1
|
Saribas AS, Jensen LE, Safak M. Recent advances in discovery and functional analysis of the small proteins and microRNA expressed by polyomaviruses. Virology 2025; 602:110310. [PMID: 39612622 DOI: 10.1016/j.virol.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
The polyomavirus family consists of a highly diverse group of small DNA viruses isolated from various species, including humans. Some family members have been used as model systems to understand the fundamentals of modern biology. After the discovery of the first two human polyomaviruses (JC virus and BK virus) during the early 1970s, their current number reached 14 today. Some family members cause considerably severe human diseases, including polyomavirus-associated nephropathy (PVAN), progressive multifocal leukoencephalopathy (PML), trichodysplasia spinulosa (TS) and Merkel cell carcinoma (MCC). Polyomaviruses encode universal regulatory and structural proteins, but some members express additional virus-specific proteins and microRNA, which significantly contribute to the viral biology, cell transformation, and perhaps progression of the disease that they are associated with. In the current review, we summarized the recent advances in discovery, and functional and structural analysis of those viral proteins and microRNA.
Collapse
Affiliation(s)
- A Sami Saribas
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Liselotte E Jensen
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res 2024; 208:107409. [PMID: 39284429 DOI: 10.1016/j.phrs.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, China
| | - Fukun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
3
|
Qu Y, Wang S, Jiang H, Wang Q, Liao Y, Qiu X, Tan L, Song C, Ding C, Sun Y, Yang Z. The Ca 2+-dependent phosphatase calcineurin dephosphorylates TBK1 to suppress antiviral innate immunity. J Virol 2024; 98:e0001624. [PMID: 38563732 PMCID: PMC11092360 DOI: 10.1128/jvi.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Yang Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Siyuan Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Qingyi Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Chida T, Watanabe S, Ohta K, Noritake H, Ito M, Suzuki T, Suda T, Kawata K. Impact of amino acid substitutions in hepatitis C virus core region on the severe oxidative stress. Free Radic Biol Med 2024; 212:199-206. [PMID: 38103659 DOI: 10.1016/j.freeradbiomed.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, leading to liver steatosis, fibrosis, and hepatocellular carcinoma (HCC). Despite the accumulation of clinical data showing the impact of amino acid substitutions at positions 70 (R70Q/H) and/or 91 (L91M) in the HCV core protein in progressive liver diseases, including HCC, the underlying mechanisms have not been elucidated. We analyzed 72 liver biopsy specimens from patients with chronic HCV genotype 1b (HCV-1b) infection prior to antiviral treatment. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear factor erythroid 2-related factor 2 (NRF2) in the nucleus were quantified using liver tissue immunohistochemistry. The effects of amino acid substitutions in the HCV core region on hepatocellular oxidative stress were investigated using wild-type or double-mutant (R70Q/H+L91M) HCV-1b core transfection and stable expression in human hepatoma HuH-7 cells. Overall, 24, 19, 11, and 18 patients had the wild-type, R70Q/H, L91M, and R70Q/H+L91M genotypes, respectively, in the HCV core. A significantly higher accumulation of hepatocellular 8-OHdG and a lower NRF2/8-OHdG ratio were observed in patients with R70Q/H+L91M than in those with the wild-type disease. Increased levels of intracellular superoxide and hydrogen peroxide in the cytoplasm and mitochondria, mRNA expression of enzymes generating oxidative stress, and nuclear expression of nicotinamide adenine dinucleotide phosphate oxidase 4 were augmented in cells treated with R70Q+L91M. HCV core proteins harboring either or both substitutions of R70Q/H or L91M enhanced hepatocellular oxidative stress in vivo and in vitro. These amino acid substitutions may affect HCC development by enhancing hepatic oxidative stress in patients with chronic HCV-1b infection.
Collapse
Affiliation(s)
- Takeshi Chida
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Regional Medical Care Support, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shinya Watanabe
- Department of Gastroenterology, Shimada General Medical Center, 1200-5 Noda, Shimada, Shizuoka, 427-8502, Japan
| | - Kazuyoshi Ohta
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masahiko Ito
- Department of Microbiology & Immunology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tetsuro Suzuki
- Department of Microbiology & Immunology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takafumi Suda
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
5
|
Sinha S, Hassan N, Schwartz RE. Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology 2024; 79:482-501. [PMID: 36626634 DOI: 10.1097/hep.0000000000000012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for ∼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Collapse
Affiliation(s)
- Saloni Sinha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
6
|
Feng W, Kao TC, Jiang J, Zeng X, Chen S, Zeng J, Chen Y, Ma X. The dynamic equilibrium between the protective and toxic effects of matrine in the development of liver injury: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1315584. [PMID: 38348397 PMCID: PMC10859759 DOI: 10.3389/fphar.2024.1315584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background: Matrine, an alkaloid derived from the dried roots of Sophora flavescens Aiton, has been utilized for the treatment of liver diseases, but its potential hepatotoxicity raises concerns. However, the precise condition and mechanism of action of matrine on the liver remain inconclusive. Therefore, the objective of this systematic review and meta-analysis is to comprehensively evaluate both the hepatoprotective and hepatotoxic effects of matrine and provide therapeutic guidance based on the findings. Methods: The meta-analysis systematically searched relevant preclinical literature up to May 2023 from eight databases, including PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure, WanFang Med Online, China Science and Technology Journal Database, and China Biomedical Literature Service System. The CAMARADES system assessed the quality and bias of the evidence. Statistical analysis was conducted using STATA, which included the use of 3D maps and radar charts to display the effects of matrine dosage and frequency on hepatoprotection and hepatotoxicity. Results: After a thorough screening, 24 studies involving 657 rodents were selected for inclusion. The results demonstrate that matrine has bidirectional effects on ALT and AST levels, and it also regulates SOD, MDA, serum TG, serum TC, IL-6, TNF-α, and CAT levels. Based on our comprehensive three-dimensional analysis, the optimal bidirectional effective dosage of matrine ranges from 10 to 69.1 mg/kg. However, at a dose of 20-30 mg/kg/d for 0.02-0.86 weeks, it demonstrated high liver protection and low toxicity. The molecular docking analysis revealed the interaction between MT and SERCA as well as SREBP-SCAP complexes. Matrine could alter Ca2+ homeostasis in liver injury via multiple pathways, including the SREBP1c/SCAP, Notch/RBP-J/HES1, IκK/NF-κB, and Cul3/Rbx1/Keap1/Nrf2. Conclusion: Matrine has bidirectional effects on the liver at doses ranging from 10 to 69.1 mg/kg by influencing Ca2+ homeostasis in the cytoplasm, endoplasmic reticulum, Golgi apparatus, and mitochondria. Systematic review registration: https://inplasy.com/, identifier INPLASY202340114.
Collapse
Affiliation(s)
- Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Te-chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Aoyagi H, Iijima H, Gaber ES, Zaitsu T, Matsuda M, Wakae K, Watashi K, Suzuki R, Masaki T, Kahn J, Saito T, El-Kassas M, Shimada N, Kato K, Enomoto M, Hayashi K, Tsubota A, Mimata A, Sakamaki Y, Ichinose S, Muramatsu M, Wake K, Wakita T, Aizaki H. Hepatocellular organellar abnormalities following elimination of hepatitis C virus. Liver Int 2023; 43:1677-1690. [PMID: 37312620 DOI: 10.1111/liv.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/14/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS The future development of hepatocellular carcinoma (HCC) in patients after sustained virologic response (SVR) is an important issue. The purposes of this study were to investigate pathological alterations in organelle of the liver of SVR patients and to characterize organelle abnormalities that may be related to carcinogenesis after SVR. METHODS The ultrastructure of liver biopsy specimens from patients with chronic hepatitis C (CHC) and SVR were compared to cell and mouse models and assessed semi-quantitatively using transmission electron microscopy. RESULTS Hepatocytes in patients with CHC showed abnormalities in the nucleus, mitochondria, endoplasmic reticulum, lipid droplet, and pericellular fibrosis, comparable to those seen in hepatitis C virus (HCV)-infected mice and cells. DAA treatment significantly reduced organelle abnormalities such as the nucleus, mitochondria, and lipid droplet in the hepatocytes of patients and mice after SVR, and cured cells, but it did not change dilated/degranulated endoplasmic reticulum and pericellular fibrosis in patients and mice after SVR. Further, samples from patients with a post-SVR period of >1 year had significantly larger numbers of abnormalities in the mitochondria and endoplasmic reticulum than those of <1 year. A possible cause of organelle abnormalities in patients after SVR could be oxidative stress of the endoplasmic reticulum and mitochondria associated with abnormalities of the vascular system due to fibrosis. Interestingly, abnormal endoplasmic reticulum was associated with patients with HCC for >1 year after SVR. CONCLUSIONS These results indicate that patients with SVR exhibit a persistent disease state and require long-term follow-up to detect early signs of carcinogenesis.
