofluorescein diacetate (DCFH-DA), and detection kits were used to measure malondialdehyde (MDA), lactate dehydrogenase (LDH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD). Cell apoptosis was assessed by flow cytometry, and Western blot was used to measure protein levels. Results In mesangial cells cultured with AGEs, markers of inflammation, oxidative stress, and apoptosis and levels of CysLTR1 increased, and these effects were reduced by zafirlukast in a dose-dependent manner. The effects of zafirlukast as a CysLTR1 antagonist protected mesangial cells from the effects of AGE in vitro. Conclusions Zafirlukast, a CysLTR1 antagonist, reduced the levels of inflammatory cytokines, markers of oxidative stress, and cell apoptosis induced by AGE in mesangial cells in a dose-dependent way. Future in vivo studies are needed to investigate the potential role for zafirlukast in models of diabetic nephropathy.
Collapse
Affiliation(s)
- Liping Yan
- Administration Division, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Ani Sun
- Infection Control Office, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Xinwei Xu
- Nephrology Department, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
5
|
Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin Sci (Lond) 2019; 133:2121-2141. [DOI: 10.1042/cs20190067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
AbstractDiabetes mellitus (DM) is an important metabolic disorder characterized by persistent hyperglycemia resulting from inadequate production and secretion of insulin, impaired insulin action, or a combination of both. Genetic disorders and insulin receptor disorders, environmental factors, lifestyle choices and toxins are key factors that contribute to DM. While it is often referred to as a metabolic disorder, modern lifestyle choices and nutrient excess induce a state of systemic chronic inflammation that results in the increased production and secretion of inflammatory cytokines that contribute to DM. It is chronic hyperglycemia and the low-grade chronic-inflammation that underlies the development of microvascular and macrovascular complications leading to damage in a number of tissues and organs, including eyes, vasculature, heart, nerves, and kidneys. Improvements in the management of risk factors have been beneficial, including focus on intensified glycemic control, but most current approaches only slow disease progression. Even with recent studies employing SGLT2 inhibitors demonstrating protection against cardiovascular and kidney diseases, kidney function continues to decline in people with established diabetic kidney disease (DKD). Despite the many advances and a greatly improved understanding of the pathobiology of diabetes and its complications, there remains a major unmet need for more effective therapeutics to prevent and reverse the chronic complications of diabetes. More recently, there has been growing interest in the use of specialised pro-resolving mediators (SPMs) as an exciting therapeutic strategy to target diabetes and the chronic complications of diabetes.
Collapse
|
6
|
Zhang T, Hao H, Zhou XY. The role of lipoxin in regulating tumor immune microenvironments. Prostaglandins Other Lipid Mediat 2019; 144:106341. [PMID: 31152809 DOI: 10.1016/j.prostaglandins.2019.106341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/21/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022]
|
7
|
de Gaetano M, McEvoy C, Andrews D, Cacace A, Hunter J, Brennan E, Godson C. Specialized Pro-resolving Lipid Mediators: Modulation of Diabetes-Associated Cardio-, Reno-, and Retino-Vascular Complications. Front Pharmacol 2018; 9:1488. [PMID: 30618774 PMCID: PMC6305798 DOI: 10.3389/fphar.2018.01488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetes and its associated chronic complications present a healthcare challenge on a global scale. Despite improvements in the management of chronic complications of the micro-/macro-vasculature, their growing prevalence and incidence highlights the scale of the problem. It is currently estimated that diabetes affects 425 million people globally and it is anticipated that this figure will rise by 2025 to 700 million people. The vascular complications of diabetes including diabetes-associated atherosclerosis and kidney disease present a particular challenge. Diabetes is the leading cause of end stage renal disease, reflecting fibrosis leading to organ failure. Moreover, diabetes associated states of inflammation, neo-vascularization, apoptosis and hypercoagulability contribute to also exacerbate atherosclerosis, from the metabolic syndrome to advanced disease, plaque rupture and coronary thrombosis. Current therapeutic interventions focus on regulating blood glucose, glomerular and peripheral hypertension and can at best slow the progression of diabetes complications. Recently advanced knowledge of the pathogenesis underlying diabetes and associated complications revealed common mechanisms, including the inflammatory response, insulin resistance and hyperglycemia. The major role that inflammation plays in many chronic diseases has led to the development of new strategies aiming to promote the restoration of homeostasis through the "resolution of inflammation." These strategies aim to mimic the spontaneous activities of the 'specialized pro-resolving mediators' (SPMs), including endogenous molecules and their synthetic mimetics. This review aims to discuss the effect of SPMs [with particular attention to lipoxins (LXs) and resolvins (Rvs)] on inflammatory responses in a series of experimental models, as well as evidence from human studies, in the context of cardio- and reno-vascular diabetic complications, with a brief mention to diabetic retinopathy (DR). These data collectively support the hypothesis that endogenously generated SPMs or synthetic mimetics of their activities may represent lead molecules in a new discipline, namely the 'resolution pharmacology,' offering hope for new therapeutic strategies to prevent and treat, specifically, diabetes-associated atherosclerosis, nephropathy and retinopathy.
Collapse
Affiliation(s)
- Monica de Gaetano
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Caitriona McEvoy
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
- Renal Transplant Program, University Health Network, Toronto, ON, Canada
| | - Darrell Andrews
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antonino Cacace
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jonathan Hunter
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute and UCD School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Brennan EP, Mohan M, McClelland A, Tikellis C, Ziemann M, Kaspi A, Gray SP, Pickering R, Tan SM, Ali-Shah ST, Guiry PJ, El-Osta A, Jandeleit-Dahm K, Cooper ME, Godson C, Kantharidis P. Lipoxins Regulate the Early Growth Response-1 Network and Reverse Diabetic Kidney Disease. J Am Soc Nephrol 2018; 29:1437-1448. [PMID: 29490938 DOI: 10.1681/asn.2017101112] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background The failure of spontaneous resolution underlies chronic inflammatory conditions, including microvascular complications of diabetes such as diabetic kidney disease. The identification of endogenously generated molecules that promote the physiologic resolution of inflammation suggests that these bioactions may have therapeutic potential in the context of chronic inflammation. Lipoxins (LXs) are lipid mediators that promote the resolution of inflammation.Methods We investigated the potential of LXA4 and a synthetic LX analog (Benzo-LXA4) as therapeutics in a murine model of diabetic kidney disease, ApoE-/- mice treated with streptozotocin.Results Intraperitoneal injection of LXs attenuated the development of diabetes-induced albuminuria, mesangial expansion, and collagen deposition. Notably, LXs administered 10 weeks after disease onset also attenuated established kidney disease, with evidence of preserved kidney function. Kidney transcriptome profiling defined a diabetic signature (725 genes; false discovery rate P≤0.05). Comparison of this murine gene signature with that of human diabetic kidney disease identified shared renal proinflammatory/profibrotic signals (TNF-α, IL-1β, NF-κB). In diabetic mice, we identified 20 and 51 transcripts regulated by LXA4 and Benzo-LXA4, respectively, and pathway analysis identified established (TGF-β1, PDGF, TNF-α, NF-κB) and novel (early growth response-1 [EGR-1]) networks activated in diabetes and regulated by LXs. In cultured human renal epithelial cells, treatment with LXs attenuated TNF-α-driven Egr-1 activation, and Egr-1 depletion prevented cellular responses to TGF-β1 and TNF-αConclusions These data demonstrate that LXs can reverse established diabetic complications and support a therapeutic paradigm to promote the resolution of inflammation.
