1
|
Quintero-Ruiz N, Corradi C, Moreno NC, de Souza TA, Menck CFM. UVA-light-induced mutagenesis in the exome of human nucleotide excision repair-deficient cells. Photochem Photobiol Sci 2025; 24:429-449. [PMID: 40063310 DOI: 10.1007/s43630-025-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025]
Abstract
Skin cancer is associated with genetic mutations caused by sunlight exposure, primarily through ultraviolet (UV) radiation that damages DNA. While UVA is less energetic, it is the predominant solar UV component reaching the Earth's surface. However, the mechanisms of UVA-induced mutagenesis and its role in skin cancer development remain poorly understood. This study employed whole exome sequencing of clones from human XP-C cells, which lack nucleotide excision repair (NER), to characterize somatic mutations induced by UVA exposure. DNA sequence analysis of UVA-irradiated XP-C cells revealed a marked increase in mutation frequency across nearly all types of base substitutions, with particular enrichment in C > T transitions within the CCN and TCN trinucleotide context-potential sites for pyrimidine dimer formation. The C > T mutation primarily occurred at the 3' base of the 5'TC dimer, and an enrichment of CC > TT tandem mutations. We also identified the SBS7b COSMIC mutational signature within irradiated cells, which has been associated with tumors in sun-exposed skin. C > A transversions, often linked to oxidized guanine, were the second most frequently induced mutation, although a specific context for this base substitution was not identified. Moreover, C > T mutations were significantly increased in unirradiated XP-C compared to NER-proficient cells, which may be caused by unrepaired spontaneous DNA damage. Thus, this study indicates that pyrimidine dimers are the primary lesions contributing to UVA-induced mutagenesis in NER-deficient human cells and demonstrates that UVA generates mutational signatures similar to those of UVB irradiation.
Collapse
Affiliation(s)
- Nathalia Quintero-Ruiz
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Faculty of Applied Science, Campinas University, Limeira, SP, Brazil
| | - Camila Corradi
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natália Cestari Moreno
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Tiago Antonio de Souza
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Tau GC Bioinformatics, São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
Besaratinia A, Caliri AW, Tommasi S. The interplay of DNA damage and repair, gene expression, and mutagenesis in mammalian cells during oxidative stress. Carcinogenesis 2024; 45:868-879. [PMID: 39023127 PMCID: PMC11584291 DOI: 10.1093/carcin/bgae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Abstract
We investigated the interplay among oxidative DNA damage and repair, expression of genes encoding major base excision repair (BER) enzymes and bypass DNA polymerases, and mutagenesis in mammalian cells. Primary mouse embryonic fibroblasts were challenged with oxidative stress induced by methylene blue plus visible light, and formation and repair of DNA damage, changes in gene expression, and mutagenesis were determined at increasing intervals posttreatment (0-192 hours). Significant formation of oxidative DNA damage together with upregulation of Ogg1, Polβ, and Polκ, and no changes in Mutyh and Nudt1 expression were found in treated cells. There was a distinct interconnection between Ogg1 and Polβ expression and DNA damage formation and repair whereby changes in expression of these two genes were proportionate to the levels of oxidative DNA damage, once a 3-plus hour lag time passed (P < .05). Equally notable was the matching pattern of Polκ expression and kinetics of oxidative DNA damage and repair (P < .05). The DNA damage and gene expression data were remarkably consistent with mutagenicity data in the treated cells; the induced mutation spectrum is indicative of erroneous bypass of oxidized DNA bases and incorporation of oxidized deoxynucleoside triphosphates during replication of the genomic DNA. Our findings support follow-up functional studies to elucidate how oxidation of DNA bases and the nucleotide pool, overexpression of Polκ, delayed upregulation of Ogg1 and Polβ, and inadequate expression of Nudt1 and Mutyh collectively affect mutagenesis consequent to oxidative stress.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, United States
| | - Andrew W Caliri
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, United States
| | - Stella Tommasi
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, United States
| |
Collapse
|
3
|
Alquraisy A, Wilar G, Mohammed AFA, El-Rayyes A, Suhandi C, Wathoni N. A Comprehensive Review of Stem Cell Conditioned Media Role for Anti-Aging on Skin. Stem Cells Cloning 2024; 17:5-19. [PMID: 39310304 PMCID: PMC11416772 DOI: 10.2147/sccaa.s480437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Various studies have been widely conducted on conditioned medium for the development of anti-aging preparations, including the utilization of stem cells, which present a promising alternative solution. This narrative review aims to understand the latest developments in various conditioned medium stem cell applications for anti-aging on the skin. A search of the Scopus database yielded publications of interest. The research focused on articles published without restrictions on the year. After finding 68 articles in the search results, they moved on to the checking phase. Upon comprehensive literature review, 23 articles met the inclusion criteria, while 45 articles were deemed ineligible for participation in this research. The results of the review indicate that conditioned medium from various stem cells has demonstrated success in reducing risk factors for skin aging, as proven in various tests. The successful reduction of the risk of skin aging has been established in vitro, in vivo, and in clinical trials. Given the numerous studies on the progress of exploring and utilizing conditioned medium, it is expected to provide a solution to the problem of skin aging.
Collapse
Affiliation(s)
- Ayatulloh Alquraisy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
4
|
Wroński A, Dobrzyńska I, Sękowski S, Łuczaj W, Olchowik-Grabarek E, Skrzydlewska E. Cannabidiol and Cannabigerol Modify the Composition and Physicochemical Properties of Keratinocyte Membranes Exposed to UVA. Int J Mol Sci 2023; 24:12424. [PMID: 37569799 PMCID: PMC10418984 DOI: 10.3390/ijms241512424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The action of UVA radiation (both that derived from solar radiation and that used in the treatment of skin diseases) modifies the function and composition of keratinocyte membranes. Therefore, this study aimed to assess the effects of phytocannabinoids (CBD and CBG), used singly and in combination, on the contents of phospholipids, ceramides, lipid rafts and sialic acid in keratinocyte membranes exposed to UVA radiation, together with their structure and functionality. The phytocannabinoids, especially in combination (CBD+CBG), partially prevented increased levels of phosphatidylinositols and sialic acid from occurring and sphingomyelinase activity after the UVA exposure of keratinocytes. This was accompanied by a reduction in the formation of lipid rafts and malondialdehyde, which correlated with the parameters responsible for the integrity and functionality of the keratinocyte membrane (membrane fluidity and permeability and the activity of transmembrane transporters), compared to UVA-irradiated cells. This suggests that the simultaneous use of two phytocannabinoids may have a protective effect on healthy cells, without significantly reducing the therapeutic effect of UV radiation used to treat skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Białystok, Nowy Swiat 17/5, 15-453 Białystok, Poland;
| | - Izabela Dobrzyńska
- Laboratory of Bioanalysis, Faculty of Chemistry, University in Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University in Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland; (S.S.); (E.O.-G.)
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland;
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University in Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland; (S.S.); (E.O.-G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland;
| |
Collapse
|
5
|
Zou X, Zou D, Li L, Yu R, Li X, Du X, Guo J, Wang K, Liu W. Multi-omics analysis of an in vitro photoaging model and protective effect of umbilical cord mesenchymal stem cell-conditioned medium. Stem Cell Res Ther 2022; 13:435. [PMID: 36056394 PMCID: PMC9438153 DOI: 10.1186/s13287-022-03137-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/14/2022] [Indexed: 01/10/2023] Open
Abstract
Background Skin ageing caused by long-term ultraviolet (UV) irradiation is a complex biological process that involves multiple signalling pathways. Stem cell-conditioned media is believed to have anti-ageing effects on the skin. The purpose of this study was to explore the biological effects of UVB irradiation and anti-photoaging effects of human umbilical cord mesenchymal stem cell-conditioned medium (hUC-MSC-CM) on HaCaT cells using multi-omics analysis with a novel cellular photoaging model.
