1
|
Zhang T, Zhu T, Wen J, Chen Y, Wang L, Lv X, Yang W, Jia Y, Qu C, Li H, Wang H, Qu L, Ning Z. Gut microbiota and transcriptome analysis reveals a genetic component to dropping moisture in chickens. Poult Sci 2022; 102:102242. [PMID: 36931071 PMCID: PMC10036737 DOI: 10.1016/j.psj.2022.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 03/12/2023] Open
Abstract
High dropping moisture (DM) in poultry production has deleterious effects on the environment, feeding cost, and public health of people and animals. To explore the contributing genetic components, we classified DM of 67-wk-old Rhode Island Red (RIR) hens at 4 different levels and evaluated the underlying genetic heritability. We found the heritability of DM to be 0.219, indicating a moderately heritable trait. We then selected chickens with the highest and lowest DM levels. Using transcriptome, we only detected 12 differentially expressed genes (DEGs) between these 2 groups from the spleen, and 1,507 DEGs from intestinal tissues (jejunum and cecum). The low number of DEGs observed in the spleen suggests that differing moisture levels are not attributed to pathogenic infection. Fourteen of the intestinal high expressed genes are associated with water-salt metabolism (WSM). We also investigated the gut microbial composition by 16S rRNA gene amplicon sequencing. Six different microbial operational taxonomic units (OTUs) (Cetobacterium, Sterolibacterium, Elusimicrobium, Roseburia, Faecalicoccus, and Megamonas) between the 2 groups from jejunum and cecum are potentially biomarkers related to DM levels. Our results identify a genetic component to chicken DM, and can guide breeding strategies.
Collapse
Affiliation(s)
- Tongyu Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Liang Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Xueze Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Weifang Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Huie Wang
- College of Animal Science, Tarim University, Xinjiang, China
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Webster P, Saito K, Cortez J, Ramirez C, Baum MM. Concentrative Nucleoside Transporter 3 Is Located on Microvilli of Vaginal Epithelial Cells. ACS OMEGA 2020; 5:20882-20889. [PMID: 32875223 PMCID: PMC7450627 DOI: 10.1021/acsomega.0c02329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Transporters are specialized integral membrane proteins, which mediate the passage of virtually all molecules through cell membranes. They are expressed in a broad range of human and animal tissues and play important roles in both normal and disease states. For these reasons, they are evaluated when developing and testing drugs. Two major families of drug transporters, the adenosine 5'-triphosphate-binding cassette and solute carrier transporters (SLC), have critical roles in the absorption, distribution, metabolism, and elimination of drugs. The SLC family contains known nucleoside transporters and therefore are important when nucleoside analogs are used as drugs to prevent or treat viral infections. In this study, we wanted to determine if it was possible to locate one member of the SLC family, the human concentrative nucleoside transporter 3 (CNT3) in human vaginal epithelial cells. The CNT3 protein has important roles in drug delivery, subsequent drug tissue distribution, and, hence, efficacy. Vaginal epithelial cells, taken from two human volunteers (one Caucasian and one African American), were labeled for light and electron microscopy, with a commercial antibody to a cytoplasmic domain of CNT3, the protein product of the SLC28A3 gene. Fluorescent secondary antibodies or protein A-gold were used to detect antibody binding. By electron microscopy, gold particle binding was quantified to determine labeling specificity. By light microscopy, positive labeling with anti-CNT3 antibodies was detected on human vaginal epithelial cells, but specificity to any intracellular structure was not easily determined, most likely a result of specimen preparation. Electron microscopy revealed that the CNT3 transporter protein was present predominantly on microvilli located on one side of some human vaginal epithelial cells. Quantification confirmed specific anti-CNT3 labeling over human vaginal epithelial cell microvilli. The CNT3 protein, present in the microvilli of human vaginal epithelial cells, may have a role in redistributing nucleoside homologues delivered to the vaginal tract. Transporter proteins such as CNT3 could shuttle nucleosides and their analogs through the vaginal epithelium to immune cells located in lower cell layers. Outer layers of cells, which are eventually shed from the epithelium, may remove accumulated nucleoside drug analogs from the vaginal tract.
