1
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2025; 480:1535-1553. [PMID: 39340593 PMCID: PMC11842502 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
2
|
Kang CH, Jung ES, Jung SJ, Han YH, Chae SW, Jeong DY, Kim BC, Lee SO, Yoon SJ. Pasteurized Akkermansia muciniphila HB05 (HB05P) Improves Muscle Strength and Function: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:4037. [PMID: 39683431 PMCID: PMC11643799 DOI: 10.3390/nu16234037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Sarcopenia, a condition marked by muscle wasting due to aging or inactivity, severely affects older populations. We previously showed that pasteurized Akkermansia muciniphila HB05 (HB05P), sourced from the breast milk of healthy Korean women, could mitigate muscle wasting in a dexamethasone-induced rat model. Here, we explored whether the oral administration of HB05P can enhance muscle strength and functionality in elderly individuals. Our objective was to determine if HB05P supplementation could benefit muscle performance in aging adults. METHODS We conducted a 12-week, double-blind, placebo-controlled clinical trial involving 100 individuals aged 60 and above, randomly assigned to receive either HB05P (1.0 × 1010 cells/day) or a placebo. RESULTS The HB05P group showed significant improvements in peak torque and peak torque per body weight of the left leg extensor muscles compared to the placebo group (p = 0.0103 and p = 0.0052). Furthermore, HB05P notably elevated follistatin levels, which counteract myostatin, relative to the placebo group (p = 0.0063). No notable safety concerns arose between the groups. CONCLUSIONS HB05P is a promising postbiotic derived from Akkermansia muciniphila that may enhance muscle strength and be used as a safe postbiotic ingredient of Akkermansia muciniphila to improve muscle health.
Collapse
Affiliation(s)
- Chang-Ho Kang
- HealthBiome, Co., Ltd., 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (C.-H.K.); (D.Y.J.); (B.-C.K.)
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Yeon-Hee Han
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Nuclear Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Department of Nuclear Medicine, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Do Yeun Jeong
- HealthBiome, Co., Ltd., 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (C.-H.K.); (D.Y.J.); (B.-C.K.)
| | - Byoung-Chan Kim
- HealthBiome, Co., Ltd., 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (C.-H.K.); (D.Y.J.); (B.-C.K.)
| | - Seung-Ok Lee
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Gastroenterology and Hepatology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Sun-Jung Yoon
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Lőrincz H, Somodi S, Ratku B, Harangi M, Paragh G. Crucial Regulatory Role of Organokines in Relation to Metabolic Changes in Non-Diabetic Obesity. Metabolites 2023; 13:270. [PMID: 36837889 PMCID: PMC9967669 DOI: 10.3390/metabo13020270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is characterized by an excessive accumulation of fat leading to a plethora of medical complications, including coronary artery disease, hypertension, type 2 diabetes mellitus or impaired glucose tolerance and dyslipidemia. Formerly, several physiological roles of organokines, including adipokines, hepatokines, myokines and gut hormones have been described in obesity, especially in the regulation of glucose and lipid metabolism, insulin sensitivity, oxidative stress, and low-grade inflammation. The canonical effect of these biologically active peptides and proteins may serve as an intermediate regulatory level that connects the central nervous system and the endocrine, autocrine, and paracrine actions of organs responsible for metabolic and inflammatory processes. Better understanding of the function of this delicately tuned network may provide an explanation for the wide range of obesity phenotypes with remarkable inter-individual differences regarding comorbidities and therapeutic responses. The aim of this review is to demonstrate the role of organokines in the lipid and glucose metabolism focusing on the obese non-diabetic subgroup. We also discuss the latest findings about sarcopenic obesity, which has recently become one of the most relevant metabolic disturbances in the aging population.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Balázs Ratku
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? LIFE (BASEL, SWITZERLAND) 2022; 12:life12122139. [PMID: 36556504 PMCID: PMC9781047 DOI: 10.3390/life12122139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Microgravity exposure causes several physiological and psychosocial alterations that challenge astronauts' health during space flight. Notably, many of these changes are mostly related to physical inactivity influencing different functional systems and organ biology, in particular the musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant biological markers and to underline molecular mechanisms behind these effects that are still poorly understood. From this perspective, a lesson from Geroscience may help tailor interventions to counteract the adverse effects of microgravity. For instance, decades of studies in the field have demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from a clinical and biological point of view) with that of frailty, primarily when referred to the physical function domain. Based on this premise, here we provide a deeper understanding of the biological mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these converge with those observed in astronauts after space flight.
Collapse
|
6
|
Thomas FP, Brannagan TH, Butterfield RJ, Desai U, Habib AA, Herrmann DN, Eichinger KJ, Johnson NE, Karam C, Pestronk A, Quinn C, Shy ME, Statland JM, Subramony SH, Walk D, Stevens-Favorite K, Miller B, Leneus A, Fowler M, van de Rijn M, Attie KM. Randomized Phase 2 Study of ACE-083 in Patients With Charcot-Marie-Tooth Disease. Neurology 2022; 98:e2356-e2367. [PMID: 35545446 PMCID: PMC9202530 DOI: 10.1212/wnl.0000000000200325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The goal of this work was to determine whether locally acting ACE-083 is safe and well tolerated and increases muscle volume, motor function, and quality of life (QoL) in adults with Charcot-Marie-Tooth disease (CMT) type 1. METHODS This phase 2 study enrolled adults with CMT1 or CMTX (N = 63). Part 1 was open label and evaluated the safety and tolerability of different dose levels of ACE-083 for use in part 2. Part 2 was a randomized, placebo-controlled, 6-month study of 240 mg/muscle ACE-083 injected bilaterally into the tibialis anterior muscle, followed by a 6-month, open-label extension in which all patients received ACE-083. Pharmacodynamic endpoints included total muscle volume (TMV; primary endpoint), contractile muscle volume (CMV), and fat fraction. Additional secondary endpoints included 6-minute walk test, 10-m walk/run, muscle strength, and QoL. Safety was assessed with treatment-emergent adverse events (TEAEs) and clinical laboratory tests. RESULTS In part 1 (n = 18), ACE-083 was generally safe and well tolerated at all dose levels, with no serious adverse events, TEAEs of grade 3 or greater, or death reported. In part 2 (n = 45 enrolled, n = 44 treated), there was significantly greater change in TMV with ACE-083 compared with placebo (least-squares mean difference 13.5%; p = 0.0096). There was significant difference between ACE-083 and placebo for CMV and change in ankle dorsiflexion strength. Fat fraction and all other functional outcomes were not significantly improved by ACE-083. Moderate to mild injection-site reactions were the most common TEAEs. DISCUSSION Despite significantly increased TMV and CMV, patients with CMT receiving ACE-083 in tibialis anterior muscles did not demonstrate greater functional improvement compared with those receiving placebo. TRIAL REGISTRATION INFORMATION Clinical Trials Registration: NCT03124459. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that intramuscular ACE-083 is safe and well tolerated and increases total muscle volume after 6 months of treatment in adults with CMT1 or CMTX.
Collapse
Affiliation(s)
- Florian P Thomas
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA.
| | - Thomas H Brannagan
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Russell J Butterfield
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Urvi Desai
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Ali A Habib
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - David N Herrmann
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Katy J Eichinger
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Nicholas E Johnson
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Chafic Karam
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Alan Pestronk
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Colin Quinn
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Michael E Shy
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Jeffrey M Statland
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Sub H Subramony
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - David Walk
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Katherine Stevens-Favorite
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Barry Miller
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Ashley Leneus
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Marcie Fowler
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Marc van de Rijn
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| | - Kenneth M Attie
- From Hackensack University Medical Center (F.P.T.), Hackensack Meridian School of Medicine, Nutley, NJ; Columbia University Medical Center (T.H.B.), New York, NY; University of Utah (R.J.B.), Salt Lake City; Carolinas Healthcare System Neurosciences Institute (U.D.), Charlotte, NC; University of California Irvine (A.A.H.); University of Rochester Medical Center (D.N.H., K.J.E.), NY; Virginia Commonwealth University (N.E.J.), Richmond; Oregon Health & Science University (C.K.), Portland; Washington University School of Medicine (A.P.), St. Louis, MO; University of Pennsylvania (C.Q.), Philadelphia; University of Iowa (M.E.S.), Iowa City; University of Kansas Medical Center (J.M.S.), Kansas City; University of Florida (S.H.S.), Gainesville; University of Minnesota (D.W.), Minneapolis; Cadent Medical Communications, LLC, a Syneos Health group company (K.S.-F.), New York, NY; Acceleron Pharma (B.M., A.L., M.F., M.v.d.R., K.M.A.), Cambridge, MA
| |
Collapse
|
7
|
Saitoh M, Takayama K, Roppongi Y, Shimada T, Taguchi A, Taniguchi A, Hayashi Y. Strategic structure-activity relationship study on a follistatin-derived myostatin inhibitory peptide. Bioorg Med Chem Lett 2021; 46:128163. [PMID: 34087433 DOI: 10.1016/j.bmcl.2021.128163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/16/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
Myostatin, a negative regulator of muscle mass is a promising target for the treatment of muscle atrophic diseases. The novel myostatin inhibitory peptide, DF-3 is derived from the N-terminal α-helical domain of follistatin, which is an endogenous inhibitor of myostatin and other TGF-β family members. It has been suggested that the optimization of hydrophobic residues is important to enhance the myostatin inhibition. This study describes a structure-activity relationship study focused on hydrophobic residues of DF-3 and designed to obtain a more potent peptide. A methionine residue in DF-3, which is susceptible to oxidation, was successfully converted to homophenylalanine in DF-100, and a new derivative DF-100, with four amino acid substitutions in DF-3 shows twice the potent inhibitory ability as DF-3. This report provides a new platform of a 14-mer peptide muscle enhancer.