Collapse
Affiliation(s)
- Eoin P Brennan
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,University College Dublin Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Sciences, and
| | - Muthukumar Mohan
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Aaron McClelland
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Christos Tikellis
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Mark Ziemann
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Antony Kaspi
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Stephen P Gray
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Raelene Pickering
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Sih Min Tan
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Syed Tasadaque Ali-Shah
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland; and
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland; and
| | - Assam El-Osta
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Mark E Cooper
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes and
| | - Catherine Godson
- University College Dublin Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Sciences, and
| | - Phillip Kantharidis
- Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; .,Department of Diabetes and
| |
Collapse
|
9
|
Goicoechea M, Sanchez-Niño MD, Ortiz A, García de Vinuesa S, Quiroga B, Bernis C, Morales E, Fernández-Juarez G, de Sequera P, Verdalles U, Verde E, Luño J. Low dose aspirin increases 15-epi-lipoxin A4 levels in diabetic chronic kidney disease patients. Prostaglandins Leukot Essent Fatty Acids 2017; 125:8-13. [PMID: 28987723 DOI: 10.1016/j.plefa.2017.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Resolution of inflammation is regulated by endogenous lipid mediators, such as lipoxins and their epimers, including 15-epi-lipoxin A4 (15-epi-LXA4). However, there is no information on 15-epi-LXA4 and its in vivo regulation in chronic kidney disease (CKD) patients. STUDY DESIGN Open label randomized clinical trial. SETTING AND PARTICIPANTS 50 participants with chronic kidney disease (CKD) stage 3 and 4 without prior cardiovascular disease (25 in the aspirin group and 25 in the standard group) followed for 46 months. INTERVENTION Aspirin (100mg/day) or standard treatment. AIM To analyze the effect of aspirin on plasma 15-epi-LXA4 levels and inflammatory markers in CKD patients. RESULTS Baseline plasma15-epi-LXA4 levels were lower in diabetic (1.22 ± 0.99ng/ml) than in non-diabetic CKD patients (2.05 ± 1.06ng/ml, p < 0.001) and inversely correlated with glycosylated hemoglobin levels (r = -0.303, p = 0.006). In multivariate analysis, diabetes was associated with lower 15-epi-LXA4 levels, adjusted for age, inflammatory markers and renal function (p = 0.005). In the whole study population, 15-epi-LXA4 levels tended to increase, but not significantly (p = 0.45), after twelve months on aspirin (from mean ± SD 1.84 ± 1.06 to 2.04 ± 0.75ng/ml) and decreased in the standard care group (1.60 ± 1.15 to 1.52 ± 0.68ng/ml, p = 0.04). The aspirin effect on 15-epi-LXA4 levels was more striking in diabetic patients, increasing from 0.94 ± 0.70 to 1.93 ± 0.74ng/ml, p = 0.017. CONCLUSIONS Diabetic patients with CKD have lower circulating 15-epi-LXA4 levels than non-diabetic CKD patients. Low dose aspirin for 12 months increased 15-epi-LXA4 levels in diabetic patients. Given its anti-inflammatory properties, this increase in 15-epi-LXA4 levels may contribute to the beneficial effects of low dose aspirin.
Collapse
Affiliation(s)
- Marian Goicoechea
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain.
| | - Maria Dolores Sanchez-Niño
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IIS-FJD UAM), Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IIS-FJD UAM), Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Soledad García de Vinuesa
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | | | | | - Enrique Morales
- Hospital Universitario Doce de Octubre, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Gema Fernández-Juarez
- Hospital Universitario Fundación Alcorcón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | | | - Ursula Verdalles
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Eduardo Verde
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - José Luño
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| |
Collapse
|
10
|
Sodin-Semrl S, Spagnolo A, Mikus R, Barbaro B, Varga J, Fiore S. Opposing Regulation of Interleukin-8 and NF-kB Responses by Lipoxin A4 and Serum Amyloid a via the Common Lipoxin a Receptor. Int J Immunopathol Pharmacol 2017; 17:145-56. [PMID: 15171815 DOI: 10.1177/039463200401700206] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipoxin A4 (LXA4) is a potent eicosanoid that inhibits IL-1β-induced activation of human fibroblast-like synoviocytes (FLS) via the LXA4 receptor (ALXR). Serum amyloid A (SAA) is an acute phase reactant with cytokine-like properties. SAA has been shown to bind the same seven transmembrane G protein-coupled receptor ligated by LXA4. Here we compared the inflammatory responses of lipid (LXA4) and peptide (SAA) ligands in human FLS via the shared ALX and characterized their downstream signaling. LXA4 induced stimulation of tissue inhibitors of metalloproteinase-2, whereas SAA induced interleukin-8 and matrix metalloproteinase-3 production. SAA up-regulated NF-kB and AP-1 DNA binding activity, while LXA4 markedly inhibited these responses after IL-1β stimulation. A human IL-8 promoter luciferase construct was transfected into CHO cells stably expressing ALXR in order to determine the role of NF-kB and/or AP-1 in the regulation of IL-8 gene expression. The NF-kB pathway proved to be the preeminent for the biological responses elicited by both ligands. These findings suggest that two endogenous molecules, targeting a common receptor, could participate in the pathogenesis of inflammatory arthritis by differentially regulating inflammatory responses in tissues expressing the ALXR.
Collapse
Affiliation(s)
- S Sodin-Semrl
- Section of Rheumatology, Dept Med, COM, University of Illinois, Chicago, IL 60607-7171, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Lipids are potent signaling molecules that regulate a multitude of cellular responses, including cell growth and death and inflammation/infection, via receptor-mediated pathways. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic pathways and because they elicit responses via different receptors. This review will collate the bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins, and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins) will be discussed herein.
Collapse
|
12
|
Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR. Re-Examining Neutrophil Participation in GN. J Am Soc Nephrol 2017; 28:2275-2289. [PMID: 28620081 DOI: 10.1681/asn.2016121271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, .,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| | - David W Powell
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Richard A Ward
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| |
Collapse
|
13
|
Bennett M, Gilroy DW. Lipid Mediators in Inflammation. MYELOID CELLS IN HEALTH AND DISEASE 2017:343-366. [DOI: 10.1128/9781555819194.ch19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Melanie Bennett
- Roche Products Limited, Shire Park; Welwyn Garden City AL7 1TW United Kingdom
| | - Derek W. Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London; London WC1 E6JJ United Kingdom
| |
Collapse
|
14
|
Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study. DISEASE MARKERS 2016; 2016:3650909. [PMID: 27799660 PMCID: PMC5075301 DOI: 10.1155/2016/3650909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 11/17/2022]
Abstract
IgA nephropathy is diagnosed by renal biopsy, an invasive procedure with a risk of significant complications. Noninvasive approaches are needed for possible diagnostic purposes and especially for monitoring disease activity or responses to treatment. In this pilot project, we assessed the utility of urine samples as source of biomarkers of IgA nephropathy. We used spot urine specimens from 19 healthy controls, 11 patients with IgA nephropathy, and 8 renal-disease controls collected on day of renal biopsy. Urine samples were analyzed using untargeted metabolomic and targeted proteomic analyses by several experimental techniques: liquid chromatography coupled with mass spectrometry, immunomagnetic isolation of target proteins coupled with quantitation by mass spectrometry, and protein arrays. No single individual biomarker completely differentiated the three groups. Therefore, we tested the utility of several markers combined in a panel. Discriminant analysis revealed that combination of seven markers, three metabolites (dodecanal, 8-hydroxyguanosine, and leukotriene C4), three proteins (α1-antitrypsin, IgA-uromodulin complex, and galactose-deficient IgA1), and heparan sulfate, differentiated patients with IgA nephropathy from patients with other renal diseases and healthy controls. Future studies are needed to validate these preliminary findings and to determine the power of these urinary markers for assessment of responses to therapy.