Collapse
Affiliation(s)
- Haruyo Aoyagi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Eman S Gaber
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuma Zaitsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jeffrey Kahn
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Ootakanomori Hospital, Chiba, Japan
| | - Keizo Kato
- Division of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Masaru Enomoto
- Department of Hepatology, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhiko Hayashi
- Division of Gastroenterology and Hepatology, Meijo Hospital, Nagoya, Japan
| | - Akihito Tsubota
- Core Research Facilities, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayako Mimata
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Sakamaki
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuko Ichinose
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenjiro Wake
- Liver Research Unit, Minophagen Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Sahoo BR, Crook AA, Pattnaik A, Torres-Gerena AD, Khalimonchuk O, Powers R, Franco R, Pattnaik AK. Redox Regulation and Metabolic Dependency of Zika Virus Replication: Inhibition by Nrf2-Antioxidant Response and NAD(H) Antimetabolites. J Virol 2023; 97:e0136322. [PMID: 36688653 PMCID: PMC9972919 DOI: 10.1128/jvi.01363-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Viral infections alter host cell metabolism and homeostasis; however, the mechanisms that regulate these processes have only begun to be elucidated. We report here that Zika virus (ZIKV) infection activates the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2), which precedes oxidative stress. Downregulation of Nrf2 or inhibition of glutathione (GSH) synthesis resulted in significantly increased viral replication. Interestingly, 6-amino-nicotinamide (6-AN), a nicotinamide analog commonly used as an inhibitor of the pentose phosphate pathway (PPP), decreased viral replication by over 1,000-fold. This inhibition was neither recapitulated by the knockdown of PPP enzymes, glucose 6-phosphate dehydrogenase (G6PD), or 6-phosphogluconate dehydrogenase (6PGD), nor prevented by supplementation with ribose 5-phosphate. Instead, our metabolomics and metabolic phenotype studies support a mechanism in which 6-AN depletes cells of NAD(H) and impairs NAD(H)-dependent glycolytic steps resulting in inhibition of viral replication. The inhibitory effect of 6-AN was rescued with precursors of the salvage pathway but not with those of other NAD+ biosynthesis pathways. Inhibition of glycolysis reduced viral protein levels, which were recovered transiently. This transient recovery in viral protein synthesis was prevented when oxidative metabolism was inhibited by blockage of the mitochondrial pyruvate carrier, fatty acid oxidation, or glutaminolysis, demonstrating a compensatory role of mitochondrial metabolism in ZIKV replication. These results establish an antagonistic role for the host cell Nrf2/GSH/NADPH-dependent antioxidant response against ZIKV and demonstrate the dependency of ZIKV replication on NAD(H). Importantly, our work suggests the potential use of NAD(H) antimetabolite therapy against the viral infection. IMPORTANCE Zika virus (ZIKV) is a major public health concern of international proportions. While the incidence of ZIKV infections has declined substantially in recent years, the potential for the reemergence or reintroduction remains high. Although viral infection alters host cell metabolism and homeostasis to promote its replication, deciphering the mechanism(s) involved in these processes is important for identifying therapeutic targets. The present work reveals the complexities of host cell redox regulation and metabolic dependency of ZIKV replication. An antagonistic effect of the Nrf2/GSH/NADP(H)-dependent antioxidant response against ZIKV infection and an essential role of NAD(H) metabolism and glycolysis for viral replication are established for the first time. These findings highlight the potential use of NAD(H) antimetabolites to counter ZIKV infection and pathogenesis.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alexandra A. Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alondra D. Torres-Gerena
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
9
|
Heredia-Torres TG, Rincón-Sánchez AR, Lozano-Sepúlveda SA, Galan-Huerta K, Arellanos-Soto D, García-Hernández M, Garza-Juarez ADJ, Rivas-Estilla AM. Unraveling the Molecular Mechanisms Involved in HCV-Induced Carcinogenesis. Viruses 2022; 14:2762. [PMID: 36560766 PMCID: PMC9786602 DOI: 10.3390/v14122762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer induced by a viral infection is among the leading causes of cancer. Hepatitis C Virus (HCV) is a hepatotropic oncogenic positive-sense RNA virus that leads to chronic infection, exposing the liver to a continuous process of damage and regeneration and promoting hepatocarcinogenesis. The virus promotes the development of carcinogenesis through indirect and direct molecular mechanisms such as chronic inflammation, oxidative stress, steatosis, genetic alterations, epithelial-mesenchymal transition, proliferation, and apoptosis, among others. Recently, direct-acting antivirals (DAAs) showed sustained virologic response in 95% of cases. Nevertheless, patients treated with DAAs have reported an unexpected increase in the early incidence of Hepatocellular carcinoma (HCC). Studies suggest that HCV induces epigenetic regulation through non-coding RNAs, DNA methylation, and chromatin remodeling, which modify gene expressions and induce genomic instability related to HCC development that persists with the infection's clearance. The need for a better understanding of the molecular mechanisms associated with the development of carcinogenesis is evident. The aim of this review was to unravel the molecular pathways involved in the development of carcinogenesis before, during, and after the viral infection's resolution, and how these pathways were regulated by the virus, to find control points that can be used as potential therapeutic targets.
Collapse
Affiliation(s)
- Tania Guadalupe Heredia-Torres
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Ana Rosa Rincón-Sánchez
- IBMMTG, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, Mexico
| | - Sonia Amelia Lozano-Sepúlveda
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Kame Galan-Huerta
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Daniel Arellanos-Soto
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Marisela García-Hernández
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Aurora de Jesús Garza-Juarez
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Ana María Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| |
Collapse
|
10
|
Tripathi SK, Pal A, Ghosh S, Goel A, Aggarwal R, Banerjee S, Das S. LncRNA NEAT1 regulates HCV-induced Hepatocellular carcinoma by modulating the miR-9-BGH3 axis. J Gen Virol 2022; 103. [PMID: 36748628 DOI: 10.1099/jgv.0.001809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of end-stage liver diseases, such as fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Several cellular entities, including paraspeckles and their related components, are involved in viral pathogenesis and cancer progression. NEAT1 lncRNA is a major component of paraspeckles that has been linked to several malignancies. In this study, analysis of the Cancer Genome Atlas (TCGA) database and validation in HCV-induced HCC tissue and serum samples showed significantly high expression of NEAT1 in patients with liver cancer. Moreover, we found that NEAT1 levels increased upon HCV infection. To further understand the mechanism of NEAT1-induced HCC progression, we selected one of its targets, miR-9-5 p, which regulates BGH3 mRNA levels. Interestingly, miR-9-5 p levels were downregulated upon HCV infection, whereas BGH3 levels were upregulated. Additionally, partial NEAT1 knockdown increased miR-9-5 p levels and decreased BGH3 levels, corroborating our initial results. BGH3 levels were also upregulated in HCV-induced HCC and TCGA tissue samples, which could be directly correlated with NEAT1 levels. As a known oncogene, BGH3 is directly linked to HCC progression mediated by NEAT1. We also found that NEAT1 levels remained upregulated in serum samples from patients treated with direct-acting antivirals (DAA), indicating that NEAT1 might be a molecular trigger that promotes HCC development. Collectively, these findings provide molecular insights into HCV-induced HCC progression via the NEAT1-miR-9-BGH3 axis.