Collapse
Affiliation(s)
- Mariko Saitoh
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Yoshimi Roppongi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Shimada
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
8
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Li M, Tang X, You W, Wang Y, Chen Y, Liu Y, Yuan H, Gao C, Chen X, Xiao Z, Ouyang H, Pang D. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:49-62. [PMID: 34513293 PMCID: PMC8411015 DOI: 10.1016/j.omtn.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/09/2021] [Indexed: 01/27/2023]
Abstract
As a robust antagonist of myostatin (MSTN), follistatin (FST) is an important regulator of skeletal muscle development, and the delivery of FST to muscle tissue represents a potential therapeutic strategy for muscular dystrophies. The N terminus and FSI domain of FST are the functional domains for MSTN binding. Here, we aimed to achieve site-specific integration of FSI-I-I, including the signal peptide, N terminus, and three FSI domains, into the last codon of the porcine MSTN gene using a homology-mediated end joining (HMEJ)-based strategy mediated by CRISPR-Cas9. Based on somatic cell nuclear transfer (SCNT) technology, we successfully obtained FSI-I-I knockin pigs. H&E staining of longissimus dorsi and gastrocnemius cross-sections showed larger myofiber sizes in FSI-I-I knockin pigs than in controls. Moreover, the Smad and Erk pathways were inhibited, whereas the PI3k/Akt pathway was activated in FSI-I-I knockin pigs. In addition, the levels of MyoD, Myf5, and MyoG transcription were upregulated while that of MRF4 was downregulated in FSI-I-I knockin pigs. These results indicate that the FSI-I-I gene mediates skeletal muscle hypertrophy through an MSTN-related signaling pathway and the expression of myogenic regulatory factors. Overall, FSI-I-I knockin pigs with hypertrophic muscle tissue hold great promise as a therapeutic model for human muscular dystrophies.
Collapse
Affiliation(s)
- Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Wenni You
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yanbing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Ying Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Xue Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Zhiwei Xiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Hongsheng Ouyang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China,Corresponding author: Daxin Pang, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People’s Republic of China.
| |
Collapse
|
10
|
Characterization of tolloid-mediated cleavage of the GDF8 procomplex. Biochem J 2021; 478:1733-1747. [PMID: 33876824 DOI: 10.1042/bcj20210054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Growth differentiation factor 8 (GDF8), a.k.a. myostatin, is a member of the larger TGFβ superfamily of signaling ligands. GDF8 has been well characterized as a negative regulator of muscle mass. After synthesis, GDF8 is held latent by a noncovalent complex between the N-terminal prodomain and the signaling ligand. Activation of latent GDF8 requires proteolytic cleavage of the prodomain at residue D99 by a member of the tolloid family of metalloproteases. While tolloid proteases cleave multiple substrates, they lack a conserved consensus sequence. Here, we investigate the tolloid cleavage site of the GDF8 prodomain to determine what residues contribute to tolloid recognition and subsequent proteolysis. Using sequential alanine mutations, we identified several residues adjacent to the scissile bond, including Y94, that when mutated, abolish tolloid-mediated activation of latent GDF8. Using the astacin domain of Tll1 (Tolloid Like 1) we determined that prodomain mutants were more resistant to proteolysis. Purified latent complexes harboring the prodomain mutations, D92A and Y94A, impeded activation by tolloid but could be fully activated under acidic conditions. Finally, we show that co-expression of GDF8 WT with prodomain mutants that were tolloid resistant, suppressed GDF8 activity. Taken together our data demonstrate that residues towards the N-terminus of the scissile bond are important for tolloid-mediated activation of GDF8 and that the tolloid-resistant version of the GDF8 prodomain can function dominant negative to WT GDF8.
Collapse
|
11
|
Lee SJ. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J Clin Invest 2021; 131:148372. [PMID: 33938454 DOI: 10.1172/jci148372] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery of myostatin (MSTN; also known as GDF-8) as a critical regulator of skeletal muscle mass in 1997, there has been an extensive effort directed at understanding the cellular and physiological mechanisms underlying MSTN activity, with the long-term goal of developing strategies and agents capable of blocking MSTN signaling to treat patients with muscle loss. Considerable progress has been made in elucidating key components of this regulatory system, and in parallel with this effort has been the development of numerous biologics that have been tested in clinical trials for a wide range of indications, including muscular dystrophy, sporadic inclusion body myositis, spinal muscular atrophy, cachexia, muscle loss due to aging or following falls, obesity, and type 2 diabetes. Here, I review what is known about the MSTN regulatory system and the current state of efforts to target this pathway for clinical applications.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
13
|
Lee SJ, Gharbi A, Shin JE, Jung ID, Park YM. Myostatin inhibitor YK11 as a preventative health supplement for bacterial sepsis. Biochem Biophys Res Commun 2021; 543:1-7. [PMID: 33588136 DOI: 10.1016/j.bbrc.2021.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
Muscle wasting caused by catabolic reactions in skeletal muscle is commonly observed in patients with sepsis. Myostatin, a negative regulator of muscle mass, has been reported to be upregulated in diseases associated with muscle atrophy. However, the behavior of myostatin during sepsis is not well understood. Herein, we sought to investigate the expression and regulation of myostatin in skeletal muscle in mice inoculated with gram-negative bacteria. Interestingly, the protein level of myostatin was found to increase in the muscle of septic mice simultaneously with an increase in the levels of follistatin, NF-κΒ, myogenin, MyoD, p- FOXO3a, and p-Smad2. Furthermore, the inhibition of myostatin by YK11 repressed the levels of pro-inflammatory cytokines and organ damage markers in the bloodstream and in the major organs of mice, which originally increased in sepsis; thus, myostatin inhibition by YK11 decreased the mortality rate due to sepsis. The results of this study suggest that YK11 may help revert muscle wasting during sepsis and subdue the inflammatory environment, thereby highlighting its potential as a preventive agent for sepsis-related muscle wasting.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Immunology, Laboratory of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, 380-701, Seoul, South Korea
| | - Amal Gharbi
- Dandi Bioscience Inc, 6th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, South Korea
| | - Joo Eun Shin
- Department of Immunology, Laboratory of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, 380-701, Seoul, South Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, South Korea.
| | - Yeong Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, 380-701, Seoul, South Korea; Dandi Bioscience Inc, 6th Floor of Real Company, 66, Acha San-ro, Seongdong-gu, Seoul, South Korea.