Collapse
|
15
|
Yaddaden L, Véronneau S, Thompson MD, Rola-Pleszczynski M, Stankova J. Cellular signalling of cysteinyl leukotriene type 1 receptor variants CysLT₁-G300S and CysLT₁-I206S. Prostaglandins Leukot Essent Fatty Acids 2016; 105:1-8. [PMID: 26869085 DOI: 10.1016/j.plefa.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/05/2015] [Accepted: 12/12/2015] [Indexed: 11/19/2022]
Abstract
Cysteinyl-leukotrienes are pro-inflammatory lipid mediators, involved in allergic asthma, that bind the G-protein-coupled receptors CysLT1, CysLT2 and GPR99. A polymorphism in one of these receptors, CysLT1-G300S was strongly associated with atopy, whereas the CysLT1-I206S polymorphism was not. In the present work, our aim was to characterize these two variants by studying their cellular signalling. Cell surface expression of mutant receptors in transfected HEK-293 cells was comparable to that of the wild-type receptor. Compared to CysLT1-WT, production of inositol phosphates as well as IL-8 and IL-13 promoter transactivation in response to either LTD4 or LTC4 was significantly increased in CysLT1-G300S-transfected cells. Moreover, LTD4-induced phosphorylation of the signalling effector Erk, but not p38, p65 or c-Jun was higher in CysLT1-G300S-transfected cells. On the other hand, the variant CysLT1-I206S did not show a significant difference in its signal transduction compared to the wild-type receptor. Taken together, our results indicate that the variant CysLT1-G300S can induce a greater signal than the CysLT1-WT receptor, a feature that may be relevant to its association with atopy.
Collapse
Affiliation(s)
- Louiza Yaddaden
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Steeve Véronneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Miles D Thompson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4.
| |
Collapse
|
16
|
Homann J, Suo J, Schmidt M, de Bruin N, Scholich K, Geisslinger G, Ferreirós N. In Vivo Availability of Pro-Resolving Lipid Mediators in Oxazolone Induced Dermal Inflammation in the Mouse. PLoS One 2015; 10:e0143141. [PMID: 26599340 PMCID: PMC4658101 DOI: 10.1371/journal.pone.0143141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022] Open
Abstract
The activation and infiltration of polymorphonuclear neutrophils (PMN) are critical key steps in inflammation. PMN-mediated inflammation is limited by anti-inflammatory and pro-resolving mechanisms, including specialized pro-resolving lipid mediators (SPM). We examined the effects of 15-epi-LXA4 on inflammation and the biosynthesis of pro-inflammatory mediators, such as prostaglandins, leukotriene B4 and various hydroxyeicosatetraenoic acids and SPM, in an oxazolone (OXA)-induced hypersensitivity model for dermal inflammation. 15-epi-LXA4 (100 μM, 5 μL subcutaneously injected) significantly (P < 0.05) reduced inflammation in skin, 24 hours after the OXA challenge, as compared to skin treated with vehicle. No significant influence on the biosynthesis of prostaglandins or leukotriene B4 was observed, whereas the level of 15S-hydroxy-eicosatetraenoic acid was significantly (P < 0.05) lower in the skin areas treated with 15-epi-LXA4. In spite of the use of a fully validated analytical procedure, no SPM were detected in the biological samples. To investigate the reason for the lack of analytical signal, we tried to mimic the production of SPM (lipoxins, resolvins, maresin and protectin) by injecting them subcutaneously into the skin of mice and studying the in vivo availability and distribution of the compounds. All analytes showed very little lateral distribution in skin tissue and their levels were markedly decreased (> 95%) 2 hours after injection. However, docosahexaenoic acid derivatives were biologically more stable than SPM derived from arachidonic acid or eicosapentaenoic acid.
Collapse
Affiliation(s)
- Julia Homann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Jing Suo
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Mike Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group TMP, Frankfurt, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group TMP, Frankfurt, Germany
| | - Klaus Scholich
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group TMP, Frankfurt, Germany
| | - Nerea Ferreirós
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| |
Collapse
|
17
|
Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol 2015; 760:49-63. [DOI: 10.1016/j.ejphar.2015.03.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
|
18
|
Lipoxin A4 inhibits proliferation and inflammatory cytokine/chemokine production of human epidermal keratinocytes associated with the ERK1/2 and NF-κB pathways. J Dermatol Sci 2015; 78:181-8. [DOI: 10.1016/j.jdermsci.2015.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022]
|
19
|
Crean D, Godson C. Specialised lipid mediators and their targets. Semin Immunol 2015; 27:169-76. [DOI: 10.1016/j.smim.2015.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
|
20
|
Kruk JS, Vasefi MS, Gondora N, Ahmed N, Heikkila JJ, Beazely MA. Fluoxetine-induced transactivation of the platelet-derived growth factor type β receptor reveals a novel heterologous desensitization process. Mol Cell Neurosci 2015; 65:45-51. [DOI: 10.1016/j.mcn.2015.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 10/24/2022] Open
|
21
|
Bäck M, Powell WS, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol 2014; 171:3551-74. [PMID: 24588652 DOI: 10.1111/bph.12665] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022] Open
Abstract
The endogenous ligands for the LT, lipoxin (LX) and oxoeicosanoid receptors are bioactive products produced by the action of the lipoxygenase family of enzymes. The LT receptors BLT1 and BLT2 , are activated by LTB4 and the CysLT1 and CysLT2 receptors are activated by the cysteinyl-LTs, whereas oxoeicosanoids exert their action through the OXE receptor. In contrast to these pro-inflammatory mediators, LXA4 transduces responses associated with the resolution of inflammation through the receptor FPR2/ALX (ALX/FPR2). The aim of the present review is to give a state of the field on these receptors, with focus on recent important findings. For example, BLT1 receptor signalling in cancer and the dual role of the BLT2 receptor in pro- and anti-inflammatory actions have added more complexity to lipid mediator signalling. Furthermore, a cross-talk between the CysLT and P2Y receptor systems has been described, and also the presence of novel receptors for cysteinyl-LTs, such as GPR17 and GPR99. Finally, lipoxygenase metabolites derived from ω-3 essential polyunsaturated acids, the resolvins, activate the receptors GPR32 and ChemR23. In conclusion, the receptors for the lipoxygenase products make up a sophisticated and tightly controlled system of endogenous pro- and anti-inflammatory signalling in physiology and pathology.