Methods A cellular model of photoaging was constructed by irradiating serum-starved HaCaT cells with 20 mJ/cm2 UVB. Transcriptomics and proteomics analyses were used to explore the biological effects of UVB irradiation on photoaged HaCaT cells. Changes in cell proliferation, apoptosis, and migration, the cell cycle, and expression of senescence genes and proteins were measured to assess the protective effects of hUC-MSC-CM in the cellular photoaging model. Results The results of the multi-omics analysis revealed that UVB irradiation affected various biological functions of cells, including cell proliferation and the cell cycle, and induced a senescence-associated secretory phenotype. hUC-MSC-CM treatment reduced cell apoptosis, inhibited G1 phase arrest in the cell cycle, reduced the production of reactive oxygen species, and promoted cell motility. The qRT-PCR results indicated that MYC, IL-8, FGF-1, and EREG were key genes involved in the anti-photoaging effects of hUC-MSC-CM. The western blotting results demonstrated that C-FOS, C-JUN, TGFβ, p53, FGF-1, and cyclin A2 were key proteins involved in the anti-photoaging effects of hUC-MSC-CM. Conclusion Serum-starved HaCaT cells irradiated with 20 mJ/cm2 UVB were used to generate an innovative cellular photoaging model, and hUC-MSC-CM demonstrates potential as an anti-photoaging treatment for skin. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03137-y.
Collapse
Affiliation(s)
- Xiaocang Zou
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China.,Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dayang Zou
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Linhao Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Renfeng Yu
- The People's Liberation Army 965 Hospital, JiLin, 132000, China
| | - XianHuang Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Xingyue Du
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - JinPeng Guo
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - KeHui Wang
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Wei Liu
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
6
|
Rivera-Yañez CR, Ruiz-Hurtado PA, Mendoza-Ramos MI, Reyes-Reali J, García-Romo GS, Pozo-Molina G, Reséndiz-Albor AA, Nieto-Yañez O, Méndez-Cruz AR, Méndez-Catalá CF, Rivera-Yañez N. Flavonoids Present in Propolis in the Battle against Photoaging and Psoriasis. Antioxidants (Basel) 2021; 10:antiox10122014. [PMID: 34943117 PMCID: PMC8698766 DOI: 10.3390/antiox10122014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is the main external organ. It protects against different types of potentially harmful agents, such as pathogens, or physical factors, such as radiation. Skin disorders are very diverse, and some of them lack adequate and accessible treatment. The photoaging of the skin is a problem of great relevance since it is related to the development of cancer, while psoriasis is a chronic inflammatory disease that causes scaly skin lesions and deterioration of the lifestyle of people affected. These diseases affect the patient's health and quality of life, so alternatives have been sought that improve the treatment for these diseases. This review focuses on describing the properties and benefits of flavonoids from propolis against these diseases. The information collected shows that the antioxidant and anti-inflammatory properties of flavonoids play a crucial role in the control and regulation of the cellular and biochemical alterations caused by these diseases; moreover, flavones, flavonols, flavanones, flavan-3-ols, and isoflavones contained in different worldwide propolis samples are the types of flavonoids usually evaluated in both diseases. Therefore, the research carried out in the area of dermatology with bioactive compounds of different origins is of great relevance to developing preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico;
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero 07738, Mexico;
| | - María Isabel Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Gina Stella García-Romo
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| | - Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| |
Collapse
|
7
|
Besaratinia A, Caliri AW, Tommasi S. Hydroxychloroquine induces oxidative DNA damage and mutation in mammalian cells. DNA Repair (Amst) 2021; 106:103180. [PMID: 34298488 PMCID: PMC8435022 DOI: 10.1016/j.dnarep.2021.103180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Since the early stages of the pandemic, hydroxychloroquine (HCQ), a widely used drug with good safety profile in clinic, has come to the forefront of research on drug repurposing for COVID-19 treatment/prevention. Despite the decades-long use of HCQ in the treatment of diseases, such as malaria and autoimmune disorders, the exact mechanisms of action of this drug are only beginning to be understood. To date, no data are available on the genotoxic potential of HCQ in vitro or in vivo. The present study is the first investigation of the DNA damaging- and mutagenic effects of HCQ in mammalian cells in vitro, at concentrations that are comparable to clinically achievable doses in patient populations. We demonstrate significant induction of a representative oxidative DNA damage (8-oxodG) in primary mouse embryonic fibroblasts (MEFs) treated with HCQ at 5 and 25 μM concentrations (P = 0.020 and P = 0.029, respectively), as determined by enzyme-linked immunosorbent assay. Furthermore, we show significant mutagenicity of HCQ, manifest as 2.2- and 1.8-fold increases in relative cII mutant frequency in primary and spontaneously immortalized Big Blue® MEFs, respectively, treated with 25 μM dose of this drug (P = 0.005 and P = 0.012, respectively). The observed genotoxic effects of HCQ in vitro, achievable at clinically relevant doses, are novel and important, and may have significant implications for safety monitoring in patient populations. Given the substantial number of the world's population receiving HCQ for the treatment of various chronic diseases or in the context of clinical trials for COVID-19, our findings warrant further investigations into the biological consequences of therapeutic/preventive use of this drug.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA.
| | - Andrew W Caliri
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| | - Stella Tommasi
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| |
Collapse
|
8
|
Hofmann GA, Weber B. Drug-induced photosensitivity: culprit drugs, potential mechanisms and clinical consequences. J Dtsch Dermatol Ges 2021; 19:19-29. [PMID: 33491908 PMCID: PMC7898394 DOI: 10.1111/ddg.14314] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
Drug‐induced photosensitivity, the development of phototoxic or photoallergic reactions due to pharmaceuticals and subsequent exposure to ultraviolet or visible light, is an adverse effect of growing interest. This is illustrated by the broad spectrum of recent investigations on the topic, ranging from molecular mechanisms and culprit drugs through epidemiological as well as public health related issues to long‐term photoaging and potential photocarcinogenic consequences. The present review summarizes the current state of knowledge on the topic while focusing on culprit drugs and long‐term effects. In total, 393 different drugs or drug compounds are reported to have a photosensitizing potential, although the level of evidence regarding their ability to induce photosensitive reactions varies markedly among these agents. The pharmaceuticals of interest belong to a wide variety of drug classes. The epidemiological risk associated with the use of photosensitizers is difficult to assess due to under‐reporting and geographical differences. However, the widespread use of photosensitizing drugs combined with the potential photocarcinogenic effects reported for several agents has major implications for health and safety and suggests a need for further research on the long‐term effects.