| |
Collapse
|
14
|
Walker RG, Kattamuri C, Goebel EJ, Zhang F, Hammel M, Tainer JA, Linhardt RJ, Thompson TB. Heparin-mediated dimerization of follistatin. Exp Biol Med (Maywood) 2021; 246:467-482. [PMID: 33197333 PMCID: PMC7885052 DOI: 10.1177/1535370220966296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Heparin and heparan sulfate (HS) are highly sulfated polysaccharides covalently bound to cell surface proteins, which directly interact with many extracellular proteins, including the transforming growth factor-β (TGFβ) family ligand antagonist, follistatin 288 (FS288). Follistatin neutralizes the TGFβ ligands, myostatin and activin A, by forming a nearly irreversible non-signaling complex by surrounding the ligand and preventing interaction with TGFβ receptors. The FS288-ligand complex has higher affinity than unbound FS288 for heparin/HS, which accelerates ligand internalization and lysosomal degradation; however, limited information is available for how FS288 interactions with heparin affect ligand binding. Using surface plasmon resonance (SPR) we show that preincubation of FS288 with heparin/HS significantly decreased the association kinetics for both myostatin and activin A with seemingly no effect on the dissociation rate. This observation is dependent on the heparin/HS chain length where small chain lengths less than degree of polymerization 10 (dp10) did not alter association rates but chain lengths >dp10 decreased association rates. In an attempt to understand the mechanism for this observation, we uncovered that heparin induced dimerization of follistatin. Consistent with our SPR results, we found that dimerization only occurs with heparin molecules >dp10. Small-angle X-ray scattering of the FS288 heparin complex supports that FS288 adopts a dimeric configuration that is similar to the FS288 dimer in the ligand-bound state. These results indicate that heparin mediates dimerization of FS288 in a chain-length-dependent manner that reduces the ligand association rate, but not the dissociation rate or antagonistic activity of FS288.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
15
|
Pervin S, Reddy ST, Singh R. Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:653179. [PMID: 33897620 PMCID: PMC8062757 DOI: 10.3389/fendo.2021.653179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a global health problem and a major risk factor for several metabolic conditions including dyslipidemia, diabetes, insulin resistance and cardiovascular diseases. Obesity develops from chronic imbalance between energy intake and energy expenditure. Stimulation of cellular energy burning process has the potential to dissipate excess calories in the form of heat via the activation of uncoupling protein-1 (UCP1) in white and brown adipose tissues. Recent studies have shown that activation of transforming growth factor-β (TGF-β) signaling pathway significantly contributes to the development of obesity, and blockade or inhibition is reported to protect from obesity by promoting white adipose browning and increasing mitochondrial biogenesis. Identification of novel compounds that activate beige/brown adipose characteristics to burn surplus calories and reduce excess storage of fat are actively sought in the fight against obesity. In this review, we present recent developments in our understanding of key modulators of TGF-β signaling pathways including follistatin (FST) and myostatin (MST) in regulating adipose browning and brown adipose mass and activity. While MST is a key ligand for TGF-β family, FST can bind and regulate biological activity of several TGF-β superfamily members including activins, bone morphogenic proteins (BMP) and inhibins. Here, we review the literature supporting the critical roles for FST, MST and other proteins in modulating TGF-β signaling to influence beige and brown adipose characteristics. We further review the potential therapeutic utility of FST for the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Shehla Pervin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Rajan Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Endocrinology, Men’s Health: Aging and Metabolism, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Rajan Singh,
| |
Collapse
|
16
|
Shah A, Dodson WC, Kris-Etherton PM, Kunselman AR, Stetter CM, Gnatuk CL, Estes SJ, Allison KC, Sarwer DB, Sluss PM, Coutifaris C, Dokras A, Legro RS. Effects of Oral Contraception and Lifestyle Modification on Incretins and TGF-ß Superfamily Hormones in PCOS. J Clin Endocrinol Metab 2021; 106:108-119. [PMID: 32968804 PMCID: PMC7765645 DOI: 10.1210/clinem/dgaa682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To examine the effects of common treatments for polycystic ovary syndrome (PCOS) on a panel of hormones (reproductive/metabolic). DESIGN Secondary analysis of blood from a randomized controlled trial of three 16-week preconception interventions designed to improve PCOS-related abnormalities: continuous oral contraceptive pills (OCPs, N = 34 subjects), intensive lifestyle modification (Lifestyle, N = 31), or a combination of both (Combined, N = 29). MATERIALS AND METHODS Post-treatment levels of activin A and B, inhibin B, and follistatin (FST), as well as Insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 2 (IGFBP-2), glucagon, glucagon-like peptide 1 (GLP-1) and 2, and oxyntomodulin were compared to baseline, and the change from baseline in these parameters were correlated with outcomes. RESULTS Oral contraceptive pill use was associated with a significant suppression in activin A, inhibin A, and anti-mullerian hormone (AMH), but a significant increase in FST. IGF-1, IGFBP-2, glucagon, and GLP-2 levels were significantly decreased. Oxyntomodulin was profoundly suppressed by OCPs (ratio of geometric means: 0.09, 95% confidence interval [CI]: 0.05, 0.18, P < 0.001). None of the analytes were significantly affected by Lifestyle, whereas the effects of Combined were similar to OCPs alone, although attenuated. Oxyntomodulin was significantly positively associated with the change in total ovarian volume (rs = 0.27; 95% CI: 0.03, 0.48; P = 0.03) and insulin sensitivity index (rs = 0.48; 95% CI: 0.27, 0.64; P < 0.001), and it was inversely correlated with change in area under the curve (AUC) glucose [rs = -0.38; 95% CI: -0.57, -0.16; P = 0.001]. None of the hormonal changes were associated with live birth, only Activin A was associated with ovulation (risk ratio per 1 ng/mL increase in change in Activin A: 6.0 [2.2, 16.2]; P < 0.001). CONCLUSIONS In women with PCOS, OCPs (and not Lifestyle) affect a wide variety of reproductive/metabolic hormones, but their treatment response does not correlate with live birth.
Collapse
Affiliation(s)
- Aesha Shah
- Department of Obstetrics and GynecologyPenn State College of Medicine, Hershey, PA
| | - William C Dodson
- Department of Public Health SciencesPenn State College of Medicine, Hershey, PA
| | | | - Allen R Kunselman
- Department of Public Health SciencesPenn State College of Medicine, Hershey, PA
| | - Christy M Stetter
- Department of Public Health SciencesPenn State College of Medicine, Hershey, PA
| | - Carol L Gnatuk
- Department of Obstetrics and GynecologyPenn State College of Medicine, Hershey, PA
| | - Stephanie J Estes
- Department of Obstetrics and GynecologyPenn State College of Medicine, Hershey, PA
| | - Kelly C Allison
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - David B Sarwer
- Center for Obesity Research and Education, College of Public Health, Temple University, Philadelphia, PA
| | - Patrick M Sluss
- Penn State College of Health and Human Development, University Park, PA
- Department of Pathology, Massachusetts General Hospital, Boston, MA TX
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Richard S Legro
- Department of Obstetrics and GynecologyPenn State College of Medicine, Hershey, PA
- Department of Public Health SciencesPenn State College of Medicine, Hershey, PA
| |
Collapse
|
17
|
Rybalka E, Timpani CA, Debruin DA, Bagaric RM, Campelj DG, Hayes A. The Failed Clinical Story of Myostatin Inhibitors against Duchenne Muscular Dystrophy: Exploring the Biology behind the Battle. Cells 2020; 9:E2657. [PMID: 33322031 PMCID: PMC7764137 DOI: 10.3390/cells9122657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Myostatin inhibition therapy has held much promise for the treatment of muscle wasting disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD). Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several clinical trials were initiated in DMD patients using different modality myostatin inhibition therapies. All failed to show modification of disease course as dictated by the primary and secondary outcome measures selected: the myostatin inhibition story, thus far, is a failed clinical story. These trials have recently been extensively reviewed and reasons why pre-clinical data collected in animal models have failed to translate into clinical benefit to patients have been purported. However, the biological mechanisms underlying translational failure need to be examined to ensure future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore the biology which could explain the failed translation of myostatin inhibitors in the treatment of DMD.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Danielle A. Debruin
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Ryan M. Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Dean G. Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, 3021 Victoria, Australia
| |
Collapse
|
18
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
19
|
Dushyanth K, Shukla R, Chatterjee RN, Bhattacharya TK. Expression and polymorphism of Follistatin ( FST) gene and its association with growth traits in native and exotic chicken. Anim Biotechnol 2020; 33:824-834. [PMID: 33170076 DOI: 10.1080/10495398.2020.1838917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Follistatin (FST), a member of the transforming growth factor beta super-family regulates body growth by inhibiting the binding of myostatin (an inhibitor of growth) with its receptor in chicken. An experiment was conducted to explore ontogenic expression of the follistatin gene, determine polymorphism at the coding region of the gene and estimate its effect on growth traits in native (Aseel) and exotic broiler (PD-1) and layer (White Leghorn) chicken. The significant differences of FST gene expression were observed among the breeds revealing significantly (p < 0.05) higher expression in PD-1 line followed by White Leghorn and Aseel breeds during both embryonic and post-hatch period. The polymorphism at the functional domain of the FST gene was identified with the presence of 4 haplotypes. The follistatin haplogroups had the significant effect on body weights (p < 0.05) at 42 days of age in the White Leghorn, PD-1 and Aseel breeds (h1h1 in PD-1, h1h4 in White Leghorn and h1h2 haplogroups in Aseel breeds had the highest body weights of 770.04 ± 12.96, 246.28 ± 7.60 and 270.00 ± 10.68 g, respectively). It is concluded that the follistatin gene expressed differently during the embryonic and post-embryonic period across the breeds and the coding region of the gene was polymorphic having significant effects on growth traits in chicken.