Collapse
Affiliation(s)
- Magnus Bäck
- Nomenclature Subcommittee for Leukotriene Receptors, International Union of Basic and Clinical Pharmacology, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang D, Li Y, Peng H, Liu H, Cheng Q, Cheng X, Zeng P, Wu P, Chen H, Huang Y, Ye D. Glucocorticoids sensitize rat placental inflammatory responses via inhibiting lipoxin A4 biosynthesis. Biol Reprod 2014; 90:74. [PMID: 24571985 DOI: 10.1095/biolreprod.113.116384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammation dysregulation in placenta is implicated in the pathogenesis of numerous pregnancy complications. Glucocorticoids (GCs), universally considered anti-inflammatory, can also exert proinflammatory actions under some conditions, whereas whether and how GCs promote placental inflammation have not been intensively investigated. In this paper we report the opposing regulation of rat placental inflammation by synthetic GC dexamethasone (Dex). When Dex was subcutaneously injected 1 h after we administered an intraperitoneal lipopolysaccharide (LPS) challenge, neutrophil infiltration and proinflammatory Il1b, Il6, and Tnfa expression in rat placenta were significantly reduced. In contrast, Dex pretreatment for 24 h potentiated rat placental proinflammatory response to LPS and delayed inflammation resolution, which involved MAPKs and NF-kappaB activation. Mechanically, Dex pretreatment promoted 5-lipoxygenase (ALOX5) activation and increased leukotriene B4 production, whereas it inhibited the anti-inflammatory and proresolving lipid mediator lipoxin A4 (LXA4) biosynthesis in rat placenta via downregulating ALOX15 and ALOX15B expression. Moreover, LXA4 supplementation dampened Dex-potentiated placental inflammation and suppressed Dex-mediated ALOX5 activation in vivo and in vitro. Taken together, these findings suggest that GCs exposure could promote placental inflammation initiation and delay resolution via disrupting LXA4 biosynthesis.
Collapse
Affiliation(s)
- Dongxin Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brennan E, McEvoy C, Sadlier D, Godson C, Martin F. The genetics of diabetic nephropathy. Genes (Basel) 2013; 4:596-619. [PMID: 24705265 PMCID: PMC3927570 DOI: 10.3390/genes4040596] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/08/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022] Open
Abstract
Up to 40% of patients with type 1 and type 2 diabetes will develop diabetic nephropathy (DN), resulting in chronic kidney disease and potential organ failure. There is evidence for a heritable genetic susceptibility to DN, but despite intensive research efforts the causative genes remain elusive. Recently, genome-wide association studies have discovered several novel genetic variants associated with DN. The identification of such variants may potentially allow for early identification of at risk patients. Here we review the current understanding of the key molecular mechanisms and genetic architecture of DN, and discuss the merits of employing an integrative approach to incorporate datasets from multiple sources (genetics, transcriptomics, epigenetic, proteomic) in order to fully elucidate the genetic elements contributing to this serious complication of diabetes.
Collapse
Affiliation(s)
- Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Caitríona McEvoy
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | | | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Finian Martin
- Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
24
|
Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation. PLoS One 2013; 8:e77027. [PMID: 24086766 PMCID: PMC3785432 DOI: 10.1371/journal.pone.0077027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/05/2013] [Indexed: 02/05/2023] Open
Abstract
High concentrations of reactive oxygen species (ROS) induce cellular damage, however at lower concentrations ROS act as intracellular second messengers. In this study, we demonstrate that serotonin (5-HT) transactivates the platelet-derived growth factor (PDGF) type β receptor as well as the TrkB receptor in neuronal cultures and SH-SY5Y cells, and that the transactivation of both receptors is ROS-dependent. Exogenous application of H2O2 induced the phosphorylation of these receptors in a dose-dependent fashion, similar to that observed with 5-HT. However the same concentrations of H2O2 failed to increase ERK1/2 phosphorylation. Yet, the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin blocked both 5-HT-induced PDGFβ receptor phosphorylation and ERK1/2 phosphorylation. The increases in PDGFβ receptor and ERK1/2 phosphorylation were also dependent on protein kinase C activity, likely acting upstream of NADPH oxidase. Additionally, although the ROS scavenger N-acetyl-l-cysteine abrogated 5-HT-induced PDGFβ and TrkB receptor transactivation, it was unable to prevent 5-HT-induced ERK1/2 phosphorylation. Thus, the divergence point for 5-HT-induced receptor tyrosine kinase (RTK) transactivation and ERK1/2 phosphorylation occurs at the level of NADPH oxidase in this system. The ability of 5-HT to induce the production of ROS resulting in transactivation of both PDGFβ and TrkB receptors may suggest that instead of a single GPCR to single RTK pathway, a less selective, more global RTK response to GPCR activation is occurring.
Collapse
|
25
|
Hirata K, Wada K, Murata Y, Nakajima A, Yamashiro T, Kamisaki Y. Critical role of leukotriene B4 receptor signaling in mouse 3T3-L1 preadipocyte differentiation. Lipids Health Dis 2013; 12:122. [PMID: 23937951 PMCID: PMC3751075 DOI: 10.1186/1476-511x-12-122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/06/2013] [Indexed: 11/13/2022] Open
Abstract
Background Various inflammatory mediators related to obesity might be closely related to insulin resistance. Leukotrienes (LTs) are involved in inflammatory reactions. However, there are few reports regarding the role of LTs in adipocyte differentiation. Therefore, we investigated the role of leukotriene B4 (LTB4)-leukotriene receptor (BLT) signaling in mouse 3T3-L1 fibroblastic preadipocyte differentiation to mature adipocytes. Methods Mouse 3T3-L1 preadipocytes were treated with lipoxygenase (LOX) inhibitors, BLT antagonist, and small interfering RNA (siRNA) for BLT1 and BLT2 to block the LTB4-BLT signaling pathway, then the adipocyte differentiation such as lipid accumulation and the increase in triglyceride was evaluated. Results Blockade of BLT signaling by treatment with a LOX inhibitor or a BLT antagonist suppressed preadipocyte differentiation into mature adipocytes. In addition, knockdown of BLT1 and BLT2 by siRNAs dramatically inhibited differentiation. These results indicate the LTB4-BLT signaling pathway may positively regulate preadipocyte differentiation and be a rate-limiting system to control adipocyte differentiation. Conclusions The LTB4-BLT signaling pathway provides a potent regulatory signal that accelerates the differentiation of mouse 3T3-L1 preadipocytes. Further investigations are necessary to confirm the exact role of LTB4 and BLTs signaling pathways in preadipocyte differentiation.
Collapse
Affiliation(s)
- Kae Hirata
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Canny GO, Lessey BA. The role of lipoxin A4 in endometrial biology and endometriosis. Mucosal Immunol 2013; 6:439-50. [PMID: 23485944 PMCID: PMC4062302 DOI: 10.1038/mi.2013.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipoxin A4 (LXA4), an endogenous anti-inflammatory and immunomodulatory mediator studied in many disease states, is recently appreciated as a potentially significant player in the endometrium. This eicosanoid, synthesized from arachidonic acid via the action of lipoxygenase enzymes, is likely regulated in endometrial tissue during the menstrual cycle. Recent studies revealed that LXA4 acts as an estrogen receptor agonist in endometrial epithelial cells, antagonizing some estrogen-mediated activities in a manner similar to the weak estrogen estriol, with which it shares structural similarity. LXA4 may also be an anti-inflammatory molecule in the endometrium, though its precise function in various physiological and pathological scenarios remains to be determined. The expression patterns for LXA4 and its receptor in the female reproductive tract suggest a role in pregnancy. The present review provides an oversight of its known and putative roles in the context of immuno-endocrine crosstalk. Endometriosis, a common inflammatory condition and a major cause of infertility and pain, is currently treated by surgery or anti-hormone therapies that are contraceptive and associated with undesirable side effects. LXA4 may represent a potential therapeutic and further research to elucidate its function in endometrial tissue and the peritoneal cavity will undoubtedly provide valuable insights.