Collapse
Affiliation(s)
| | - Apala Pal
- Indian Institute of Science, Bangalore, India
| | - Suchandrima Ghosh
- Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Amit Goel
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rakesh Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Soma Banerjee
- Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Saumitra Das
- Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
11
|
Probing effects of the SARS-CoV-2 E protein on membrane curvature and intracellular calcium. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:183994. [PMID: 35724739 PMCID: PMC9212275 DOI: 10.1016/j.bbamem.2022.183994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 01/20/2023]
Abstract
SARS-CoV-2 contains four structural proteins in its genome. These proteins aid in the assembly and budding of new virions at the ER-Golgi intermediate compartment (ERGIC). Current fundamental research efforts largely focus on one of these proteins – the spike (S) protein. Since successful antiviral therapies are likely to target multiple viral components, there is considerable interest in understanding the biophysical role of its other structural proteins, in particular structural membrane proteins. Here, we have focused our efforts on the characterization of the full-length envelope (E) protein from SARS-CoV-2, combining experimental and computational approaches. Recombinant expression of the full-length E protein from SARS-CoV-2 reveals that this membrane protein is capable of independent multimerization, possibly as a tetrameric or smaller species. Fluorescence microscopy shows that the protein localizes intracellularly, and coarse-grained MD simulations indicate it causes bending of the surrounding lipid bilayer, corroborating a potential role for the E protein in viral budding. Although we did not find robust electrophysiological evidence of ion-channel activity, cells transfected with the E protein exhibited reduced intracellular Ca2+, which may further promote viral replication. However, our atomistic MD simulations revealed that previous NMR structures are relatively unstable, and result in models incapable of ion conduction. Our study highlights the importance of using high-resolution structural data obtained from a full-length protein to gain detailed molecular insights, and eventually permitting virtual drug screening.
Collapse
|
12
|
Damle VG, Wu K, Arouri DJ, Schirhagl R. Detecting free radicals post viral infections. Free Radic Biol Med 2022; 191:8-23. [PMID: 36002131 DOI: 10.1016/j.freeradbiomed.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Free radical generation plays a key role in viral infections. While free radicals have an antimicrobial effect on bacteria or fungi, their interplay with viruses is complicated and varies greatly for different types of viruses as well as different radical species. In some cases, radical generation contributes to the defense against the viruses and thus reduces the viral load. In other cases, radical generation induces mutations or damages the host tissue and can increase the viral load. This has led to antioxidants being used to treat viral infections. Here we discuss the roles that radicals play in virus pathology. Furthermore, we critically review methods that facilitate the detection of free radicals in vivo or in vitro in viral infections.
Collapse
Affiliation(s)
- V G Damle
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Wu
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - D J Arouri
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Qu Y, Sun Y, Yang Z, Ding C. Calcium Ions Signaling: Targets for Attack and Utilization by Viruses. Front Microbiol 2022; 13:889374. [PMID: 35859744 PMCID: PMC9289559 DOI: 10.3389/fmicb.2022.889374] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022] Open
Abstract
Calcium, as a second intracellular messenger, participate in various physiological and biochemical processes, including cell growth and proliferation, energy metabolism, information transfer, cell death, and immune response. Ca2+ channels or pumps in plasma and organelle membranes and Ca2+-related proteins maintain Ca2+ homeostasis by regulating Ca2+ inflow, outflow and buffering to avoid any adverse effects caused by Ca2+ overload or depletion. Thus, Ca2+ signaling also provides a target for virus invasion, replication, proliferation and release. After hijacking the host cell, viruses exploit Ca2+ signaling to regulate apoptosis and resist host immunity to establish persistent infection. In this review, we discuss cellular Ca2+ signaling and channels, interaction of calcium-associated proteins with viruses, and host cell fate, as well as the role of Ca2+ in cell death and antiviral response during viral infection.
Collapse
Affiliation(s)
- Yang Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Zengqi Yang,
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- *Correspondence: Chan Ding,
| |
Collapse
|
14
|
Nahas KL, Connor V, Scherer KM, Kaminski CF, Harkiolaki M, Crump CM, Graham SC. Near-native state imaging by cryo-soft-X-ray tomography reveals remodelling of multiple cellular organelles during HSV-1 infection. PLoS Pathog 2022; 18:e1010629. [PMID: 35797345 PMCID: PMC9262197 DOI: 10.1371/journal.ppat.1010629] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a large, enveloped DNA virus and its assembly in the cell is a complex multi-step process during which viral particles interact with numerous cellular compartments such as the nucleus and organelles of the secretory pathway. Transmission electron microscopy and fluorescence microscopy are commonly used to study HSV-1 infection. However, 2D imaging limits our understanding of the 3D geometric changes to cellular compartments that accompany infection and sample processing can introduce morphological artefacts that complicate interpretation. In this study, we used soft X-ray tomography to observe differences in whole-cell architecture between HSV-1 infected and uninfected cells. To protect the near-native structure of cellular compartments we used a non-disruptive sample preparation technique involving rapid cryopreservation, and a fluorescent reporter virus was used to facilitate correlation of structural changes with the stage of infection in individual cells. We observed viral capsids and assembly intermediates interacting with nuclear and cytoplasmic membranes. Additionally, we observed differences in the morphology of specific organelles between uninfected and infected cells. The local concentration of cytoplasmic vesicles at the juxtanuclear compartment increased and their mean width decreased as infection proceeded, and lipid droplets transiently increased in size. Furthermore, mitochondria in infected cells were elongated and highly branched, suggesting that HSV-1 infection alters the dynamics of mitochondrial fission/fusion. Our results demonstrate that high-resolution 3D images of cellular compartments can be captured in a near-native state using soft X-ray tomography and have revealed that infection causes striking changes to the morphology of intracellular organelles.
Collapse
Affiliation(s)
- Kamal L. Nahas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Beamline B24, Diamond Light Source, Didcot, United Kingdom
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katharina M. Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5589089. [PMID: 35281470 PMCID: PMC8906126 DOI: 10.1155/2022/5589089] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.
Collapse
|
16
|
Ali MAM, Harmsen WS, Morsy KH, Galal GMK, Therneau TM, Roberts LR. Prognostic utility of systemic inflammatory markers and chronic hepatitis C virus infection status in hepatocellular carcinoma patients treated with local ablation. BMC Cancer 2022; 22:221. [PMID: 35227234 PMCID: PMC8887142 DOI: 10.1186/s12885-021-09121-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has high incidence and mortality worldwide. Local ablation using radiofrequency ablation (RFA) or microwave ablation (MWA) is potentially curative for early-stage HCC with outcomes comparable to surgical resection. We explored the influence of demographic, clinical, and laboratory factors on outcomes of HCC patients receiving ablation. Methods This retrospective cohort study included 221 HCC patients receiving local ablation at Mayo Clinic between January 2000 and October 2018, comprising 140 RFA and 81 MWA. Prognostic factors determining overall survival (OS) and disease-free survival (DFS) were identified using multivariate analysis. Results There was no clinically significant difference in OS or DFS between RFA and MWA. In multivariate analysis of OS, pre-ablation lymphocyte-monocyte ratio [Hazard ratio (HR) 0.7, 95% confidence interval (CI) 0.58–0.84, P = 0.0001], MELD score [HR 1.12, 95%CI 1.068–1.17, P < 0.0001], tumor number [HR 1.23, 95%CI 1.041–1.46, P = 0.015] and tumor size [HR 1.18, 95%CI 1.015–1.37, P = 0.031] were clinically-significant prognostic factors. Among HCC patients with chronic hepatitis C (HCV) infection, positive HCV PCR at HCC diagnosis was associated with 1.4-fold higher hazard of death, with 5-year survival of 32.8% vs 53.6% in HCV PCR-negative patients. Regarding DFS, pre-ablation lymphocyte-monocyte ratio [HR 0.77, 95%CI 0.66–0.9, P = 0.001], MELD score [HR 1.06, 95%CI 1.022–1.11, P = 0.002], Log2 AFP [HR 1.11, 95%CI 1.033–1.2, P = 0.005], tumor number [HR 1.29, 95%CI 1.078–1.53, P = 0.005] and tumor size [HR 1.25, 95%CI 1.043–1.51 P = 0.016] were independently prognostic. Conclusions Pre-ablation systemic inflammation represented by lymphocyte-monocyte ratio is significantly associated with OS and DFS in HCC patients treated with local ablation. HCV viremia is associated with poor OS. Tumor biology represented by tumor number and size are strongly prognostic for OS and DFS while AFP is significantly associated with DFS only.