Collapse
Affiliation(s)
- K Dushyanth
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - R Shukla
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | | | | |
Collapse
|
20
|
Seo DY, Hwang BG. Effects of exercise training on the biochemical pathways associated with sarcopenia. Phys Act Nutr 2020; 24:32-38. [PMID: 33108716 PMCID: PMC7669465 DOI: 10.20463/pan.2020.0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
[Purpose] Sarcopenia is considered one of the major causes of disability in the elderly population and is highly associated with aging. Exercise is an essential strategy for improving muscle health while aging and involves multiple metabolic and transcriptional adaptations. Although the beneficial effects of exercise modalities on skeletal muscle structure and function in aging are well recognized, the exact cellular and molecular mechanisms underlying the influence of exercise have not been fully elucidated. [Methods] We summarize the biochemical pathways involved in the progression and pathogenesis of sarcopenia and describe the beneficial effects of exercise training on the relevant signaling pathways associated with sarcopenia. [Results] This study briefly introduces current knowledge on the signaling pathways involved in the development of sarcopenia, effects of aerobic exercise on mitochondria-related parameters and mitochondrial function, and role of resistance exercise in the regulation of muscle protein synthesis against sarcopenia. [Conclusion] This review suggested that the beneficial effects of exercise are still under-explored, and accelerated research will help develop better modalities for the prevention, management, and treatment of sarcopenia.
Collapse
Affiliation(s)
- Dae Yun Seo
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Boo Geun Hwang
- Department of Sport Rehabilitation, Tong Myong University, Busan, Republic of Korea
| |
Collapse
|
21
|
Kramerova I, Marinov M, Owens J, Lee SJ, Becerra D, Spencer MJ. Myostatin inhibition promotes fast fibre hypertrophy but causes loss of AMP-activated protein kinase signalling and poor exercise tolerance in a model of limb-girdle muscular dystrophy R1/2A. J Physiol 2020; 598:3927-3939. [PMID: 33460149 DOI: 10.1113/jp279943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 05/31/2024] Open
Abstract
KEY POINTS Limb-girdle muscular dystrophy R1 (LGMD R1) is caused by mutations in the CAPN3 gene and is characterized by progressive muscle loss, impaired mitochondrial function and reductions in the slow oxidative gene expression programme. Myostatin is a negative regulator of muscle growth, and its inhibition improves the phenotype in several muscle wasting disorders. The effect of genetic and pharmacological inhibition of myostatin signalling on the disease phenotype in a mouse model of LGMD R1 (CAPN3 knockout mouse-C3KO) was studied. Inhibition of myostatin signalling in C3KO muscles resulted in significant muscle hypertrophy; however, there were no improvements in muscle strength and exacerbation of exercise intolerance concomitant with further reduction of muscle oxidative capacity was observed. Inhibition of myostatin signalling is unlikely to be a valid therapeutic strategy for LGMD R1. ABSTRACT Limb-girdle muscular dystrophy R1 (LGMD R1) is caused by mutations in the CAPN3 gene and is characterized by progressive muscle loss, impaired mitochondrial function and reductions in the slow oxidative gene expression programme. There are currently no therapies available to patients. We sought to determine if induction of muscle growth, through myostatin inhibition, represents a viable therapeutic strategy for this disease. Myostatin is a negative regulator of muscle growth, and its inhibition improves the phenotype in several muscle wasting disorders. However, the effect of myostatin depends on the genetic and pathophysiological context and may not be efficacious in all contexts. We found that genetic inhibition of myostatin through overexpression of follistatin (an endogenous inhibitor of myostatin) in our LGMD R1 model (C3KO) resulted in 1.5- to 2-fold increase of muscle mass for the majority of limb muscles. However, muscle strength was not improved and exercise intolerance was exacerbated. Pharmacological inhibition of myostatin, using an anti-myostatin antibody, resulted in statistically significant increases in muscle mass; however, functional testing did not reveal changes in muscle strength nor endurance in treated C3KO mice. Histochemical and biochemical evaluation of follistatin overexpressing mice revealed a reduction in the percentage of oxidative fibres and decreased activation of AMP-activated protein kinase signalling in transgenics compared to C3KO muscles. Our data suggest that muscle hypertrophy, induced by myostatin inhibition, leads to loss of oxidative capacity, which further compromises metabolically impaired C3KO muscles and thus is unlikely to be a valid strategy for treatment of LGMD R1.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Masha Marinov
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Se-Jin Lee
- The Jackson Laboratory and University of Connecticut School of Medicine, Farmington, CT, USA
| | - Diana Becerra
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
22
|
Tang R, Harasymowicz NS, Wu CL, Collins KH, Choi YR, Oswald SJ, Guilak F. Gene therapy for follistatin mitigates systemic metabolic inflammation and post-traumatic arthritis in high-fat diet-induced obesity. SCIENCE ADVANCES 2020; 6:eaaz7492. [PMID: 32426485 PMCID: PMC7209997 DOI: 10.1126/sciadv.aaz7492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/26/2020] [Indexed: 05/11/2023]
Abstract
Obesity-associated inflammation and loss of muscle function play critical roles in the development of osteoarthritis (OA); thus, therapies that target muscle tissue may provide novel approaches to restoring metabolic and biomechanical dysfunction associated with obesity. Follistatin (FST), a protein that binds myostatin and activin, may have the potential to enhance muscle formation while inhibiting inflammation. Here, we hypothesized that adeno-associated virus 9 (AAV9) delivery of FST enhances muscle formation and mitigates metabolic inflammation and knee OA caused by a high-fat diet in mice. AAV-mediated FST delivery exhibited decreased obesity-induced inflammatory adipokines and cytokines systemically and in the joint synovial fluid. Regardless of diet, mice receiving FST gene therapy were protected from post-traumatic OA and bone remodeling induced by joint injury. Together, these findings suggest that FST gene therapy may provide a multifactorial therapeutic approach for injury-induced OA and metabolic inflammation in obesity.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
23
|
Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, Bayat H, Yousefi M, Azhdari S, Talebi S, Mojarrad M. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci 2020; 131:370-389. [DOI: 10.1080/00207454.2020.1740218] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Salmaninejad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abarghan
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bayat
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Yousefi
- Department of Medical Genetics Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Samaneh Talebi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Boido M, Butenko O, Filippo C, Schellino R, Vrijbloed JW, Fariello RG, Vercelli A. A new protein curbs the hypertrophic effect of myostatin inhibition, adding remarkable endurance to motor performance in mice. PLoS One 2020; 15:e0228653. [PMID: 32160187 PMCID: PMC7065788 DOI: 10.1371/journal.pone.0228653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Current efforts to improve muscle performance are focused on muscle trophism via inhibition of the myostatin pathway: however they have been unsuccessful in the clinic to date. In this study, a novel protein has been created by combining the soluble activin receptor, a strong myostatin inhibitor, to the C-terminal agrin nLG3 domain (ActR-Fc-nLG3) involved in the development and maintenance of neuromuscular junctions. Both domains are connected via the constant region of an Igg1 monoclonal antibody. Surprisingly, young male mice treated with ActR-Fc-nLG3 showed a remarkably increased endurance in the rotarod test, significantly longer than the single domain compounds ActR-Fc and Fc-nLG3 treated animals. This increase in endurance was accompanied by only a moderate increase in body weights and wet muscle weights of ActR-Fc-nLG3 treated animals and were lower than expected. The myostatin inhibitor ActR-Fc induced, as expected, a highly significant increase in body and muscle weights compared to control animals and ActR-Fc-nLG3 treated animals. Moreover, the prolonged endurance effect was not observed when ActR-Fc and Fc-nLG3 were dosed simultaneously as a mixture and the body and muscle weights of these animals were very similar to ActR-Fc treated animals, indicating that both domains need to be on one molecule. Muscle morphology induced by ActR-Fc-nLG3 did not appear to be changed however, close examination of the neuromuscular junction showed significantly increased acetylcholine receptor surface area for ActR-Fc-nLG3 treated animals compared to controls. This result is consistent with published observations that endurance training in rats increased acetylcholine receptor quantity at neuromuscular junctions and provide evidence that improving nerve-muscle interaction could be an important factor for sustaining long term muscle activity.