Collapse
Affiliation(s)
- GO Canny
- Geneva Foundation for Medical Education and Research, Versoix, Switzerland
| | - BA Lessey
- University of South Carolina School of Medicine—Greenville, Greenville, SC, USA
| |
Collapse
|
27
|
Miyahara T, Runge S, Chatterjee A, Chen M, Mottola G, Fitzgerald JM, Serhan CN, Conte MS. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. FASEB J 2013; 27:2220-32. [PMID: 23407709 DOI: 10.1096/fj.12-225615] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent evidence suggests that specialized lipid mediators derived from polyunsaturated fatty acids control resolution of inflammation, but little is known about resolution pathways in vascular injury. We sought to determine the actions of D-series resolvin (RvD) on vascular smooth muscle cell (VSMC) phenotype and vascular injury. Human VSMCs were treated with RvD1 and RvD2, and phenotype was assessed by proliferation, migration, monocyte adhesion, superoxide production, and gene expression assays. A rabbit model of arterial angioplasty with local delivery of RvD2 (10 nM vs. vehicle control) was employed to examine effects on vascular injury in vivo. Local generation of proresolving lipid mediators (LC-MS/MS) and expression of RvD receptors in the vessel wall were assessed. RvD1 and RvD2 produced dose-dependent inhibition of VSMC proliferation, migration, monocyte adhesion, superoxide production, and proinflammatory gene expression (IC50≈0.1-1 nM). In balloon-injured rabbit arteries, cell proliferation (51%) and leukocyte recruitment (41%) were reduced at 3 d, and neointimal hyperplasia was attenuated (29%) at 28 d by RvD2. We demonstrate endogenous biosynthesis of proresolving lipid mediators and expression of receptors for RvD1 in the artery wall. RvDs broadly reduce VSMC responses and modulate vascular injury, suggesting that local activation of resolution mechanisms expedites vascular homeostasis.
Collapse
Affiliation(s)
- Takuya Miyahara
- Division of Vascular and Endovascular Surgery, University of California-San Francisco, San Francisco, CA 94143-0222, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kruk JS, Vasefi MS, Liu H, Heikkila JJ, Beazely MA. 5-HT1A receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells. Cell Signal 2013; 25:133-43. [DOI: 10.1016/j.cellsig.2012.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 01/23/2023]
|
29
|
Hirata K, Katayama K, Nakajima A, Takada K, Kamisaki Y, Wada K. Role of leukotriene B₄ receptor signaling in human preadipocyte differentiation. Biochem Biophys Res Commun 2012; 429:197-203. [PMID: 23137534 DOI: 10.1016/j.bbrc.2012.10.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/18/2022]
Abstract
We investigated the role of leukotriene B(4) (LTB(4))-leukotriene receptor (BLT) signaling in preadipocyte differentiation into mature adipocytes. Blockade of BLT signaling by treatment with lipoxygenase inhibitors, a BLT antagonist, and small interfering RNAs for BLTs in human and mouse preadipocytes isolated from adipose tissues showed acceleration of differentiation into mature adipocytes. DNA microarray analysis revealed regulation of transforming growth factor, beta-induced 68 kDa (TGFBI) expression through the BLT signaling pathway during adipocyte differentiation. Knockdown of TGFBI also showed acceleration of preadipocyte differentiation. The LTB(4)-BLT signaling pathway may negatively regulate preadipocyte differentiation via induction of TGFBI expression as a rate-limiting system to control adipocyte differentiation.
Collapse
Affiliation(s)
- Kae Hirata
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Börgeson E, Godson C. Resolution of inflammation: therapeutic potential of pro-resolving lipids in type 2 diabetes mellitus and associated renal complications. Front Immunol 2012; 3:318. [PMID: 23087692 PMCID: PMC3474937 DOI: 10.3389/fimmu.2012.00318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/29/2012] [Indexed: 01/04/2023] Open
Abstract
The role of inflammation in the pathogenesis of type 2 diabetes mellitus (T2DM) and its associated complications is increasingly recognized. The resolution of inflammation is actively regulated by endogenously produced lipid mediators such as lipoxins, resolvins, protectins, and maresins. Here we review the potential role of these lipid mediators in diabetes-associated pathologies, specifically focusing on adipose inflammation and diabetic kidney disease, i.e., diabetic nephropathy (DN). DN is one of the major complications of T2DM and we propose that pro-resolving lipid mediators may have therapeutic potential in this context. Adipose inflammation is also an important component of T2DM-associated insulin resistance and altered adipokine secretion. Promoting the resolution of adipose inflammation would therefore likely be a beneficial therapeutic approach in T2DM.
Collapse
Affiliation(s)
- Emma Börgeson
- UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical Sciences, University College Dublin Dublin, Ireland
| | | |
Collapse
|
31
|
Börgeson E, McGillicuddy FC, Harford KA, Corrigan N, Higgins DF, Maderna P, Roche HM, Godson C. Lipoxin A4 attenuates adipose inflammation. FASEB J 2012; 26:4287-94. [PMID: 22700871 DOI: 10.1096/fj.12-208249] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aging and adiposity are associated with chronic low-grade inflammation, which underlies the development of obesity-associated complications, including type 2 diabetes mellitus (T2DM). The mechanisms underlying adipose inflammation may include macrophage infiltration and activation, which, in turn, affect insulin sensitivity of adipocytes. There is a growing appreciation that specific lipid mediators (including lipoxins, resolvins, and protectins) can promote the resolution of inflammation. Here, we investigated the effect of lipoxin A4 (LXA4), the predominant endogenously generated lipoxin, on adipose tissue inflammation. Using adipose tissue explants from perigonadal depots of aging female C57BL/6J mice (Animalia, Chordata, Mus musculus) as a model of age-associated adipose inflammation, we report that LXA4 (1 nM) attenuates adipose inflammation, decreasing IL-6 and increasing IL-10 expression (P<0.05). The altered cytokine milieu correlated with increased GLUT-4 and IRS-1 expression, suggesting improved insulin sensitivity. Further investigations revealed the ability of LXA4 to rescue macrophage-induced desensitization to insulin-stimulated signaling and glucose uptake in cultured adipocytes, using vehicle-stimulated cells as controls. This was associated with preservation of Akt activation and reduced secretion of proinflammatory cytokines, including TNF-α. We therefore propose that LXA4 may represent a potentially useful and novel therapeutic strategy to subvert adipose inflammation and insulin resistance, key components of T2DM.
