1
|
Chun H, Lee H, Kim J, Yeo H, Hyung K, Song D, Kim M, Jun SH, Kang NG. Efficacy of Vitamin B12 and Adenosine Triphosphate in Enhancing Skin Radiance: Unveiled with a Drug-Target Interaction Deep Learning-Based Model. Curr Issues Mol Biol 2024; 46:9082-9092. [PMID: 39194754 DOI: 10.3390/cimb46080537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Skin radiance is crucial for enhancing facial attractiveness and is negatively affected by factors like hyperpigmentation and aging-related changes. Current treatments often lack comprehensive solutions for improving skin radiance. This study aimed to develop a cosmetic formula that enhances skin radiance by reducing hyperpigmentation and improving skin regeneration by targeting specific receptors-the endothelin receptor type B (EDNRB) for hyperpigmentation and the adiponectin receptor 1 (ADIPOR1) for sagging and wrinkles. To achieve this, we used artificial intelligence technologies to screen and select ingredients with an affinity for EDNRB and ADIPOR1. Vitamin B12 (VitB12) was identified as a molecule that targets EDNRB, which is involved in melanogenesis. Adenosine triphosphate (ATP) targets ADIPOR1, which is associated with skin regeneration. VitB12 successfully inhibited intracellular calcium elevation and melanogenesis induced by endothelin-1. In contrast, ATP increased the mRNA expression of collagen and elastin and promoted wound healing. Moreover, the VitB12 and ATP complex significantly increased the expression of hyaluronan synthases, which are crucial for skin hydration. Furthermore, in human participants, the application of the VitB12 and ATP complex to one-half of the face significantly improved skin radiance, elasticity, and texture. Our findings provide valuable insights for the development of skincare formulations.
Collapse
Affiliation(s)
- Hyeyeon Chun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Hyejin Lee
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Jongwook Kim
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Hyerin Yeo
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Kyongeun Hyung
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Dayoung Song
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Moonju Kim
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| |
Collapse
|
2
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
3
|
Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 2022; 15:14. [PMID: 35109896 PMCID: PMC8812204 DOI: 10.1186/s13041-022-00899-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke, caused by a lack of blood supply in brain tissues, is the third leading cause of human death and disability worldwide, and usually results in sensory and motor dysfunction, cognitive impairment, and in severe cases, even death. Autophagy is a highly conserved lysosome-dependent process in which eukaryotic cells removal misfolded proteins and damaged organelles in cytoplasm, which is critical for energy metabolism, organelle renewal, and maintenance of intracellular homeostasis. Increasing evidence suggests that autophagy plays important roles in pathophysiological mechanisms under ischemic conditions. However, there are still controversies about whether autophagy plays a neuroprotective or damaging role after ischemia. G-protein-coupled receptors (GPCRs), one of the largest protein receptor superfamilies in mammals, play crucial roles in various physiological and pathological processes. Statistics show that GPCRs are the targets of about one-fifth of drugs known in the world, predicting potential values as targets for drug research. Studies have demonstrated that nutritional deprivation can directly or indirectly activate GPCRs, mediating a series of downstream biological processes, including autophagy. It can be concluded that there are interactions between autophagy and GPCRs signaling pathway, which provides research evidence for regulating GPCRs-mediated autophagy. This review aims to systematically discuss the underlying mechanism and dual roles of autophagy in cerebral ischemia, and describe the GPCRs-mediated autophagy, hoping to probe promising therapeutic targets for ischemic stroke through in-depth exploration of the GPCRs-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Weichen Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yang Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
4
|
Patt J, Alenfelder J, Pfeil EM, Voss JH, Merten N, Eryilmaz F, Heycke N, Rick U, Inoue A, Kehraus S, Deupi X, Müller CE, König GM, Crüsemann M, Kostenis E. An experimental strategy to probe Gq contribution to signal transduction in living cells. J Biol Chem 2021; 296:100472. [PMID: 33639168 PMCID: PMC8024710 DOI: 10.1016/j.jbc.2021.100472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.
Collapse
Affiliation(s)
- Julian Patt
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Funda Eryilmaz
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Uli Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Hu LP, Zhang XX, Jiang SH, Tao LY, Li Q, Zhu LL, Yang MW, Huo YM, Jiang YS, Tian GA, Cao XY, Zhang YL, Yang Q, Yang XM, Wang YH, Li J, Xiao GG, Sun YW, Zhang ZG. Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic Ductal Adenocarcinoma by Inhibiting Cancer Cell Glycolysis. Clin Cancer Res 2018; 25:1318-1330. [PMID: 30420446 DOI: 10.1158/1078-0432.ccr-18-2297] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Extensive research has reported that the tumor microenvironment components play crucial roles in tumor progression. Thus, blocking the supports of tumor microenvironment is a promising approach to prevent cancer progression. We aimed to determine whether blocking extracellular ATP-P2RY2 axis could be a potential therapeutic approach for PDAC treatment. EXPERIMENTAL DESIGN Expression of P2RY2 was determined in 264 human PDAC samples and correlated to patient survival. P2RY2 was inhibited in human PDAC cell lines by antagonist and shRNA, respectively, and cell viability, clonogenicity, and glycolysis were determined. RNA sequencing of PDAC cell line was applied to reveal underlying molecular mechanisms. Multiple PDAC mouse models were used to assess the effects of the P2RY2 inhibition on PDAC progression. RESULTS P2RY2 was upregulated and associated with poor prognosis in PDAC. Activated P2RY2 by increased extracellular ATP in tumor microenvironment promoted PDAC growth and glycolysis. Further studies showed that the agonist-activated P2RY2 triggered PI3K/AKT-mTOR signaling by crosstalk with PDGFR mediated by Yes1, resulting in elevated expression of c-Myc and HIF1α, which subsequently enhanced cancer cell glycolysis. Genetic and pharmacologic inhibition of P2RY2 impaired tumor cell growth in subcutaneous and orthotopic xenograft model, as well as delayed tumor progression in inflammation-driven PDAC model. In addition, synergy was observed when AR-C118925XX, the selective antagonist of P2RY2 receptor, and gemcitabine were combined, resulting in prolonged survival of xenografted PDAC mice. CONCLUSIONS These findings reveal the roles of the P2RY2 in PDAC metabolic reprogramming, suggesting that P2RY2 might be a potential metabolic therapeutic target for PDAC.