Collapse
Affiliation(s)
| | - William Scott Harmsen
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 205 Third Street SW, Rochester, MN, 55905, USA
| | - Khairy Hammam Morsy
- Department of Tropical Medicine and Gastroenterology, Sohag Faculty of Medicine, Naser City, Sohag, 82524, Egypt
| | - Ghada Moustapha Kamal Galal
- Department of Tropical Medicine and Gastroenterology, Sohag Faculty of Medicine, Naser City, Sohag, 82524, Egypt
| | - Terry M Therneau
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 205 Third Street SW, Rochester, MN, 55905, USA
| | - Lewis Rowland Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Russo FP, Zanetto A, Pinto E, Battistella S, Penzo B, Burra P, Farinati F. Hepatocellular Carcinoma in Chronic Viral Hepatitis: Where Do We Stand? Int J Mol Sci 2022; 23:500. [PMID: 35008926 PMCID: PMC8745141 DOI: 10.3390/ijms23010500] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death. Although the burden of alcohol- and NASH-related HCC is growing, chronic viral hepatitis (HBV and HCV) remains a major cause of HCC development worldwide. The pathophysiology of viral-related HCC includes liver inflammation, oxidative stress, and deregulation of cell signaling pathways. HBV is particularly oncogenic because, contrary to HCV, integrates in the cell DNA and persists despite virological suppression by nucleotide analogues. Surveillance by six-month ultrasound is recommended in patients with cirrhosis and in "high-risk" patients with chronic HBV infection. Antiviral therapy reduces the risks of development and recurrence of HCC; however, patients with advanced chronic liver disease remain at risk of HCC despite virological suppression/cure and should therefore continue surveillance. Multiple scores have been developed in patients with chronic hepatitis B to predict the risk of HCC development and may be used to stratify individual patient's risk. In patients with HCV-related liver disease who achieve sustained virological response by direct acting antivirals, there is a strong need for markers/scores to predict long-term risk of HCC. In this review, we discuss the most recent advances regarding viral-related HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabio Farinati
- Gastroenterology/Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy; (F.P.R.); (A.Z.); (E.P.); (S.B.); (B.P.); (P.B.)
| |
Collapse
|
18
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
19
|
Wang H, Zheng Y, Huang J, Li J. Mitophagy in Antiviral Immunity. Front Cell Dev Biol 2021; 9:723108. [PMID: 34540840 PMCID: PMC8446632 DOI: 10.3389/fcell.2021.723108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are important organelles whose primary function is energy production; in addition, they serve as signaling platforms for apoptosis and antiviral immunity. The central role of mitochondria in oxidative phosphorylation and apoptosis requires their quality to be tightly regulated. Mitophagy is the main cellular process responsible for mitochondrial quality control. It selectively sends damaged or excess mitochondria to the lysosomes for degradation and plays a critical role in maintaining cellular homeostasis. However, increasing evidence shows that viruses utilize mitophagy to promote their survival. Viruses use various strategies to manipulate mitophagy to eliminate critical, mitochondria-localized immune molecules in order to escape host immune attacks. In this article, we will review the scientific advances in mitophagy in viral infections and summarize how the host immune system responds to viral infection and how viruses manipulate host mitophagy to evade the host immune system.
Collapse
Affiliation(s)
- Hongna Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China.,GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
20
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|
21
|
Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG. Reactive oxygen species as potential antiviral targets. Rev Med Virol 2021; 32:e2240. [PMID: 33949029 DOI: 10.1002/rmv.2240] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are by-products of cellular metabolism and can be either beneficial, at low levels, or deleterious, at high levels, to the cell. It is known that several viral infections can increase oxidative stress, which is mainly facilitated by viral-induced imbalances in the antioxidant defence mechanisms of the cell. While the exact role of ROS in certain viral infections (adenovirus and dengue virus) remains unknown, other viruses can use ROS for enhancement of pathogenesis (SARS coronavirus and rabies virus) or replication (rhinovirus, West Nile virus and vesicular stomatitis virus) or both (hepatitis C virus, human immunodeficiency virus and influenza virus). While several viral proteins (mainly for hepatitis C and human immunodeficiency virus) have been identified to play a role in ROS formation, most mediators of viral ROS modulation are yet to be elucidated. Treatment of viral infections, including hepatitis C virus, human immunodeficiency virus and influenza virus, with ROS inhibitors has shown a decrease in both pathogenesis and viral replication both in vitro and in animal models. Clinical studies indicating the potential for targeting ROS-producing pathways as possible broad-spectrum antiviral targets should be evaluated in randomized controlled trials.
Collapse
Affiliation(s)
- Willem J Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Corinne Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Frans H O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
22
|
Mostafa A, Ibrahim NES, Sabry D, Fathy W, Elkazaz AY. Insulin-like Growth Factor Initiates Hepatocellular Carcinoma in Chronic Hepatitis C Virus Patients through Induction of Long Non-coding Ribonucleic Acids AF085935. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
HCV is the most commonly occurring hepatic infection worldwide. Chronic HCV infection usually complicated with cirrhosis and even HCC with significant morbidity and mortality. The aim of this study to clarify the molecular mechanism by which HCV can induce HCC and identify a new diagnostic marker for early detection of HCC. Methods: 180 participating subject were divided in to three groups. Group 1: 60 healthy individuals (controls). Group 2: 60 HCV infected patients. Group 3: 60 HCV patients developed HCC. Serum IGF, FOXO and LncRNA AF085935 were evaluated. Results: Serum IGF was significantly elevated in HCV and HCC patients, while FOXO and LncRNA AF085935 were significantly up regulated in HCC. IGF significantly correlated with and LncRNA AF085935. Conclusion: HCV can induce IGF with subsequent induction of LncRNA AF085935 and FOXO.
Key word: HCV, HCC, IGF, FOXO and LncRNA AF085935.
Collapse
|
23
|
Jin C, Kumar P, Gracia-Sancho J, Dufour JF. Calcium transfer between endoplasmic reticulum and mitochondria in liver diseases. FEBS Lett 2021; 595:1411-1421. [PMID: 33752262 DOI: 10.1002/1873-3468.14078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/07/2023]
Abstract
Calcium (Ca2+ ) is a second messenger essential for cellular homeostasis. Inside the cell, Ca2+ is compartmentalized and exchanged among organelles in response to both external and internal stimuli. Mitochondria-associated membranes (MAMs) provide a platform for proteins and channels involved in Ca2+ transfer between the endoplasmic reticulum (ER) and mitochondria. Deregulated Ca2+ signaling and proteins regulating ER-mitochondria interactions have been linked to liver diseases and intensively investigated in recent years. In this review, we summarize the role of MAM-resident proteins in Ca2+ transfer and their association with different liver diseases.