Collapse
Affiliation(s)
- Georg Amun Hofmann
- Disease Modeling and Organoid Technology (DMOT) research group, Department of Dermatology, Medical University of Vienna, Austria
| | - Benedikt Weber
- Disease Modeling and Organoid Technology (DMOT) research group, Department of Dermatology, Medical University of Vienna, Austria
| |
Collapse
|
9
|
Hofmann GA, Weber B. Medikamenten‐induzierte Photosensibilität: auslösende Medikamente, mögliche Mechanismen und klinische Folgen. J Dtsch Dermatol Ges 2021; 19:19-30. [PMID: 33491893 DOI: 10.1111/ddg.14314_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/09/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Georg Amun Hofmann
- Forschungsgruppe Disease Modeling and Organoid Technology (DMOT), Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| | - Benedikt Weber
- Forschungsgruppe Disease Modeling and Organoid Technology (DMOT), Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
10
|
Yan H, Liu H, Zhang H, Dang M, Lin Y. Protective effect of Viburnum grandiflorum against ultraviolet-B radiation-induced cellular and molecular changes in human epidermal keratinocytes. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_397_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Yan H, Liu H, Zhang H, Dang M, Lin Y. Protective effect of Viburnum grandiflorum against ultraviolet-B radiation-induced cellular and molecular changes in human epidermal keratinocytes. Pharmacogn Mag 2021. [DOI: 10.4103/0973-1296.313853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Fitsiou E, Pulido T, Campisi J, Alimirah F, Demaria M. Cellular Senescence and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging. J Invest Dermatol 2020; 141:1119-1126. [PMID: 33349436 DOI: 10.1016/j.jid.2020.09.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Chronic exposure to UVR is known to disrupt tissue homeostasis, accelerate the onset of age-related phenotypes, and increase the risk for skin cancer-a phenomenon defined as photoaging. In this paper, we review the current knowledge on how UV exposure causes cells to prematurely enter cellular senescence. We describe the mechanisms contributing to the accumulation of senescent cells in the skin and how the persistence of cellular senescence can promote impaired regenerative capacity, chronic inflammation, and tumorigenesis associated with photoaging. We conclude by highlighting the potential of senolytic drugs in delaying the onset and progression of age-associated phenotypes in the skin.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, The Netherlands
| | - Tanya Pulido
- Buck Institute for Research on Aging, Novato, California, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA; Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
13
|
Caliri AW, Tommasi S, Bates SE, Besaratinia A. Spontaneous and photosensitization-induced mutations in primary mouse cells transitioning through senescence and immortalization. J Biol Chem 2020; 295:9974-9985. [PMID: 32487750 DOI: 10.1074/jbc.ra120.014465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
To investigate the role of oxidative stress-induced DNA damage and mutagenesis in cellular senescence and immortalization, here we profiled spontaneous and methylene blue plus light-induced mutations in the cII gene from λ phage in transgenic mouse embryonic fibroblasts during the transition from primary culture through senescence and immortalization. Consistent with detection of characteristic oxidized guanine lesions (8-oxodG) in the treated cells, we observed significantly increased relative cII mutant frequency in the treated pre-senescent cells which was augmented in their immortalized counterparts. The predominant mutation type in the treated pre-senescent cells was G:C→T:A transversion, whose frequency was intensified in the treated immortalized cells. Conversely, the prevailing mutation type in the treated immortalized cells was A:T→C:G transversion, with a unique sequence-context specificity, i.e. flanking purines at the 5' end of the mutated nucleotide. This mutation type was also enriched in the treated pre-senescent cells, although to a lower extent. The signature mutation of G:C→T:A transversions in the treated cells accorded with the well-established translesion synthesis bypass caused by 8-oxodG, and the hallmark A:T→C:G transversions conformed to the known replication errors because of oxidized guanine nucleosides (8-OHdGTPs). The distinctive features of photosensitization-induced mutagenesis in the immortalized cells, which were present at attenuated levels, in spontaneously immortalized cells provide insights into the role of oxidative stress in senescence bypass and immortalization. Our results have important implications for cancer biology because oxidized purines in the nucleoside pool can significantly contribute to genetic instability in DNA mismatch repair-defective human tumors.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Reichrath J, Reichrath S, Vogt T, Römer K. Crosstalk Between Vitamin D and p53 Signaling in Cancer: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:307-318. [PMID: 32918225 DOI: 10.1007/978-3-030-46227-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has now been convincingly shown that vitamin D and p53 signaling protect against spontaneous or carcinogen-induced malignant transformation of cells. The vitamin D receptor (VDR) and the p53/p63/p73 proteins (the p53 family hereafter) exert their effects as receptors/sensors that turn into transcriptional regulators upon stimulus. While the p53 clan, mostly in the nucleoplasm, responds to a large and still growing number of alterations in cellular homeostasis commonly referred to as stress, the nuclear VDR is transcriptionally activated after binding its naturally occurring biologically active ligand 1,25-dihydroxyvitamin D with high affinity. Interestingly, a crosstalk between vitamin D and p53 signaling has been demonstrated that occurs at different levels, has genome-wide implications, and is of high importance for many malignancies, including non-melanoma skin cancer. These interactions include the ability of p53 to upregulate skin pigmentation via POMC derivatives including alpha-MSH and ACTH. Increased pigmentation protects the skin against UV-induced DNA damage and skin photocarcinogenesis, but also inhibits cutaneous synthesis of vitamin D. A second level of interaction is characterized by binding of VDR and p53 protein, an observation that may be of relevance for the ability of 1,25-dihydroxyvitamin D to increase the survival of skin cells after UV irradiation. UV irradiation-surviving cells show significant reductions in thymine dimers in the presence of 1,25-dihydroxyvitamin D that are associated with increased nuclear p53 protein expression and significantly reduced NO products. A third level of interaction is documented by the ability of vitamin D compounds to regulate the expression of the murine double minute (MDM2) gene in dependence of the presence of wild-type p53. MDM2 has a well-established role as a key negative regulator of p53 activity. Finally, p53 and its family members have been implicated in the direct regulation of the VDR. This review gives an update on some of the implications of the crosstalk between vitamin D and p53 signaling for carcinogenesis in the skin and other tissues, focusing on a genome-wide perspective.
Collapse
Affiliation(s)
- Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany
| | - Klaus Römer
- José Carreras Centre and Internal Medicine I, University of Saarland Medical Centre, Homburg (Saar), Germany
| |
Collapse
|
15
|
Moreno NC, Garcia CCM, Munford V, Rocha CRR, Pelegrini AL, Corradi C, Sarasin A, Menck CFM. The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radic Biol Med 2019; 131:432-442. [PMID: 30553972 DOI: 10.1016/j.freeradbiomed.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Abstract
The UVA component of sunlight induces DNA damage, which are basically responsible for skin cancer formation. Xeroderma Pigmentosum Variant (XP-V) patients are defective in the DNA polymerase pol eta that promotes translesion synthesis after sunlight-induced DNA damage, implying in a clinical phenotype of increased frequency of skin cancer. However, the role of UVA-light in the carcinogenesis of these patients is not completely understood. The goal of this work was to characterize UVA-induced DNA damage and the consequences to XP-V cells, compared to complemented cells. DNA damage were induced in both cells by UVA, but lesion removal was particularly affected in XP-V cells, possibly due to the oxidation of DNA repair proteins, as indicated by the increase of carbonylated proteins. Moreover, UVA irradiation promoted replication fork stalling and cell cycle arrest in the S-phase for XP-V cells. Interestingly, when cells were treated with the antioxidant N-acetylcysteine, all these deleterious effects were consistently reverted, revealing the role of oxidative stress in these processes. Together, these results strongly indicate the crucial role of oxidative stress in UVA-induced cytotoxicity and are of interest for the protection of XP-V patients.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Alessandra Luiza Pelegrini
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, University Paris-Sud, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
16
|
Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 2018; 17:1816-1841. [PMID: 29405222 DOI: 10.1039/c7pp00395a] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UV-induced DNA damage plays a key role in the initiation phase of skin cancer. When left unrepaired or when damaged cells are not eliminated by apoptosis, DNA lesions express their mutagneic properties, leading to the activation of proto-oncogene or the inactivation of tumor suppression genes. The chemical nature and the amount of DNA damage strongly depend on the wavelength of the incident photons. The most energetic part of the solar spectrum at the Earth's surface (UVB, 280-320 nm) leads to the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (64PPs). Less energetic but 20-times more intense UVA (320-400 nm) also induces the formation of CPDs together with a wide variety of oxidatively generated lesions such as single strand breaks and oxidized bases. Among those, 8-oxo-7,8-dihydroguanine (8-oxoGua) is the most frequent since it can be produced by several mechanisms. Data available on the respective yield of DNA photoproducts in cells and skin show that exposure to sunlight mostly induces pyrimidine dimers, which explains the mutational signature found in skin tumors, with lower amounts of 8-oxoGua and strand breaks. The present review aims at describing the basic photochemistry of DNA and discussing the quantitative formation of the different UV-induced DNA lesions reported in the literature. Additional information on mutagenesis, repair and photoprotection is briefly provided.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec JIH 5N4, Canada.