Collapse
Affiliation(s)
- Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
- * E-mail:
| | - Olena Butenko
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Consuelo Filippo
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Roberta Schellino
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | | | | | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| |
Collapse
|
25
|
Follistatin expression in the central nervous system of the adult rat. J Chem Neuroanat 2020; 105:101753. [PMID: 32014555 DOI: 10.1016/j.jchemneu.2020.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022]
Abstract
Follistatin was initially cloned as a monomeric polypeptide that inhibits the release of follicle-stimulating hormone. Although follistatin also plays pivotal roles in skeletal muscle hypertrophy and immunoregulation in the epididymis, little information is available regarding follistatin function in the adult central nervous system (CNS). Hence, we investigated follistatin expression in the adult rat CNS using immunohistochemistry. Follistatin was intensely expressed in most neurons and their axons. Furthermore, oligodendrocytes, ependymal cells, and some astrocytes also expressed follistatin protein. These data indicate that follistatin is widely expressed throughout the adult CNS. The abundant expression of follistatin in the adult brain suggests that this protein plays important roles in the CNS.
Collapse
|
26
|
Saitoh M, Takayama K, Hitachi K, Taguchi A, Taniguchi A, Tsuchida K, Hayashi Y. Discovery of a follistatin-derived myostatin inhibitory peptide. Bioorg Med Chem Lett 2020; 30:126892. [PMID: 31874826 DOI: 10.1016/j.bmcl.2019.126892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Follistatin is well known as an inhibitor of transforming growth factor (TGF)-β superfamily ligands including myostatin and activin A. Myostatin, a negative regulator of muscle growth, is a promising target with which to treat muscle atrophic diseases. Here, we focused on the N-terminal domain (ND) of follistatin (Fst) that interacts with the type I receptor binding site of myostatin. Through bioassay of synthetic ND-derived fragment peptides, we identified DF-3, a new myostatin inhibitory 14-mer peptide which effectively inhibits myostatin, but fails to inhibit activin A or TGF-β1, in an in vitro luciferase reporter assay. Injected intramuscularly, DF-3 significantly increases skeletal muscle mass in mice and consequently, it can serve as a platform for development of muscle enhancement based on myostatin inhibition.
Collapse
Affiliation(s)
- Mariko Saitoh
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
27
|
Luo ZB, Luo QR, Xuan MF, Han SZ, Wang JX, Guo Q, Choe YG, Jin SS, Kang JD, Yin XJ. Comparison of internal organs between myostatin mutant and wild-type piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6788-6795. [PMID: 31368537 DOI: 10.1002/jsfa.9962] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Myostatin (MSTN) negatively regulates skeletal muscle development; however, its functions in internal organs have not been thoroughly investigated. Here, we compared the morphological, molecular, and biological characteristics of the heart, liver, spleen, lungs, kidneys, and tongue of homozygous MSTN mutant (MSTN-/- ), heterozygous MSTN mutant (MSTN+/- ), and wild-type (WT) piglets. RESULTS The heart and liver were lighter in MSTN-/- piglets than in MSTN+/- piglets, while the tongue was heavier in MSTN-/- piglets than in WT piglets (P < 0.05). Furthermore, the tongue was longer in MSTN-/- piglets than in WT piglets, and myofibers of the tongue were significantly larger in the former piglets than in the latter ones (P < 0.01). mRNA expression of MSTN in all organs was significantly lower in MSTN-/- and MSTN+/- piglets than in WT piglets (P < 0.05). Meanwhile, mRNA expression of follistatin, which is closely related to MSTN, in the heart and liver was significantly higher in MSTN-/- piglets than in MSTN+/- and WT piglets (P < 0.05). In addition, protein expression of MSTN in the heart, kidneys, and tongue was significantly lower in MSTN-/- piglets than in WT piglets (P < 0.01). CONCLUSION These results suggest that MSTN is widely expressed and has marked effects in multiple internal organs. Myostatin has crucial functions in regulating internal organ size, especially the tongue. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Qi-Rong Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Sheng-Zhong Han
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Jun-Xia Wang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Yong-Gyu Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Song-Shan Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
28
|
Han X, Møller LLV, De Groote E, Bojsen-Møller KN, Davey J, Henríquez-Olguin C, Li Z, Knudsen JR, Jensen TE, Madsbad S, Gregorevic P, Richter EA, Sylow L. Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle. J Cachexia Sarcopenia Muscle 2019; 10:1241-1257. [PMID: 31402604 PMCID: PMC7663972 DOI: 10.1002/jcsm.12474] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 06/12/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Skeletal muscle wasting is often associated with insulin resistance. A major regulator of muscle mass is the transforming growth factor β (TGF-β) superfamily, including activin A, which causes atrophy. TGF-β superfamily ligands also negatively regulate insulin-sensitive proteins, but whether this pathway contributes to insulin action remains to be determined. METHODS To elucidate if TGF-β superfamily ligands regulate insulin action, we used an adeno-associated virus gene editing approach to overexpress an activin A inhibitor, follistatin (Fst288), in mouse muscle of lean and diet-induced obese mice. We determined basal and insulin-stimulated 2-deoxy-glucose uptake using isotopic tracers in vivo. Furthermore, to evaluate whether circulating Fst and activin A concentrations are associated with obesity, insulin resistance, and weight loss in humans, we analysed serum from morbidly obese subjects before, 1 week, and 1 year after Roux-en-Y gastric bypass (RYGB). RESULTS Fst288 muscle overexpression markedly increased in vivo insulin-stimulated (but not basal) glucose uptake (+75%, P < 0.05) and increased protein expression and intracellular insulin signalling of AKT, TBC1D4, PAK1, pyruvate dehydrogenase-E1α, and p70S6K, while decreasing TBC1D1 signaling (P < 0.05). Fst288 increased both basal and insulin-stimulated protein synthesis, but no correlation was observed between the Fst288-driven hypertrophy and the increase in insulin-stimulated glucose uptake. Importantly, Fst288 completely normalized muscle glucose uptake in insulin-resistant diet-induced obese mice. RYGB surgery doubled circulating Fst and reduced activin A (-24%, P < 0.05) concentration 1 week after surgery before any significant weight loss in morbidly obese normoglycemic patients, while major weight loss after 1 year did not further change the concentrations. CONCLUSIONS We here present evidence that Fst is a potent regulator of insulin action in muscle, and in addition to AKT and p70S6K, we identify TBC1D1, TBC1D4, pyruvate dehydrogenase-E1α, and PAK1 as Fst targets. Circulating Fst more than doubled post-RYGB surgery, a treatment that markedly improved insulin sensitivity, suggesting a role for Fst in regulating glycaemic control. These findings demonstrate the therapeutic potential of inhibiting TGF-β superfamily ligands to improve insulin action and Fst's relevance to muscle wasting-associated insulin-resistant conditions in mice and humans.
Collapse
Affiliation(s)
- Xiuqing Han
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Liliendal Valbjørn Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Estelle De Groote
- Faculty of Motor Science, Institute of Neuroscience, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | | | - Jonathan Davey
- Center for Muscle Research, Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Carlos Henríquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Roland Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Paul Gregorevic
- Center for Muscle Research, Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Erik Arne Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Bianchi A, Manti PG, Lucini F, Lanzuolo C. Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss Muscular Dystrophy: tous pour un, un pour tous. Nucleus 2019; 9:276-290. [PMID: 29619865 PMCID: PMC5973142 DOI: 10.1080/19491034.2018.1460044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alteration of the several roles that Lamin A/C plays in the mammalian cell leads to a broad spectrum of pathologies that – all together – are named laminopathies. Among those, the Emery Dreifuss Muscular Dystrophy (EDMD) is of particular interest as, despite the several known mutations of Lamin A/C, the genotype–phenotype correlation still remains poorly understood; this suggests that the epigenetic background of patients might play an important role during the time course of the disease. Historically, both a mechanical role of Lamin A/C and a regulative one have been suggested as the driving force of laminopathies; however, those two hypotheses are not mutually exclusive. Recent scientific evidence shows that Lamin A/C sustains the correct gene expression at the epigenetic level thanks to the Lamina Associated Domains (LADs) reorganization and the crosstalk with the Polycomb Group of Proteins (PcG). Furthermore, the PcG-dependent histone mark H3K27me3 increases under mechanical stress, finally pointing out the link between the mechano-properties of the nuclear lamina and epigenetics. Here, we summarize the emerging mechanisms that could explain the high variability seen in Emery Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Andrea Bianchi
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | | | - Federica Lucini
- b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | - Chiara Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy.,c Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
30
|
Biferali B, Proietti D, Mozzetta C, Madaro L. Fibro-Adipogenic Progenitors Cross-Talk in Skeletal Muscle: The Social Network. Front Physiol 2019; 10:1074. [PMID: 31496956 PMCID: PMC6713247 DOI: 10.3389/fphys.2019.01074] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle is composed of a large and heterogeneous assortment of cell populations that interact with each other to maintain muscle homeostasis and orchestrate regeneration. Although satellite cells (SCs) – which are muscle stem cells – are the protagonists of functional muscle repair following damage, several other cells such as inflammatory, vascular, and mesenchymal cells coordinate muscle regeneration in a finely tuned process. Fibro–adipogenic progenitors (FAPs) are a muscle interstitial mesenchymal cell population, which supports SCs differentiation during tissue regeneration. During the first days following muscle injury FAPs undergo massive expansion, which is followed by their macrophage-mediated clearance and the re-establishment of their steady-state pool. It is during this critical time window that FAPs, together with the other cellular components of the muscle stem cell niche, establish a dynamic network of interactions that culminate in muscle repair. A number of different molecules have been recently identified as important mediators of this cross-talk, and its alteration has been associated with different muscle pathologies. In this review, we will focus on the soluble factors that regulate FAPs activity, highlighting their roles in orchestrating the inter-cellular interactions between FAPs and the other cell populations that participate in muscle regeneration.