Collapse
Affiliation(s)
- Chaonan Jin
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland
| | - Pavitra Kumar
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland
| | - Jordi Gracia-Sancho
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland.,Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, Barcelona, Spain
| | - Jean-François Dufour
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland.,University Clinic of Visceral Surgery and Medicine, Inselspital, Bern, Switzerland
| |
Collapse
|
24
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
25
|
Saxena R, Saribas S, Jadiya P, Tomar D, Kaminski R, Elrod JW, Safak M. Human neurotropic polyomavirus, JC virus, agnoprotein targets mitochondrion and modulates its functions. Virology 2021; 553:135-153. [PMID: 33278736 PMCID: PMC7847276 DOI: 10.1016/j.virol.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
JC virus encodes an important regulatory protein, known as Agnoprotein (Agno). We have recently reported Agno's first protein-interactome with its cellular partners revealing that it targets various cellular networks and organelles, including mitochondria. Here, we report further characterization of the functional consequences of its mitochondrial targeting and demonstrated its co-localization with the mitochondrial networks and with the mitochondrial outer membrane. The mitochondrial targeting sequence (MTS) of Agno and its dimerization domain together play major roles in this targeting. Data also showed alterations in various mitochondrial functions in Agno-positive cells; including a significant reduction in mitochondrial membrane potential, respiration rates and ATP production. In contrast, a substantial increase in ROS production and Ca2+ uptake by the mitochondria were also observed. Finally, findings also revealed a significant decrease in viral replication when Agno MTS was deleted, highlighting a role for MTS in the function of Agno during the viral life cycle.
Collapse
Affiliation(s)
- Reshu Saxena
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Rafal Kaminski
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
26
|
Exploring Liver Mitochondrial Function by 13C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry. Methods Mol Biol 2021; 2310:179-199. [PMID: 34096004 DOI: 10.1007/978-1-0716-1433-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The liver is at the crossroad of key metabolic processes, which include detoxification, glycolipidic storage and export, and protein synthesis. The gut-liver axis, moreover, provides hepatocytes with a series of bacterial products and metabolites, which contribute to maintain liver function in health and disease. Breath tests (BTs) are developed as diagnostic tools for indirect, rapid, noninvasive assessment of several metabolic processes in the liver. BTs monitor the appearance of CO2 in breath as a marker of a specific substrate metabolized in the liver, typically within microsomes, cytosol, or mitochondria. The noninvasiveness of BTs originates from the use of the, nonradioactive, naturally occurring stable isotope 13C marking a specific substrate which is metabolized in the liver, leading to the appearance of 13CO2 in expired air. Some substrates (ketoisocaproic acid, methionine, and octanoic acid) provide information about dynamic liver mitochondrial function in health and disease. In humans, the application of 13C-breath tests ranges from nonalcoholic and alcoholic liver diseases to liver cirrhosis, hepatocarcinoma, preoperative and postoperative assessment of liver function, and drug-induced liver damage. 13C-BTs are an indirect, cost-effective, and easy method to evaluate dynamic liver function and gastric kinetics in health and disease, with ongoing studies focusing on further applications in clinical medicine.
Collapse
|
27
|
Anacleto SL, Milenkovic D, Kroon PA, Needs PW, Lajolo FM, Hassimotto NMA. Citrus flavanone metabolites protect pancreatic-β cells under oxidative stress induced by cholesterol. Food Funct 2020; 11:8612-8624. [PMID: 32959863 DOI: 10.1039/d0fo01839b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is one of the triggers of oxidative stress in the pancreatic-β cell, generating high levels of reactive oxygen species, which leads to impairment of insulin synthesis and secretion. Bioactive compounds, such as citrus flavanones, which possess anti-inflammatory and antioxidant activities, could reduce oxidative stress in β-cells and improve their function. We describe for the first time the protective effects of the phase-II flavanone metabolites [naringenin 7-O-glucuronide, hesperetin 3'-O-glucuronide, and hesperetin 7-O-glucuronide], and two flavanones-catabolites derived from gut microbiota metabolism [hippuric acid and 3-(4-hydroxyphenyl)propionic acid], on pancreatic β-cell line MIN6 under oxidative stress, at physiologically relevant concentration. Cholesterol reduced cell viability in a dose and time-dependent manner, with an improvement in the presence of the metabolites. Moreover, flavanone metabolites attenuated oxidative stress by reducing levels of lipid peroxides, superoxide anions, and hydrogen peroxide. In response to the reduction of reactive oxygen species, a decrease in superoxide dismutase and glutathione peroxidase activities was observed; these activities were elevated by cholesterol. Moreover, all the flavanone metabolites improved mitochondrial function and insulin secretion, and reduced apoptosis. Flavanone metabolites were found uptake by β-cells, and therefore could be responsible for the observed protective effects. These results demonstrated that circulating phase-II hesperetin and naringenin metabolites, and also phenolics derived from gut microbiota, protect pancreatic-β cells against oxidative stress, leading to an improvement in β-cell function and could be the bioactive molecules derived from the citrus consumption.
Collapse
Affiliation(s)
- Sara L Anacleto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | - Dragan Milenkovic
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, 451 East Health Sciences Drive, 95616, Davis, California, USA and Unité de Nutrition Humaine, INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paul W Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Franco Maria Lajolo
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | - Neuza M A Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
28
|
D'souza S, Lau KCK, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol 2020; 26:5759-5783. [PMID: 33132633 PMCID: PMC7579760 DOI: 10.3748/wjg.v26.i38.5759] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC) represents 90% of all primary liver cancers. Solid tumors like HCC are complex and have heterogeneous tumor genomic profiles contributing to complexity in diagnosis and management. Chronic infection with hepatitis B virus (HBV), hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest etiological risk factors for HCC. Due to the significant role of chronic viral infection in HCC development, it is important to investigate direct (viral associated) and indirect (immune-associated) mechanisms involved in the pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that drive hepatocarcinogenesis include persistent liver inflammation with an impaired antiviral immune response, immune and viral protein-mediated oxidative stress, and deregulation of cellular signaling pathways by viral proteins. DNA integration to promote genome instability is a feature of HBV infection, and metabolic reprogramming leading to steatosis is driven by HCV infection. The current review aims to provide a brief overview of HBV, HCV and HDV molecular biology, and highlight specific viral-associated oncogenic mechanisms and common molecular pathways deregulated in HCC, and current as well as emerging treatments for HCC.
Collapse
Affiliation(s)
- Simmone D'souza
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Keith CK Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Trushar R Patel
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge T1K3M4, AB, Canada
| |
Collapse
|
29
|
Gao R, Gabr A, Mouli S, Riaz A, Kulik L, Lewandowski RJ, Salem R. Toxicity and Survival of Hepatocellular Carcinoma Patients with Hepatitis B Infection Treated with Yttrium-90 Radioembolization: An Updated 15-Year Study. J Vasc Interv Radiol 2020; 31:401-408.e1. [PMID: 31983593 DOI: 10.1016/j.jvir.2019.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To evaluate the toxicity and survival of hepatocellular carcinoma (HCC) secondary to hepatitis B virus (HBV) infection treated with yttrium-90 transarterial radioembolization (TARE) over a 15-year period. MATERIALS AND METHODS This study retrospectively analyzed 93 consecutive patients with HBV HCC-all derived from an original cohort of 1,000 patients-who were treated with TARE via standard radiation segmentectomy/lobectomy between December 2003 and December 2018. This group comprised 80 males and 13 females, with 79 having only HBV and 14 having additional liver comorbidities. Toxicity grades were determined by Common Terminology Criteria for Adverse Events, version 5.0. Overall survival (OS) was reported using intention-to-treat (ITT), censored, or competing risk. Univariate/multivariate analyses were used to evaluate predictors of OS. RESULTS Posttreatment grade 3/4 toxicities included albumin (1.1%), bilirubin (4.3%), aspartate transaminase (6.5%), and alanine transaminase (3.2%). Median censored OS was 16.9 months (95% confidence interval [CI], 11.8-23.5): 17.5 months (95% CI, 11.5-86.9) for Child-Pugh (CP) A and 14.5 months (95% CI, 5.2-22.5) for CP B; not reached, 16.9 months (95% CI, 11.2-68.7), and 11.5 months (95% CI, 8.6-17.5) for Barcelona Clinic Liver Cancer (BCLC) A, B, and C, respectively. Multivariate analysis revealed albumin, alpha-fetoprotein, and portal vein thrombosis as independent predictors of ITT OS and albumin and tumor size as predictors when curative therapy was assigned as a competing risk. CONCLUSIONS This retrospective study showed that TARE therapy resulted in minimal toxicity in patients with HBV-derived HCC. Patients with CP A or BCLC A disease had superior survival outcomes compared to patients with CP B and BCLC B/C disease. These findings suggest that TARE is a viable treatment option for certain patient groups with HCC tumors secondary to HBV infection.