| | | |
Collapse
|
17
|
Ikehata H. Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation. Photochem Photobiol Sci 2018; 17:1861-1871. [PMID: 29850669 DOI: 10.1039/c7pp00360a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultraviolet radiation (UVR) predominantly induces UV-signature mutations, C → T and CC → TT base substitutions at dipyrimidine sites, in the cellular and skin genome. I observed in our in vivo mutation studies of mouse skin that these UVR-specific mutations show a wavelength-dependent variation in their sequence-context preference. The C → T mutation occurs most frequently in the 5'-TCG-3' sequence regardless of the UVR wavelength, but is recovered more preferentially there as the wavelength increases, resulting in prominent occurrences exclusively in the TCG sequence in the UVA wavelength range, which I will designate as a "UVA signature" in this review. The preference of the UVB-induced C → T mutation for the sequence contexts shows a mixed pattern of UVC- and UVA-induced mutations, and a similar pattern is also observed for natural sunlight, in which UVB is the most genotoxic component. In addition, the CC → TT mutation hardly occurs at UVA1 wavelengths, although it is detected rarely but constantly in the UVC and UVB ranges. This wavelength-dependent variation in the sequence-context preference of the UVR-specific mutations could be explained by two different photochemical mechanisms of cyclobutane pyrimidine dimer (CPD) formation. The UV-signature mutations observed in the UVC and UVB ranges are known to be caused mainly by CPDs produced through the conventional singlet/triplet excitation of pyrimidine bases after the direct absorption of the UVC/UVB photon energy in those bases. On the other hand, a novel photochemical mechanism through the direct absorption of the UVR energy to double-stranded DNA, which is called "collective excitation", has been proposed for the UVA-induced CPD formation. The UVA photons directly absorbed by DNA produce CPDs with a sequence context preference different from that observed for CPDs caused by the UVC/UVB-mediated singlet/triplet excitation, causing CPD formation preferentially at thymine-containing dipyrimidine sites and probably also preferably at methyl CpG-associated dipyrimidine sites, which include the TCG sequence. In this review, I present a mechanistic consideration on the wavelength-dependent variation of the sequence context preference of the UVR-specific mutations and rationalize the proposition of the UVA-signature mutation, in addition to the UV-signature mutation.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
18
|
Abstract
A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California;
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California
| |
Collapse
|
19
|
Muzaffer U, Paul VI, Prasad NR, Karthikeyan R, Agilan B. Protective effect of Juglans regia L. against ultraviolet B radiation induced inflammatory responses in human epidermal keratinocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:100-111. [PMID: 29655676 DOI: 10.1016/j.phymed.2018.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/01/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Juglans regia L. has a history of traditional medicinal use for the treatment of various maladies and have been documented with significant antioxidant and antiinflammatory properties. Although all parts of the plant are medicinally important, but male the flower of the plant has not been yet investigated against the photo-damage. PURPOSE The present study, we sought to determine the photoprotective effect of the male flower of J. regia L. against ultraviolet-B radiation-induced inflammatory responses in human skin cells. METHODS The profile of pharmacological active compounds present in the male flower of J. regia was analyzed by GC-MS. Then, the antioxidant property of methanolic extract of J. regia (MEJR) was analyzed by in vitro free radical scavenging assays. Further, we analyzed the sun protection factor of this extract by spectrophotometry. Moreover, we investigated the photoprotective effect of MEJR against UVB induced inflammatory signaling in human epidermal cells. Human skin epidermal keratinocytes (HaCaT) were pretreated with the MEJR (80 µg/ml), 30 min prior to UVB-irradiation at a dose of 20 mJ/cm2 and were investigated for lipid peroxidation, enzymatic antioxidants activity, apoptosis and inflammatory markers expression level. RESULTS The GC-MS results showed the presence of good amount of pharmacologically active compounds in the MEJR. We observed that the MEJR possess significant free radical scavenging activity and it was comparable with standard antioxidants. Further, the MEJR exhibits 8.8 sun-protection-factor (SPF) value. Pretreatment with MEJR, 30 min prior to UVB-irradiation, prevented ROS generation, lipid peroxidation and restored the activity of antioxidant status in HaCaT cells. Moreover, MEJR pretreatment significantly prevented UVB activated inflammatory markers like TNF-α, IL-1, IL-6, NF-κB, COX-2 in HaCaT. CONCLUSION The present findings suggest that MEJR exhibit photoprotective effects and hence it may be useful for the treatment of inflammation related responses. The pharmacological mechanism of MEJR partly associated with its UV absorbance, modulation of inflammatory signaling as well as due to its free radical scavenging capability.
Collapse
Affiliation(s)
- Umar Muzaffer
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India.
| | - V I Paul
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India.
| | - Nagarajan Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
| | - Ramasamy Karthikeyan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
| | - Balupillai Agilan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
| |
Collapse
|
20
|
Besaratinia A, Zheng A, Bates SE, Tommasi S. Mutation Analysis in Cultured Cells of Transgenic Rodents. Int J Mol Sci 2018; 19:E262. [PMID: 29337872 PMCID: PMC5796208 DOI: 10.3390/ijms19010262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany) mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s) of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Albert Zheng
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Stella Tommasi
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
Tommasi S, Bates SE, Behar RZ, Talbot P, Besaratinia A. Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro. Lung Cancer 2017; 112:41-46. [PMID: 29191599 DOI: 10.1016/j.lungcan.2017.07.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. MATERIALS AND METHODS We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. RESULTS AND CONCLUSION We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute at City of Hope , Duarte, CA, 91010, USA
| | - Rachel Z Behar
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
22
|
Lu J, Hou H, Fan Y, Yang T, Li B. Identification of MMP-1 inhibitory peptides from cod skin gelatin hydrolysates and the inhibition mechanism by MAPK signaling pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
24
|
Khandpur S, Porter R, Boulton S, Anstey A. Drug-induced photosensitivity: new insights into pathomechanisms and clinical variation through basic and applied science. Br J Dermatol 2017; 176:902-909. [DOI: 10.1111/bjd.14935] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- S. Khandpur
- Department of Dermatology and Venereology; All India Institute of Medical Sciences; New Delhi India
| | - R.M. Porter
- Academic Dermatology; Aneurin Bevan Health Board, Stow Hill; St Woolos Hospital; Newport NP20 4SZ U.K
| | - S.J. Boulton
- School of Biomedical Sciences; Faculty of Medical Sciences; Newcastle University Medical School, Framlington Place; Newcastle upon Tyne NE2 4HH U.K
| | - A. Anstey
- Betsi Cadwaladr University Health Board; Ysbyty Gwynedd, Penrhosgarnedd; Bangor Gwynedd LL57 2PY U.K
| |
Collapse
|
25
|
Murine melanomas accelerated by a single UVR exposure carry photoproduct footprints but lack UV signature C>T mutations in critical genes. Oncogene 2015; 35:3342-50. [DOI: 10.1038/onc.2015.386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 12/26/2022]
|
26
|
Karbaschi M, Macip S, Mistry V, Abbas HHK, Delinassios GJ, Evans MD, Young AR, Cooke MS. Rescue of cells from apoptosis increases DNA repair in UVB exposed cells: implications for the DNA damage response. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00197d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Classically, the nucleotide excision repair (NER) of cyclobutane pyrimidine dimers (CPD) is a lengthy process (t1/2 > 48 h).
