1
|
Tuttle C, Hannesson M, Henrichsen A, Hainsworth L, Condie C, Whitesides A, Oren A, Tanner S, Terry B, Cannon J, Johansen J, Bhatia A, Scott D. A case for myoglobin-macromolecular rate theory applied to pseudo peroxidase kinetics. PeerJ 2025; 13:e19205. [PMID: 40191762 PMCID: PMC11971986 DOI: 10.7717/peerj.19205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
This study explores the well-known catalytic behavior of myoglobin as a pseudo-peroxidase by applying macromolecular rate theory (MMRT) to assess its temperature-dependent enzyme kinetics. While myoglobin is primarily recognized for its oxygen-binding properties in muscle tissues, with a characterized pseudo-peroxidase ability to catalyze the degradation of hydrogen peroxide in the presence of electron donors, the claim that myoglobin is actually a true peroxidase can be explored by analyzing the heat capacity changes (ΔCp ‡) in the catalyzed reaction at different temperatures and fitting the results to the expanded Eyring equation (MMRT equation). This research uses the MMRT equation to compare myoglobin's catalytic activity (a pseudo-peroxidase) with that of lactoperoxidase (a true peroxidase) and copper ions (a non-enzymatic catalyst) across a range of temperatures at pH 5, after which the biological catalysts are compared again at pH 7. By analyzing the ΔCp ‡ of these catalysts, it was found that myoglobin exhibits a significant catalytic contribution at both pH levels, suggesting a structural/vibrational or some other relatively significant transition during the reaction. The study's findings provide a new perspective into myoglobin's enzymatic role in peroxide decomposition and highlight the utility of MMRT in quantifying the contribution of polypeptide chains in enzyme-catalyzed peroxidase reactions. Additionally, our research notes the pH-dependence of myoglobin's catalytic efficiency compared to traditional peroxidases, offering implications for understanding its broader biological roles.
Collapse
Affiliation(s)
- Collin Tuttle
- Chemistry, Utah Valley University, Orem, Utah, United States
| | | | - Amy Henrichsen
- Biochemistry, Brigham Young University Hawaii, Laie, Hawaii, United States
| | - Lily Hainsworth
- Biochemistry, Brigham Young University Hawaii, Laie, Hawaii, United States
| | - Camille Condie
- Biochemistry, Brigham Young University Hawaii, Laie, Hawaii, United States
| | - Aj Whitesides
- Biochemistry, Brigham Young University Hawaii, Laie, Hawaii, United States
| | - Archel Oren
- Biochemistry, Brigham Young University Hawaii, Laie, Hawaii, United States
| | - Simeon Tanner
- Chemistry, Utah Valley University, Orem, Utah, United States
| | - Benjamin Terry
- Chemistry, Utah Valley University, Orem, Utah, United States
| | - Jacob Cannon
- Chemistry, Utah Valley University, Orem, Utah, United States
| | - Jeremy Johansen
- Chemistry, Utah Valley University, Orem, Utah, United States
| | - Alisha Bhatia
- Chemistry, University of California, Los Angeles, Los Angeles, California, United States
| | - Daniel Scott
- Chemistry, Utah Valley University, Orem, Utah, United States
| |
Collapse
|
2
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
3
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
4
|
Badawi S, Leboullenger C, Chourrout M, Gouriou Y, Paccalet A, Pillot B, Augeul L, Bolbos R, Bongiovani A, Mewton N, Bochaton T, Ovize M, Tardivel M, Kurdi M, Canet-Soulas E, Da Silva CC, Bidaux G. Oxidation-reduction imaging of myoglobin reveals two-phase oxidation in the reperfused myocardium. Basic Res Cardiol 2024; 119:435-451. [PMID: 38499702 PMCID: PMC11142982 DOI: 10.1007/s00395-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Myocardial infarction (MI) is a serious acute cardiovascular syndrome that causes myocardial injury due to blood flow obstruction to a specific myocardial area. Under ischemic-reperfusion settings, a burst of reactive oxygen species is generated, leading to redox imbalance that could be attributed to several molecules, including myoglobin. Myoglobin is dynamic and exhibits various oxidation-reduction states that have been an early subject of attention in the food industry, specifically for meat consumers. However, rarely if ever have the myoglobin optical properties been used to measure the severity of MI. In the current study, we develop a novel imaging pipeline that integrates tissue clearing, confocal and light sheet fluorescence microscopy, combined with imaging analysis, and processing tools to investigate and characterize the oxidation-reduction states of myoglobin in the ischemic area of the cleared myocardium post-MI. Using spectral imaging, we have characterized the endogenous fluorescence of the myocardium and demonstrated that it is partly composed by fluorescence of myoglobin. Under ischemia-reperfusion experimental settings, we report that the infarcted myocardium spectral signature is similar to that of oxidized myoglobin signal that peaks 3 h post-reperfusion and decreases with cardioprotection. The infarct size assessed by oxidation-reduction imaging at 3 h post-reperfusion was correlated to the one estimated with late gadolinium enhancement MRI at 24 h post-reperfusion. In conclusion, this original work suggests that the redox state of myoglobin can be used as a promising imaging biomarker for characterizing and estimating the size of the MI during early phases of reperfusion.
Collapse
Affiliation(s)
- Sally Badawi
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
- Laboratory of Experimental and Clinical Pharmacology, Department of Chemistry and Biochemistry, Doctoral School of Sciences and Technology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Clémence Leboullenger
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, CHU Lille, 59000, Lille, France
| | - Matthieu Chourrout
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, BIORAN, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Yves Gouriou
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
| | - Alexandre Paccalet
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
| | - Bruno Pillot
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
| | - Lionel Augeul
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
| | | | - Antonino Bongiovani
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, CHU Lille, 59000, Lille, France
| | - Nathan Mewton
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
- Centre d'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France
| | - Thomas Bochaton
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
| | - Meryem Tardivel
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, CHU Lille, 59000, Lille, France
| | - Mazen Kurdi
- Laboratory of Experimental and Clinical Pharmacology, Department of Chemistry and Biochemistry, Doctoral School of Sciences and Technology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69550, Bron, France.
- Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA, Hospices Civils de Lyon, Bâtiment B13, 69500, Bron, France.
| |
Collapse
|
5
|
Rao K, Rochon E, Singh A, Jagannathan R, Peng Z, Mansoor H, Wang B, Moulik M, Zhang M, Saraf A, Corti P, Shiva S. Myoglobin modulates the Hippo pathway to promote cardiomyocyte differentiation. iScience 2024; 27:109146. [PMID: 38414852 PMCID: PMC10897895 DOI: 10.1016/j.isci.2024.109146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
The endogenous mechanisms that propagate cardiomyocyte differentiation and prevent de-differentiation remain unclear. While the expression of the heme protein myoglobin increases by over 50% during cardiomyocyte differentiation, a role for myoglobin in regulating cardiomyocyte differentiation has not been tested. Here, we show that deletion of myoglobin in cardiomyocyte models decreases the gene expression of differentiation markers and stimulates cellular proliferation, consistent with cardiomyocyte de-differentiation. Mechanistically, the heme prosthetic group of myoglobin catalyzes the oxidation of the Hippo pathway kinase LATS1, resulting in phosphorylation and inactivation of yes-associated protein (YAP). In vivo, myoglobin-deficient zebrafish hearts show YAP dephosphorylation and accelerated cardiac regeneration after apical injury. Similarly, myoglobin knockdown in neonatal murine hearts shows increased YAP dephosphorylation and cardiomyocyte cycling. These data demonstrate a novel role for myoglobin as an endogenous driver of cardiomyocyte differentiation and highlight myoglobin as a potential target to enhance cardiac development and improve cardiac repair and regeneration.
Collapse
Affiliation(s)
- Krithika Rao
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Elizabeth Rochon
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anuradha Singh
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rajaganapathi Jagannathan
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zishan Peng
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Haris Mansoor
- Heart and Vascular Institute Division of Cardiology, Department of Medicine and Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bing Wang
- Molecular Therapy Lab, Stem Cell Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mousumi Moulik
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Manling Zhang
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Veteran Affair Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anita Saraf
- Heart and Vascular Institute Division of Cardiology, Department of Medicine and Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paola Corti
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
6
|
Zoladz JA, Grandys M, Smeda M, Kij A, Kurpinska A, Kwiatkowski G, Karasinski J, Hendgen-Cotta U, Chlopicki S, Majerczak J. Myoglobin deficiency impairs maximal oxygen uptake and exercise performance: a lesson from Mb -/- mice. J Physiol 2024; 602:855-873. [PMID: 38376957 DOI: 10.1113/jp285067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Myoglobin (Mb) plays an important role at rest and during exercise as a reservoir of oxygen and has been suggested to regulate NO• bioavailability under hypoxic/acidic conditions. However, its ultimate role during exercise is still a subject of debate. We aimed to study the effect of Mb deficiency on maximal oxygen uptake (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and exercise performance in myoglobin knockout mice (Mb-/- ) when compared to control mice (Mb+/+ ). Furthermore, we also studied NO• bioavailability, assessed as nitrite (NO2 - ) and nitrate (NO3 - ) in the heart, locomotory muscle and in plasma, at rest and during exercise at exhaustion both in Mb-/- and in Mb+/+ mice. The mice performed maximal running incremental exercise on a treadmill with whole-body gas exchange measurements. The Mb-/- mice had lower body mass, heart and hind limb muscle mass (P < 0.001). Mb-/- mice had significantly reduced maximal running performance (P < 0.001).V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ expressed in ml min-1 in Mb-/ - mice was 37% lower than in Mb+/+ mice (P < 0.001) and 13% lower when expressed in ml min-1 kg body mass-1 (P = 0.001). Additionally, Mb-/- mice had significantly lower plasma, heart and locomotory muscle NO2 - levels at rest. During exercise NO2 - increased significantly in the heart and locomotory muscles of Mb-/- and Mb+/+ mice, whereas no significant changes in NO2 - were found in plasma. Our study showed that, contrary to recent suggestions, Mb deficiency significantly impairsV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance in mice. KEY POINTS: Myoglobin knockout mice (Mb-/- ) possess lower maximal oxygen uptake (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and poorer maximal running performance than control mice (Mb+/+ ). Respiratory exchange ratio values at high running velocities in Mb-/- mice are higher than in control mice suggesting a shift in substrate utilization towards glucose metabolism in Mb-/- mice at the same running velocities. Lack of myoglobin lowers basal systemic and muscle NO• bioavailability, but does not affect exercise-induced NO2 - changes in plasma, heart and locomotory muscles. The present study demonstrates that myoglobin is of vital importance forV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance as well as explains why previous studies have failed to prove such a role of myoglobin when using the Mb-/- mouse model.