Collapse
Affiliation(s)
- Ruoqi Gao
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair, Suite 800, Chicago, IL, 60611
| | - Ahmed Gabr
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair, Suite 800, Chicago, IL, 60611
| | - Samdeep Mouli
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair, Suite 800, Chicago, IL, 60611
| | - Ahsun Riaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair, Suite 800, Chicago, IL, 60611
| | - Laura Kulik
- Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair, Suite 800, Chicago, IL, 60611
| | - Robert J Lewandowski
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair, Suite 800, Chicago, IL, 60611
| | - Riad Salem
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St Clair, Suite 800, Chicago, IL, 60611.
| |
Collapse
|
30
|
|
31
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|
32
|
Abstract
This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.
Collapse
Affiliation(s)
- Shivani K Thaker
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - James Ch'ng
- Department of Pediatrics, Division of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Oxidative Stress-Driven Autophagy acROSs Onset and Therapeutic Outcome in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6050123. [PMID: 31205585 PMCID: PMC6530208 DOI: 10.1155/2019/6050123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species- (ROS-) mediated autophagy physiologically contributes to management of cell homeostasis in response to mild oxidative stress. Cancer cells typically engage autophagy downstream of ROS signaling derived from hypoxia and starvation, which are harsh environmental conditions that need to be faced for cancer development and progression. Hepatocellular carcinoma (HCC) is a solid tumor for which several environmental risk factors, particularly viral infections and alcohol abuse, have been shown to promote carcinogenesis via augmentation of oxidative stress. In addition, ROS burst in HCC cells frequently takes place after administration of therapeutic compounds that promote apoptotic cell death or even autophagic cell death. The interplay between ROS and autophagy (i) in the disposal of dysfunctional mitochondria via mitophagy, as a tumor suppressor mechanism, or (ii) in the cell survival adaptive response elicited by chemotherapeutic interventions, as a tumor-promoting event, will be depicted in this review in relation to HCC development and progression.
Collapse
|
34
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
35
|
Hino K, Nishina S, Sasaki K, Hara Y. Mitochondrial damage and iron metabolic dysregulation in hepatitis C virus infection. Free Radic Biol Med 2019; 133:193-199. [PMID: 30268888 DOI: 10.1016/j.freeradbiomed.2018.09.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection often leads to chronic hepatitis that can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Although HCV infection is expected to decrease due to the high rate of HCV eradication via the rapid dissemination and use of directly acting antivirals, HCV infection remains a leading cause of HCC. Although the mechanisms underlying the HCC development are not fully understood, oxidative stress is present to a greater degree in HCV infection than in other inflammatory liver diseases and has been proposed as a major mechanism of liver injury in patients with chronic hepatitis C. Hepatocellular mitochondrial alterations and iron accumulation are well-known characteristics in patients with chronic hepatitis C and are closely related to oxidative stress, since the mitochondria are the main site of reactive oxygen species generation, and iron produces hydroxy radicals via the Fenton reaction. In addition, phlebotomy is an iron reduction approach that aims to lower serum transaminase levels in patients with chronic hepatitis C. Here, we review and discuss the mechanisms by which HCV induces mitochondrial damage and iron accumulation in the liver and offer new insights concerning how mitochondrial damage and iron accumulation are linked to the development of HCC.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| | - Sohij Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| | - Kyo Sasaki
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| |
Collapse
|
36
|
Wang R, Zhu Y, Lin X, Ren C, Zhao J, Wang F, Gao X, Xiao R, Zhao L, Chen H, Jin M, Ma W, Zhou H. Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production. Autophagy 2019; 15:1163-1181. [PMID: 30741586 DOI: 10.1080/15548627.2019.1580089] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Influenza A virus can evade host innate immune response that is involved in several viral proteins with complicated mechanisms. To date, how influenza A M2 protein modulates the host innate immunity remains unclear. Herein, we showed that M2 protein colocalized and interacted with MAVS (mitochondrial antiviral signaling protein) on mitochondria, and positively regulated MAVS-mediated innate immunity. Further studies revealed that M2 induced reactive oxygen species (ROS) production that was required for activation of macroautophagy/autophagy and enhancement of MAVS signaling pathway. Importantly, the proton channel activity of M2 protein was demonstrated to be essential for ROS production and antagonizing the autophagy pathway to control MAVS aggregation, thereby enhancing MAVS signal activity. In conclusion, our studies provided novel insights into mechanisms of M2 protein in modulating host antiviral immunity and uncovered a new mechanism into biology and pathogenicity of influenza A virus. Abbreviations: AKT/PKB: AKT serine/threonine kinase; Apo: apocynin; ATG5: autophagy related 5; BAPTA-AM: 1,2-Bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis; BECN1: beclin 1; CARD: caspase recruitment domain; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CQ: chloroquine; DCF: dichlorodihyd-rofluorescein; DPI: diphenyleneiodonium; DDX58: DExD/H-box helicase 58; eGFP: enhanced green fluorescent protein; EGTA: ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid; ER: endoplasmic reticulum; hpi: hours post infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; IRF3: interferon regulatory factor 3; ISRE: IFN-stimulated response elements; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOI, multiplicity of infection; mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; NC: negative control; NFKB/NF-κB: nuclear factor kappa B; PI3K: class I phosphoinositide 3-kinase; RLR: RIG-I-like-receptor; ROS: reactive oxygen species; SEV: sendai virus; TM: transmembrane; TMRM: tetramethylrhodamine methylester; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Ruifang Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Yinxing Zhu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Xian Lin
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Chenwei Ren
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Jiachang Zhao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Fangfang Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Xiaochen Gao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Rong Xiao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Lianzhong Zhao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Meilin Jin
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Wenjun Ma
- c Department of Diagnostic Medicine and Pathobiology , Kansas State University , Manhattan , KS , USA
| | - Hongbo Zhou
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , the Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| |
Collapse
|
37
|
Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation. Sci Rep 2018; 8:15486. [PMID: 30341327 PMCID: PMC6195511 DOI: 10.1038/s41598-018-33861-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) exploits an extensive network of host proteins to maintain chronic infection. Using RNA-Seq technology, we identified 30 host genes that were differentially expressed in cell culture grown HCV (HCVcc)-infected cells. Of these candidate genes, we selected solute carrier family 3 member 2 (SLC3A2) for further investigation. SLC3A2, also known as CD98hc, is a member of the solute carrier family and encodes a subunit of heterodimeric amino acid transporter. SLC3A2 and LAT1 constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. In this study, we showed that HCV upregulated both mRNA and protein expression levels of SLC3A2 and this upregulation occurred through NS3/4A-mediated oxidative stress. HCV also elevated SLC3A2/LAT1 complex level and thus mammalian target of rapamycin complex 1 (mTORC1) signaling was activated. We further showed that L-leucine transport level was significantly increased in Jc1-infected cells as compared with mock-infected cells. Using RNA interference technology, we demonstrated that SLC3A2 was specifically required for the entry step but not for other stages of the HCV life cycle. These data suggest that SLC3A2 plays an important role in regulating HCV entry. Collectively, HCV exploits SLC3A2 for viral propagation and upregulation of SLC3A2 may contribute to HCV-mediated pathogenesis.