Collapse
Affiliation(s)
- Beatrice Biferali
- Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Rome, Italy
| | - Daisy Proietti
- IRCCS Santa Lucia Foundation, Rome, Italy.,DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
31
|
Takayama K, Asari T, Saitoh M, Nirasawa K, Sasaki E, Roppongi Y, Nakamura A, Saga Y, Shimada T, Ikeyama H, Taguchi A, Taniguchi A, Negishi Y, Hayashi Y. Chain-Shortened Myostatin Inhibitory Peptides Improve Grip Strength in Mice. ACS Med Chem Lett 2019; 10:985-990. [PMID: 31223459 DOI: 10.1021/acsmedchemlett.9b00174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Inhibition of myostatin is a promising strategy for treatment of muscle atrophic disorders. We had already identified a 23-mer peptide (1) as a synthetic myostatin inhibitor, and structure-activity relationship studies with 1 afforded a potent 22-mer peptide derivative (3). Herein, we report the shortest myostatin inhibitory peptide so far. Among chain-shortened 16-mer peptidic inhibitors derived from the C-terminal region of 3, peptide inhibitor 8a with β-sheet propensity was twice as potent as 22-mer inhibitor 3 and significantly increased not only muscle mass but also hind limb grip strength in Duchenne muscular dystrophic model mice. These results suggest that 8a is a promising platform for drug development treating muscle atrophic disorders.
Collapse
|
32
|
Jin Q, Qiao C, Li J, Xiao B, Li J, Xiao X. A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice. Skelet Muscle 2019; 9:16. [PMID: 31133057 PMCID: PMC6537384 DOI: 10.1186/s13395-019-0197-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023] Open
Abstract
Background Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily. The GDF11 propeptide, which is derived from the GDF11 precursor protein, blocks the activity of GDF11 and its homolog, myostatin, which are both potent inhibitors of muscle growth. Thus, treatment with GDF11 propeptide may be a potential therapeutic strategy for diseases associated with muscle atrophy like sarcopenia and the muscular dystrophies. Here, we evaluate the impact of GDF11 propeptide-Fc (GDF11PRO-Fc) gene delivery on skeletal muscle in normal and dystrophic adult mice. Methods A pull-down assay was used to obtain physical confirmation of a protein-protein interaction between GDF11PRO-Fc and GDF11 or myostatin. Next, differentiated C2C12 myotubes were treated with AAV6-GDF11PRO-Fc and challenged with GDF11 or myostatin to determine if GDF11PRO-Fc could block GDF11/myostatin-induced myotube atrophy. Localized expression of GDF11PRO-Fc was evaluated via a unilateral intramuscular injection of AAV9-GDF11PRO-Fc into the hindlimb of C57BL/6J mice. In mdx mice, intravenous injection of AAV9-GDF11PRO-Fc was used to achieve systemic expression. The impact of GDF11PRO-Fc on muscle mass, function, and pathological features were assessed. Results GDF11PRO-Fc was observed to bind both GDF11 and myostatin. In C2C12 myotubes, expression of GDF11PRO-Fc was able to mitigate GDF11/myostatin-induced atrophy. Following intramuscular injection in C57BL/6J mice, increased grip strength and localized muscle hypertrophy were observed in the injected hindlimb after 10 weeks. In mdx mice, systemic expression of GDF11PRO-Fc resulted in skeletal muscle hypertrophy without a significant change in cardiac mass after 12 weeks. In addition, grip strength and rotarod latency time were improved. Intramuscular fibrosis was also reduced in treated mdx mice; however, there was no change seen in central nucleation, membrane permeability to serum IgG or serum creatine kinase levels. Conclusions GDF11PRO-Fc induces skeletal muscle hypertrophy and improvements in muscle strength via inhibition of GDF11/myostatin signaling. However, GDF11PRO-Fc does not significantly improve the dystrophic pathology in mdx mice. Electronic supplementary material The online version of this article (10.1186/s13395-019-0197-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Bin Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Bhattacharya TK, Shukla R, Chatterjee RN, Bhanja SK. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Sci Rep 2019; 9:7789. [PMID: 31127166 PMCID: PMC6534594 DOI: 10.1038/s41598-019-44217-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
Myostatin (MSTN), a growth differentiation factor-8 regulates muscular development through its receptors, ACVR2A (Activin receptor type IIA) and ACVR2B (Activin receptor type IIB) by inhibiting cellular differentiation of developing somites during embryonic stage and diminishing myofibriller growth during post-embryonic period. The objective of this study was to compare the effect of knockdown of expression of myostatin, ACVR2A and ACVR2B genes on growth traits in chicken. The shRNAs for Myostatin, ACVR2A and ACVR2B genes were designed, synthesized and cloned in DEST vector. The recombinant molecules were transfected into the spermatozoa and transfected spermatozoa were inseminated artificially to the hens to obtain fertile eggs. The fertile eggs were collected, incubated in the incubator and hatched to chicks. Silencing of ACVR2B gene showed significantly higher body weight than other single, double and triple knock down of genes in transgenic birds. The carcass traits such as dressing%, leg muscle%, and breast muscle% were found with the highest magnitudes in birds with silencing of the ACVR2B gene as compared to the birds with that of other genes and control group. The lowest serum cholesterol and HDL content was found in ACVR2B silencing birds. The total RBC count was the highest in this group though the differential counts did not differ significantly among various silencing and control groups of birds. It is concluded that silencing of only one receptor of MSTN particularly, ACVR2B may augment the highest growth in chicken during juvenile stage. Our findings may be used as model for improving growth in other food animals and repairing muscular degenerative disorders in human and other animals.
Collapse
Affiliation(s)
- T K Bhattacharya
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India.
| | - Renu Shukla
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - R N Chatterjee
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - S K Bhanja
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
34
|
Iskenderian A, Liu N, Deng Q, Huang Y, Shen C, Palmieri K, Crooker R, Lundberg D, Kastrapeli N, Pescatore B, Romashko A, Dumas J, Comeau R, Norton A, Pan J, Rong H, Derakhchan K, Ehmann DE. Myostatin and activin blockade by engineered follistatin results in hypertrophy and improves dystrophic pathology in mdx mouse more than myostatin blockade alone. Skelet Muscle 2018; 8:34. [PMID: 30368252 PMCID: PMC6204036 DOI: 10.1186/s13395-018-0180-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Myostatin antagonists are being developed as therapies for Duchenne muscular dystrophy due to their strong hypertrophic effects on skeletal muscle. Engineered follistatin has the potential to combine the hypertrophy of myostatin antagonism with the anti-inflammatory and anti-fibrotic effects of activin A antagonism. METHODS Engineered follistatin was administered to C57BL/6 mice for 4 weeks, and muscle mass and myofiber size was measured. In the mdx model, engineered follistatin was dosed for 12 weeks in two studies comparing to an Fc fusion of the activin IIB receptor or an anti-myostatin antibody. Functional measurements of grip strength and tetanic force were combined with tissue analysis for markers of necrosis, inflammation, and fibrosis to evaluate improvement in dystrophic pathology. RESULTS In wild-type and mdx mice, dose-dependent increases in muscle mass and quadriceps myofiber size were observed for engineered follistatin. In mdx, increases in grip strength and tetanic force were combined with improvements in muscle markers for necrosis, inflammation, and fibrosis. Improvements in dystrophic pathology were greater for engineered follistatin than the anti-myostatin antibody. CONCLUSIONS Engineered follistatin generated hypertrophy and anti-fibrotic effects in the mdx model.