Collapse
Affiliation(s)
- Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ling-Ye Tao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Li-Li Zhu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yong-Sheng Jiang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao-Yan Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yan-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, P.R. China. .,Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
6
|
Gao X, Wu L, Wang K, Zhou X, Duan M, Wang X, Zhang Z, Liu X. Ubiquitin Carboxyl Terminal Hydrolase L1 Attenuates TNF-α-Mediated Vascular Smooth Muscle Cell Migration Through Suppression of NF-κB Activation. Int Heart J 2018; 59:1409-1415. [PMID: 30305579 DOI: 10.1536/ihj.17-541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) is one of the deubiquitinating enzymes in the ubiquitin-proteasome system. It has been shown that UCH-L1 could markedly decrease neointima formation through suppressing vascular smooth muscle cell (VSMC) proliferation in the balloon-injured rat carotid. However, whether UCH-L1 plays roles in VSMC migration remains to be determined. In this study, the primary VSMCs were isolated from aortic media of rats and TNF-α to was used to induce VSMC migration. Using a modified Boyden chamber and wound healing assay, it was found that TNF-α can dose and time-dependently induce VSMC migration with a maximal effect at 10 ng/mL. Moreover, UCH-L1 expression increased gradually with the prolonged induction time at 10 ng/mL of TNF-α. UCH-L1 content in VSMC was then modulated by recombinant adenoviruses expressing UCH-L1 or RNA interference to evaluate its roles in cell migration. The results showed that over-expression of UCH-L1 attenuated VSMC migration, while knockdown of it enhanced cell migration significantly no matter whether TNF-α treatment or not. Finally, the effect of UCH-L1 on NF-κB activation was demonstrated by NF-κB nuclear translocation and DNA binding activity, and the levels of IL-6 and IL-8 in cell culture media were examined by ELISA. It was showed that UCH-L1 over-expression inhibited NF-κB activation and decrease IL-6 and IL-8 levels, while knockdown of it enhanced NF-κB activation and increase IL-6 and IL-8 levels during TNF-α treatment. These data suggest that UCH-L1 can inhibit TNF-α-induced VSMCs migration, and this kind of effect may partially due to its suppression role in NF-κB activation.
Collapse
Affiliation(s)
- Xiujie Gao
- Tianjin Institute of Health and Environmental Medicine
| | - Lei Wu
- Tianjin Institute of Health and Environmental Medicine
| | - Kun Wang
- Tianjin Institute of Health and Environmental Medicine
| | - Xuesi Zhou
- Tianjin Institute of Health and Environmental Medicine
| | - Meng Duan
- Tianjin Institute of Health and Environmental Medicine
| | - Xinxing Wang
- Tianjin Institute of Health and Environmental Medicine
| | - Zhiqing Zhang
- Tianjin Institute of Health and Environmental Medicine
| | - Xiaohua Liu
- Tianjin Institute of Health and Environmental Medicine
| |
Collapse
|
7
|
Extracellular ATP activates hyaluronan synthase 2 ( HAS2) in epidermal keratinocytes via P2Y 2, Ca 2+ signaling, and MAPK pathways. Biochem J 2018; 475:1755-1772. [PMID: 29626161 DOI: 10.1042/bcj20180054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.
Collapse
|
8
|
Aquino-Martínez R, Angelo AP, Pujol FV. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Stem Cell Res Ther 2017; 8:265. [PMID: 29145866 PMCID: PMC5689169 DOI: 10.1186/s13287-017-0713-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4) on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO4 scaffolds could have potential applications for bone regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0713-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alcira P Angelo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura Pujol
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
9
|
Doçi CL, Mikelis CM, Callejas-Valera JL, Hansen KK, Molinolo AA, Inoue A, Offermanns S, Gutkind JS. Epidermal loss of Gαq confers a migratory and differentiation defect in keratinocytes. PLoS One 2017; 12:e0173692. [PMID: 28301547 PMCID: PMC5354386 DOI: 10.1371/journal.pone.0173692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/24/2017] [Indexed: 12/04/2022] Open
Abstract
G-protein coupled receptors (GPCRs), which activate heterotrimeric G proteins, are an essential class of transmembrane receptors that are responsible for a myriad of signaling events in normal and pathologic conditions. Two members of the G protein family, Gαq and Gα11, activate one of the main GPCR pathways and function as oncogenes by integrating mitogen-stimulated signaling cascades that are active under malignant conditions. Recently, it has been shown that targeted deletion of Gα11 and Gαq from endothelial cells impairs the Rho-mediated formation of focal adherens junctions, suggesting that Gα11/q signaling may also play a significant role in cytoskeletal-mediated cellular responses in epithelial cells. Indeed, combined deletion of Gα11 and Gαq confers a significant migratory defect in keratinocytes that delays cutaneous wound healing in an in vivo setting. This delay can be attributed to a defect during the reepithelialization phase due to significantly attenuated migratory capacity of Gαq-null keratinocytes under combined Gα11 deficiency. In fact, cells lacking Gα11/q demonstrate a severely reduced ability to respond to mitogenic and migratory signals in the microenvironment, leading to inappropriate and premature terminal differentiation. These results suggest that Gα11/q signaling pathways may be critical for integrating mitogenic signals and cytoskeletal function to achieve normal physiological responses. Emergence of a malignant phenotype may therefore arise from both under- and overexpression of Gα11/q signaling, implicating its upstream regulation as a potential therapeutic target in a host of pathologic conditions.
Collapse
Affiliation(s)
- Colleen L. Doçi
- College of Arts and Sciences, Marian University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Constantinos M. Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Juan Luis Callejas-Valera
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Karina K. Hansen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alfredo A. Molinolo
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - J. Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Jokela T, Kärnä R, Rauhala L, Bart G, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis. J Biol Chem 2017; 292:4861-4872. [PMID: 28188289 DOI: 10.1074/jbc.m116.760322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 μm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.