Collapse
Affiliation(s)
- Mahsa Karbaschi
- Dept. Environmental and Occupational Health
- Robert Stempel College of Public Health and Social Work
- Florida International University
- Miami
- USA
| | - Salvador Macip
- Dept. Biochemistry
- Henry Wellcome Building
- University of Leicester
- Leicester
- UK
| | - Vilas Mistry
- Former: Oxidative Stress Group
- RKCSB
- University of Leicester
- Leicester
- UK
| | | | | | - Mark D. Evans
- Former: Oxidative Stress Group
- RKCSB
- University of Leicester
- Leicester
- UK
| | - Antony R. Young
- King's College London
- St John's Institute of Dermatology
- London SE1 9RT
- UK
| | - Marcus S. Cooke
- Dept. Environmental and Occupational Health
- Robert Stempel College of Public Health and Social Work
- Florida International University
- Miami
- USA
| |
Collapse
|
27
|
Gichuhi S, Ohnuma SI, Sagoo MS, Burton MJ. Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res 2014; 129:172-82. [PMID: 25447808 PMCID: PMC4726664 DOI: 10.1016/j.exer.2014.10.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
The incidence of ocular surface squamous neoplasia (OSSN) is strongly associated with solar ultraviolet (UV) radiation, HIV and human papilloma virus (HPV). Africa has the highest incidence rates in the world. Most lesions occur at the limbus within the interpalpebral fissure particularly the nasal sector. The nasal limbus receives the highest intensity of sunlight. Limbal epithelial crypts are concentrated nasally and contain niches of limbal epithelial stem cells in the basal layer. It is possible that these are the progenitor cells in OSSN. OSSN arises in the basal epithelial cells spreading towards the surface which resembles the movement of corneo-limbal stem cell progeny before it later invades through the basement membrane below. UV radiation damages DNA producing pyrimidine dimers in the DNA chain. Specific CC → TT base pair dimer transformations of the p53 tumour-suppressor gene occur in OSSN allowing cells with damaged DNA past the G1-S cell cycle checkpoint. UV radiation also causes local and systemic photoimmunosuppression and reactivates latent viruses such as HPV. The E7 proteins of HPV promote proliferation of infected epithelial cells via the retinoblastoma gene while E6 proteins prevent the p53 tumour suppressor gene from effecting cell-cycle arrest of DNA-damaged and infected cells. Immunosuppression from UV radiation, HIV and vitamin A deficiency impairs tumour immune surveillance allowing survival of aberrant cells. Tumour growth and metastases are enhanced by; telomerase reactivation which increases the number of cell divisions a cell can undergo; vascular endothelial growth factor for angiogenesis and matrix metalloproteinases (MMPs) that destroy the intercellular matrix between cells. Despite these potential triggers, the disease is usually unilateral. It is unclear how HPV reaches the conjunctiva.
Collapse
Affiliation(s)
- Stephen Gichuhi
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Ophthalmology, University of Nairobi, P.O Box 19676-00202, Nairobi, Kenya.
| | - Shin-ichi Ohnuma
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | - Mandeep S Sagoo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK; St. Bartholomew's Hospital, W Smithfield, London EC1A 7BE, UK.
| | - Matthew J Burton
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK.
| |
Collapse
|
28
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 2014; 91:140-55. [PMID: 25327445 DOI: 10.1111/php.12368] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2-deoxyribose moieties of DNA in isolated cells and skin. The UVA-induced generation of 8-oxo-7,8-dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal-catalyzed Haber-Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single-strand breaks at the exclusion, however, of direct double-strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA-induced DNA damage could include single and more complex lesions arising from one-electron oxidation of the guanine base together with aldehyde adducts to amino-substituted nucleobases.
Collapse
Affiliation(s)
- Jean Cadet
- University Grenoble Alpes, INAC, Grenoble, France; CEA, INAC, Grenoble, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
29
|
Grebneva HA. Mechanisms of targeted frameshift mutations: Insertions arising during error-prone or SOS synthesis of DNA containing cis-syn cyclobutane thymine dimers. Mol Biol 2014. [DOI: 10.1134/s0026893314030066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Reichrath J, Reichrath S, Heyne K, Vogt T, Roemer K. Tumor suppression in skin and other tissues via cross-talk between vitamin D- and p53-signaling. Front Physiol 2014; 5:166. [PMID: 24917821 PMCID: PMC4042062 DOI: 10.3389/fphys.2014.00166] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 01/12/2023] Open
Abstract
P53 and its family members have been implicated in the direct regulation of the vitamin D receptor (VDR). Vitamin D- and p53-signaling pathways have a significant impact on spontaneous or carcinogen-induced malignant transformation of cells, with VDR and p53 representing important tumor suppressors. VDR and the p53/p63/p73 proteins all function typically as receptors or sensors that turn into transcriptional regulators upon stimulus, with the main difference being that the nuclear VDR is activated as a transcription factor after binding its naturally occurring ligand 1,25-dihydroxyvitamin D with high affinity while the p53 family of transcription factors, mostly in the nucleoplasm, responds to a large number of alterations in cell homeostasis commonly referred to as stress. An increasing body of evidence now convincingly demonstrates a cross-talk between vitamin D- and p53-signaling that occurs at different levels, has genome-wide implications and that should be of high importance for many malignancies, including non-melanoma skin cancer. One interaction involves the ability of p53 to increase skin pigmentation via POMC derivatives including alpha-MSH and ACTH. Pigmentation protects the skin against UV-induced DNA damage and skin carcinogenesis, yet on the other hand reduces cutaneous synthesis of vitamin D. A second level of interaction may be through the ability of 1,25-dihydroxyvitamin D to increase the survival of skin cells after UV irradiation. UV irradiation-surviving cells show significant reductions in thymine dimers in the presence of 1,25-dihydroxyvitamin D that are associated with increased nuclear p53 protein expression, and significantly reduced NO products. A third level of interaction is documented by the ability of vitamin D compounds to regulate the expression of the murine double minute 2 (MDM2) gene in dependence of the presence of wild-type p53. MDM2 has a well-established role as a key negative regulator of p53 activity. Finally, p53 and family members have been implicated in the direct regulation of VDR. This overview summarizes some of the implications of the cross-talk between vitamin D- and p53-signaling for carcinogenesis in the skin and other tissues.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, The Saarland University Hospital Homburg (Saar), Germany
| | - Sandra Reichrath
- Department of Dermatology, The Saarland University Hospital Homburg (Saar), Germany
| | - Kristina Heyne
- José Carreras Centre and Internal Medicine I, University of Saarland Medical Centre Homburg (Saar), Germany
| | - Thomas Vogt
- Department of Dermatology, The Saarland University Hospital Homburg (Saar), Germany
| | - Klaus Roemer
- José Carreras Centre and Internal Medicine I, University of Saarland Medical Centre Homburg (Saar), Germany
| |