Collapse
Affiliation(s)
- Emma Börgeson
- UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Russell R, Gori I, Pellegrini C, Kumar R, Achtari C, Canny GO. Lipoxin A4 is a novel estrogen receptor modulator. FASEB J 2011; 25:4326-37. [PMID: 21885654 DOI: 10.1096/fj.11-187658] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammation is intimately linked with naturally occurring remodeling events in the endometrium. Lipoxins comprise a group of short-lived, nonclassic eicosanoids possessing potent anti-inflammatory and proresolution properties. In the present study, we investigated the role of lipoxin A(4) (LXA(4)) in the endometrium and demonstrated that 15-LOX-2, an enzyme necessary for LX biosynthesis, is expressed in this tissue. Our results establish that LXA(4) possesses robust estrogenic activity through its capacity to alter ERE transcriptional activity, as well as expression of estrogen-regulated genes, alkaline phosphatase activity, and proliferation in human endometrial epithelial cells. Interestingly, LXA(4) also demonstrated antiestrogenic potential, significantly attenuating E2-induced activity. This estrogenic activity was directly mediated through estrogen receptors (ERs). Subsequent investigations determined that the actions of LXA(4) are exclusively mediated through ERα and closely mimic those of the potent estrogen 17β-estradiol (E2). In binding assays, LXA(4) competed with E2 for ER binding, with an IC(50) of 46 nM. Furthermore, LXA(4) exhibited estrogenic activity in vivo, increasing uterine wet weight and modulating E2-regulated gene expression. These findings reveal a previously unappreciated facet of LXA(4) bioactions, implicating this lipid mediator in novel immunoendocrine crosstalk mechanisms.
Collapse
Affiliation(s)
- Ronan Russell
- Mucosal Immunity Laboratory, Department of Gynecology, Obstetrics and Medical Genetics, University Hospital Center and University of Lausanne, Ave. Pierre Decker 2, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Hutchinson JL, Rajagopal SP, Sales KJ, Jabbour HN. Molecular regulators of resolution of inflammation: potential therapeutic targets in the reproductive system. Reproduction 2011; 142:15-28. [DOI: 10.1530/rep-11-0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammatory processes are central to reproductive events including ovulation, menstruation, implantation and labour, while inflammatory dysregulation is a feature of numerous reproductive pathologies. In recent years, there has been much research into the endogenous mechanisms by which inflammatory reactions are terminated and tissue homoeostasis is restored, a process termed resolution. The identification and characterisation of naturally occurring pro-resolution mediators including lipoxins and annexin A1 has prompted a shift in the field of anti-inflammation whereby resolution is now observed as an active process, triggered as part of a normal inflammatory response. This review will address the process of resolution, discuss available evidence for expression of pro-resolution factors in the reproductive tract and explore possible roles for resolution in physiological reproductive processes and associated pathologies.
Collapse
|
34
|
Börgeson E, Docherty NG, Murphy M, Rodgers K, Ryan A, O'Sullivan TP, Guiry PJ, Goldschmeding R, Higgins DF, Godson C. Lipoxin A
4
and benzo‐lipoxin A
4
attenuate experimental renal fibrosis. FASEB J 2011; 25:2967-79. [DOI: 10.1096/fj.11-185017] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emma Börgeson
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | | | - Madeline Murphy
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Karen Rodgers
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Aidan Ryan
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Tim P. O'Sullivan
- Department of PhysiologySchool of MedicineTrinity CollegeDublinIreland
| | - Patrick J. Guiry
- Department of PhysiologySchool of MedicineTrinity CollegeDublinIreland
| | - Roel Goldschmeding
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Debra F. Higgins
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| | - Catherine Godson
- University College Dublin (UCD) Diabetes Research CentreUCD Conway InstituteSchool of Medicine and Medical SciencesDublinIreland
| |
Collapse
|
35
|
Kim MH, Lee YJ, Kim MO, Kim JS, Han HJ. Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3β/β-catenin signaling pathways. J Cell Biochem 2011; 111:686-98. [PMID: 20589831 DOI: 10.1002/jcb.22755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The actual leukotriene D(4) (LTD(4)) signaling pathways that regulate cell proliferation have not been elucidated thoroughly although fatty acid and its metabolites play a key role in regulations of embryonic functions. Thus, this study investigated the response of mouse embryonic stem (ES) cells exposed to LTD(4) and elucidated the signaling pathways as well. LTD(4) increased DNA synthesis in concentration-dependent (≥10(-7) M) and time-dependent (≥12 h) manners, as determined by [(3)H] thymidine incorporation and increased cell number. LTD(4) induced the phosphorylation of signal transducer and activator of transcription-3 (STAT3) and the increase of intracellular Ca(2+) levels via cysteinyl leukotriene (CysLT) 1 and 2 receptors. LTD(4) increased Akt activation and calcineurin expression, which were blocked by STAT3 inhibitor and calcium chelators. LTD(4)-induced glycogen synthase kinase (GSK)-3β phosphorylation was decreased by LY294002, Akt inhibitor, and cyclosporine A. LTD(4) inhibited the phosphorylation of β-catenin. In addition, LTD(4)-stimulated migration through increased activation of focal adhesion kinase (FAK) and paxillin which were blocked by Akt inhibitor and cyclosporine A. LTD(4)-induced increases in protooncogene and cell cycle regulatory proteins were blocked by cyclosporine A, FAK siRNA, and β-catenin siRNA. In conclusion, LTD(4)-stimulated mouse ES cell proliferation and migration via STAT3, phosphoinositide 3-kinases (PI3K)/Akt, Ca(2+)-calcineurin, and GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Daegu, South Korea
| | | | | | | | | |
Collapse
|
36
|
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 2011; 50:115-31. [PMID: 20970452 PMCID: PMC3012140 DOI: 10.1016/j.plipres.2010.10.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022]
Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer's disease and Parkinson's disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Anca D Dobrian
- Eastern Virginia Medical School, Department of Physiological Sciences, Lewis Hall, Room 2027, 700 W. Olney Road, Norfolk, VA 23507, United States.
| | | | | | | | | | | |
Collapse
|
37
|
Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:1260-73. [PMID: 20708099 PMCID: PMC2994245 DOI: 10.1016/j.bbalip.2010.08.002] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/23/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
Abstract
A new genus of specialized pro-resolving mediators (SPM) which include several families of distinct local mediators (lipoxins, resolvins, protectins, and maresins) are actively involved in the clearance and regulation of inflammatory exudates to permit restoration of tissue homeostasis. Classic lipid mediators that are temporally regulated are formed from arachidonic acid, and novel local mediators were uncovered that are biosynthesized from ω-3 poly-unsaturated fatty acids, such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid. The biosynthetic pathways for resolvins are constituted by fatty acid lipoxygenases and cyclooxygenase-2 via transcellular interactions established by innate immune effector cells which migrate from the vasculature to inflamed tissue sites. SPM provide local control over the execution of an inflammatory response towards resolution, and include recently recognized actions of SPM such as tissue protection and host defense. The structural families of the SPM do not resemble classic eicosanoids (PG or LT) and are novel structures that function uniquely via pro-resolving cellular and molecular targets. The extravasation of inflammatory cells expressing SPM biosynthetic routes are matched by the temporal provision of essential fatty acids from circulation needed as substrate for the formation of SPM. The present review provides an update and overview of the biosynthetic pathways and actions of SPM, and examines resolution as an integrated component of the inflammatory response and its return to homeostasis via biochemically active resolution mechanisms.