Collapse
Affiliation(s)
- Tiina Jokela
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Kärnä
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Leena Rauhala
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Genevieve Bart
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Sanna Oikari
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku I Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Raija H Tammi
- From the Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
11
|
Alvarez-Curto E, Inoue A, Jenkins L, Raihan SZ, Prihandoko R, Tobin AB, Milligan G. Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling. J Biol Chem 2016; 291:27147-27159. [PMID: 27852822 PMCID: PMC5207144 DOI: 10.1074/jbc.m116.754887] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) can initiate intracellular signaling cascades by coupling to an array of heterotrimeric G proteins and arrestin adaptor proteins. Understanding the contribution of each of these coupling options to GPCR signaling has been hampered by a paucity of tools to selectively perturb receptor function. Here we employ CRISPR/Cas9 genome editing to eliminate selected G proteins (Gαq and Gα11) or arrestin2 and arrestin3 from HEK293 cells together with the elimination of receptor phosphorylation sites to define the relative contribution of G proteins, arrestins, and receptor phosphorylation to the signaling outcomes of the free fatty acid receptor 4 (FFA4). A lack of FFA4-mediated elevation of intracellular Ca2+ in Gαq/Gα11-null cells and agonist-mediated receptor internalization in arrestin2/3-null cells confirmed previously reported canonical signaling features of this receptor, thereby validating the genome-edited HEK293 cells. FFA4-mediated ERK1/2 activation was totally dependent on Gq/11 but intriguingly was substantially enhanced for FFA4 receptors lacking sites of regulated phosphorylation. This was not due to a simple lack of desensitization of Gq/11 signaling because the Gq/11-dependent calcium response was desensitized by both receptor phosphorylation and arrestin-dependent mechanisms, whereas a substantially enhanced ERK1/2 response was only observed for receptors lacking phosphorylation sites and not in arrestin2/3-null cells. In conclusion, we validate CRISPR/Cas9 engineered HEK293 cells lacking Gq/11 or arrestin2/3 as systems for GPCR signaling research and employ these cells to reveal a previously unappreciated interplay of signaling pathways where receptor phosphorylation can impact on ERK1/2 signaling through a mechanism that is likely independent of arrestins.
Collapse
Affiliation(s)
- Elisa Alvarez-Curto
- From the Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom,
| | - Asuka Inoue
- the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan, and.,the Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama 332-0012, Japan
| | - Laura Jenkins
- From the Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Sheikh Zahir Raihan
- From the Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Rudi Prihandoko
- From the Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Andrew B Tobin
- From the Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Graeme Milligan
- From the Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom,
| |
Collapse
|
12
|
Brunetti J, Roscia G, Lampronti I, Gambari R, Quercini L, Falciani C, Bracci L, Pini A. Immunomodulatory and Anti-inflammatory Activity in Vitro and in Vivo of a Novel Antimicrobial Candidate. J Biol Chem 2016; 291:25742-25748. [PMID: 27758868 PMCID: PMC5207269 DOI: 10.1074/jbc.m116.750257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Indexed: 01/24/2023] Open
Abstract
The synthetic antimicrobial peptide SET-M33 has strong activity against bacterial infections caused by Gram-negative bacteria. It is currently in preclinical development as a new drug to treat lung infections caused by Gram-negative bacteria. Here we report its strong anti-inflammatory activity in terms of reduced expression of a number of cytokines, enzymes, and signal transduction factors involved in inflammation triggered by LPS from Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Sixteen cytokines and other major agents involved in inflammation were analyzed in macrophages and bronchial cells after stimulation with LPS and incubation with SET-M33. The bronchial cells were obtained from a cystic fibrosis patient. A number of these proteins showed up to 100% reduction in expression as measured by RT-PCR, Western blotting, or Luminex technology. LPS neutralization was also demonstrated in vivo by challenging bronchoalveolar lavage of SET-M33-treated mice with LPS, which led to a sharp reduction in TNF-α with respect to non-SET-M33-treated animals. We also describe a strong activity of SET-M33 in stimulating cell migration of keratinocytes in wound healing experiments in vitro, demonstrating a powerful immunomodulatory action generally characteristic of molecules taking part in innate immunity.
Collapse
Affiliation(s)
- Jlenia Brunetti
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Roscia
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Lampronti
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Roberto Gambari
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Leila Quercini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | | | - Luisa Bracci
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Pini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy,
| |
Collapse
|
13
|
On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin. Biochem Pharmacol 2016; 107:59-66. [PMID: 26954502 DOI: 10.1016/j.bcp.2016.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
Gαq inhibitor UBO-QIC (FR900359) is becoming an important pharmacological tool, but its selectivity against other G proteins and their subunits, especially βγ, has not been well characterized. We examined UBO-QIC's effect on diverse signaling pathways mediated via various G protein-coupled receptors (GPCRs) and G protein subunits by comparison with known Gαi inhibitor pertussis toxin. As expected, UBO-QIC inhibited Gαq signaling in all assay systems examined. However, other non-Gαq-events, e.g. Gβγ-mediated intracellular calcium release and inositol phosphate production, following activation of Gi-coupled A1 adenosine and M2 muscarinic acetylcholine receptors, were also blocked by low concentrations of UBO-QIC, indicating that its effect is not limited to Gαq. Thus, UBO-QIC also inhibits Gβγ-mediated signaling similarly to pertussis toxin, although UBO-QIC does not affect Gαi-mediated inhibition or Gαs-mediated stimulation of adenylyl cyclase activity. However, the blockade by UBO-QIC of GPCR signaling, such as carbachol- or adenosine-mediated calcium or inositol phosphate increases, does not always indicate inhibition of Gαq-mediated events, as the βγ subunits released from Gi proteins following the activation of Gi-coupled receptors, e.g. M2 and A1Rs, may produce similar signaling events. Furthermore, UBO-QIC completely inhibited Akt signaling, but only partially blocked ERK1/2 activity stimulated by the Gq-coupled P2Y1R. Thus, we have revealed new aspects of the pharmacological interactions of UBO-QIC.