Collapse
|
38
|
Molecular Mechanisms of Hepatocarcinogenesis Following Sustained Virological Response in Patients with Chronic Hepatitis C Virus Infection. Viruses 2018; 10:v10100531. [PMID: 30274202 PMCID: PMC6212901 DOI: 10.3390/v10100531] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the success of direct-acting antiviral (DAA) agents in treating chronic hepatitis C virus (HCV) infection, the number of cases of HCV-related hepatocellular carcinoma (HCC) is expected to increase over the next five years. HCC develops over the span of decades and is closely associated with fibrosis stage. HCV both directly and indirectly establishes a pro-inflammatory environment favorable for viral replication. Repeated cycles of cell death and regeneration lead to genomic instability and loss of cell cycle control. DAA therapy offers >90% sustained virological response (SVR) rates with fewer side effects and restrictions than interferon. While elimination of HCV helps to restore liver function and reverse mild fibrosis, post-SVR patients remain at elevated risk of HCC. A series of studies reporting higher than expected rates of HCC development among DAA-treated patients ignited debate over whether use of DAAs elevates HCC risk compared to interferon. However, recent prospective and retrospective studies based on larger patient cohorts have found no significant difference in risk between DAA and interferon therapy once other factors are taken into account. Although many mechanisms and pathways involved in hepatocarcinogenesis have been elucidated, our understanding of drivers specific to post-SVR hepatocarcinogenesis is still limited, and lack of suitable in vivo and in vitro experimental systems has hampered efforts to examine etiology-specific mechanisms that might serve to answer this question more thoroughly. Further research is needed to identify risk factors and biomarkers for post-SVR HCC and to develop targeted therapies based on more complete understanding of the molecules and pathways implicated in hepatocarcinogenesis.
Collapse
|
39
|
Mansouri A, Gattolliat CH, Asselah T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018; 155:629-647. [PMID: 30012333 DOI: 10.1053/j.gastro.2018.06.083] [Citation(s) in RCA: 534] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/23/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria regulate hepatic lipid metabolism and oxidative stress. Ultrastructural mitochondrial lesions, altered mitochondrial dynamics, decreased activity of respiratory chain complexes, and impaired ability to synthesize adenosine triphosphate are observed in liver tissues from patients with alcohol-associated and non-associated liver diseases. Increased lipogenesis with decreased fatty acid β-oxidation leads to the accumulation of triglycerides in hepatocytes, which, combined with increased levels of reactive oxygen species, contributes to insulin resistance in patients with steatohepatitis. Moreover, mitochondrial reactive oxygen species mediate metabolic pathway signaling; alterations in these pathways affect development and progression of chronic liver diseases. Mitochondrial stress and lesions promote cell death, liver fibrogenesis, inflammation, and the innate immune responses to viral infections. We review the involvement of mitochondrial processes in development of chronic liver diseases, such as nonalcoholic fatty, alcohol-associated, and drug-associated liver diseases, as well as hepatitis B and C, and discuss how they might be targeted therapeutically.
Collapse
Affiliation(s)
- Abdellah Mansouri
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Charles-Henry Gattolliat
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Tarik Asselah
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Clichy, France.
| |
Collapse
|
40
|
Krishnan R, Jeena K, Prasad KP. Preliminary investigations on the role of Drp-1 dependent mitochondrial fission in attenuating RLR downstream signaling during nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 80:618-623. [PMID: 29981473 PMCID: PMC7111691 DOI: 10.1016/j.fsi.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1) dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics. Present study shows that NNV perturbs mitochondrial dynamics by promoting Drp-1 dependent mitochondrial fission, which attenuates MAVS mediated downstream signaling. NNV infected SISS cells revealed induction in Drp1 expression and subsequent translocation into mitochondria. The level of MAVS expression was up-regulated over a period of 24 hpi and declined with the progression of NNV infection at 48 and 72 hpi confirmed by western blot and mRNA transcript analysis. Drp-1 displayed its association with fragmented mitochondria and the transcript abundance was significant post infection along with Mff. Expression levels of IRF-3 IFN-1 and Mx followed a similar pattern with abundant expression at 48 hpi and diminished expression during the further period. Importantly, silencing of Drp1 caused significant elevation in the RLR downstream molecules and reduction in viral RNA expression. These results suggest that NNV-induced mitochondrial fission serve to attenuate host RLR signaling. This provides an illustration of host-pathogen interaction in which the virus evades innate immunity by enhancing mitochondrial fission and perturbs MAVS, and the downstream molecules.
Collapse
Affiliation(s)
- Rahul Krishnan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| | - K Jeena
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Kurcheti Pani Prasad
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
41
|
Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018; 19:1219. [PMID: 29673197 PMCID: PMC5979612 DOI: 10.3390/ijms19041219] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H₂O₂ production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon 69003, France.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|
42
|
Intercellular transfer of mitochondria rescues virus-induced cell death but facilitates cell-to-cell spreading of porcine reproductive and respiratory syndrome virus. Virology 2018; 517:122-134. [DOI: 10.1016/j.virol.2017.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
|
43
|
Yan M, Hou M, Liu J, Zhang S, Liu B, Wu X, Liu G. Regulation of iNOS-Derived ROS Generation by HSP90 and Cav-1 in Porcine Reproductive and Respiratory Syndrome Virus-Infected Swine Lung Injury. Inflammation 2018; 40:1236-1244. [PMID: 28493081 DOI: 10.1007/s10753-017-0566-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the lungs, endothelial nitric oxide synthase (eNOS) is usually expressed in endothelial cells and inducible nitric oxide synthase (iNOS) is mainly expressed in alveolar macrophages and epithelial cells. Both eNOS and iNOS are involved in lung inflammation. While they play several roles in lung inflammation formation and resolution, their expression and activity are also regulated by inflammatory factors. Their expression relationship in virus infection-induced lung injury is not well addressed. In this report, we analyzed expression of both eNOS and iNOS, the production of nitric oxide (NO) and reactive oxygen species (ROS), and expression of their associated regulatory proteins, heat shock protein 90 (HSP90) and caveolin-1 (Cav-1), in a swine lung injury model induced by porcine reproductive and respiratory syndrome virus (PRRSV) infection. The combination of upregulation of iNOS and downregulation of eNOS was observed in both natural and experimental PRRSV-infected lungs, while the combination is much enhanced in natural infected lungs. While NO production is much reduced in both infections, ROS was enhanced only in natural infected lungs. Moreover, HSP90 is increased in both natural and experimental infection and less Cav-1 expressed was observed only in the natural PRRSV-infected lungs. Therefore, the increased ROS generation is likely due to the increased iNOS and its unbalanced regulation by HSP90 and Cav-1, and it also likely causes higher endothelial dysfunction in clinical PRRSV-infected lungs.
Collapse
Affiliation(s)
- Meiping Yan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Make Hou
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jie Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Songlin Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, Shandong Province, People's Republic of China
| | - Bang Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China. .,Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| | - Xiaoxiong Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China. .,Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
44
|
Axley P, Ahmed Z, Ravi S, Singal AK. Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review. J Clin Transl Hepatol 2018; 6:79-84. [PMID: 29607308 PMCID: PMC5863002 DOI: 10.14218/jcth.2017.00067] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of liver-related death worldwide. Hepatitis C virus (HCV) infection is a major cause of advanced hepatic fibrosis and cirrhosis, with significantly increased risk for development of HCC. The morbidity and mortality of HCV-related HCC remains high, as rates of HCV cirrhosis continue to increase. The long-term goal of antiviral therapy for chronic HCV is to reduce complications from cirrhosis, including HCC. The advent of new direct-acting antivirals with high rates of virological clearance has revolutionized cure of HCV infection. While the development of HCC in HCV patients who achieve disease sustained virologic response is reduced, these patients remain at risk for HCC, particularly those patients with advanced fibrosis and cirrhosis. This review outlines the epidemiology of HCC in chronic HCV, various mechanisms, risk factors and pathophysiology that contribute to this disease process, screening recommendations, and the available data on the impact of new direct-acting antiviral treatment on the development on HCC.