Collapse
Affiliation(s)
- Jerzy A Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Janusz Karasinski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ulrike Hendgen-Cotta
- Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
7
|
Galvan-Alvarez V, Martin-Rincon M, Gallego-Selles A, Martínez Canton M, HamedChaman N, Gelabert-Rebato M, Perez-Valera M, García-Gonzalez E, Santana A, Holmberg HC, Boushel R, Hallén J, Calbet JAL. Determinants of the maximal functional reserve during repeated supramaximal exercise by humans: The roles of Nrf2/Keap1, antioxidant proteins, muscle phenotype and oxygenation. Redox Biol 2023; 66:102859. [PMID: 37666117 PMCID: PMC10491831 DOI: 10.1016/j.redox.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
When high-intensity exercise is performed until exhaustion a "functional reserve" (FR) or capacity to produce power at the same level or higher than reached at exhaustion exists at task failure, which could be related to reactive oxygen and nitrogen species (RONS)-sensing and counteracting mechanisms. Nonetheless, the magnitude of this FR remains unknown. Repeated bouts of supramaximal exercise at 120% of VO2max interspaced with 20s recovery periods with full ischaemia were used to determine the maximal FR. Then, we determined which muscle phenotypic features could account for the variability in functional reserve in humans. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation (near-infrared spectroscopy) were measured, and resting muscle biopsies were obtained from 43 young healthy adults (30 males). Males and females had similar aerobic (VO2max per kg of lower extremities lean mass (LLM): 166.7 ± 17.1 and 166.1 ± 15.6 ml kg LLM-1.min-1, P = 0.84) and anaerobic fitness (similar performance in the Wingate test and maximal accumulated oxygen deficit when normalized to LLM). The maximal FR was similar in males and females when normalized to LLM (1.84 ± 0.50 and 2.05 ± 0.59 kJ kg LLM-1, in males and females, respectively, P = 0.218). This FR depends on an obligatory component relying on a reserve in glycolytic capacity and a putative component generated by oxidative phosphorylation. The aerobic component depends on brain oxygenation and phenotypic features of the skeletal muscles implicated in calcium handling (SERCA1 and 2 protein expression), oxygen transport and diffusion (myoglobin) and redox regulation (Keap1). The glycolytic component can be predicted by the protein expression levels of pSer40-Nrf2, the maximal accumulated oxygen deficit and the protein expression levels of SOD1. Thus, an increased capacity to modulate the expression of antioxidant proteins involved in RONS handling and calcium homeostasis may be critical for performance during high-intensity exercise in humans.
Collapse
Affiliation(s)
- Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Martínez Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - NaDer HamedChaman
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Exercise Physiology, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Eduardo García-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Hans-Christer Holmberg
- Department of Health Sciences, Luleå University of Technology, Sweden; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Jostein Hallén
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
8
|
Aboouf MA, Gorr TA, Hamdy NM, Gassmann M, Thiersch M. Myoglobin in Brown Adipose Tissue: A Multifaceted Player in Thermogenesis. Cells 2023; 12:2240. [PMID: 37759463 PMCID: PMC10526770 DOI: 10.3390/cells12182240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Brown adipose tissue (BAT) plays an important role in energy homeostasis by generating heat from chemical energy via uncoupled oxidative phosphorylation. Besides its high mitochondrial content and its exclusive expression of the uncoupling protein 1, another key feature of BAT is the high expression of myoglobin (MB), a heme-containing protein that typically binds oxygen, thereby facilitating the diffusion of the gas from cell membranes to mitochondria of muscle cells. In addition, MB also modulates nitric oxide (NO•) pools and can bind C16 and C18 fatty acids, which indicates a role in lipid metabolism. Recent studies in humans and mice implicated MB present in BAT in the regulation of lipid droplet morphology and fatty acid shuttling and composition, as well as mitochondrial oxidative metabolism. These functions suggest that MB plays an essential role in BAT energy metabolism and thermogenesis. In this review, we will discuss in detail the possible physiological roles played by MB in BAT thermogenesis along with the potential underlying molecular mechanisms and focus on the question of how BAT-MB expression is regulated and, in turn, how this globin regulates mitochondrial, lipid, and NO• metabolism. Finally, we present potential MB-mediated approaches to augment energy metabolism, which ultimately could help tackle different metabolic disorders.
Collapse
Affiliation(s)
- Mostafa A. Aboouf
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Thomas A. Gorr
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Nadia M. Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Max Gassmann
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Aydemir HB, Korkmaz EM. Identification and characterization of globin gene from Bombus terrestris (Hymenoptera: Apocrita: Apidae). Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Christen L, Broghammer H, Rapöhn I, Möhlis K, Strehlau C, Ribas‐Latre A, Gebhardt C, Roth L, Krause K, Landgraf K, Körner A, Rohde‐Zimmermann K, Hoffmann A, Klöting N, Ghosh A, Sun W, Dong H, Wolfrum C, Rassaf T, Hendgen‐Cotta UB, Stumvoll M, Blüher M, Heiker JT, Weiner J. Myoglobin-mediated lipid shuttling increases adrenergic activation of brown and white adipocyte metabolism and is as a marker of thermogenic adipocytes in humans. Clin Transl Med 2022; 12:e1108. [PMID: 36480426 PMCID: PMC9731393 DOI: 10.1002/ctm2.1108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recruitment and activation of brown adipose tissue (BAT) results in increased energy expenditure (EE) via thermogenesis and represents an intriguing therapeutic approach to combat obesity and treat associated diseases. Thermogenesis requires an increased and efficient supply of energy substrates and oxygen to the BAT. The hemoprotein myoglobin (MB) is primarily expressed in heart and skeletal muscle fibres, where it facilitates oxygen storage and flux to the mitochondria during exercise. In the last years, further contributions of MB have been assigned to the scavenging of reactive oxygen species (ROS), the regulation of cellular nitric oxide (NO) levels and also lipid binding. There is a substantial expression of MB in BAT, which is induced during brown adipocyte differentiation and BAT activation. This suggests MB as a previously unrecognized player in BAT contributing to thermogenesis. METHODS AND RESULTS This study analyzed the consequences of MB expression in BAT on mitochondrial function and thermogenesis in vitro and in vivo. Using MB overexpressing, knockdown or knockout adipocytes, we show that expression levels of MB control brown adipocyte mitochondrial respiratory capacity and acute response to adrenergic stimulation, signalling and lipolysis. Overexpression in white adipocytes also increases their metabolic activity. Mutation of lipid interacting residues in MB abolished these beneficial effects of MB. In vivo, whole-body MB knockout resulted in impaired thermoregulation and cold- as well as drug-induced BAT activation in mice. In humans, MB is differentially expressed in subcutaneous (SC) and visceral (VIS) adipose tissue (AT) depots, differentially regulated by the state of obesity and higher expressed in AT samples that exhibit higher thermogenic potential. CONCLUSIONS These data demonstrate for the first time a functional relevance of MBs lipid binding properties and establish MB as an important regulatory element of thermogenic capacity in brown and likely beige adipocytes.
Collapse
Affiliation(s)
- Lisa Christen
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Helen Broghammer
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III ‐ EndocrinologyNephrologyRheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Kevin Möhlis
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Christian Strehlau
- Medical Department III ‐ EndocrinologyNephrologyRheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Aleix Ribas‐Latre
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Claudia Gebhardt
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Lisa Roth
- Medical Department III ‐ EndocrinologyNephrologyRheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Kerstin Krause
- Medical Department III ‐ EndocrinologyNephrologyRheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL)University Hospital for Children and AdolescentsMedical FacultyUniversity of LeipzigLeipzigGermany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL)University Hospital for Children and AdolescentsMedical FacultyUniversity of LeipzigLeipzigGermany
| | - Kerstin Rohde‐Zimmermann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Adhideb Ghosh
- Institute of FoodNutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Wenfei Sun
- Institute of FoodNutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Hua Dong
- Institute of FoodNutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Christian Wolfrum
- Institute of FoodNutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Tienush Rassaf
- Department of Cardiology and Vascular MedicineWest German Heart and Vascular CenterMedical FacultyUniversity of Duisburg‐EssenEssenGermany
| | - Ulrike B. Hendgen‐Cotta
- Department of Cardiology and Vascular MedicineWest German Heart and Vascular CenterMedical FacultyUniversity of Duisburg‐EssenEssenGermany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III ‐ EndocrinologyNephrologyRheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- Institute of Biochemistry, Faculty of Life SciencesUniversity of LeipzigLeipzigGermany
| | - Juliane Weiner
- Medical Department III ‐ EndocrinologyNephrologyRheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| |
Collapse
|
11
|
Pro-Apoptotic and Anti-Invasive Properties Underscore the Tumor-Suppressing Impact of Myoglobin on a Subset of Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231911483. [PMID: 36232784 PMCID: PMC9570501 DOI: 10.3390/ijms231911483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The expression of myoglobin (MB), well known as the oxygen storage and transport protein of myocytes, is a novel hallmark of the luminal subtype in breast cancer patients and correlates with better prognosis. The mechanisms by which MB impacts mammary tumorigenesis are hitherto unclear. We aimed to unravel this role by using CRISPR/Cas9 technology to generate MB-deficient clones of MCF7 and SKBR3 breast cancer cell lines and subsequently characterize them by transcriptomics plus molecular and functional analyses. As main findings, loss of MB at normoxia upregulated the expression of cell cyclins and increased cell survival, while it prevented apoptosis in MCF7 cells. Additionally, MB-deficient cells were less sensitive to doxorubicin but not ionizing radiation. Under hypoxia, the loss of MB enhanced the partial epithelial to mesenchymal transition, thus, augmenting the migratory and invasive behavior of cells. Notably, in human invasive mammary ductal carcinoma tissues, MB and apoptotic marker levels were positively correlated. In addition, MB protein expression in invasive ductal carcinomas was associated with a positive prognostic value, independent of the known tumor suppressor p53. In conclusion, we provide multiple lines of evidence that endogenous MB in cancer cells by itself exerts novel tumor-suppressive roles through which it can reduce cancer malignancy.