Collapse
|
14
|
Riding A, Pullar CE. ATP Release and P2 Y Receptor Signaling are Essential for Keratinocyte Galvanotaxis. J Cell Physiol 2016; 231:181-91. [PMID: 26058714 DOI: 10.1002/jcp.25070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/05/2015] [Indexed: 01/06/2023]
Abstract
Repair to damaged tissue requires directional cell migration to heal the wound. Immediately upon wounding an electrical guidance cue is created with the cathode of the electric field (EF) located at the center of the wound. Previous research has demonstrated directional migration of keratinocytes toward the cathode when an EF of physiological strength (100-150 mV/mm) is applied in vitro, but the "sensor" by which keratinocytes sense the EF remains elusive. Here we use a customized chamber design to facilitate the application of a direct current (DC) EF of physiological strength (100 mV/mm) to keratinocytes whilst pharmacologically modulating the activation of both connexin hemichannels and purinergic receptors to determine their role in EF-mediated directional keratinocyte migration, galvanotaxis. In addition, keratinocytes were exposed to DiSCAC2 (3) dye to visualize membrane potential changes within the cell upon exposure to the applied DC EF. Here we unveil ATP-medicated mechanisms that underpin the initiation of keratinocyte galvanotaxis. The application of a DC EF of 100 mV/mm releases ATP via hemichannels activating a subset of purinergic P2 Y receptors, locally, to initiate the directional migration of keratinocytes toward the cathode in vitro, the center of the wound in vivo. The delineation of the mechanisms underpinning galvanotaxis extends our understanding of this endogenous cue and will facilitate the optimization and wider use of EF devices for chronic wound treatment. J. Cell. Physiol. 230: 181-191, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aimie Riding
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | - Christine E Pullar
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from Cell Death to New Life. Front Immunol 2015; 6:422. [PMID: 26347745 PMCID: PMC4539554 DOI: 10.3389/fimmu.2015.00422] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022] Open
Abstract
Our body handles tissue damage by activating the immune system in response to intracellular molecules released by injured tissues [damage-associated molecular patterns (DAMPs)], in a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated molecular patterns). DAMPs are molecules that have a physiological role inside the cell, but acquire additional functions when they are exposed to the extracellular environment: they alert the body about danger, stimulate an inflammatory response, and finally promote the regeneration process. Beside their passive release by dead cells, some DAMPs can be secreted or exposed by living cells undergoing a life-threatening stress. DAMPs have been linked to inflammation and related disorders: hence, inhibition of DAMP-mediated inflammatory responses is a promising strategy to improve the clinical management of infection- and injury-elicited inflammatory diseases. However, it is important to consider that DAMPs are not only danger signals but also central players in tissue repair. Indeed, some DAMPs have been studied for their role in tissue healing after sterile or infection-associated inflammation. This review is focused on two exemplary DAMPs, HMGB1 and adenosine triphosphate, and their contribution to both inflammation and tissue repair.
Collapse
Affiliation(s)
- Emilie Vénéreau
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute , Milan , Italy ; HMGBiotech Srl , Milan , Italy
| | - Chiara Ceriotti
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute , Milan , Italy
| | - Marco Emilio Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute , Milan , Italy ; Università Vita-Salute San Raffaele , Milan , Italy
| |
Collapse
|
16
|
The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing? PLoS One 2015; 10:e0128663. [PMID: 26068861 PMCID: PMC4466536 DOI: 10.1371/journal.pone.0128663] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025–4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.
Collapse
|
17
|
Yang G, Zhang S, Zhang Y, Zhou Q, Peng S, Zhang T, Yang C, Zhu Z, Zhang F. The inhibitory effects of extracellular ATP on the growth of nasopharyngeal carcinoma cells via P2Y2 receptor and osteopontin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:53. [PMID: 24961145 PMCID: PMC4078358 DOI: 10.1186/1756-9966-33-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor observed in the populations of southern China and Southeast Asia. However, little is known about the effects of purinergic signal on the behavior of NPC cells. This study analyzed the effects of ATP on the growth and migration of NPC cells, and further investigated the potential mechanisms during the effects. Methods Cell viability was estimated by MTT assay. Transwell assay was utilized to assess the motility of NPC cells. Cell cycle and apoptosis were detected by flow cytometry analysis. Changes in OPN, P2Y2 and p65 expression were assessed by western blotting analysis or immunofluorescence. The effects of ATP and P2Y2 on promoter activity of OPN were analyzed by luciferase activity assay. The binding of p65 to the promoter region of OPN was examined by ChIP assay. Results An MTT assay indicated that ATP inhibited the proliferation of NPC cells in time- and dose-dependent manners, and a Transwell assay showed that extracellular ATP inhibited the motility of NPC cells. We further investigated the potential mechanisms involved in the inhibitory effect of extracellular ATP on the growth of NPC cells and found that extracellular ATP could reduce Bcl-2 and p-AKT levels while elevating Bax and cleaved caspase-3 levels in NPC cells. Decreased levels of p65 and osteopontin were also detected in the ATP-treated NPC cells. We demonstrated that extracellular ATP inhibited the growth of NPC cells via p65 and osteopontin and verified that P2Y2 overexpression elevated the inhibitory effect of extracellular ATP on the proliferation of NPC cells. Moreover, a dual luciferase reporter assay showed that the level of osteopontin transcription was inhibited by extracellular ATP and P2Y2. ATP decreased the binding of p65 to potential sites in the OPN promoter region in NPC cells. Conclusion This study indicated that extracellular ATP inhibited the growth of NPC cells via P2Y2, p65 and OPN. ATP could be a promising agent serving as an adjuvant in the treatment of NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fujun Zhang
- State Key Laboratory of Oncology in South China, Department of Imaging and Interventional Radiology, Cancer Center, Sun Yat-sen University, Guangzhou Guangdong 510060, China.
| |
Collapse
|
18
|
Wauson EM, Dbouk HA, Ghosh AB, Cobb MH. G protein-coupled receptors and the regulation of autophagy. Trends Endocrinol Metab 2014; 25:274-82. [PMID: 24751357 PMCID: PMC4082244 DOI: 10.1016/j.tem.2014.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/06/2023]
Abstract
Autophagy is an important catabolic cellular process that eliminates damaged and unnecessary cytoplasmic proteins and organelles. Basal autophagy occurs during normal physiological conditions, but the activity of this process can be significantly altered in human diseases. Thus, defining the regulatory inputs and signals that control autophagy is essential. Nutrients are key modulators of autophagy. Although autophagy is generally accepted to be regulated in a cell-autonomous fashion, recent studies suggest that nutrients can modulate autophagy in a systemic manner by inducing the secretion of hormones and neurotransmitters that regulate G protein-coupled receptors (GPCRs). Emerging studies show that GPCRs also regulate autophagy by directly detecting extracellular nutrients. We review the role of GPCRs in autophagy regulation, highlighting their potential as therapeutic drug targets.