Collapse
Affiliation(s)
- Andrea Iskenderian
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Nan Liu
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Qingwei Deng
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Yan Huang
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Chuan Shen
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Kathleen Palmieri
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Crooker
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Dianna Lundberg
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Niksa Kastrapeli
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Brian Pescatore
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Alla Romashko
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - John Dumas
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Comeau
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Angela Norton
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Jing Pan
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Haojing Rong
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Katayoun Derakhchan
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - David E Ehmann
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA. .,Drug Discovery, Shire, Cambridge, MA, USA.
| |
Collapse
|
35
|
Manabe Y. [Do Myokines Have Potential as Exercise Mimetics?]. YAKUGAKU ZASSHI 2018; 138:1285-1290. [PMID: 30270273 DOI: 10.1248/yakushi.18-00091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise is generally considered to have health benefits for the body, although its beneficial mechanisms have not been fully elucidated. Recent progressive research suggests that myokines, bioactive substances secreted from skeletal muscle, play an important role in mediating the benefits of exercise. There are three types of myokines in terms of the muscular secretion mechanism: those in which the secretion is promoted by stimulation, such as irisin, interleukin (IL)-6, and IL-15; those whose secretion is constitutive, such as thioredoxin, glutaredoxin, and peroxiredoxin; and those whose secretion is suppressed by stimulation, such as by a macrophage migration inhibitory factor. Although dozens of myokines have been reported, their physiological roles are not well understood. Therefore, there currently exists no advanced drug discovery research specifically targeting myokines, with the exception of Myostatin. Myostatin was discovered as a negative regulator of muscle growth. Myostatin is secreted from muscle cells as a myokine; it signals via an activin type IIB receptor in an autocrine manner, and regulates gene expressions involved in myogenesis. Given the studies to date that have been conducted on the utilization of myostatin inhibitors for the treatment of muscle weakness, including cachexia and sarcopenia, other myokines may also be new potential drug targets.
Collapse
Affiliation(s)
- Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University
| |
Collapse
|
36
|
Tinklenberg J, Beatka M, Bain JLW, Siebers EM, Meng H, Pearsall RS, Lawlor MW, Riley DA. Use Of Ankle Immobilization In Evaluating Treatments To Promote Longitudinal Muscle Growth In Mice. Muscle Nerve 2018; 58:718-725. [PMID: 29981243 DOI: 10.1002/mus.26296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Difficulty in modeling congenital contractures (deformities of muscle-tendon unit development that include shortened muscles and lengthened tendons) has limited research of new treatments. METHODS Early immobilization of the ankle in prepuberal mice was used to produce deformities similar to congenital contractures. Stretch treatment, electrostimulation, and local intramuscular injection of a follistatin analog (FST-288) were assessed as therapeutic interventions for these deformities. RESULTS Ankle immobilization at full plantarflexion and 90 ° created tendon lengthening and muscle shortening in the tibialis anterior and soleus. Stretch treatment produced minimal evidence for longitudinal muscle growth and electrostimulation provided no additional benefit. Stretch treatment with FST-288 produced greater longitudinal muscle growth and less tendon lengthening, constituting the best treatment response. DISCUSSION Ankle immobilization recapitulates key morphologic features of congenital contracture, and these features can be mitigated by a combination of stretch and pharmacological approaches that may be useful in patients. Muscle Nerve 58: 718-725, 2018.
Collapse
Affiliation(s)
- Jennifer Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - James L W Bain
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danny A Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
37
|
Personalized gene and cell therapy for Duchenne Muscular Dystrophy. Neuromuscul Disord 2018; 28:803-824. [DOI: 10.1016/j.nmd.2018.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023]
|
38
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
39
|
Pang M, Tong J, Yu X, Fu B, Zhou Y. Molecular cloning, expression pattern of follistatin gene and association analysis with growth traits in bighead carp (Hypophthalmichthys nobilis). Comp Biochem Physiol B Biochem Mol Biol 2018; 218:44-53. [DOI: 10.1016/j.cbpb.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022]
|
40
|
Abstract
PURPOSE OF REVIEW Severe exercise intolerance and early fatigue are hallmarks of heart failure patients either with a reduced (HFrEF) or a still preserved (HFpEF) ejection fraction. This review, therefore, will provide a contemporary summary of the alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and provide some further directions that will be required if we want to improve our current understanding of this area. RECENT FINDINGS Skeletal muscle alterations are well documented for over 20 years in HFrEF, and during the recent years also data are presented that in HFpEF muscular alterations are present. Alterations are ranging from a shift in fiber type and capillarization to an induction of atrophy and modulation of mitochondrial energy supply. In general, the molecular alterations are more severe in the skeletal muscle of HFrEF when compared to HFpEF. The alterations occurring in the skeletal muscle at the molecular level may contribute to exercise intolerance in HFrEF and HFpEF. Nevertheless, the knowledge of changes in the skeletal muscle of HFpEF is still sparsely available and more studies in this HF cohort are clearly warranted.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany.
| | - Axel Linke
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| | - Ephraim Winzer
- Clinic of Cardiology, Heart Center Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| |
Collapse
|
41
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Wang L, Cai B, Zhou S, Zhu H, Qu L, Wang X, Chen Y. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout. PLoS One 2017; 12:e0187966. [PMID: 29228005 PMCID: PMC5724853 DOI: 10.1371/journal.pone.0187966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Desgeorges MM, Devillard X, Toutain J, Castells J, Divoux D, Arnould DF, Haqq C, Bernaudin M, Durieux AC, Touzani O, Freyssenet DG. Pharmacological inhibition of myostatin improves skeletal muscle mass and function in a mouse model of stroke. Sci Rep 2017; 7:14000. [PMID: 29070788 PMCID: PMC5656661 DOI: 10.1038/s41598-017-13912-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/29/2017] [Indexed: 01/25/2023] Open
Abstract
In stroke patients, loss of skeletal muscle mass leads to prolonged weakness and less efficient rehabilitation. We previously showed that expression of myostatin, a master negative regulator of skeletal muscle mass, was strongly increased in skeletal muscle in a mouse model of stroke. We therefore tested the hypothesis that myostatin inhibition would improve recovery of skeletal muscle mass and function after cerebral ischemia. Cerebral ischemia (45 minutes) was induced by intraluminal right middle cerebral artery occlusion (MCAO). Swiss male mice were randomly assigned to Sham-operated mice (n = 10), MCAO mice receiving the vehicle (n = 15) and MCAO mice receiving an anti-myostatin PINTA745 (n = 12; subcutaneous injection of 7.5 mg.kg-1 PINTA745 immediately after surgery, 3, 7 and 10 days after MCAO). PINTA745 reduced body weight loss and improved body weight recovery after cerebral ischemia, as well as muscle strength and motor function. PINTA745 also increased muscle weight recovery 15 days after cerebral ischemia. Mechanistically, the better recovery of skeletal muscle mass in PINTA745-MCAO mice involved an increased expression of genes encoding myofibrillar proteins. Therefore, an anti-myostatin strategy can improve skeletal muscle recovery after cerebral ischemia and may thus represent an interesting strategy to combat skeletal muscle loss and weakness in stroke patients.
Collapse
Affiliation(s)
- Marine Maud Desgeorges
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Xavier Devillard
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Jérome Toutain
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - Josiane Castells
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Didier Divoux
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - David Frédéric Arnould
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Christopher Haqq
- Atara Biotherapeutics, Inc., South San, Francisco, CA, 94080, USA
| | - Myriam Bernaudin
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - Anne-Cécile Durieux
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Omar Touzani
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - Damien Gilles Freyssenet
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France.
| |
Collapse
|
44
|
Follistatin N terminus differentially regulates muscle size and fat in vivo. Exp Mol Med 2017; 49:e377. [PMID: 28912572 PMCID: PMC5628274 DOI: 10.1038/emm.2017.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy.