Collapse
|
12
|
Scrima R, Agriesti F, Pacelli C, Piccoli C, Pucci P, Amoresano A, Cela O, Nappi L, Tataranni T, Mori G, Formisano P, Capitanio N. Myoglobin expression by alternative transcript in different mesenchymal stem cells compartments. Stem Cell Res Ther 2022; 13:209. [PMID: 35598009 PMCID: PMC9123686 DOI: 10.1186/s13287-022-02880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metabolic phenotype of stem cells is increasingly recognized as a hallmark of their pluripotency with mitochondrial and oxygen-related metabolism playing a not completely defined role in this context. In a previous study, we reported the ectopic expression of myoglobin (MB) in bone marrow-derived hematopoietic stem/progenitor cells. Here, we have extended the analysis to mesenchymal stem cells (MSCs) isolated from different tissues. METHODS MSCs were isolated from human placental membrane, mammary adipose tissue and dental pulp and subjected to RT-PCR, Western blotting and mass spectrometry to investigate the expression of MB. A combination of metabolic flux analysis and cyto-imaging was used to profile the metabolic phenotype and the mitochondria dynamics in the different MSCs. RESULTS As for the hematopoietic stem/progenitor cells, the expression of Mb was largely driven by an alternative transcript with the protein occurring both in the monomer and in the dimer forms as confirmed by mass spectrometry analysis. Comparing the metabolic fluxes between neonatal placental membrane-derived and adult mammary adipose tissue-derived MSCs, we showed a significantly more active bioenergetics profile in the former that correlated with a larger co-localization of myoglobin with the mitochondrial compartment. Differences in the structure of the mitochondrial network as well as in the expression of factors controlling the organelle dynamics were also observed between neonatal and adult mesenchymal stem cells. Finally, the expression of myoglobin was found to be strongly reduced following osteogenic differentiation of dental pulp-derived MSCs, while it was upregulated following reprogramming of human fibroblasts to induce pluripotent stem cells. CONCLUSIONS Ectopic expression of myoglobin in tissues other than muscle raises the question of understanding its function therein. Properties in addition to the canonical oxygen storage/delivery have been uncovered. Finding of Mb expressed via an alternative gene transcript in the context of different stem cells with metabolic phenotypes, its loss during differentiation and recovery in iPSCs suggest a hitherto unappreciated role of Mb in controlling the balance between aerobic metabolism and pluripotency. Understanding how Mb contributes through modulation of the mitochondrial physiology to the stem cell biology paves the way to novel perspectives in regenerative medicine as well as in cancer stem cell therapy.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pietro Pucci
- CEINGE Advanced Biotechnology and Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Angela Amoresano
- CEINGE Advanced Biotechnology and Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
13
|
Napolitano G, Fasciolo G, Magnacca N, Goglia F, Lombardi A, Venditti P. Oxidative damage and mitochondrial functionality in hearts from KO UCP3 mice housed at thermoneutrality. J Physiol Biochem 2022; 78:415-425. [PMID: 35237934 DOI: 10.1007/s13105-022-00882-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 01/24/2023]
Abstract
The antioxidant role of mitochondrial uncoupling protein 3 (UCP3) is controversial. This work aimed to investigate the effects of UCP3 on the heart of mice housed at thermoneutral temperature, an experimental condition that avoids the effects of thermoregulation on mitochondrial activity and redox homeostasis, preventing the alterations related to these processes from confusing the results caused by the lack of UCP3. WT and KO UCP3 mice were acclimatized at 30 °C for 4 weeks and hearts were used to evaluate metabolic capacity and redox state. Tissue and mitochondrial respiration, the activities of the mitochondrial complexes, and the protein expression of mitochondrial complexes markers furnished information on mitochondrial functionality. The levels of lipid and protein oxidative damage markers, the activity of antioxidant enzymes, the reactive oxygen species levels, and the susceptibility to in vitro Fe-ascorbate-induced oxidative stress furnished information on redox state. UCP3 ablation reduced tissue and mitochondrial respiratory capacities, not affecting the mitochondrial content. In KO UCP3 mice, the mitochondrial complexes activities were lower than in WT without changes in their content. These effects were accompanied by an increase in the level of oxidative stress markers, ROS content, and in vitro susceptibility to oxidative stress, notwithstanding that the activities of antioxidant enzymes were not affected by UCP3 ablation. Such modifications are also associated with enhanced activation/phosphorylation of EIF2α, a marker of integrated stress response and endoplasmic reticulum stress (GRP778 BIP). The lack of UCP3 makes the heart more prone to oxidative insult by reducing oxygen consumption and increasing ROS. Our results demonstrate that UCP3 helps the cell to preserve mitochondrial function by mitigating oxidative stress.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università Degli Studi Di Napoli Parthenope, via Acton n. 38, -I-80133, Napoli, Italy.
| | - Gianluca Fasciolo
- Dipartimento di Biologia, Università di Napoli "Federico II," Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy
| | - Nunzia Magnacca
- Dipartimento di Biologia, Università di Napoli "Federico II," Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università di Napoli "Federico II," Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy.
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli "Federico II," Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy.
| |
Collapse
|
14
|
Elkholi IE, Elsherbiny ME, Emara M. Myoglobin: From physiological role to potential implications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188706. [PMID: 35247507 DOI: 10.1016/j.bbcan.2022.188706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
Myoglobin (MB) belongs to the well-studied globin proteins superfamily. It has been extensively studied for its physiological roles in oxygen storage and transport for about a century now. However, the last two decades shed the light on unexpected aspects for MB research. Myoglobin has been suggested as a scavenger for nitric oxide and reactive oxygen species (ROS). Furthermore, MB was found to be expressed and regulated in different tissues, beyond the muscle lineage, including cancers. Current evidence suggest that MB is directly regulated by hypoxia and might be contributing to the metabolic rewiring in cancer tissues. In this article, we first discuss the MB physiological roles and then focus on the latter potential roles and regulatory networks of MB in cancer.
Collapse
Affiliation(s)
- Islam E Elkholi
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt; Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt.
| |
Collapse
|
15
|
Suciadi LP, Henrina J, Putra ICS, Cahyadi I, Gunawan HFH. Chronic Heart Failure: Clinical Implications of Iron Homeostasis Disturbances Revisited. Cureus 2022; 14:e21224. [PMID: 35178308 PMCID: PMC8842304 DOI: 10.7759/cureus.21224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/05/2022] Open
Abstract
Iron deficiency is prevalent in chronic heart failure (CHF) patients. Nonetheless, the diagnosis is often overlooked and, often, the treatment is commenced just when overt anemia has ensued. Therefore, a better appreciation of this disease is needed, and all seasoned cardiologists should know how to approach CHF patients with iron deficiency correctly, as mandated by clinical practice guidelines. In this comprehensive review, we describe iron homeostasis, the pathophysiologic changes of iron homeostasis, and the clinical implications of iron deficiency on CHF patients. In addition, we delineate the evolution of clinical trials, ranging from the inception to the ongoing clinical trials of iron deficiency treatment in CHF patients. Iron deficiency contributes to the worse clinical outcome of the patients. Numerous studies have reported the clinical benefit of iron supplementation, particularly in intravenous preparation, in heart failure patients regarding symptoms, functional capacity, and quality of life (QoL) improvement. Therefore, the current guidelines recommend routine screening of iron status in all newly diagnosed heart failure patients. Eventually, intravenous iron replacement is recommended for symptomatic heart failure patients with iron deficiency, irrespective of anemia.
Collapse
Affiliation(s)
- Leonardo P Suciadi
- Cardiology, Siloam Hospitals Kebon Jeruk/Siloam Heart Institute, Jakarta, IDN
| | - Joshua Henrina
- Family Medicine, Balaraja Public Health Center, Tangerang, IDN
| | | | | | | |
Collapse
|
16
|
Aboouf MA, Armbruster J, Thiersch M, Gassmann M, Gödecke A, Gnaiger E, Kristiansen G, Bicker A, Hankeln T, Zhu H, Gorr TA. Myoglobin, expressed in brown adipose tissue of mice, regulates the content and activity of mitochondria and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159026. [PMID: 34384891 DOI: 10.1016/j.bbalip.2021.159026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
The identification of novel physiological regulators that stimulate energy expenditure through brown adipose tissue (BAT) activity in substrate catalysis is of utmost importance to understand and treat metabolic diseases. Myoglobin (MB), known to store or transport oxygen in heart and skeletal muscles, has recently been found to bind fatty acids with physiological constants in its oxygenated form (i.e., MBO2). Here, we investigated the in vivo effect of MB expression on BAT activity. In particular, we studied mitochondrial function and lipid metabolism as essential determinants of energy expenditure in this tissue. We show in a MB-null (MBko) mouse model that MB expression in BAT impacts on the activity of brown adipocytes in a twofold manner: i) by elevating mitochondrial density plus maximal respiration capacity, and through that, by stimulating BAT oxidative metabolism along with the organelles` uncoupled respiration; and ii) by influencing the free fatty acids pool towards a palmitate-enriched composition and shifting the lipid droplet (LD) equilibrium towards higher counts of smaller droplets. These metabolic changes were accompanied by the up-regulated expression of thermogenesis markers UCP1, CIDEA, CIDEC, PGC1-α and PPAR-α in the BAT of MB wildtype (MBwt) mice. Along with the emergence of the "browning" BAT morphology, MBwt mice exhibited a leaner phenotype when compared to MBko littermates at 20 weeks of age. Our data shed novel insights into MB's role in linking oxygen and lipid-based thermogenic metabolism. The findings suggest potential new strategies of targeting the MB pathway to treat metabolic disorders related to diminishing energy expenditure.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Axel Gödecke
- Institute of Cardiovascular Physiology (A.G.), Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Erich Gnaiger
- Department of Visceral, Transplant and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University Innsbruck, Innrain 66/6, A-6020 Innsbruck, Austria
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, University of Bonn, D-53127 Bonn, Germany
| | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Thomas A Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
17
|
Hofbauer S, Pignataro M, Borsari M, Bortolotti CA, Di Rocco G, Ravenscroft G, Furtmüller PG, Obinger C, Sola M, Battistuzzi G. Pseudoperoxidase activity, conformational stability, and aggregation propensity of the His98Tyr myoglobin variant: implications for the onset of myoglobinopathy. FEBS J 2021; 289:1105-1117. [PMID: 34679218 PMCID: PMC9298411 DOI: 10.1111/febs.16235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023]
Abstract
The autosomal dominant striated muscle disease myoglobinopathy is due to the single point mutation His98Tyr in human myoglobin (MB), the heme protein responsible for binding, storage, and controlled release of O2 in striated muscle. In order to understand the molecular basis of this disease, a comprehensive biochemical and biophysical study on wt MB and the variant H98Y has been performed. Although only small differences exist between the active site architectures of the two proteins, the mutant (a) exhibits an increased reactivity toward hydrogen peroxide, (b) exhibits a higher tendency to form high‐molecular‐weight aggregates, and (c) is more prone to heme bleaching, possibly as a consequence of the observed H2O2‐induced formation of the Tyr98 radical close to the metal center. These effects add to the impaired oxygen binding capacity and faster heme dissociation of the H98Y variant compared with wt MB. As the above effects result from bond formation/cleavage events occurring at the distal and proximal heme sites, it appears that the molecular determinants of the disease are localized there. These findings set the basis for clarifying the onset of the cascade of chemical events that are responsible for the pathological symptoms of myoglobinopathy.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
18
|
Hasan MM, Ushio H, Ochiai Y. Expression and characterization of rainbow trout Oncorhynchus mykiss recombinant myoglobin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1477-1488. [PMID: 34327612 DOI: 10.1007/s10695-021-00991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recombinant expression system was established for rainbow trout myoglobin (Mb) considering its unique primary structure of having one unusual deletion and two cysteine residues in contrast to the other fish Mbs. The obtained recombinant Mb without His-tag showed non-cooperative thermal denaturation profile. The presence of free cysteine residue(s) in rainbow trout Mb was demonstrated by reacting with a sulfhydryl agent, 4, 4´-dithiodipyridine, which ultimately resulted in the oxidation of Mb with characteristic changes in visible absorption spectra. Besides, the recombinant Mb displayed steady peroxidase reactivity indicating in vivo roles of Mb as a reactive oxygen species scavenger. The findings of the present study indicate that the solitary rainbow trout Mb, which ultimately manifest typical secondary structure pattern and corroborate characteristic functionality, can be over expressed in recombinant system devoid of fusion tag.