Collapse
Affiliation(s)
- Page Axley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zunirah Ahmed
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sujan Ravi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwani K. Singal
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
45
|
Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 2018; 9:329. [PMID: 29491386 PMCID: PMC5832426 DOI: 10.1038/s41419-017-0027-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are tightly associated with very dynamic platforms termed mitochondria-associated membranes (MAMs). MAMs provide an excellent scaffold for crosstalk between the ER and mitochondria and play a pivotal role in different signaling pathways that allow rapid exchange of biological molecules to maintain cellular health. However, dysfunctions in the ER–mitochondria architecture are associated with pathological conditions and human diseases. Inflammation has emerged as one of the various pathways that MAMs control. Inflammasome components and other inflammatory factors promote the release of pro-inflammatory cytokines that sustain pathological conditions. In this review, we summarize the critical role of MAMs in initiating inflammation in the cellular defense against pathogenic infections and the association of MAMs with inflammation-mediated diseases.
Collapse
|
46
|
Cavallari I, Scattolin G, Silic-Benussi M, Raimondi V, D'Agostino DM, Ciminale V. Mitochondrial Proteins Coded by Human Tumor Viruses. Front Microbiol 2018; 9:81. [PMID: 29467726 PMCID: PMC5808139 DOI: 10.3389/fmicb.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.
Collapse
Affiliation(s)
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRRCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Song S, Gong S, Singh P, Lyu J, Bai Y. The interaction between mitochondria and oncoviruses. Biochim Biophys Acta Mol Basis Dis 2018; 1864:481-487. [PMID: 28962899 PMCID: PMC8895674 DOI: 10.1016/j.bbadis.2017.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria play important roles in multiple aspects of viral tumorigenesis. Mitochondrial genomes contribute to the host's genetic background. After viruses enter the cell, they modulate mitochondrial function and thus alter bioenergetics and retrograde signaling pathways. At the same time, mitochondria also regulate and mediate viral oncogenesis. In this context, oncogenesis by oncoviruses like Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human papilloma virus (HPV), Human Immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) will be discussed.
Collapse
Affiliation(s)
- Shujie Song
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shasha Gong
- School of Medicine, Taizhou College, Taizhou, Zhejiang, China
| | - Pragya Singh
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| |
Collapse
|
48
|
Irshad M, Gupta P, Irshad K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection. World J Hepatol 2017; 9:1305-1314. [PMID: 29359013 PMCID: PMC5756719 DOI: 10.4254/wjh.v9.i36.1305] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
Present study outlines a comprehensive view of published information about the underlying mechanisms operational for progression of chronic hepatitis C virus (HCV) infection to development of hepatocellular carcinoma (HCC). These reports are based on the results of animal experiments and human based studies. Although, the exact delineated mechanism is not yet established, there are evidences available to emphasize the involvement of HCV induced chronic inflammation, oxidative stress, insulin resistance, endoplasmic reticulum stress, hepato steatosis and liver fibrosis in the progression of HCV chronic disease to HCC. Persistent infection with replicating HCV not only initiates several liver alterations but also creates an environment for development of liver cancer. Various studies have reported that HCV acts both directly as well as indirectly in promoting this process. Whereas HCV related proteins, like HCV core, E1, E2, NS3 and NS5A, modulate signal pathways dysregulating cell cycle and cell metabolism, the chronic infection produces similar changes in an indirect way. HCV is an RNA virus and does not integrate with host genome and therefore, HCV induced hepatocarcinogenesis pursues a totally different mechanism causing imbalance between suppressors and proto-oncogenes and genomic integrity. However, the exact mechanism of HCC inducement still needs a full understanding of various steps involved in this process.
Collapse
Affiliation(s)
- Mohammad Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Priyanka Gupta
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Khushboo Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
49
|
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, Pennemann FL, Schnepf D, Wettmarshausen J, Braun M, Leung DW, Amarasinghe GK, Perocchi F, Staeheli P, Ryffel B, Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 2017; 19:130-140. [PMID: 29255269 PMCID: PMC5786482 DOI: 10.1038/s41590-017-0013-y] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are generated by virally-infected cells however the physiological significance of ROS generated under these conditions is unclear. Here we show that inflammation and cell death induced by exposure of mice or cells to sources of ROS is not altered in the absence of canonical ROS-sensing pathways or known cell death pathways. ROS-induced cell death signaling involves interaction between the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5−/− mice show exacerbated lung inflammation and proinflammatory cytokines in an ozone exposure model. Similarly, challenge with influenza A virus leads to increased virus infiltration, lymphocytic bronchiolitis and reduced survival of Pgam5−/− mice. This pathway, which we term ‘oxeiptosis’, is a ROS-sensitive, caspase independent, non-inflammatory cell death pathway and is important to protect against inflammation induced by ROS or ROS-generating agents such as viral pathogens.
Collapse
Affiliation(s)
- Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Chloé Michaudel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Claire Mackowiak
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Darya A Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Friederike L Pennemann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jennifer Wettmarshausen
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Marianne Braun
- EM-Histo Lab, Max-Planck Institute of Neurobiology, Martinsried, Munich, Germany
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabiana Perocchi
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Peter Staeheli
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Ryffel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany. .,School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany. .,German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
50
|
Agod Z, Fekete T, Budai MM, Varga A, Szabo A, Moon H, Boldogh I, Biro T, Lanyi A, Bacsi A, Pazmandi K. Regulation of type I interferon responses by mitochondria-derived reactive oxygen species in plasmacytoid dendritic cells. Redox Biol 2017; 13:633-645. [PMID: 28818792 PMCID: PMC5558471 DOI: 10.1016/j.redox.2017.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial reactive oxygen species (mtROS) generated continuously under physiological conditions have recently emerged as critical players in the regulation of immune signaling pathways. In this study we have investigated the regulation of antiviral signaling by increased mtROS production in plasmacytoid dendritic cells (pDCs), which, as major producers of type I interferons (IFN), are the key coordinators of antiviral immunity. The early phase of type I IFN production in pDCs is mediated by endosomal Toll-like receptors (TLRs), whereas the late phase of IFN response can also be triggered by cytosolic retinoic acid-inducible gene-I (RIG-I), expression of which is induced upon TLR stimulation. Therefore, pDCs provide an ideal model to study the impact of elevated mtROS on the antiviral signaling pathways initiated by receptors with distinct subcellular localization. We found that elevated level of mtROS alone did not change the phenotype and the baseline cytokine profile of resting pDCs. Nevertheless increased mtROS levels in pDCs lowered the TLR9-induced secretion of pro-inflammatory mediators slightly, whereas reduced type I IFN production markedly via blocking phosphorylation of interferon regulatory factor 7 (IRF7), the key transcription factor of the TLR9 signaling pathway. The TLR9-induced expression of RIG-I in pDCs was also negatively regulated by enhanced mtROS production. On the contrary, elevated mtROS significantly augmented the RIG-I-stimulated expression of type I IFNs, as well as the expression of mitochondrial antiviral-signaling (MAVS) protein and the phosphorylation of Akt and IRF3 that are essential components of RIG-I signaling. Collectively, our data suggest that increased mtROS exert diverse immunoregulatory functions in pDCs both in the early and late phase of type I IFN responses depending on which type of viral sensing pathway is stimulated.
Collapse
Affiliation(s)
- Zsofia Agod
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Marietta M Budai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Aliz Varga
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary; Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca 400112, Romania
| | - Hyelim Moon
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, USA
| | - Tamas Biro
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary; Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca 400112, Romania
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary; Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca 400112, Romania
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary.
| |
Collapse
|