Collapse
|
45
|
Takayama K, Rentier C, Asari T, Nakamura A, Saga Y, Shimada T, Nirasawa K, Sasaki E, Muguruma K, Taguchi A, Taniguchi A, Negishi Y, Hayashi Y. Development of Potent Myostatin Inhibitory Peptides through Hydrophobic Residue-Directed Structural Modification. ACS Med Chem Lett 2017; 8:751-756. [PMID: 28740611 DOI: 10.1021/acsmedchemlett.7b00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/05/2017] [Indexed: 11/28/2022] Open
Abstract
Myostatin, a negative regulator of skeletal muscle growth, is a promising target for treating muscle atrophic disorders. Recently, we discovered a minimal myostatin inhibitor 1 (WRQNTRYSRIEAIKIQILSKLRL-amide) derived from positions 21-43 of the mouse myostatin prodomain. We previously identified key residues (N-terminal Trp21, rodent-specific Tyr27, and all aliphatic amino acids) required for effective inhibition through structure-activity relationship (SAR) studies based on 1 and characterized a 3-fold more potent inhibitor 2 bearing a 2-naphthyloxyacetyl group at position 21. Herein, we performed 1-based SAR studies focused on all aliphatic residues and Ala32, discovering that the incorporations of Trp and Ile at positions 32 and 38, respectively, enhanced the inhibitory activity. Combining these findings with 2, a novel peptide 3d displayed an IC50 value of 0.32 μM, which is 11 times more potent than 1. The peptide 3d would have the potential to be a promising drug lead to develop better peptidomimetics.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Cédric Rentier
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomo Asari
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akari Nakamura
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yusuke Saga
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Shimada
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kei Nirasawa
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Eri Sasaki
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kyohei Muguruma
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry and §Department of Drug Delivery and Molecular
Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
46
|
Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 2017; 313:H72-H88. [PMID: 28476924 DOI: 10.1152/ajpheart.00470.2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Bernhard Reich
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Madlen Uhlemann
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
47
|
Asari T, Takayama K, Nakamura A, Shimada T, Taguchi A, Hayashi Y. Structural Basis for the Effective Myostatin Inhibition of the Mouse Myostatin Prodomain-Derived Minimum Peptide. ACS Med Chem Lett 2017; 8:113-117. [PMID: 28105285 DOI: 10.1021/acsmedchemlett.6b00420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022] Open
Abstract
Myostatin inhibition is one of the promising strategies for treating muscle atrophic disorders, including muscular dystrophy. It is well-known that the myostatin prodomain derived from the myostatin precursor acts as an inhibitor of mature myostatin. In our previous study, myostatin inhibitory minimum peptide 1 (WRQNTRYSRIEAIKIQILSKLRL-amide) was discovered from the mouse myostatin prodomain. In the present study, alanine scanning of 1 demonstrated that the key amino acid residues for the effective inhibitory activity are rodent-specific Tyr and C-terminal aliphatic residues, in addition to N-terminal Trp residue. Subsequently, we designed five Pro-substituted peptides and examined the relationship between secondary structure and inhibitory activity. As a result, we found that Pro-substitutions of Ala or Gln residues around the center of 1 significantly decreased both α-helicity and inhibitory activity. These results suggested that an α-helical structure possessing hydrophobic faces formed around the C-terminus is important for inhibitory activity.
Collapse
Affiliation(s)
- Tomo Asari
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akari Nakamura
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Shimada
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
48
|
Sevivas N, Teixeira FG, Portugal R, Araújo L, Carriço LF, Ferreira N, Vieira da Silva M, Espregueira-Mendes J, Anjo S, Manadas B, Sousa N, Salgado AJ. Mesenchymal Stem Cell Secretome: A Potential Tool for the Prevention of Muscle Degenerative Changes Associated With Chronic Rotator Cuff Tears. Am J Sports Med 2017; 45:179-188. [PMID: 27501832 DOI: 10.1177/0363546516657827] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Massive rotator cuff tears (MRCTs) are usually chronic lesions with pronounced degenerative changes, where advanced fatty degeneration and atrophy can make the tear irreparable. Human mesenchymal stem cells (hMSCs) secrete a range of growth factors and vesicular systems, known as secretome, that mediates regenerative processes in tissues undergoing degeneration. PURPOSE To study the effect of hMSC secretome on muscular degenerative changes and shoulder function on a rat MRCT model. STUDY DESIGN Controlled laboratory study. METHODS A bilateral 2-tendon (supraspinatus and infraspinatus) section was performed to create an MRCT in a rat model. Forty-four Wistar-Han rats were randomly assigned to 6 groups: control group (sham surgery), lesion control group (MRCT), and 4 treated-lesion groups according to the site and periodicity of hMSC secretome injection: single local injection, multiple local injections, single systemic injection, and multiple systemic injections. Forelimb function was analyzed with the staircase test. Atrophy and fatty degeneration of the muscle were evaluated at 8 and 16 weeks after injury. A proteomic analysis was conducted to identify the molecules present in the hMSC secretome that can be associated with muscular degeneration prevention. RESULTS When untreated for 8 weeks, the MRCT rats exhibited a significantly higher fat content (0.73% ± 0.19%) compared with rats treated with a single local injection (0.21% ± 0.04%; P < .01) or multiple systemic injections (0.25% ± 0.10%; P < .05) of hMSC secretome. At 16 weeks after injury, a protective effect of the secretome in the multiple systemic injections (0.62% ± 0.14%; P < .001), single local injection (0.76% ± 0.17%; P < .001), and multiple local injections (1.35% ± 0.21%; P < .05) was observed when compared with the untreated MRCT group (2.51% ± 0.42%). Regarding muscle atrophy, 8 weeks after injury, only the single local injection group (0.0993% ± 0.0036%) presented a significantly higher muscle mass than that of the untreated MRCT group (0.0794% ± 0.0047%; P < .05). Finally, the proteomic analysis revealed the presence of important proteins with muscle regeneration, namely, pigment epithelium-derived factor and follistatin. CONCLUSION The study data suggest that hMSC secretome effectively decreases the fatty degeneration and atrophy of the rotator cuff muscles. CLINICAL RELEVANCE We describe a new approach for decreasing the characteristic muscle degeneration associated with chronic rotator cuff tears. This strategy is particularly important for patients whose tendon healing after later surgical repair could be compromised by the progressing degenerative changes. In addition, both precise intramuscular local injection and multiple systemic secretome injections have been shown to be promising delivery forms for preventing muscle degeneration.
Collapse
Affiliation(s)
- Nuno Sevivas
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Orthopaedics Department, Hospital de Braga, Braga, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal
| | - Fábio Gabriel Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Portugal
- Pathology Department, Centro Hospitalar São João, Porto, Portugal
| | - Luís Araújo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Nuno Ferreira
- Orthopaedics Department, Hospital de Braga, Braga, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal
| | - Manuel Vieira da Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Orthopaedics Department, Hospital de Braga, Braga, Portugal
| | - João Espregueira-Mendes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - Sandra Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal Biocant-Biotechnology Innovation Center, Cantanhede, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
49
|
Jiang JG, Shen GF, Li J, Qiao C, Xiao B, Yan H, Wang DW, Xiao X. Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice. Gene Ther 2016; 24:167-175. [PMID: 27983718 DOI: 10.1038/gt.2016.85] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023]
Abstract
Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.
Collapse
Affiliation(s)
- J G Jiang
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - G F Shen
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - J Li
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Qiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - H Yan
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - D W Wang
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - X Xiao
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Lu-Nguyen N, Malerba A, Popplewell L, Schnell F, Hanson G, Dickson G. Systemic Antisense Therapeutics for Dystrophin and Myostatin Exon Splice Modulation Improve Muscle Pathology of Adult mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 6:15-28. [PMID: 28325281 PMCID: PMC5363451 DOI: 10.1016/j.omtn.2016.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023]
Abstract
Antisense-mediated exon skipping is a promising approach for the treatment of Duchenne muscular dystrophy (DMD), a rare life-threatening genetic disease due to dystrophin deficiency. Such an approach can restore the disrupted reading frame of dystrophin pre-mRNA, generating a truncated form of the protein. Alternatively, antisense therapy can be used to induce destructive exon skipping of myostatin pre-mRNA, knocking down myostatin expression to enhance muscle strength and reduce fibrosis. We have reported previously that intramuscular or intraperitoneal antisense administration inducing dual exon skipping of dystrophin and myostatin pre-mRNAs was beneficial in mdx mice, a mouse model of DMD, although therapeutic effects were muscle type restricted, possibly due to the delivery routes used. Here, following systemic intravascular antisense treatment, muscle strength and body activity of treated adult mdx mice increased to the levels of healthy controls. Importantly, hallmarks of muscular dystrophy were greatly improved in mice receiving the combined exon-skipping therapy, as compared to those receiving dystrophin antisense therapy alone. Our results support the translation of antisense therapy for dystrophin restoration and myostatin inhibition into the clinical setting for DMD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Fred Schnell
- Sarepta Therapeutics Inc., 215 First Street, Cambridge, MA 02142, USA
| | - Gunnar Hanson
- Sarepta Therapeutics Inc., 215 First Street, Cambridge, MA 02142, USA
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|