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Hideki Ushio
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Ochiai
- Graduate School of Agriculture, Tohoku University, Aramaki, Aoba, Sendai, 980-8572, Japan
| |
Collapse
|
19
|
Helfenrath K, Sauer M, Kamga M, Wisniewsky M, Burmester T, Fabrizius A. The More, the Merrier? Multiple Myoglobin Genes in Fish Species, Especially in Gray Bichir (Polypterus senegalus) and Reedfish (Erpetoichthys calabaricus). Genome Biol Evol 2021; 13:6237895. [PMID: 33871590 PMCID: PMC8480196 DOI: 10.1093/gbe/evab078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
The members of the globin superfamily are a classical model system to investigate gene evolution and their fates as well as the diversity of protein function. One of the best-known globins is myoglobin (Mb), which is mainly expressed in heart muscle and transports oxygen from the sarcolemma to the mitochondria. Most vertebrates harbor a single copy of the myoglobin gene, but some fish species have multiple myoglobin genes. Phylogenetic analyses indicate an independent emergence of multiple myoglobin genes, whereby the origin is mostly the last common ancestor of each order. By analyzing different transcriptome data sets, we found at least 15 multiple myoglobin genes in the polypterid gray bichir (Polypterus senegalus) and reedfish (Erpetoichthys calabaricus). In reedfish, the myoglobin genes are expressed in a broad range of tissues but show very different expression values. In contrast, the Mb genes of the gray bichir show a rather scattered expression pattern; only a few Mb genes were found expressed in the analyzed tissues. Both, gray bichir and reedfish possess lungs which enable them to inhabit shallow and swampy waters throughout tropical Africa with frequently fluctuating and low oxygen concentrations. The myoglobin repertoire probably reflects the molecular adaptation to these conditions. The sequence divergence, the substitution rate, and the different expression pattern of multiple myoglobin genes in gray bichir and reedfish imply different functions, probably through sub- and neofunctionalization during evolution.
Collapse
Affiliation(s)
| | - Markus Sauer
- Institute of Zoology, Biocenter Grindel, University
of Hamburg, Germany
| | - Michelle Kamga
- Institute of Zoology, Biocenter Grindel, University
of Hamburg, Germany
- Teaching Hospital Cologne, University
of Cologne, Cologne, Germany
| | | | | | - Andrej Fabrizius
- Institute of Zoology, Biocenter Grindel, University
of Hamburg, Germany
| |
Collapse
|
20
|
Gerber L, Clow KA, Driedzic WR, Gamperl AK. The Relationship between Myoglobin, Aerobic Capacity, Nitric Oxide Synthase Activity and Mitochondrial Function in Fish Hearts. Antioxidants (Basel) 2021; 10:antiox10071072. [PMID: 34356305 PMCID: PMC8301165 DOI: 10.3390/antiox10071072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
The dynamic interactions between nitric oxide (NO) and myoglobin (Mb) in the cardiovascular system have received considerable attention. The loss of Mb, the principal O2 carrier and a NO scavenger/producer, in the heart of some red-blooded fishes provides a unique opportunity for assessing this globin’s role in NO homeostasis and mitochondrial function. We measured Mb content, activities of enzymes of NO and aerobic metabolism [NO Synthase (NOS) and citrate synthase, respectively] and mitochondrial parameters [Complex-I and -I+II respiration, coupling efficiency, reactive oxygen species production/release rates and mitochondrial sensitivity to inhibition by NO (i.e., NO IC50)] in the heart of three species of red-blooded fish. The expression of Mb correlated positively with NOS activity and NO IC50, with low NOS activity and a reduced NO IC50 in the Mb-lacking lumpfish (Cyclopterus lumpus) as compared to the Mb-expressing Atlantic salmon (Salmo salar) and short-horned sculpin (Myoxocephalus scorpius). Collectively, our data show that NO levels are fine-tuned so that NO homeostasis and mitochondrial function are preserved; indicate that compensatory mechanisms are in place to tightly regulate [NO] and mitochondrial function in a species without Mb; and strongly suggest that the NO IC50 for oxidative phosphorylation is closely related to a fish’s hypoxia tolerance.
Collapse
|
21
|
Yokokawa T, Hashimoto T, Iwanaka N. Caffeine increases myoglobin expression via the cyclic AMP pathway in L6 myotubes. Physiol Rep 2021; 9:e14869. [PMID: 33991466 PMCID: PMC8123560 DOI: 10.14814/phy2.14869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Myoglobin is an important regulator of muscle and whole‐body metabolism and exercise capacity. Caffeine, an activator of the calcium and cyclic AMP (cAMP)/protein kinase A (PKA) pathway, enhances glucose uptake, fat oxidation, and mitochondrial biogenesis in skeletal muscle cells. However, no study has shown that caffeine increases the endogenous expression of myoglobin in muscle cells. Further, the molecular mechanism underlying the regulation of myoglobin expression remains unclear. Therefore, our aim was to investigate whether caffeine and activators of the calcium signaling and cAMP/PKA pathway increase the expression of myoglobin in L6 myotubes and whether the pathway mediates caffeine‐induced myoglobin expression. Caffeine increased myoglobin expression and activated the cAMP/PKA pathway in L6 muscle cells. Additionally, a cAMP analog significantly increased myoglobin expression, whereas a ryanodine receptor agonist showed no significant effect. Finally, PKA inhibition significantly suppressed caffeine‐induced myoglobin expression in L6 myotubes. These results suggest that caffeine increases myoglobin expression via the cAMP/PKA pathway in skeletal muscle cells.
Collapse
Affiliation(s)
- Takumi Yokokawa
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan.,Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,College of Gastronomy Management, Ritsumeikan University, Shiga, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Nobumasa Iwanaka
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan.,Faculty of Health Science, Kyoto Koka Women's University, Kyoto, Japan
| |
Collapse
|
22
|
Quinting T, Heymann AK, Bicker A, Nauth T, Bernardini A, Hankeln T, Fandrey J, Schreiber T. Myoglobin Protects Breast Cancer Cells Due to Its ROS and NO Scavenging Properties. Front Endocrinol (Lausanne) 2021; 12:732190. [PMID: 34671319 PMCID: PMC8521001 DOI: 10.3389/fendo.2021.732190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Myoglobin (MB) is an oxygen-binding protein usually found in cardiac myocytes and skeletal muscle fibers. It may function as a temporary storage and transport protein for O2 but could also have scavenging capacity for reactive oxygen and nitrogen species. In addition, MB has recently been identified as a hallmark in luminal breast cancer and was shown to be robustly induced under hypoxia. Cellular responses to hypoxia are regulated by the transcription factor hypoxia-inducible factor (HIF). For exploring the function of MB in breast cancer, we employed the human cell line MDA-MB-468. Cells were grown in monolayer or as 3D multicellular spheroids, which mimic the in vivo avascular tumor architecture and physiology with a heterogeneous cell population of proliferating cells in the rim and non-cycling or necrotic cells in the core region. This central necrosis was increased after MB knockdown, indicating a role for MB in hypoxic tumor regions. In addition, MB knockdown caused higher levels of HIF-1α protein after treatment with NO, which also plays an important role in cancer cell survival. MB knockdown also led to higher reactive oxygen species (ROS) levels in the cells after treatment with H2O2. To further explore the role of MB in cell survival, we performed RNA-Seq after MB knockdown and NO treatment. 1029 differentially expressed genes (DEGs), including 45 potential HIF-1 target genes, were annotated in regulatory pathways that modulate cellular function and maintenance, cell death and survival, and carbohydrate metabolism. Of these target genes, TMEFF1, TREX2, GLUT-1, MKNK-1, and RAB8B were significantly altered. Consistently, a decreased expression of GLUT-1, MKNK-1, and RAB8B after MB knockdown was confirmed by qPCR. All three genes of interest are often up regulated in cancer and correlate with a poor clinical outcome. Thus, our data indicate that myoglobin might influence the survival of breast cancer cells, possibly due to its ROS and NO scavenging properties and could be a valuable target for cancer therapy.
Collapse
Affiliation(s)
- Theresa Quinting
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Theresa Nauth
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Andre Bernardini
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Joachim Fandrey,
| | - Timm Schreiber
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
23
|
Giordano D, Corti P, Coppola D, Altomonte G, Xue J, Russo R, di Prisco G, Verde C. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress. Mar Genomics 2020; 57:100831. [PMID: 33250437 DOI: 10.1016/j.margen.2020.100831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/27/2023]
Abstract
In the freezing waters of the Southern Ocean, Antarctic teleost fish, the Notothenioidei, have developed unique adaptations to cope with cold, including, at the extreme, the loss of hemoglobin in icefish. As a consequence, icefish are thought to be the most vulnerable of the Antarctic fish species to ongoing ocean warming. Some icefish also fail to express myoglobin but all appear to retain neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X. Despite the lack of the inducible heat shock response, Antarctic notothenioid fish are endowed with physiological plasticity to partially compensate for environmental changes, as shown by numerous physiological and genomic/transcriptomic studies over the last decade. However, the regulatory mechanisms that determine temperature/oxygen-induced changes in gene expression remain largely unexplored in these species. Proteins such as globins are susceptible to environmental changes in oxygen levels and temperature, thus playing important roles in mediating Antarctic fish adaptations. In this study, we sequenced the full-length transcripts of myoglobin, neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X from the Antarctic red-blooded notothenioid Trematomus bernacchii and the white-blooded icefish Chionodraco hamatus and evaluated transcripts levels after exposure to high temperature and low oxygen levels. Basal levels of globins are similar in the two species and both stressors affect the expression of Antarctic fish globins in brain, retina and gills. Temperature up-regulates globin expression more effectively in white-blooded than in red-blooded fish while hypoxia strongly up-regulates globins in red-blooded fish, particularly in the gills. These results suggest globins function as regulators of temperature and hypoxia tolerance. This study provides the first insights into globin transcriptional changes in Antarctic fish.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy.