Collapse
Affiliation(s)
- Eric M Wauson
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA.
| | - Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Anwesha B Ghosh
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA.
| |
Collapse
|
19
|
P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells. Pflugers Arch 2014; 466:2035-47. [PMID: 24463702 DOI: 10.1007/s00424-013-1438-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/28/2013] [Accepted: 12/29/2013] [Indexed: 12/11/2022]
Abstract
Luminal nucleotide stimulation is known to reduce Na(+) transport in the distal nephron. Previous studies suggest that this mechanism may involve the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which plays an essential role in NaCl reabsorption in the cells lining the distal convoluted tubule (DCT). Here we show that stimulation of mouse DCT (mDCT) cells with ATP or UTP promoted Ca(2+) transients and decreased the expression of NCC at both mRNA and protein levels. Specific siRNA-mediated silencing of P2Y2 receptors almost completely abolished ATP/UTP-induced Ca(2+) transients and significantly reduced ATP/UTP-induced decrease of NCC expression. To test whether local variations in the intracellular Ca(2+) concentration ([Ca(2+)]i) may control NCC transcription, we overexpressed the Ca(2+)-binding protein parvalbumin selectively in the cytosol or in the nucleus of mDCT cells. The decrease in NCC mRNA upon nucleotide stimulation was abolished in cells overexpressing cytosolic PV but not in cells overexpressing either a nuclear-targeted PV or a mutated PV unable to bind Ca(2+). Using a firefly luciferase reporter gene strategy, we observed that the activity of NCC promoter region from -1 to -2,200 bp was not regulated by changes in [Ca(2+)]i. In contrast, high cytosolic calcium level induced instability of NCC mRNA. We conclude that in mDCT cells: (1) P2Y2 receptor is essential for the intracellular Ca(2+) signaling induced by ATP/UTP stimulation; (2) P2Y2-mediated increase of cytoplasmic Ca(2+) concentration down-regulates the expression of NCC; (3) the decrease of NCC expression occurs, at least in part, via destabilization of its mRNA.
Collapse
|
20
|
Tan TW, Pfau B, Jones D, Meyer T. Stimulation of primary osteoblasts with ATP induces transient vinculin clustering at sites of high intracellular traction force. J Mol Histol 2013; 45:81-9. [PMID: 23933795 PMCID: PMC4544565 DOI: 10.1007/s10735-013-9530-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023]
Abstract
Adenosine 5′-triphosphate (ATP), released in response to mechanical and inflammatory stimuli, induces the dynamic and asynchronous protrusion and subsequent retraction of local membrane structures in osteoblasts. The molecular mechanisms involved in the ligand-stimulated herniation of the plasma membrane are largely unknown, which prompted us to investigate whether the focal-adhesion protein vinculin is engaged in the cytoskeletal alterations that underlie the ATP-induced membrane blebbing. Using time-lapse fluorescence microscopy of primary bovine osteoblast-like cells expressing green fluorescent protein-tagged vinculin, we found that stimulation of cells with 100 μM ATP resulted in the transient and rapid clustering of recombinant vinculin in the cell periphery, starting approximately 100 s after addition of the nucleotide. The ephemeral nature of the vinculin clusters was made evident by the brevity of their mean assembly and disassembly times (66.7 ± 13.3 s and 99.0 ± 6.6 s, respectively). Traction force vector maps demonstrated that the vinculin-rich clusters were localized predominantly at sites of high traction force. Intracellular calcium measurements showed that the ligand-induced increase in [Ca2+]i clearly preceded the clustering of vinculin, since [Ca2+]i levels returned to normal within 30 s of exposure to ATP, indicating that intracellular calcium transients trigger a cascade of signalling events that ultimately result in the incorporation of vinculin into membrane-associated focal aggregates.
Collapse
Affiliation(s)
- Toh Weng Tan
- Institute for Experimental Orthopaedics and Biomechanics, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
21
|
Ho CL, Yang CY, Lin WJ, Lin CH. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes. PLoS One 2013; 8:e57666. [PMID: 23536768 PMCID: PMC3594229 DOI: 10.1371/journal.pone.0057666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.
Collapse
Affiliation(s)
- Chia-Lin Ho
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Wen-Jie Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Yang HY, Charles RP, Hummler E, Baines DL, Isseroff RR. The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes. J Cell Sci 2013; 126:1942-51. [PMID: 23447677 DOI: 10.1242/jcs.113225] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Collapse
Affiliation(s)
- Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
23
|
Corriden R, Insel PA. New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal 2012; 8:587-98. [PMID: 22528684 PMCID: PMC3360098 DOI: 10.1007/s11302-012-9311-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/05/2012] [Indexed: 12/23/2022] Open
Abstract
The directional movement of cells can be regulated by ATP, certain other nucleotides (e.g., ADP, UTP), and adenosine. Such regulation occurs for cells that are "professional phagocytes" (e.g., neutrophils, macrophages, certain lymphocytes, and microglia) and that undergo directional migration and subsequent phagocytosis. Numerous other cell types (e.g., fibroblasts, endothelial cells, neurons, and keratinocytes) also change motility and migration in response to ATP, other nucleotides, and adenosine. In this article, we review how nucleotides and adenosine modulate chemotaxis and motility and highlight the importance of nucleotide- and adenosine-regulated cell migration in several cell types: neutrophils, microglia, endothelial cells, and cancer cells. We also discuss difficulties in conducting experiments and drawing conclusions regarding the ability of nucleotides and adenosine to modulate the migration of professional and non-professional phagocytes.