Collapse
Affiliation(s)
- Gerard Bannenberg
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| | | |
Collapse
|
38
|
Cattaneo F, Guerra G, Ammendola R. Expression and signaling of formyl-peptide receptors in the brain. Neurochem Res 2010; 35:2018-26. [PMID: 21042851 DOI: 10.1007/s11064-010-0301-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2010] [Indexed: 01/05/2023]
Abstract
The human formyl-peptide receptor (FPR) and its variants FPRL1 and FPRL2 belong to the G-protein coupled seven transmembrane receptor (GPCR) family sensitive to pertussis toxin. FPR and FPRL1 were first detected in phagocytic leukocytes, and FPRL2 was found in monocytes and in dendritic cells. The three receptors were subsequently identified in other cell types or tissues, including neuronal cells and brain, where FPR and FPRL1 play a key role in angiogenesis, cell proliferation, protection against and cell death, as well as in neuroendocrine functions. Binding of different agonists to FPRs triggers several signaling pathways, activates NFkB and STAT3 transcriptional factors and induces the accumulation of the CDK inhibitors p21(waf1/cip1), p16(INK4) and p27(kip1). Signaling molecules, such as ERKs, JNK, PKC, p38MAPK, PLC and PLD are involved in these intracellular cascades. In this article we briefly review FPRs expression and signaling in neuronal cells.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S Pansini 5, 80131 Naples, Italy
| | | | | |
Collapse
|
39
|
Facio FN, Sena AA, Araújo LP, Mendes GE, Castro I, Luz MAM, Yu L, Oliani SM, Burdmann EA. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med (Berl) 2010; 89:51-63. [PMID: 20953576 DOI: 10.1007/s00109-010-0684-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/01/2010] [Accepted: 09/18/2010] [Indexed: 10/18/2022]
Abstract
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 μg) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Collapse
Affiliation(s)
- Fernando N Facio
- Division of Nephrology, São José do Rio Preto Medical School, Av. Brigadeiro Faria Lima 5416, São José do Rio Preto, São Paulo, 15090-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ho KJ, Spite M, Owens CD, Lancero H, Kroemer AHK, Pande R, Creager MA, Serhan CN, Conte MS. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2116-23. [PMID: 20709806 DOI: 10.2353/ajpath.2010.091082] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vessel wall. Recent evidence suggests that chronic vascular inflammation ensues as an imbalance between pro- and anti-inflammatory mediators. Recently identified lipid mediators (eg, lipoxins and resolvins) play active roles in promoting the resolution of inflammation. Alterations in vascular smooth muscle cell (VSMC) phenotype, which manifest as a loss of contractile protein expression and increased proliferation and migration, are prominent mechanistic features of both atherosclerosis and restenosis following various interventions (eg, angioplasty and bypass grafting). We sought to determine whether human atherosclerosis is associated with a "resolution deficit" and whether lipoxins and resolvins influence VSMC phenotype. Here we report that plasma levels of aspirin-triggered lipoxin are significantly lower in patients with symptomatic peripheral artery disease than in healthy volunteers. Both aspirin-triggered lipoxin and resolvin E1 block platelet-derived growth factor-stimulated migration of human saphenous vein SMCs and decrease phosphorylation of the platelet-derived growth factor receptor-β. Importantly, receptors for aspirin-triggered lipoxin and resolvin E1 (ALX and ChemR23, respectively) were identified in human VSMCs. Overall, these results demonstrate that stimulatory lipid mediators confer a protective phenotypic switch in VSMCs and elucidate new functions for these mediators in the regulation of SMC biology. These results also suggest that peripheral artery disease is associated with an inflammation-resolution deficit and highlight a potential therapeutic opportunity for the regulation of vascular injury responses.
Collapse
Affiliation(s)
- Karen J Ho
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 2010; 50:35-51. [PMID: 20655950 DOI: 10.1016/j.plipres.2010.07.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 01/02/2023]
Abstract
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).
Collapse
Affiliation(s)
- Melanie J Stables
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| | | |
Collapse
|
42
|
Abstract
The resolution of inflammation is an active process controlled by endogenous mediators with selective actions on neutrophils and monocytes. The initial phase of the acute inflammatory response is characterized by the production of pro-inflammatory mediators followed by a second phase in which lipid mediators with pro-resolution activities may be generated. The identification of these mediators has provided evidence for the dynamic regulation of the resolution of inflammation. Among these endogenous local mediators of resolution, lipoxins (LXs), lipid mediators typically formed during cell-cell interaction, were the first to be recognized. More recently, families of endogenous chemical mediators, termed resolvins and protectins, were discovered. LXs and aspirin-triggered LXs are considered to act as 'braking signals' in inflammation, limiting the trafficking of leukocytes to the inflammatory site. LXs are actively involved in the resolution of inflammation stimulating non-phlogistic phagocytosis of apoptotic cells by macrophages. Furthermore, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to growth factors. Here, we provide a review and an update of the biosynthesis, metabolism and bioactions of LXs and LX analogues, and the recent studies on their therapeutic potential as promoters of resolution and fibro-suppressants.
Collapse
Affiliation(s)
- Paola Maderna
- UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
43
|
Baker N, O'Meara SJ, Scannell M, Maderna P, Godson C. Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3819-26. [PMID: 19265161 DOI: 10.4049/jimmunol.0803175] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipoxins (LX) are a class of eicosanoid that possesses a wide spectrum of antiinflammatory and proresolution bioactions. Here we have investigated the impact of the endogenously produced eicosanoid LXA(4) on endothelial cell inflammatory, proliferative, and antigenic responses. Using HUVECs we demonstrate that LXA(4) inhibits vascular endothelial growth factor (VEGF)-stimulated inflammatory responses including IL-6, TNF-alpha, IFN-gamma and IL-8 secretion, as well as endothelial ICAM-1 expression. Interestingly, LXA(4) up-regulated IL-10 production from HUVECs. Consistent with these antiinflammatory and proresolution responses to LXA(4), we demonstrate that LXA(4) inhibited leukotriene D(4) and VEGF-stimulated proliferation and angiogenesis as determined by tube formation of HUVECs. We have explored the underlying molecular mechanisms and demonstrate that LXA(4) pretreatment is associated with the decrease of VEGF-stimulated VEGF receptor 2 (KDR/FLK-1) phosphorylation and downstream signaling events including activation of phospholipase C-gamma, ERK1/2, and Akt.