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| | - Giovanna Altomonte
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Jianmin Xue
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberta Russo
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
24
|
Abstract
Understanding the energetic state of the heart is essential for unraveling the central tenets of cardiac physiology. The heart uses a tremendous amount of energy and reductions in that energy supply can have lethal consequences. While ischemic events clearly result in significant metabolic perturbations, heart failure with both preserved and reduced ejection fraction display reductions in energetic status. To date, most cardiac energetics have been performed using 31P-NMR, which requires dedicated access to a specialized NMR spectrometer. This has limited the availability of this method to a handful of centers around the world. Here we present a method of assessing myocardial energetics in the isolated mouse heart using 1H-NMR spectrometers that are widely available in NMR core facilities. In addition, this methodology provides information on many other important metabolites within the heart, including unique metabolic differences between the hypoxic and ischemic hearts. Furthermore, we demonstrate the correlation between myocardial energetics and measures of contractile function in the mouse heart. These methods will allow a broader examination of myocardial energetics providing a valuable tool to aid in the understanding of the nature of these energetic deficits and to develop therapies directed at improving myocardial energetics in failing hearts.
Collapse
|
25
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
26
|
Yuan R, Liu G, He J, Ma C, Cheng L, Fan N, Ban J, Li Y, Sun Y. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system. J Food Sci 2020; 85:1403-1410. [PMID: 32304238 DOI: 10.1111/1750-3841.15137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 11/30/2022]
Abstract
In this study, the ENVI 4.6 software was used to obtain the spectral reflection value of samples. The outlier samples were eliminated by the Monte Carlo method, and then SPXY (sample set partitioning based on be x-y distances) was used to divide the calibration set and prediction set. The spectral images were pretreated and characteristic wavelengths were extracted. The spectral models of full and pretreated spectra and characteristic bands were established by partial least squares regression (PLSR) and principle component regression (PCR), and the optimal modeling combination was selected. The results showed that the modeling effect of the original spectrum was the best. In full-PLSR model, the determination coefficient of the calibration set (Rc2 ), the determination coefficient of prediction set (Rp2 ), and the determination coefficient of interactive verification set (Rcv2 ) were 0.8804, 0.7375, and 0.7422, and root-mean-square error of calibration set (RMSEC), root-mean-square error of prediction (RMSEP), and root mean square error of interactive validation set (RMSECV) were 2.3630, 2.9607, and 3.4209, respectively. PLSR and PCR models were established to obtain the optimal models of CARS-PLSR and PCR-PLSR. In the CARS-PLSR model, the Rc2 , Rp2 , and Rcv2 were 0.9135, 0.7654, and 0.8171, respectively, while RMSEC, RMSEP, and RMSECV were 2.0275, 2.9306, and 2.9262, respectively. In the iRF-PCR model, Rc2 , Rp2 , and Rcv2 were 0.7952, 0.7372, and 0.7280, respectively, while RMSEC, RMSEP, and RMSECV were 3.0207, 2.8278, and 3.4288, respectively. This study has demonstrated that visible and near-infrared hyperspectral imaging system can rapidly predict the content of metmyoglobin in cooked tan mutton. PRACTICAL APPLICATION: This study has demonstrated that visible and near-infrared (Vis/NIR) hyperspectral imaging system can rapidly predict the content of MetMb in cooked tan mutton. With the advantages of nondestructive, rapid, real-time, Vis/NIR, hyperspectral imaging system can be widely expanded and applied to the detection of myoglobin in meat to evaluate the color of meat.
Collapse
Affiliation(s)
- Ruirui Yuan
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Guishan Liu
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Jianguo He
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Chao Ma
- School of Physics and Electrical and Electronic Engineering, Ningxia University, Yinchuan, 750021, China
| | - Lijuan Cheng
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Naiyun Fan
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Jingjing Ban
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yue Li
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yourui Sun
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
27
|
Bicker A, Nauth T, Gerst D, Aboouf MA, Fandrey J, Kristiansen G, Gorr TA, Hankeln T. The role of myoglobin in epithelial cancers: Insights from transcriptomics. Int J Mol Med 2019; 45:385-400. [PMID: 31894249 PMCID: PMC6984796 DOI: 10.3892/ijmm.2019.4433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
The muscle-associated respiratory protein myoglobin (MB) is expressed in multiple types of cancer, including breast and prostate tumors. In Kaplan-Meier analyses of the two tumor types, MB positivity is associated with favorable prognoses. Despite its well-characterized function in myocytes, the role of MB in cancer remains unclear. To study the impact of endogenous MB expression, small interfering RNA MB-knockdown cells were engineered using breast, prostate and colon cancer cell lines (MDA-MB468, LNCaP, DLD-1), and their transcriptomes were investigated using RNA-Seq at different oxygen levels. In MB-positive cells, increased expression of glycolytic genes was observed, which was possibly mediated by a higher activity of hypoxia-inducible factor 1α. In addition, the results of the gene set enrichment analysis suggested that MB contributed to fatty acid transport and turnover. MB-positive, wild-type-p53 LNCaP cells also exhibited increased expression of p53 target genes involved in cell cycle checkpoint control and prevention of cell migration. MB-positive cells expressing mutant p53 exhibited upregulation of genes associated with prolonged cancer cell viability and motility. Therefore, it was hypothesized that these transcriptomic differences may result from MB-mediated generation of nitric oxide or reactive oxygen species, thus employing established enzymatic activities of the globin. In summary, the transcriptome comparisons identified potential molecular functions of MB in carcinogenesis by highlighting the interaction of MB with key metabolic and regulatory processes.
Collapse
Affiliation(s)
- Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D‑55099 Mainz, Germany
| | - Theresa Nauth
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D‑55099 Mainz, Germany
| | - Daniela Gerst
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH‑8057 Zurich, Switzerland
| | - Mostafa Ahmed Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH‑8057 Zurich, Switzerland
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg‑Essen, D‑45147 Essen, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University Hospital Bonn, University of Bonn, D‑53127 Bonn, Germany
| | - Thomas Alexander Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH‑8057 Zurich, Switzerland
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D‑55099 Mainz, Germany
| |
Collapse
|
28
|
Lüdemann J, Fago A, Falke S, Wisniewsky M, Schneider I, Fabrizius A, Burmester T. Genetic and functional diversity of the multiple lungfish myoglobins. FEBS J 2019; 287:1598-1611. [PMID: 31610084 DOI: 10.1111/febs.15094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/21/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Abstract
It is known that the West African lungfish (Protopterus annectens) harbours multiple myoglobin (Mb) genes that are differentially expressed in various tissues and that the Mbs differ in their abilities to confer tolerance towards hypoxia. Here, we show that other lungfish species (Protopterus dolloi, Protopterus aethiopicus and Lepidosiren paradoxa) display a similar diversity of Mb genes and have orthologous Mb genes. To investigate the functional diversification of these genes, we studied the structures, O2 binding properties and nitrite reductase enzymatic activities of recombinantly expressed P. annectens Mbs (PanMbs). CD spectroscopy and small-angle X-ray scattering revealed the typical globin-fold in all investigated recombinant Mbs, indicating a conserved structure. The highest O2 affinity was measured for PanMb2 (P50 = 0.88 Torr at 20 °C), which is mainly expressed in the brain, whereas the muscle-specific PanMb1 has the lowest O2 affinity (P50 = 3.78 Torr at 20 °C), suggesting that tissue-specific O2 requirements have resulted in the emergence of distinct Mb types. Two of the mainly neuronally expressed Mbs (PanMb3 and PanMb4b) have the highest nitrite reductase rates. These data show different O2 binding and enzymatic properties of lungfish Mbs, reflecting multiple subfunctionalisation and neofunctionalisation events that occurred early in the evolution of lungfish. Some Mbs may have also taken over the functions of neuroglobin and cytoglobin, which are widely expressed in vertebrates but appear to be missing in lungfish.
Collapse
Affiliation(s)
- Julia Lüdemann
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| | - Angela Fago
- Department of Bioscience, Aarhus University, Denmark
| | - Sven Falke
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Germany
| | | | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Andrej Fabrizius
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| | - Thorsten Burmester
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| |
Collapse
|
29
|
Cui X, Wang T, Wang W, Wang H, Wang Z. Peroxidase from proso millet exhibits endonuclease-like activity. Acta Biochim Biophys Sin (Shanghai) 2019; 51:688-696. [PMID: 31168624 DOI: 10.1093/abbs/gmz049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
In this study, the mechanism of DNA cleavage by cationic peroxidase from proso millet (PmPOD) was investigated. PmPOD cleaved supercoiled circular DNA into both nicked circular and linear forms via a cleavage mechanism that resembles those of native endonucleases. Inhibition and ligation studies demonstrated that reactive oxygen species and the ferriprotoporphyrin IX moiety in PmPOD are not involved in PmPOD-mediated DNA cleavage. Similar to other endonucleases, Mg ions considerably enhance the DNA cleavage activity of PmPOD. Further studies suggested that PmPOD can disrupt phosphodiester bonds in DNA and mononucleotides, indicating that it is a phosphatase. The phosphatase activity of PmPOD is higher than that of horseradish peroxidase (HRP), but the peroxidase activity of PmPOD was lower than that of HRP. PmPOD-mediated hydrolytic cleavage of DNA observed in this study is different from those reported for heme proteins. This study provides valuable insights into the distinct mechanisms underlying DNA cleavage by heme proteins.
Collapse
Affiliation(s)
- Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Tingfen Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Wenming Wang
- Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Hongfei Wang
- Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
30
|
Mannino MH, Patel RS, Eccardt AM, Perez Magnelli RA, Robinson CLC, Janowiak BE, Warren DE, Fisher JS. Myoglobin as a versatile peroxidase: Implications for a more important role for vertebrate striated muscle in antioxidant defense. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:9-17. [PMID: 31051268 DOI: 10.1016/j.cbpb.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Myoglobins (Mb) are ubiquitous proteins found in striated muscle of nearly all vertebrate taxa. Although their function is most commonly associated with facilitating oxygen storage and diffusion, Mb has also been implicated in cellular antioxidant defense. The oxidized (Fe3+) form of Mb (metMB) can react with hydrogen peroxide (H2O2) to produce ferrylMb. FerrylMb can be reduced back to metMb for another round of reaction with H2O2. In the present study, we have shown that horse skeletal muscle Mb displays peroxidase activity using 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as reducing substrates, as well as the biologically-relevant substrates NADH/NADPH, ascorbate, caffeic acid, and resveratrol. We have also shown that ferrylMb can be reduced by both ethanol and acetaldehyde, which are known to accumulate in some vertebrate tissues under anaerobic conditions, such as anoxic goldfish and crucian carp, implying a potential mechanism for ethanol detoxification in striated muscle. We found that metMb peroxidase activity is pH-dependent, increasing as pH decreases from 7.4 to 6.1, which is biologically relevant to anaerobic vertebrate muscle when incurring intracellular lactic acidosis. Finally, we found that metMb reacts with hypochlorite in a heme-dependent fashion, indicating that Mb could play a role in hypochlorite detoxification. Taken together, these data suggest that Mb peroxidase activity might be an important antioxidant mechanism in vertebrate cardiac and skeletal muscle under a variety of physiological conditions, such as those that might occur in contracting skeletal muscle or during hypoxia.