Collapse
Affiliation(s)
- Ross Corriden
- Institute of Cell Signalling, University of Nottingham, Nottingham, UK
| | - Paul A. Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, CA USA
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, Mail code 0636, La Jolla, CA 92093 USA
| |
Collapse
|
24
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
25
|
Pescatore LA, Bonatto D, Forti FL, Sadok A, Kovacic H, Laurindo FRM. Protein disulfide isomerase is required for platelet-derived growth factor-induced vascular smooth muscle cell migration, Nox1 NADPH oxidase expression, and RhoGTPase activation. J Biol Chem 2012; 287:29290-300. [PMID: 22773830 DOI: 10.1074/jbc.m112.394551] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Collapse
Affiliation(s)
- Luciana A Pescatore
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil 05403-000
| | | | | | | | | | | |
Collapse
|
26
|
Faure E, Garrouste F, Parat F, Monferran S, Leloup L, Pommier G, Kovacic H, Lehmann M. P2Y2 receptor inhibits EGF-induced MAPK pathway to stabilise keratinocyte hemidesmosomes. J Cell Sci 2012; 125:4264-77. [PMID: 22718344 DOI: 10.1242/jcs.097600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α6β4 integrin is the main component of hemidesmosomes (HD) that stably anchor the epithelium to the underlying basement membrane. Epithelial cell migration requires HD remodelling, which can be promoted by epidermal growth factor (EGF). We previously showed that extracellular nucleotides inhibit growth factor-induced keratinocyte migration. Here, we investigate the effect of extracellular nucleotides on α6β4 integrin localisation in HD during EGF-induced cell migration. Using a combination of pharmacological inhibition and gene silencing approaches, we found that UTP activates the P2Y2 purinergic receptor and Gαq protein to inhibit EGF/ERK1/2-induced cell migration in keratinocytes. Using a keratinocyte cell line expressing an inducible form of the Raf kinase, we show that UTP inhibits the EGF-induced ERK1/2 pathway activation downstream of Raf. Moreover, we established that ERK1/2 activation by EGF leads to the mobilisation of α6β4 integrin from HD. Importantly, activation of P2Y2R and Gαq by UTP promotes HD formation and protects these structures from EGF-triggered dissolution as revealed by confocal analysis of the distribution of α6β4 integrin, plectin, BPAG1, BPAG2 and CD151 in keratinocytes. Finally, we demonstrated that the activation of p90RSK, downstream of ERK1/2, is sufficient to promote EGF-mediated HD dismantling and that UTP does not stabilise HD in cells expressing an activated form of p90RSK. Our data underline an unexpected role of P2Y2R and Gαq in the inhibition of the ERK1/2 signalling pathway and in the modulation of hemidesmosome dynamics and keratinocyte migration.
Collapse
Affiliation(s)
- Emilie Faure
- Aix-Marseille Université, INSERM UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie, Marseille 13005, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Burnstock G, Knight GE, Greig AV. Purinergic Signaling in Healthy and Diseased Skin. J Invest Dermatol 2012; 132:526-46. [DOI: 10.1038/jid.2011.344] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Uratsuji H, Tada Y, Kawashima T, Kamata M, Hau CS, Asano Y, Sugaya M, Kadono T, Asahina A, Sato S, Tamaki K. P2Y6 receptor signaling pathway mediates inflammatory responses induced by monosodium urate crystals. THE JOURNAL OF IMMUNOLOGY 2011; 188:436-44. [PMID: 22102722 DOI: 10.4049/jimmunol.1003746] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gout occurs in individuals with hyperuricemia when monosodium urate (MSU) crystals precipitate in tissues and induce acute inflammation via phagocytic cells such as monocytes. MSU crystals have been demonstrated in skin diseases such as tophaceous gout or psoriasis; however, the importance of MSU crystals in the skin is totally unknown. In this study, we found that MSU crystals, through P2Y(6) receptors, stimulated normal human keratinocytes (NHK) to produce IL-1α, IL-8/CXCL8, and IL-6. P2Y(6) receptor expression increased in MSU-stimulated NHK. Both P2Y(6)-specific antagonist and P2Y(6) antisense oligonucleotides significantly inhibited the production of IL-1α, IL-8/CXCL8, and IL-6 by NHK. Similarly, the P2Y(6)-specific antagonist completely inhibited the MSU-induced production of IL-1β by THP-1 cells, a human monocytic cell line. Remarkably, the P2Y(6)-specific antagonist significantly reduced neutrophil influx in both mouse air pouch and peritonitis models. Thus, these results indicate that the P2Y(6) receptor signaling pathway may be a potential therapeutic target for MSU-associated inflammatory diseases, such as tophaceous gout.
Collapse
Affiliation(s)
- Hideya Uratsuji
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Somatostatin inhibits cell migration and reduces cell counts of human keratinocytes and delays epidermal wound healing in an ex vivo wound model. PLoS One 2011; 6:e19740. [PMID: 21589940 PMCID: PMC3092774 DOI: 10.1371/journal.pone.0019740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/14/2011] [Indexed: 12/26/2022] Open
Abstract
The peptide hormone somatostatin (SST) and its five G protein-coupled receptors
(SSTR1-5) were described to be present in the skin, but their cutaneous
function(s) and skin-specific signalling mechanisms are widely unknown. By using
receptor specific agonists we show here that the SSTRs expressed in
keratinocytes are functionally coupled to the inhibition of adenylate cyclase.
In addition, treatment with SSTR4 and SSTR5/1 specific agonists significantly
influences the MAP kinase signalling pathway. As epidermal hormone receptors in
general are known to regulate re-epithelialization following skin injury, we
investigated the effect of SST on cell counts and migration of human
keratinocytes. Our results demonstrate a significant inhibition of cell
migration and reduction of cell counts by SST. We do not observe an effect on
apoptosis and necrosis. Analysis of signalling pathways showed that somatostatin
inhibits cell migration independent of its effect on cAMP. Migrating
keratinocytes treated with SST show altered cytoskeleton dynamics with delayed
lamellipodia formation. Furthermore, the activity of the small GTPase Rac1 is
diminished, providing evidence for the control of the actin cytoskeleton by
somatostatin receptors in keratinocytes. While activation of all receptors leads
to redundant effects on cell migration, only treatment with a SSTR5/1 specific
agonist resulted in decreased cell counts. In accordance with reduced cell
counts and impaired migration we observe delayed re-epithelialization in an
ex vivo wound healing model. Consequently, our experiments
suggest SST as a negative regulator of epidermal wound healing.