Collapse
|
31
|
Besaratinia A, Tommasi S. Epigenetics of human melanoma: promises and challenges. J Mol Cell Biol 2014; 6:356-67. [PMID: 24895357 DOI: 10.1093/jmcb/mju027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer with rising incidence and mortality rates. Although early-stage melanoma is highly curable, advanced-stage melanoma is refractory to treatment. This underscores the importance of prevention and early detection as well as the need to improve treatment and prognostication of human melanoma. Elucidating the underlying mechanisms of the initiation and progression of human melanoma can help identify potential targets of intervention for prevention, diagnosis, therapy, and prognosis of this disease. Aberrant DNA methylation and histone modifications are the best-established epigenetic mechanisms of carcinogenesis. The occurrence of epigenetic changes prior to clinical diagnosis of cancer and their reversibility through pharmacologic/genetic approaches offer a promising avenue for basic and translational research on human melanoma. Candidate gene(s) or genome-wide aberrant DNA methylation and histone modifications have been observed in human melanoma tumor tissues and cell lines, and correlated to cellular and functional characteristics and/or clinicopathological features of this malignancy. The present review summarizes the published researches on aberrant DNA methylation and histone modifications in connection with human melanoma. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in these epigenetic fields of research. Examples of epigenetic therapy applied for human melanoma in vitro, and the challenges of its in vivo application for clinical treatment of solid tumors are discussed.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
32
|
Schuch AP, Garcia CCM, Makita K, Menck CFM. DNA damage as a biological sensor for environmental sunlight. Photochem Photobiol Sci 2014; 12:1259-72. [PMID: 23525255 DOI: 10.1039/c3pp00004d] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solar ultraviolet (UV) radiation is widely known as an environmental genotoxic agent that affects ecosystems and the human population, generating concerns and motivating worldwide scientific efforts to better understand the role of sunlight in the induction of DNA damage, cell death, mutagenesis, and ultimately, carcinogenesis. In this review, general aspects of UV radiation at the Earth's surface are reported, considering measurements by physical and biological sensors that monitor solar UV radiation under different environmental conditions. The formation of DNA photoproducts and other types of DNA damage by different UV wavelengths are compared with the present information on their roles in inducing biological effects. Moreover, the use of DNA-based biological dosimeters is presented as a feasible molecular and cellular tool that is focused on the evaluation of DNA lesions induced by natural sunlight. Clearly, direct environmental measurements demonstrate the biological impact of sunlight in different locations worldwide and reveal how this affects the DNA damage profile at different latitudes. These tools are also valuable for the quantification of photoprotection provided by commercial sunscreens against the induction of DNA damage and cell death, employing DNA repair-deficient cells that are hypersensitive to sunlight. Collectively, the data demonstrate the applicability of DNA-based biosensors as alternative, complementary, and reliable methods for registering variations in the genotoxic impact of solar UV radiation and for determining the level of photoprotection sunscreens provided at the level of DNA damage and cell death.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
33
|
Mallet JD, Gendron SP, Drigeard Desgarnier MC, Rochette PJ. Implication of ultraviolet light in the etiology of uveal melanoma: A review. Photochem Photobiol 2014; 90:15-21. [PMID: 23981010 DOI: 10.1111/php.12161] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
Abstract
Uveal melanoma is the most frequent intraocular cancer and the second most common form of melanoma. It metastasizes in half of the patients and the prognostic is poor. Although ultraviolet (UV) radiation is a proven risk factor for skin melanoma, the role of UV light in the etiology of uveal melanoma is still contradictory. We have compared epidemiological and genetic evidences of the potential role of UV radiation in uveal melanoma with data on cutaneous melanoma. Even though frequently mutated genes in skin melanoma (e.g. BRAF) differ from those found in uveal melanoma (i.e. GNAQ, GNA11), their mutation pattern bears strong similarities. Furthermore, we provide new results showing that RAC1, a gene recently found harboring UV-hallmark mutation in skin melanoma, is also mutated in uveal melanoma. This article aims to review the work done in the last decades to understand the etiology of uveal melanoma and discuss new avenues, which shed some light on the potential role of UV exposure in uveal melanoma.
Collapse
Affiliation(s)
- Justin D Mallet
- Axe Médecine Régénératrice, Centre de Recherche FRQS du CHU de Québec, Hôpital du Saint-Sacrement, QC, Canada
- Centre LOEX de l'Université Laval, QC, Canada
| | - Sébastien P Gendron
- Axe Médecine Régénératrice, Centre de Recherche FRQS du CHU de Québec, Hôpital du Saint-Sacrement, QC, Canada
- Centre LOEX de l'Université Laval, QC, Canada
| | - Marie-Catherine Drigeard Desgarnier
- Axe Médecine Régénératrice, Centre de Recherche FRQS du CHU de Québec, Hôpital du Saint-Sacrement, QC, Canada
- Centre LOEX de l'Université Laval, QC, Canada
| | - Patrick J Rochette
- Axe Médecine Régénératrice, Centre de Recherche FRQS du CHU de Québec, Hôpital du Saint-Sacrement, QC, Canada
- Centre LOEX de l'Université Laval, QC, Canada
- Département d'Ophtalmologie et ORL - Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, QC, Canada
| |
Collapse
|
34
|
Muthusamy V, Piva TJ. UVB-stimulated TNFα release from human melanocyte and melanoma cells is mediated by p38 MAPK. Int J Mol Sci 2013; 14:17029-54. [PMID: 23965971 PMCID: PMC3759950 DOI: 10.3390/ijms140817029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 01/18/2023] Open
Abstract
Ultraviolet (UV) radiation activates cell signaling pathways in melanocytes. As a result of altered signaling pathways and UV-induced cellular damage, melanocytes can undergo oncogenesis and develop into melanomas. In this study, we investigated the effect of UV-radiation on p38 MAPK (mitogen-activated protein kinase), JNK and NFκB pathways to determine which plays a major role in stimulating TNFα secretion in human HEM (melanocytes) and MM96L (melanoma) cells. MM96L cells exhibited 3.5-fold higher p38 activity than HEM cells at 5 min following UVA + B radiation and 1.6-fold higher JNK activity at 15–30 min following UVB+A radiation, while NFκB was minimally activated in both cells. Irradiated HEM cells had the greatest fold of TNFα secretion (UVB: 109-fold, UVA + B: 103-fold & UVB+A: 130-fold) when co-exposed to IL1α. The p38 inhibitor, SB202190, inhibited TNFα release by 93% from UVB-irradiated HEM cells. In the UVB-irradiated MM96L cells, both SB202190 and sulfasalazine (NFκB inhibitor) inhibited TNFα release by 52%. Although, anisomycin was a p38 MAPK activator, it inhibited TNFα release in UV-irradiated cells. This suggests that UV-mediated TNFα release may occur via different p38 pathway intermediates compared to those stimulated by anisomycin. As such, further studies into the functional role p38 MAPK plays in regulating TNFα release in UV-irradiated melanocyte-derived cells are warranted.