Collapse
|
31
|
Wei H, Lin L, Zhang X, Feng Z, Wang Y, You Y, Wang X, Hou Y. Effect of cytoglobin overexpression on extracellular matrix component synthesis in human tenon fibroblasts. Biol Res 2019; 52:23. [PMID: 30992080 PMCID: PMC6466771 DOI: 10.1186/s40659-019-0229-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Conjunctival filtering bleb scar formation is the main reason for the failure of glaucoma filtration surgery. Cytoglobin (Cygb) has been reported to play an important role in extracellular matrix (ECM) remodeling, fibrosis and tissue damage repairing. This study aimed to investigate the role of Cygb in anti-scarring during excessive conjunctival wound healing after glaucoma filtration surgery. METHODS Cygb was overexpressed in human tenon fibroblasts (hTFs) by transfecting hTFs with lentiviral particles encoding pLenti6.2-FLAG-Cygb. Changes in the mRNA and protein levels of fibronectin, collagen I, collagen III, TGF-β1, and HIF1α were determined by RT-PCR and western blotting respectively. RESULTS After Cygb overexpression, hTFs displayed no significant changes in visual appearance and cell counts compared to controls. Whereas, Cygb overexpression significantly decreased the mRNA and protein expression levels of collagen I, collagen III and fibronectin compared with control (p < 0.01). There was also a statistically significant decrease in the mRNA and protein levels of TGF-β1 and HIF-1α in hTFs with overexpressed Cygb compared with control group (p < 0.05). CONCLUSION Our study provided evidence that overexpression of Cygb decreased the expression levels of fibronectin, collagen I, collagen III, TGF-β1 and HIF-1α in hTFs. Therefore, therapies targeting Cygb expression in hTFs may pave a new way for clinicians to solve the problem of post-glaucoma surgery scarring.
Collapse
Affiliation(s)
- Haiying Wei
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Lili Lin
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Xiaomei Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Zhuolei Feng
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yeqing Wang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yan You
- Department of Dermatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaodan Wang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yongsheng Hou
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
32
|
Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Nat Commun 2019; 10:1396. [PMID: 30918256 PMCID: PMC6437160 DOI: 10.1038/s41467-019-09111-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
Myoglobin, encoded by MB, is a small cytoplasmic globular hemoprotein highly expressed in cardiac myocytes and oxidative skeletal myofibers. Myoglobin binds O2, facilitates its intracellular transport and serves as a controller of nitric oxide and reactive oxygen species. Here, we identify a recurrent c.292C>T (p.His98Tyr) substitution in MB in fourteen members of six European families suffering from an autosomal dominant progressive myopathy with highly characteristic sarcoplasmic inclusions in skeletal and cardiac muscle. Myoglobinopathy manifests in adulthood with proximal and axial weakness that progresses to involve distal muscles and causes respiratory and cardiac failure. Biochemical characterization reveals that the mutant myoglobin has altered O2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. Preliminary studies show that mutant myoglobin may result in elevated superoxide levels at the cellular level. These data define a recognizable muscle disease associated with MB mutation. Myoglobin is a hemeprotein that reversibly binds oxygen and gives muscle its red color. Here, the authors report a genetic variant in the MB gene that associates with myoglobinopathy, an autosomal dominant progressive myopathy, and altered oxygen binding properties of the mutant protein.
Collapse
|
33
|
Li N, Bao L, Zhou T, Yuan Z, Liu S, Dunham R, Li Y, Wang K, Xu X, Jin Y, Zeng Q, Gao S, Fu Q, Liu Y, Yang Y, Li Q, Meyer A, Gao D, Liu Z. Genome sequence of walking catfish (Clarias batrachus) provides insights into terrestrial adaptation. BMC Genomics 2018; 19:952. [PMID: 30572844 PMCID: PMC6302426 DOI: 10.1186/s12864-018-5355-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/09/2018] [Indexed: 11/22/2022] Open
Abstract
Background Walking catfish (Clarias batrachus) is a freshwater fish capable of air-breathing and locomotion on land. It usually inhabits various low-oxygen habitats, burrows inside the mudflat, and sometimes “walks” to search for suitable environments during summer. It has evolved accessory air-breathing organs for respiring air and corresponding mechanisms to survive in such challenging environments. Thereby, it serves as a great model for understanding adaptations to terrestrial life. Results Comparative genomics with channel catfish (Ictalurus punctatus) revealed specific adaptations of C. batrachus in DNA repair, enzyme activator activity, and small GTPase regulator activity. Comparative analysis with 11 non-air-breathing fish species suggested adaptive evolution in gene expression and nitrogenous waste metabolic processes. Further, myoglobin, olfactory receptor related to class A G protein-coupled receptor 1, and sulfotransferase 6b1 genes were found to be expanded in the air-breathing walking catfish genome, with 15, 15, and 12 copies, respectively, compared to non-air-breathing fishes that possess only 1–2 copies of these genes. Additionally, we sequenced and compared the transcriptomes of the gill and the air-breathing organ to characterize the mechanism of aerial respiration involved in elastic fiber formation, oxygen binding and transport, angiogenesis, ion homeostasis and acid-base balance. The hemoglobin genes were expressed dramatically higher in the air-breathing organ than in the gill of walking catfish. Conclusions This study provides an important genomic resource for understanding the adaptive mechanisms of walking catfish to terrestrial environments. It is possible that the coupling of enhanced abilities for oxygen storage and oxygen transport through genomic expansion of myoglobin genes and transcriptomic up-regulation of hemoglobin and angiogenesis-related genes are important components of the molecular basis for adaptation of this aquatic species to terrestrial life. Electronic supplementary material The online version of this article (10.1186/s12864-018-5355-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning Li
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yuanning Li
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyan Xu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sen Gao
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qiang Fu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Dongya Gao
- Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
34
|
Bezerra MJB, Silva MB, Lobo CH, Vasconcelos FR, Lobo MD, Monteiro-Moreira ACO, Moreira RA, Machado-Neves M, Figueiredo JR, Moura AA. Gene and protein expression in the reproductive tract of Brazilian Somalis rams. Reprod Domest Anim 2018; 54:939-948. [PMID: 30246506 DOI: 10.1111/rda.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
Brazilian Somalis is a locally-adapted breed of rams raised in tropical climate and native pastures. The present study was conducted to evaluate gene expression and proteome of the reproductive tract of such rams. Samples were collected from testes, epididymides, seminal vesicles and bulbourethral glands of four rams. Expression of clusterin (CLU), osteopontin (OPN) and prostaglandin D2 synthase (PGDS) genes were evaluated in all samples by real-time PCR. Shotgun proteomic analysis was performed using samples from the head, corpus and cauda epididymides and from all other structures as well. Gene ontology terms and protein interactions were obtained from UniProtKB databases and MetaCore v.6.8 platform. CLU trasncripts were detected in the testes, epididymides, seminal vesicles and bulbourethral glands of the Somalis rams. The initial region and body of the epididymis had the greatest CLU expression. OPN mRNA was localized in all tissues of the ram reproductive tract. PGDS mRNA was detected in the testes and epididymides. Lable-free mass spectrometry allowed the identification of 137 proteins in all samples. Proteins of the epididymis head mainly participate in cellular processes and response to stimulus, participating in catalityc activity and binding. Proteins of epididymis body acted as regulatory proteins and in cellular processes, with binding and catalytic activity. Cauda epididymis molecules were associated with cellular processes and regulation, with binding function and catalytic activity as well. Testis proteins were mainly linked to cell processes and response to stimuli, and had catalytic function. Seminal vesicle proteins were involved in regulation and mainly with binding functions. Most bulbourethral gland proteins participated in cellular processes. The present study is the first to evaluate the proteome and gene expressions in the reproductive tract of Brazilian Somalis rams. Such pieces of information bring significant cointribution for the understanding of the reproductive physiology of locally-adapted livestock.
Collapse
Affiliation(s)
| | - Mariana B Silva
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Carlos H Lobo
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Fábio R Vasconcelos
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marina D Lobo
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil
| | | | - Renato A Moreira
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil
| | | | - José R Figueiredo
- School of Veterinary Medicine, CearaState University, Fortaleza, Ceara, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
35
|
Chintapalli SV, Anishkin A, Adams SH. Exploring the entry route of palmitic acid and palmitoylcarnitine into myoglobin. Arch Biochem Biophys 2018; 655:56-66. [PMID: 30092229 DOI: 10.1016/j.abb.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Myoglobin, besides its role in oxygen turnover, has gained recognition as a potential regulator of lipid metabolism. Previously, we confirmed the interaction of fatty acids and acylcarnitines with Oxy-Myoglobin, using both molecular dynamic simulations and Isothermal Titration Calorimetry studies. However, those studies were limited to testing only the binding sites derived from homology to fatty acid binding proteins and predictions using automated docking. To explore the entry mechanisms of the lipid ligands into myoglobin, we conducted molecular dynamic simulations of murine Oxy- and Deoxy-Mb structures with palmitate or palmitoylcarnitine starting at different positions near the protein surface. The simulations indicated that both ligands readily (under ∼10-20 ns) enter the Oxy-Mb structure through a dynamic area ("portal region") near heme, known to be the entry point for small molecule gaseous ligands like O2, CO and NO. The entry is not observed with Deoxy-Mb where lipid ligands move away from protein surface, due to a compaction of the entry portal and the heme-containing crevice in the Mb protein upon O2 removal. The results suggest quick spontaneous binding of lipids to Mb driven by hydrophobic interactions, strongly enhanced by oxygenation, and consistent with the emergent role of Mb in lipid metabolism.
Collapse
Affiliation(s)
- Sree V Chintapalli
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA.