Collapse
|
30
|
Gendaszewska-Darmach E, Kucharska M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 2011; 7:193-206. [PMID: 21519856 PMCID: PMC3146642 DOI: 10.1007/s11302-011-9233-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924, Lodz, Poland,
| | | |
Collapse
|
31
|
Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J 2010; 24:3950-9. [PMID: 20530248 DOI: 10.1096/fj.10-157404] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
microRNA-205 (miR-205) and miR-184 coordinately regulate the lipid phosphatase SHIP2 for Akt survival signaling in keratinocytes. As the PI3K-Akt pathway has also been implicated in regulating the actin cytoskeleton and cell motility, we investigated the role that these 2 miRNAs play in keratinocyte migration. We used antagomirs (antago) to reduce the levels of miR-205 and miR-184 in primary human epidermal keratinocytes (HEKs) and corneal epithelial keratinocytes (HCEKs) as well as direct SHIP2 silencing using siRNA oligos. Treatment of HEKs and HCEKs with antago-205 increased SHIP2 levels and impaired the ability of these cells to seal linear scratch wounds compared with untreated or irrelevant-antago treatments. In contrast, AKT signaling was enhanced and wounds sealed faster in HCEKs where miR-184 was suppressed, enabling miR-205 to inhibit SHIP2. Similar increases in migration were observed following direct SHIP2 silencing in HEKs. Furthermore, down-regulation of miR-205 resulted in an increase in Rho-ROCKI activity, phosphorylation of the actin severing protein cofilin, and a corresponding diminution of filamentous actin. The connection among miR-205, RhoA-ROCKI-cofilin inactivation, and the actin cytoskeleton represents a novel post-translational mechanism for the regulation of normal human keratinocyte migration.
Collapse
Affiliation(s)
- Jia Yu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward 9-124, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
32
|
Sharir H, Zinger A, Nevo A, Sekler I, Hershfinkel M. Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem 2010; 285:26097-106. [PMID: 20522546 DOI: 10.1074/jbc.m110.107490] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A role for Zn(2+) in accelerating wound healing is established, yet, the signaling pathways linking Zn(2+) to tissue repair are not well known. We show that in the human HaCaT keratinocytes extracellular Zn(2+) induces a metabotropic Ca(2+) response that is abolished by silencing the expression of the G-protein-coupled receptor GPR39, suggesting that this Zn(2+)-sensing receptor, ZnR, is mediating the response. Keratinocytic-ZnR signaling is highly selective for Zn(2+) and can be triggered by nanomolar concentrations of this ion. Interestingly, Zn(2+) was also released following cellular injury, as monitored by a specific non-permeable fluorescent Zn(2+) probe, ZnAF-2. Chelation of Zn(2+) and scavenging of ATP from conditioned medium, collected from injured epithelial cultures, was sufficient to eliminate the metabotropic Ca(2+) signaling. The signaling triggered by Zn(2+), via ZnR, or by ATP further activated MAP kinase and induced up-regulation of the sodium/proton exchanger NHE1 activity. Finally, activation of ZnR/GPR39 signaling or application of ATP enhanced keratinocytes scratch closure in an in vitro model. Thus our results indicate that extracellular Zn(2+), which is either applied or released following injury, activates ZnR/GPR39 to promote signaling leading to epithelial repair.
Collapse
Affiliation(s)
- Haleli Sharir
- Departments of Morphology, Ben Gurion University, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
33
|
Grimm I, Ullsperger SN, Zimmermann H. Nucleotides and epidermal growth factor induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol (Oxf) 2010; 199:181-9. [PMID: 20121711 DOI: 10.1111/j.1748-1716.2010.02092.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIM The adult subventricular zone (SVZ) contains neural stem cells that generate neuroblasts migrating to the olfactory bulb (OB) and differentiating into interneurones. The molecular cues controlling essential functions within the neurogenesis pathway such as proliferation, short and long distance migration, functional integration and cell survival are poorly understood. We have previously shown that cultured adult neural stem cells express a considerable variety of nucleotide receptors and that nucleotides and epidermal growth factor (EGF) induce converging intracellular signalling pathways that carry potential for synergism in the control of neural stem cell proliferation and cell survival. Here we investigate the role of EGF and the nucleotides ATP, ADPbetaS and UTP in neural stem cell migration. METHODS Neural stem cells were prepared from adult mice and subjected to adherent culture. Labelling of F-actin was performed with tetramethylrhodamine isothiocyanate-phalloidin. Images were processed for quantitative evaluation of fluorescence labelling. Agonist-induced phosphorylation of AKT and focal adhesion kinase was analysed by quantitative Western blotting. Agonist-dependent cell migration was assayed using 48-well microchemotaxis chambers. RESULTS Nucleotides and EGF induce the formation of stress fibres, an increase in the cortical actin cytoskeleton and in cell spreading. This is associated with increased phosphorylation of AKT and focal adhesion kinase. Using microchemotaxis chambers we demonstrate a parallel increase in cell migration. CONCLUSION Our results suggest that nucleotides and EGF acting as paracrine or autocrine signalling substances can be of relevance for structuring and maintaining the cytoarchitecture of the SVZ and the stream of neuroblasts migrating to the OB.
Collapse
Affiliation(s)
- I Grimm
- Institute of Cell Biology and Neuroscience, Biocenter, Goethe-University, Frankfurt, Germany
| | | | | |
Collapse
|
34
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) function early in intracellular signal transduction pathways and affect many biological functions. A further level of complexity derives from the existence of eight PI3K isoforms, which are divided into class I, class II and class III PI3Ks. PI3K signalling has been implicated in metabolic control, immunity, angiogenesis and cardiovascular homeostasis, and is one of the most frequently deregulated pathways in cancer. PI3K inhibitors have recently entered clinical trials in oncology. A better understanding of how the different PI3K isoforms are regulated and control signalling could uncover their roles in pathology and reveal in which disease contexts their blockade could be most beneficial.