Collapse
Affiliation(s)
- Nicole Baker
- School of Medicine and Medical Science, University College Dublin Diabetes Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | |
Collapse
|
44
|
Decker Y, McBean G, Godson C. Lipoxin A4 inhibits IL-1beta-induced IL-8 and ICAM-1 expression in 1321N1 human astrocytoma cells. Am J Physiol Cell Physiol 2009; 296:C1420-7. [PMID: 19357230 DOI: 10.1152/ajpcell.00380.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a growing appreciation that endogenously produced mediators may actively promote the resolution of inflammation. Lipoxins (LX) are a group of recently discovered lipid mediators that have been shown to exert anti-inflammatory and proresolution effects on cells of myeloid and nonmyeloid origin. LXs mediate a number of processes, including regression of pro-inflammatory cytokine production, inhibition of cell proliferation, and stimulation of phagocytosis of apoptotic leukocytes by macrophages. Lipoxin A(4) (LXA(4)) is one of the principal LXs formed by mammalian cells. Recently, a G protein-coupled receptor that binds LXA(4,) the lipoxin A(4) receptor, was identified in astrocytes and microglia, suggesting that these cells may be a target for LX action in the brain. In this study, we have investigated the potential of LXA(4) to modify inflammatory responses of astrocytes, using the 1321N1 human astrocytoma cell line as a model system. As shown by quantitative RT-PCR, LXA(4) (10 nM) significantly inhibited (P < 0.05) the IL-1beta-induced stimulation of IL-8 and ICAM-1 expression in these cells. Furthermore, LXA(4) (10 nM) decreased the expression of IL-1beta-induced IL-8 protein levels (P < 0.05). LXA(4) (10 nM) was found to inhibit IL-1beta-induced degradation of IkappaBalpha (P < 0.05), and the activation of an NFkappaB regulated reporter gene construct (P < 0.05). Overall, these data suggest that LXA(4) exerts anti-inflammatory effects in 1321N1 astrocytoma cells at least in part via an NFkappaB-dependent mechanism. It is concluded that LXA(4) may represent a potentially novel therapeutic approach to acute or chronic inflammation in the brain.
Collapse
Affiliation(s)
- Yann Decker
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
45
|
Regulation and consequences of differential gene expression in diabetic kidney disease. Biochem Soc Trans 2008; 36:941-5. [PMID: 18793165 DOI: 10.1042/bst0360941] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DN (diabetic nephropathy) is the leading cause of end-stage renal disease worldwide and develops in 25-40% of patients with Type 1 or Type 2 diabetes mellitus. Elevated blood glucose over long periods together with glomerular hypertension leads to progressive glomerulosclerosis and tubulointerstitial fibrosis in susceptible individuals. Central to the pathology of DN are cytokines and growth factors such as TGF-beta (transforming growth factor beta) superfamily members, including BMPs (bone morphogenetic protein) and TGF-beta1, which play key roles in fibrogenic responses of the kidney, including podocyte loss, mesangial cell hypertrophy, matrix accumulation and tubulointerstitial fibrosis. Many of these responses can be mimicked in in vitro models of cells cultured in high glucose. We have applied differential gene expression technologies to identify novel genes expressed in in vitro and in vivo models of DN and, importantly, in human renal tissue. By mining these datasets and probing the regulation of expression and actions of specific molecules, we have identified novel roles for molecules such as Gremlin, IHG-1 (induced in high glucose-1) and CTGF (connective tissue growth factor) in DN and potential regulators of their bioactions.
Collapse
|
46
|
O'Meara SJ, Rodgers K, Godson C. Lipoxins: update and impact of endogenous pro-resolution lipid mediators. Rev Physiol Biochem Pharmacol 2008; 160:47-70. [PMID: 18481030 DOI: 10.1007/112_2006_0606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoxins (LXs) are endogenously produced eicosanoids that are typically generated by transcellular biosynthesis. These trihydroxytetraene-containing lipid mediators and their stable synthetic analogues possess a wide spectrum of anti-inflammatory and pro-resolution bioactions both in vitro and in vivo. More recently, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to platelet-derived growth factor (PDGF). Here we review the biosynthesis, metabolism and bioactions of LXs and LX analogues and their therapeutic potential.
Collapse
Affiliation(s)
- S J O'Meara
- UCD Conway Institute of Biomolecular and Biomedical Research and UCB Diabetes Research Center, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
47
|
Cezar-de-Mello PFT, Vieira AM, Nascimento-Silva V, Villela CG, Barja-Fidalgo C, Fierro IM. ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. Br J Pharmacol 2008; 153:956-65. [PMID: 18193074 DOI: 10.1038/sj.bjp.0707650] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is the most important proangiogenic protein. We have demonstrated that ATL-1, a synthetic analogue of aspirin-triggered lipoxin A(4), inhibits VEGF-induced endothelial cell (EC) migration. In the present study, we investigated the effects of ATL-1 in several other actions stimulated by VEGF. METHODS Human umbilical vein ECs were treated with ATL-1 for 30 min before stimulation with VEGF. Cell proliferation was measured by thymidine incorporation. Adherent cells were determined by fluorescence intensity using a Multilabel counter. Expression and activity of matrix metalloproteinases (MMP) were analysed by western blot and zymography. KEY RESULTS ATL-1 inhibited EC adhesion to fibronectin via interaction with its specific receptor. Furthermore, VEGF-induced MMP-9 activity and expression were reduced by pretreatment with ATL-1. Because the transcription factor NF-kappaB has been implicated in VEGF-mediated MMP expression and EC proliferation, we postulated that ATL-1 might modulate the NF-kappaB pathway and, indeed, ATL-1 inhibited NF-kappaB nuclear translocation. Pretreatment of EC with ATL-1 strongly decreased VEGF-dependent phosphorylation of phosphainositide 3-kinase (PI3-K) and extracellular signal-regulated kinase-2 (ERK-2), two signalling kinases involved in EC proliferation. Inhibition of VEGF-induced EC proliferation by ATL-1 was antagonized by sodium orthovanadate, suggesting that this inhibitory activity was mediated by a protein tyrosine phosphatase. This was confirmed by showing that ATL-1 inhibition of VEGF receptor-2 (VEGFR-2) phosphorylation correlates with SHP-1 association with VEGFR-2. CONCLUSIONS AND IMPLICATIONS The synthetic 15-epi-lipoxin analogue, ATL-1, is a highly potent molecule exerting its effects on multiple steps of the VEGF-induced angiogenesis.
Collapse
Affiliation(s)
- P F T Cezar-de-Mello
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Zhang L, Wan J, Li H, Wu P, Jin S, Zhou X, Yuan P, Xiong W, Li Y, Ye D. Protective effects of BML-111, a lipoxin A(4) receptor agonist, on carbon tetrachloride-induced liver injury in mice. Hepatol Res 2007; 37:948-56. [PMID: 17610505 DOI: 10.1111/j.1872-034x.2007.00154.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lipoxins (LX) are trihydroxytetraene-containing eicosanoids that display unique anti-inflammatory and pro-resolving actions during various inflammatory conditions, but the pathophysiological significance of LX in liver disorders remains unknown. METHODS In the present study, we used a murine model of carbon tetrachloride (CCl(4))-induced acute liver injury to investigate the effects of LX on the progression of acute liver injury. RESULTS The results indicated that the lipoxin A(4) receptor (ALX) was upregulated after giving CCl(4). BML-111, a commercially available ALX agonist, effectively protected the liver from CCl(4)-induced injury as evidenced by decreased serum aminotransferase (ALT, AST) levels and improved histological damage. The dampened liver injury was accompanied byreduced malondialdehyde (MDA) content in liver homogenates and decreased concentration of tumor necrosis factor-alpha (TNF-alpha) in the serum. Most interestingly, BML-111 markedly upregulated hepatic heme oxygenase-1 (HO-1) expression in CCl(4)-treated mice, which might provide antioxidative activities in the liver. CONCLUSION These data indicate that ALX agonist BML-111 plays a critical protective role in CCl(4)-induced acute liver injury through limiting the inflammatory response and promoting antioxidative protein expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
|