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
36
|
Postnikova GB, Shekhovtsova EA. Myoglobin: Oxygen Depot or Oxygen Transporter to Mitochondria? A Novel Mechanism of Myoglobin Deoxygenation in Cells (review). BIOCHEMISTRY (MOSCOW) 2018; 83:168-183. [PMID: 29618303 DOI: 10.1134/s0006297918020098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we shortly summarize the data of our studies (and also corresponding studies of other authors) on the new mechanism of myoglobin (Mb) deoxygenation in a cell, according to which Mb acts as an oxygen transporter, and its affinity for the ligand, like in other transporting proteins, is regulated by the interaction with the target, in our case, mitochondria (Mch). We firstly found that contrary to previously formulated and commonly accepted concepts, oxymyoglobin (MbO2) deoxygenation occurs only via interaction of the protein with respiring mitochondria (low pO2 values are necessary but not sufficient for this process to proceed). Detailed studies of the mechanism of Mb-Mch interaction by various physicochemical methods using natural and artificial bilayer phospholipid membranes showed that: (i) the rate of MbO2 deoxygenation in the presence of respiring Mch fully coincides with the rate of O2 uptake by mitochondria from a solution irrespectively of their state (native coupled, freshly frozen, or FCCP-uncoupled), i.e. it is determined by the respiratory activity of Mch; (ii) Mb nonspecifically binds to membrane phospholipids of the outer mitochondrial membrane, while any Mb-specific protein or phospholipid sites on it are lacking; (iii) oxygen uptake by Mch from a solution and the uptake of Mb-bound oxygen are two different processes, as their rates are differently affected by proteins (e.g. lysozyme) that compete with MbO2 for binding to the mitochondrial membrane; (iv) electrostatic forces significantly contribute to the Mb-membrane interactions; the dependence of these interactions on ionic strength is provided by the local electrostatic interactions between anionic groups of phospholipids (the heads) and invariant Lys and Arg residues near the Mb heme pocket; (v) interactions of Mb with phospholipid membranes promote conformational changes in the protein, primarily in its heme pocket, without significant alterations in the protein secondary and tertiary structures; and (vi) Mb-membrane interactions lead to decrease in the affinity of myoglobin for O2, which could be monitored by the increase in the MbO2 autooxidation rate under aerobic conditions and under anaerobic ones, by the shift in the MbO2/Mb(2) equilibrium towards the ligand-free protein. The decrease in the affinity of Mb for the ligand should facilitate O2 dissociation from MbO2 at physiological pO2 values in cells.
Collapse
Affiliation(s)
- G B Postnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
37
|
Burmester T, Wawrowski A, Diepenbruck I, Schrick K, Seiwert N, Ripp F, Prothmann A, Hankeln T. Divergent roles of the Drosophila melanogaster globins. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:224-231. [PMID: 28606854 DOI: 10.1016/j.jinsphys.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
In contrast to long-held assumptions, the gene repertoire of most insects includes hemoglobins. Analyses of the genome of the fruitfly Drosophila melanogaster identified three distinct hemoglobin genes (glob1, glob2, and glob3). While glob1 is predominantly associated with the tracheal system and fat body, glob2 and glob3 are almost exclusively expressed in the testis. The physiological role of globins in Drosophila is uncertain. Here, we studied the functions of the three globins in a cell culture system. Drosophila Schneider 2 (S2) cells were stably transfected with each of the three globins and the empty vector as control. Under hypoxia (1% atmospheric O2), only glob1 overexpression enhanced the activity of mitochondrial oxidases and the ATP content. However, the positive effect of glob1 expression disappeared after 24h hypoxia, suggesting metabolic adaptations of the S2 cells. glob2 and glob3 had no positive effect on hypoxia-survival. After application of oxidative stress by H2O2, glob2 dramatically enhanced the viability of S2 cells. Evaluation of the intracellular localization of the globins using specific antibodies and green fluorescent protein-fusion constructs suggested that glob1 and glob2 most likely reside in the cytoplasm, while glob3 is associated with structures that may represent parts of the intracellular transport machinery. In silico analyses of public RNA-Seq data from different developmental stages provided that glob1 is co-expressed with genes of the aerobic energy metabolism, while glob2 and glob3 expression can be related to spermatogenesis and reproduction. Together, the results indicate divergent functions of the Drosophila globins: glob1 may play a role in the O2-dependent metabolism while glob2 may protect spermatogenesis from reactive oxygen species.
Collapse
Affiliation(s)
| | - Agnes Wawrowski
- Institute of Zoology, University of Hamburg, D-20146 Hamburg, Germany
| | - Ines Diepenbruck
- Institute of Zoology, University of Hamburg, D-20146 Hamburg, Germany
| | - Katharina Schrick
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, D-55128 Mainz, Germany
| | - Nina Seiwert
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, D-55128 Mainz, Germany
| | - Fabian Ripp
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, D-55128 Mainz, Germany
| | - Andreas Prothmann
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, D-55128 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, D-55128 Mainz, Germany
| |
Collapse
|
38
|
Lim SH, Lee J. Xyloglucan intake attenuates myocardial injury by inhibiting apoptosis and improving energy metabolism in a rat model of myocardial infarction. Nutr Res 2017; 45:19-29. [DOI: 10.1016/j.nutres.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/10/2017] [Accepted: 07/17/2017] [Indexed: 01/27/2023]
|
39
|
Leitner LM, Wilson RJ, Yan Z, Gödecke A. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases. Antioxid Redox Signal 2017; 26:700-717. [PMID: 27835923 PMCID: PMC5421600 DOI: 10.1089/ars.2016.6942] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cachexia is defined as a complex metabolic syndrome that is associated with underlying illness and a loss of muscle with or without loss of fat mass. This disease is associated with a high incidence with chronic diseases such as heart failure, cancer, chronic obstructive pulmonary disease (COPD), and acquired immunodeficiency syndrome (AIDS), among others. Since there is currently no effective treatment available, cachectic patients have a poor prognosis. Elucidation of the underlying mechanisms is, therefore, an important medical task. Recent Advances: There is accumulating evidence that the diseased organs such as heart, lung, kidney, or cancer tissue secrete soluble factors, including Angiotensin II, myostatin (growth differentiation factor 8 [GDF8]), GDF11, tumor growth factor beta (TGFβ), which act on skeletal muscle. There, they induce a set of genes called atrogenes, which, among others, induce the ubiquitin-proteasome system, leading to protein degradation. Moreover, elevated reactive oxygen species (ROS) levels due to modulation of NADPH oxidases (Nox) and mitochondrial function contribute to disease progression, which is characterized by loss of muscle mass, exercise resistance, and frailty. CRITICAL ISSUES Although substantial progress was achieved to elucidate the pathophysiology of cachexia, effectice therapeutic strategies are urgently needed. FUTURE DIRECTIONS With the identification of key components of the aberrant inter-organ communication leading to cachexia, studies in mice and men to inhibit ROS formation, induction of anti-oxidative superoxide dismutases, and upregulation of muscular nitric oxide (NO) formation either by pharmacological tools or by exercise are promising approaches to reduce the extent of skeletal muscle wasting. Antioxid. Redox Signal. 26, 700-717.
Collapse
Affiliation(s)
- Lucia M Leitner
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| | - Rebecca J Wilson
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia
| | - Zhen Yan
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia.,3 Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Axel Gödecke
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| |
Collapse
|
40
|
Tae B, Oliveira KC, Conceição RRD, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RMDB, Giannocco G. Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. ENVIRONMENTAL TOXICOLOGY 2017; 32:1252-1261. [PMID: 27441981 DOI: 10.1002/tox.22321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The side stream cigarette smoke (SSCS) is a contributing factor in the pathogenesis of cigarette smoking-induced toxicity. Hemoglobin (Hb), myoglobin (Mb), neuroglobin (Ngb), and cytoglobin (Cygb) are globins with different distributions and functions in the tissues and have similar actions by providing O2 (oxygen) for respiratory chain, detoxification of ROS and nitric oxide (NO), and protect tissues against irreversible lesions. We aimed to investigate the effects of SSCS exposure on gene and protein expression of Ngb, Cygb, and Mb in different tissue. The Ngb and Cygb gene and protein expression in the cerebral cortex increased after 1 week of rat exposure to SSCS. In hippocampus, the Ngb gene and protein expression increased after 1 week or more of exposure and no change was observed in Cygb gene and protein expression. In myocardium, Mb and Cygb gene expression increased at 1 and 4 weeks of exposure, while protein expression of both increased at 1, 2, 3, and 4 weeks. In lung, observed an increase in Cygb gene and protein expression after 2, 3, and 4 weeks of exposure. The findings suggest that SSCS modulates Ngb, Cygb, and Mb in central and peripheral tissue © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1252-1261, 2017.
Collapse
Affiliation(s)
- Barbara Tae
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Kelen Carneiro Oliveira
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Monica Akemi Sato
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | - Gisele Giannocco
- Departament of Morphology and Physiology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departament of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
41
|
Hendgen-Cotta UB, Esfeld S, Coman C, Ahrends R, Klein-Hitpass L, Flögel U, Rassaf T, Totzeck M. A novel physiological role for cardiac myoglobin in lipid metabolism. Sci Rep 2017; 7:43219. [PMID: 28230173 PMCID: PMC5322402 DOI: 10.1038/srep43219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023] Open
Abstract
Continuous contractile activity of the heart is essential and the required energy is mostly provided by fatty acid (FA) oxidation. Myocardial lipid accumulation can lead to pathological responses, however the underlying mechanisms remain elusive. The role of myoglobin in dioxygen binding in cardiomyocytes and oxidative skeletal muscle has widely been appreciated. Our recent work established myoglobin as a protector of cardiac function in hypoxia and disease states. We here unravel a novel role of cardiac myoglobin in governing FA metabolism to ensure the physiological energy production through β-oxidation, preventing myocardial lipid accumulation and preserving cardiac functions. In vivo1H magnetic resonance spectroscopy unveils a 3-fold higher deposition of lipids in mouse hearts lacking myoglobin, which was associated with depressed cardiac function compared to wild-type hearts as assessed by echocardiography. Mass spectrometry reveals a marked increase in tissue triglycerides with preferential incorporation of palmitic and oleic acids. Phospholipid levels as well as the metabolome, transcriptome and proteome related to FA metabolism tend to be unaffected by myoglobin ablation. Our results reveal a physiological role of myoglobin in FA metabolism with the lipid accumulation-suppressing effects of myoglobin preventing cardiac lipotoxicity.
Collapse
Affiliation(s)
- Ulrike B Hendgen-Cotta
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Sonja Esfeld
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Ludger Klein-Hitpass
- University Hospital Essen, Institute of Cell Biology, Medical Faculty, Virchowstr. 173, 45122 Essen, Germany
| | - Ulrich Flögel
- University Hospital Düsseldorf, Department of Molecular Cardiology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tienush Rassaf
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Totzeck
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
42
|
Postnikova GB, Shekhovtsova EA. Hemoglobin and myoglobin as reducing agents in biological systems. Redox reactions of globins with copper and iron salts and complexes. BIOCHEMISTRY (MOSCOW) 2017; 81:1735-1753. [DOI: 10.1134/s0006297916130101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Lim SH, Kim Y, Yun KN, Kim JY, Jang JH, Han MJ, Lee J. Plant-based foods containing cell wall polysaccharides rich in specific active monosaccharides protect against myocardial injury in rat myocardial infarction models. Sci Rep 2016; 6:38728. [PMID: 27929093 PMCID: PMC5143980 DOI: 10.1038/srep38728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
Abstract
Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.