Collapse
|
35
|
Taboubi S, Garrouste F, Parat F, Pommier G, Faure E, Monferran S, Kovacic H, Lehmann M. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration. Mol Biol Cell 2010; 21:946-55. [PMID: 20089844 PMCID: PMC2836975 DOI: 10.1091/mbc.e09-06-0497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
After skin wound, released growth factors and extracellular nucleotides regulate the different phases of healing, including re-epithelialization. Here, we show that, in keratinocytes, purinergic P2Y2 receptors inhibit the motogenic IGF-I/PI3K pathway. Therefore, extracellular nucleotides may play key roles during skin remodelling after wound. Insulin-like growth factor-I (IGF-I) activation of phosphoinositol 3-kinase (PI3K) is an essential pathway for keratinocyte migration that is required for epidermis wound healing. We have previously reported that activation of Gα(q/11)-coupled-P2Y2 purinergic receptors by extracellular nucleotides delays keratinocyte wound closure. Here, we report that activation of P2Y2 receptors by extracellular UTP inhibits the IGF-I–induced p110α-PI3K activation. Using siRNA and pharmacological inhibitors, we demonstrate that the UTP antagonistic effects on PI3K pathway are mediated by Gα(q/11)—and not G(i/o)—independently of phospholipase Cβ. Purinergic signaling does not affect the formation of the IGF-I receptor/insulin receptor substrate-I/p85 complex, but blocks the activity of a membrane-targeted active p110α mutant, indicating that UTP acts downstream of PI3K membrane recruitment. UTP was also found to efficiently attenuate, within few minutes, the IGF-I–induced PI3K-controlled translocation of the actin-nucleating protein cortactin to the plasma membrane. This supports the UTP ability to alter later migratory events. Indeed, UTP inhibits keratinocyte spreading and migration promoted by either IGF-I or a membrane-targeted active p110α mutant, in a Gα(q/11)-dependent manner both. These findings provide new insight into the signaling cross-talk between receptor tyrosine kinase and Gα(q/11)-coupled receptors, which mediate opposite effects on p110α-PI3K activity and keratinocyte migration.
Collapse
Affiliation(s)
- Salma Taboubi
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie, Université Aix-Marseille, Marseille 13005, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sarray S, Siret C, Lehmann M, Marrakchi N, Luis J, Ayeb ME, André F. Lebectin increases N-cadherin-mediated adhesion through PI3K/AKT pathway. Cancer Lett 2009; 285:174-81. [DOI: 10.1016/j.canlet.2009.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 05/02/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
|
37
|
Degagné E, Grbic DM, Dupuis AA, Lavoie EG, Langlois C, Jain N, Weisman GA, Sévigny J, Gendron FP. P2Y2 receptor transcription is increased by NF-kappa B and stimulates cyclooxygenase-2 expression and PGE2 released by intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4521-9. [PMID: 19734210 DOI: 10.4049/jimmunol.0803977] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory stresses associated with inflammatory bowel diseases up-regulate P2Y(2) mRNA receptor expression in the human colon adenocarcinoma cell line Caco-2, the noncancerous IEC-6 cells and in colonic tissues of patient suffering from Crohn's disease and ulcerative colitis. However, the transcriptional events regulating P2Y(2) receptor (P2Y(2)R) expression are not known. We have identified a putative transcription start site in the P2Y(2)R gene and demonstrated acetylation of Lys(14) on histone H3 and Lys(8) on histone H4, thus suggesting that the chromatin associated with the P2Y(2) promoter is accessible to transcription factors. We also showed that the transcription factor NF-kappaB p65 regulates P2Y(2)R transcription under both proinflammatory and basal conditions. A NF-kappaB-responsive element was identified at -181 to -172 bp in the promoter region of P2Y(2). Hence, activation of P2Y(2)R by ATP and UTP stimulated cyclooxygenase-2 expression and PGE(2) secretion by intestinal epithelial cells. These findings demonstrate that P2Y(2)R expression is regulated during intestinal inflammation through an NF-kappaB p65-dependent mechanism and could contribute not only to inflammatory bowel disease but also to other inflammatory diseases by regulating PG release.
Collapse
Affiliation(s)
- Emilie Degagné
- Canadian Institutes of Health Research Team on the Digestive Epithelium, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 2009; 21:1045-53. [DOI: 10.1016/j.cellsig.2009.02.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
|
39
|
Reevaluation of the normal epidermal calcium gradient, and analysis of calcium levels and ATP receptors in Hailey-Hailey and Darier epidermis. J Invest Dermatol 2008; 129:1379-87. [PMID: 19052563 DOI: 10.1038/jid.2008.381] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electron probe microanalysis was used to analyze elemental content of human epidermis. The results revealed that the calcium content of the basal keratinocyte layer was higher than that of the lowest spinous cell layer in normal epidermis. This was surprising, as it is generally accepted that the calcium level increases with cellular differentiation from the proliferative basal layer to the stratum corneum. Hailey-Hailey disease (HHD) and Darier disease (DD) are caused by mutations in Ca(2+)-ATPases with the end result of desmosomal disruption and suprabasal acantholysis. The results demonstrated three major aberrations in HHD and DD lesions. First, in HHD and DD lesions the calcium content in the basal layer was lower than in the normal skin. Second, adenosine triphosphate (ATP) receptor P2Y2 was not localized to plasma membrane in acantholytic cells, whereas P2X7 appeared in the plasma membrane, potentially mediating apoptosis. Third, transition of keratin 14 to keratin 10 was abnormal as demonstrated by the presence of keratinocytes expressing both cytokeratins, which are usually exclusive in normal epidermis. Our results provide to our knowledge previously unreported elements for understanding how the disturbed calcium gradient is linked to the alterations in ATP receptors and keratin expression, leading to the clinical findings in HHD and DD.
Collapse
|
40
|
Köles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P. Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:1-33. [DOI: 10.1007/s00210-007-0222-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/12/2007] [Indexed: 02/04/2023]
|