Collapse
Affiliation(s)
- Visalini Muthusamy
- School of Medical Sciences, RMIT University, PO Box 71, Bundoora VIC 3083, Australia.
| | | |
Collapse
|
35
|
Tewari A, Grage MML, Harrison GI, Sarkany R, Young AR. UVA1 is skin deep: molecular and clinical implications. Photochem Photobiol Sci 2013. [PMID: 23192740 DOI: 10.1039/c2pp25323b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long wavelength UVA1 (340-400 nm) is the main component of terrestrial UVR and is increasingly used in skin phototherapy. Its damage to critical biomolecules such as DNA has been widely attributed to its ability to generate reactive oxygen species (ROS) via other chromophores. However recent studies in vitro and in vivo have shown that UVA1 has a specific ability to generate cyclobutane pyrimidine dimers (CPD), especially thymine dimers (T<>T), and that this is probably due to direct absorption of UVR. The CPD has been implicated in many aspects of skin cancer. Measuring UVB-induced CPD in the epidermis and dermis in vivo shows that, as expected, the skin attenuates UVB. In contrast, our data show that this is not the case with UVA1: in fact there is more damage with increased skin depth. This suggests that the basal layer, which contains keratinocyte stem cells and melanocytes, is more vulnerable to the carcinogenic effects of UVA1 than would be predicted by mouse models. These data support the continuing trend for better UVA1 protection by sunscreens.
Collapse
Affiliation(s)
- Angela Tewari
- King's College London (KCL), King's College London School of Medicine, Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, London, UK.
| | | | | | | | | |
Collapse
|
36
|
Besaratinia A, Tommasi S. Genotoxicity of tobacco smoke‐derived aromatic amines and bladder cancer: current state of knowledge and future research directions. FASEB J 2013; 27:2090-100. [DOI: 10.1096/fj.12-227074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Stella Tommasi
- Department of Preventive MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Pu Y, Wang W, Yang Y, Alfano RR. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods. APPLIED OPTICS 2013; 52:1293-301. [PMID: 23435002 DOI: 10.1364/ao.52.001293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/21/2012] [Indexed: 05/23/2023]
Abstract
The native fluorescence spectra of human cancerous and normal breast tissues were investigated using the selected excitation wavelength of 340 nm to excite key building block molecules, such as reduced nicotinamide adenine dinucleotide (NADH), collagen, and flavin. The measured emission spectra were analyzed using a non-negative constraint method, namely multivariate curve resolution with alternating least-squares (MCR-ALS). The results indicate that the biochemical changes of tissue can be exposed by native fluorescence spectra analysis. The MCR-ALS-extracted components corresponding to the key fluorophores in breast tissue, such as collagen, NADH, and flavin, show differences of relative contents of fluorophores in cancerous and normal breast tissues. This research demonstrates that the native fluorescence spectroscopy measurements are effective for detecting changes of fluorophores composition in tissues due to the development of cancer. Native fluorescence spectroscopy analyzed by MCR-ALS may have the potential to be a new armamentarium.
Collapse
Affiliation(s)
- Yang Pu
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, City College of the City University of New York, New York 10031, USA
| | | | | | | |
Collapse
|
38
|
Tongkao-on W, Gordon-Thomson C, Dixon KM, Song EJ, Luu T, Carter SE, Sequeira VB, Reeve VE, Mason RS. Novel vitamin D compounds and skin cancer prevention. DERMATO-ENDOCRINOLOGY 2013; 5:20-33. [PMID: 24494039 PMCID: PMC3897591 DOI: 10.4161/derm.23939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/09/2013] [Indexed: 01/10/2023]
Abstract
As skin cancer is one of the most costly health issues in many countries, particularly in Australia, the possibility that vitamin D compounds might contribute to prevention of this disease is becoming increasingly more attractive to researchers and health communities. In this article, important epidemiologic, mechanistic and experimental data supporting the chemopreventive potential of several vitamin D-related compounds are explored. Evidence of photoprotection by the active hormone, 1α,25dihydroxyvitamin D3, as well as a derivative of an over-irradiation product, lumisterol, a fluorinated analog and bufalin, a potential vitamin D-like compound, are provided. The aim of this article is to understand how vitamin D compounds contribute to UV adaptation and potentially, skin cancer prevention.
Collapse
Affiliation(s)
- Wannit Tongkao-on
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Clare Gordon-Thomson
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Katie M. Dixon
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Eric J. Song
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Tan Luu
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Sally E. Carter
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Vanessa B. Sequeira
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Kensington, NSW Australia
| | - Vivienne E. Reeve
- Department of Faculty of Veterinary Science; The University of Sydney; Sydney, NSW Australia
| | - Rebecca S. Mason
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| |
Collapse
|
39
|
Reichrath J, Reichrath S. The relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of non-melanoma skin cancer (NMSC): Present concepts and future perspectives. DERMATO-ENDOCRINOLOGY 2013; 5:38-50. [PMID: 24494041 PMCID: PMC3897597 DOI: 10.4161/derm.24156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022]
Abstract
Solar UV (UV)-B-radiation exerts both beneficial and adverse effects on human health. On the one hand, it is the most important environmental risk factor for the development of non-melanoma skin cancer [NMSC; most importantly basal (BCC) and squamous (SCC) cell carcinomas], that represent the most common malignancies in Caucasian populations. On the other hand, the human body's requirements of vitamin D are mainly achieved by UV-B-induced cutaneous photosynthesis. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases including various types of cancer has been convincingly demonstrated. In line with these findings, epidemiologic and laboratory investigations now indicate that vitamin D and its metabolites have a risk reducing effect for NMSC. Potential mechanisms of action include inhibition of the hedgehog signaling pathway (BCC) and modulation of p53-mediated DNA damage response (SCC). As a consequence of these new findings it can be concluded that UV-B-radiation exerts both beneficial and adverse effects on risk and prognosis of NMSC. It can be assumed that many independent factors, including frequency and dose of UV-B exposure, skin area exposed, and individual factors (such as skin type and genetic determinants of the skin`s vitamin D status and of signaling pathways that are involved in the tumorigenesis of NMSC) determine whether UV-B exposure promotes or inhibits tumorigenesis of NMSC. Moreover, these findings may help to explain many of the differential effects of UV-B radiation on risk of NMSC, including variation in the dose-dependent risk for development of SCC in situ (actinic keratosis, AK), invasive SCC, and BCC. In this review, we analyze the relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of NMSC and give an overview of present concepts and future perspectives.
Collapse
Affiliation(s)
- Jörg Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum des Saarlandes; Homburg/Saar, Germany
| | - Sandra Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum des Saarlandes; Homburg/Saar, Germany
| |
Collapse
|
40
|
Liu S, Guo C, Wu D, Ren Y, Sun MZ, Xu P. Protein indicators for HaCaT cell damage induced by UVB irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:94-101. [DOI: 10.1016/j.jphotobiol.2012.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022]
|
41
|
Besaratinia A, Li H, Yoon JI, Zheng A, Gao H, Tommasi S. A high-throughput next-generation sequencing-based method for detecting the mutational fingerprint of carcinogens. Nucleic Acids Res 2012; 40:e116. [PMID: 22735701 PMCID: PMC3424585 DOI: 10.1093/nar/gks610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Cancer Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Kim S, Yoon J, Tommasi S, Besaratinia A. New experimental data linking secondhand smoke exposure to lung cancer in nonsmokers. FASEB J 2012; 26:1845-54. [DOI: 10.1096/fj.11-199984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sang‐In Kim
- Department of Cancer BiologyBeckman Research Institute of the City of HopeDuarteCaliforniaUSA
| | - Jae‐In Yoon
- Department of Cancer BiologyBeckman Research Institute of the City of HopeDuarteCaliforniaUSA
| | - Stella Tommasi
- Department of Cancer BiologyBeckman Research Institute of the City of HopeDuarteCaliforniaUSA
| | - Ahmad Besaratinia
- Department of Cancer BiologyBeckman Research Institute of the City of HopeDuarteCaliforniaUSA
| |
Collapse
|
43
|
Measuring the formation and repair of UV damage at the DNA sequence level by ligation-mediated PCR. Methods Mol Biol 2012; 920:189-202. [PMID: 22941605 DOI: 10.1007/978-1-61779-998-3_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation and repair of DNA damage at specific locations in the genome is modulated by DNA sequence context, by DNA cytosine-5 methylation patterns, by the transcriptional status of the locus and by proteins associated with the DNA. The only method currently available to allow precise sequence mapping of DNA lesions in mammalian cells is the ligation-mediated polymerase chain reaction (LM-PCR) technique. We provide an update on technical details of LM-PCR. LM-PCR can be used, for example, for mapping of ultraviolet (UV) light-induced DNA photoproducts such as cyclobutane pyrimidine dimers.