Collapse
Affiliation(s)
- Sun Ha Lim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | | | - Ki Na Yun
- Biomedical Omics Group, Korea Basic Science Institute, Ochang 28119, Korea
- Sogang University, Seoul 04107, Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Ochang 28119, Korea
| | - Jung-Hee Jang
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Mee-Jung Han
- Department of Biomolecular and Chemical Engineering, Dongyang University, Yeongju, Gyeongbuk 36040, Korea
| | - Jongwon Lee
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| |
Collapse
|
44
|
Wu LB, Du KJ, Nie CM, Gao SQ, Wen GB, Tan X, Lin YW. Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Peters EL, Offringa C, Kos D, Van der Laarse WJ, Jaspers RT. Regulation of myoglobin in hypertrophied rat cardiomyocytes in experimental pulmonary hypertension. Pflugers Arch 2016; 468:1697-707. [PMID: 27572699 PMCID: PMC5026723 DOI: 10.1007/s00424-016-1865-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/21/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
A major problem in chronic heart failure is the inability of hypertrophied cardiomyocytes to maintain the required power output. A Hill-type oxygen diffusion model predicts that oxygen supply is limiting in hypertrophied cardiomyocytes at maximal rates of oxygen consumption and that this limitation can be reduced by increasing the myoglobin (Mb) concentration. We explored how cardiac hypertrophy, oxidative capacity, and Mb expression in right ventricular cardiomyocytes are regulated at the transcriptional and translational levels in an early stage of experimental pulmonary hypertension, in order to identify targets to improve the oxygen supply/demand ratio. Male Wistar rats were injected with monocrotaline to induce pulmonary hypertension (PH) and right ventricular heart failure. The messenger RNA (mRNA) expression levels per nucleus of growth factors insulin-like growth factor-1Ea (IGF-1Ea) and mechano growth factor (MGF) were higher in PH than in healthy controls, consistent with a doubling in cardiomyocyte cross-sectional area (CSA). Succinate dehydrogenase (SDH) activity was unaltered, indicating that oxidative capacity per cell increased. Although the Mb protein concentration was unchanged, Mb mRNA concentration was reduced. However, total RNA per nucleus was about threefold higher in PH rats versus controls, and Mb mRNA content expressed per nucleus was similar in the two groups. The increase in oxidative capacity without an increase in oxygen supply via Mb-facilitated diffusion caused a doubling of the critical extracellular oxygen tension required to prevent hypoxia (PO2crit). We conclude that Mb mRNA expression is not increased during pressure overload-induced right ventricular hypertrophy and that the increase in myoglobin content per myocyte is likely due to increased translation. We conclude that increasing Mb mRNA expression may be beneficial in the treatment of experimental PH.
Collapse
Affiliation(s)
- E L Peters
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081, BT, Amsterdam, The Netherlands
| | - C Offringa
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081, BT, Amsterdam, The Netherlands
| | - D Kos
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081, BT, Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - W J Van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - R T Jaspers
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081, BT, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Koch J, Lüdemann J, Spies R, Last M, Amemiya CT, Burmester T. Unusual Diversity of Myoglobin Genes in the Lungfish. Mol Biol Evol 2016; 33:3033-3041. [DOI: 10.1093/molbev/msw159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Gleixner E, Ripp F, Gorr TA, Schuh R, Wolf C, Burmester T, Hankeln T. Knockdown of Drosophila hemoglobin suggests a role in O2 homeostasis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 72:20-30. [PMID: 27001071 DOI: 10.1016/j.ibmb.2016.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Almost all insects are equipped with a tracheal system, which appears to be sufficient for O2 supply even in phases of high metabolic activity. Therefore, with the exception of a few species dwelling in hypoxic habitats, specialized respiratory proteins had been considered unnecessary in insects. The recent discovery and apparently universal presence of intracellular hemoglobins in insects has remained functionally unexplained. The fruitfly Drosophila melanogaster harbors three different globin genes (referred to as glob1-3). Glob1 is the most highly expressed globin and essentially occurs in the tracheal system and the fat body. To better understand the functions of insect globins, the levels of glob1 were modulated in Drosophila larvae and adults by RNAi-mediated knockdown and transgenic over-expression. No effects on the development were observed in flies with manipulated glob1 levels. However, the knockdown of glob1 led to a significantly reduced survival rate of adult flies under hypoxia (5% and 1.5% O2). Surprisingly, the glob1 knockdown flies also displayed increased resistance towards the reactive oxygen species-forming agent paraquat, which may be explained by a restricted availability of O2 resulting in decreased formation of harmful O2(-). In summary, our results suggest an important functional role of glob1 in O2 homeostasis, possibly by enhancing O2 supply.
Collapse
Affiliation(s)
- Eva Gleixner
- Institute of Molecular Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Fabian Ripp
- Institute of Molecular Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Thomas A Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; Regenerative Medicine Program, University and University Hospital Zurich, CH-8901 Zurich, Switzerland
| | - Reinhard Schuh
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Christian Wolf
- Institute of Molecular Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Thorsten Burmester
- Institute of Zoology and Zoological Museum, Biocenter Grindel, University of Hamburg, D-20146 Hamburg, Germany.
| | - Thomas Hankeln
- Institute of Molecular Genetics, University of Mainz, D-55099 Mainz, Germany.
| |
Collapse
|
48
|
Zhao Y, Du KJ, Gao SQ, He B, Wen GB, Tan X, Lin YW. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center. J Inorg Biochem 2016; 156:113-21. [DOI: 10.1016/j.jinorgbio.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
|
49
|
Bicker A, Brahmer AM, Meller S, Kristiansen G, Gorr TA, Hankeln T. The Distinct Gene Regulatory Network of Myoglobin in Prostate and Breast Cancer. PLoS One 2015; 10:e0142662. [PMID: 26559958 PMCID: PMC4641586 DOI: 10.1371/journal.pone.0142662] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
Myoglobin (MB) is not only strongly expressed in myocytes, but also at much lower levels in different cancer entities. 40% of breast tumors are MB-positive, with the globin being co-expressed with markers of tumor hypoxia in a proportion of cases. In breast cancer, MB expression is associated with a positive hormone receptor status and patient prognosis. In prostate cancer, another hormone-dependent cancer type, 53% of tumors were recently shown to express MB. Especially in more aggressive prostate cancer specimen MB expression also correlates with increased patient survival rates. Both findings might be due to tumor-suppressing properties of MB in cancer cells. In contrast to muscle, MB transcription in breast and prostate cancer mainly depends on a novel, alternative promoter site. We show here that its associated transcripts can be upregulated by hypoxia and downregulated by estrogens and androgens in MCF7 breast and LNCaP prostate cancer cells, respectively. Bioinformatic data mining of epigenetic histone marks and experimental verification reveal a hitherto uncharacterized transcriptional network that drives the regulation of the MB gene in cancer cells. We identified candidate hormone-receptor binding elements that may interact with the cancer-associated MB promoter to decrease its activity in breast and prostate cancer cells. Additionally, a regulatory element, 250 kb downstream of the promoter, acts as a hypoxia-inducible site within the transcriptional machinery. Understanding the distinct regulation of MB in tumors will improve unraveling the respiratory protein’s function in the cancer context and may provide new starting points for developing therapeutic strategies.
Collapse
Affiliation(s)
- Anne Bicker
- Institute of Molecular Genetics, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | - Thomas A. Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Regenerative Medicine Program, University and University Hospital Zurich, Zurich, Switzerland
| | - Thomas Hankeln
- Institute of Molecular Genetics, Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
50
|
Podgórski T, Kryściak J, Konarski J, Domaszewska K, Durkalec-Michalski K, Strzelczyk R, Pawlak M. Iron Metabolism in Field Hockey Players During an Annual Training Cycle. J Hum Kinet 2015; 47:107-14. [PMID: 26557195 PMCID: PMC4633246 DOI: 10.1515/hukin-2015-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Post-physical training changes in iron metabolism in the human body often occur. To fully describe these processes, fifteen male Polish National Team field hockey players (age 27.7 ± 5.2 years, body mass 72.8 ± 7.6 kg and body height 177.1 ± 5.7 cm) were examined in three phases of an annual training cycle: preparatory (T1), competitive (T2) and transition (T3). To assess aerobic fitness, maximal oxygen uptake (VO2max) was evaluated. Based on the iron concentration, the changes in total iron binding capacity (TIBC), unsaturated iron binding capacity (UIBC) and other selected haematological indicators (haemoglobin, erythrocytes, mean corpuscular haemoglobin - MCH) in iron metabolism were estimated. The average values of maximum oxygen uptake increased from 54.97 ± 3.62 ml·kg−1·min−1 in T1 to 59.93 ± 3.55 ml·kg−1·min−1 in T2 (p<0.05) and then decreased to 56.21 ± 4.56 ml·kg−1·min−1 in T3 (p<0.05). No statistically significant changes in the erythrocyte count were noted. The MCH and haemoglobin concentration decreased between T1 and T2. The maximal exercise test caused a significant (p<0.05) increase in the plasma iron concentration during the competition and transition phases. Progressive but non-significant increases in resting iron concentration, TIBC and UIBC in the analysed annual training cycle were noted. To show global changes in iron metabolism in the human body, it is necessary to determine additional variables, i.e. UIBC, TIBC, haemoglobin, MCH or the erythrocyte count. The direction of changes in iron metabolism depends on both the duration and intensity of the physical activity and the fitness level of the subjects. Dietary intake of iron increases the level of this trace element and prevents anaemia associated with training overloads.
Collapse
Affiliation(s)
- Tomasz Podgórski
- Department of Biochemistry, University School of Physical Education in Poznan, Poland
| | - Jakub Kryściak
- Department of Physiology, University School of Physical Education in Poznan, Poland
| | - Jan Konarski
- Department of the Theory of Sport, University School of Physical Education in Poznan, Poland
| | | | - Krzysztof Durkalec-Michalski
- Department of Hygiene and Human Nutrition, Dietetic Division, Poznań University of Life Sciences, Poznan, Poland
| | - Ryszard Strzelczyk
- Department of the Theory of Sport, University School of Physical Education in Poznan, Poland
| | - Maciej Pawlak
- Department of Biochemistry, University School of Physical Education in Poznan, Poland
| |
Collapse
|