Collapse
|
44
|
Sage E, Girard PM, Francesconi S. Unravelling UVA-induced mutagenesis. Photochem Photobiol Sci 2012; 11:74-80. [DOI: 10.1039/c1pp05219e] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Reference gene validation for qPCR on normoxia- and hypoxia-cultured human dermal fibroblasts exposed to UVA: Is β-actin a reliable normalizer for photoaging studies? J Biotechnol 2011; 156:153-62. [DOI: 10.1016/j.jbiotec.2011.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/07/2011] [Accepted: 09/16/2011] [Indexed: 11/19/2022]
|
46
|
Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 2011; 11:90-7. [PMID: 21804977 DOI: 10.1039/c1pp05144j] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ultraviolet (UV) irradiation from the sun has been epidemiologically and mechanistically linked to skin cancer, a spectrum of diseases of rising incidence in many human populations. Both non-melanoma and melanoma skin cancers are associated with sunlight exposure. In this review, we discuss the UV wavelength-dependent formation of the major UV-induced DNA damage products, their repair and mutagenicity and their potential involvement in sunlight-associated skin cancers. We emphasize the major role played by the cyclobutane pyrimidine dimers (CPDs) in skin cancer mutations relative to that of (6-4) photoproducts and oxidative DNA damage. Collectively, the data implicate the CPD as the DNA lesion most strongly involved in human cancers induced by sunlight.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | |
Collapse
|
47
|
Besaratinia A, Yoon JI, Schroeder C, Bradforth SE, Cockburn M, Pfeifer GP. Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. FASEB J 2011; 25:3079-91. [PMID: 21613571 DOI: 10.1096/fj.11-187336] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To elucidate the involvement of specific ultraviolet (UV) wavelengths in solar mutagenesis, we used a laser system to investigate the induction of DNA damage, both in the overall genome and at the nucleotide resolution level, in the genomic DNA of transgenic Big Blue mouse fibroblasts irradiated with a series of UV wavelengths, inclusive of UVC (λ<280 nm), UVB (λ=280-320 nm), and UVA (λ>320 nm). Subsequently, we sought correlation between the locations of UV-induced DNA lesions in the cII transgene of irradiated DNA samples and the frequency distribution and codon position of the induced cII mutations in counterpart mouse cells irradiated with simulated sunlight. Using a combination of enzymatic digestion assays coupled with gel electrophoresis, immunodot blot assays, and DNA footprinting assays, we demonstrated a unique wavelength-dependent formation of photodimeric lesions, i.e., cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts [(6-4)PPs], based on direct UV absorption of DNA, in irradiated mouse genomic DNA, which could partially explain the induction of mutations in mouse cells irradiated with simulated sunlight. Most notably, there was a divergence of CPD and (6-4)PP formation at an irradiation wavelength of 296 nm in mouse genomic DNA. Whereas substantial formation of (6-4)PPs was detectable in samples irradiated at this wavelength, which intensified as the irradiation wavelength decreased, only small quantities of these lesions were found in samples irradiated at wavelengths of 300-305 nm, with no detectable level of (6-4)PPs in samples irradiated with longer wavelengths. Although CPD formation followed the same pattern of increase with decreasing wavelengths of irradiation, there were substantial levels of CPDs in samples irradiated with UVB wavelengths borderlined with UVA, and small but detectable levels of these lesions in samples irradiated with longer wavelengths. Because the terrestrial sunlight spectrum rolls off sharply at wavelengths ~300 nm, our findings suggest that CPDs are the principal lesion responsible for most DNA damage-dependent biological effects of sunlight.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Venditti E, Brugè F, Astolfi P, Kochevar I, Damiani E. Nitroxides and a nitroxide-based UV filter have the potential to photoprotect UVA-irradiated human skin fibroblasts against oxidative damage. J Dermatol Sci 2011; 63:55-61. [PMID: 21530182 DOI: 10.1016/j.jdermsci.2011.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Antioxidants are now being incorporated into sunscreens as additional topical measure for delaying the aging process and reducing photo-damage to skin induced by excessive UVA exposure. UVA radiation reaching the skin leads to the generation of ROS (reactive oxygen species) implicated in DNA damage and activation of matrix metalloproteinase-1 (MMP-1) responsible for collagen damage and photo-aging. Nitroxides are a class of compounds endowed with versatile antioxidant activity and recently, nitroxide-based UV filters in which a nitroxide moiety has been attached to the most popular UV filter present in sunscreens have been developed. OBJECTIVE This study explores the potential photo-protective effects of these compounds on ROS production and induction of MMP-1 in cultured human dermal fibroblasts exposed to UVA. For comparison, vitamin E was also tested. METHODS The effects were assessed by measuring intracellular ROS production using a ROS-index probe and MMP-1 mRNA expression levels using quantitative real-time PCR (qPCR). RESULTS Exposure of fibroblasts to 18J/cm(2) UVA lead to a two-fold increase in ROS production which was reduced to non-irradiated control levels in the presence of 50μM nitroxide compounds and vitamin E. Under the same conditions, a ten-fold increase in MMP-1 mRNA expression levels was observed 24h post-UVA treatment which was significantly reduced by all nitroxide compounds but not vitamin E. CONCLUSION The results of this study support the potential use of nitroxide compounds, including novel nitroxide-based UV filters, as a useful and alternative strategy for improving the efficacy of topical formulations against photo-aging and possibly photo-carcinogenesis.
Collapse
Affiliation(s)
- Elisabetta Venditti
- Dipartimento di Biochimica, Biologia e Genetica, Università Politecnica delle Marche, I-60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
49
|
Girard PM, Francesconi S, Pozzebon M, Graindorge D, Rochette P, Drouin R, Sage E. UVA-induced damage to DNA and proteins: directversusindirect photochemical processes. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/261/1/012002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Abstract
Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: "error-free" bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-prone bypass of CPDs and other UV-induced photolesions by combinations of TLS and replicative DNA polymerases--the latter model has also been known as the two-step model, in which the cooperation of two (or more) DNA polymerases as misinserters and (mis)extenders is assumed. Daylight UV induces a characteristic UV-specific mutation, a UV-signature mutation occurring preferentially at methyl-CpG sites, which is also observed frequently after exposure to either UVB or UVA, but not to UVC. The wavelengths relevant to the mutation are so consistent with the composition of daylight UV that the mutation is called solar-UV signature, highlighting the importance of this type of mutation for creatures with the cytosine-methylated genome that are exposed to the sun in the natural environment. UVA has also been suggested to induce oxidative types of mutation, which would be caused by oxidative DNA damage produced through the oxidative stress after the irradiation. Indeed, UVA produces oxidative DNA damage not only in cells but also in skin, which, however, does not seem sufficient to induce mutations in the normal skin genome. In contrast, it has been demonstrated that UVA exclusively induces the solar-UV signature mutations in vivo through CPD formation.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Division of Genome and Radiation Biology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | |
Collapse
|