Collapse
Affiliation(s)
- Paul Webster
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| | - Kaori Saito
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| | - John Cortez
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| | - Christina Ramirez
- Los
Angeles (UCLA) Fielding School of Public Health, University of California, Los Angeles, 650 Charles E. Young Dr. South, 16-035 Center for
Health Sciences, Los Angeles, California 90095-1772, United States
| | - Marc M. Baum
- Oak
Crest Institute of Science, 132 W. Chestnut Avenue, Monrovia, California 91016, United States
| |
Collapse
|
3
|
Zhou Y, Liao L, Wang C, Li J, Chi P, Xiao Q, Liu Q, Guo L, Sun L, Deng D. Cryo-EM structure of the human concentrative nucleoside transporter CNT3. PLoS Biol 2020; 18:e3000790. [PMID: 32776918 PMCID: PMC7440666 DOI: 10.1371/journal.pbio.3000790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/20/2020] [Accepted: 07/20/2020] [Indexed: 01/17/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs), members of the solute carrier (SLC) 28 transporter family, facilitate the salvage of nucleosides and therapeutic nucleoside derivatives across the plasma membrane. Despite decades of investigation, the structures of human CNTs remain unknown. We determined the cryogenic electron microscopy (cryo-EM) structure of human CNT (hCNT) 3 at an overall resolution of 3.6 Å. As with its bacterial homologs, hCNT3 presents a trimeric architecture with additional N-terminal transmembrane helices to stabilize the conserved central domains. The conserved binding sites for the substrate and sodium ions unravel the selective nucleoside transport and distinct coupling mechanism. Structural comparison of hCNT3 with bacterial homologs indicates that hCNT3 is stabilized in an inward-facing conformation. This study provides the molecular determinants for the transport mechanism of hCNTs and potentially facilitates the design of nucleoside drugs.
Collapse
Affiliation(s)
- Yanxia Zhou
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Lianghuan Liao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chen Wang
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jialu Li
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Pengliang Chi
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qingjie Xiao
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qingting Liu
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Li Guo
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Linfeng Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- * E-mail: (LS); (DD)
| | - Dong Deng
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- * E-mail: (LS); (DD)
| |
Collapse
|
4
|
Di Stazio M, Morgan A, Brumat M, Bassani S, Dell'Orco D, Marino V, Garagnani P, Giuliani C, Gasparini P, Girotto G. New age-related hearing loss candidate genes in humans: an ongoing challenge. Gene 2020; 742:144561. [PMID: 32173538 DOI: 10.1016/j.gene.2020.144561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/08/2020] [Indexed: 01/18/2023]
Abstract
Age-related hearing loss (ARHL) is the most frequent sensory disorder in the elderly, affecting approximately one-third of people aged more than 65 years. Despite a large number of people affected, ARHL is still an area of unmet clinical needs, and only a few ARHL susceptibility genes have been detected so far. In order to further investigate the genetics of ARHL, we analyzed a series of 46 ARHL candidate genes, selected according to previous Genome Wide Association Studies (GWAS) data, literature updates and animal models, in a large cohort of 464 Italian ARHL patients. We have filtered the variants according to a) pathogenicity prediction, b) allele frequency in public databases, c) allele frequency in an internal cohort of 113 healthy matched controls, and 81 healthy semi-supercentenarians. After data analysis, all the variants of interest have been tested by functional "in silico" or "in vitro" experiments (i.e., molecular dynamics simulations and protein translation analysis) to assess their pathogenic role, and the expression of the mutated genes have been checked in mouse or zebrafish inner ear. This multi-step approach led to the characterization of a series of ultra-rare likely pathogenic variants in DCLK1, SLC28A3, CEP104, and PCDH20 genes, contributing to describe the first association of these genes with ARHL in humans. These results provide essential insights on the understanding of the molecular bases of such a complex, heterogeneous and frequent disorder, unveiling new possible targets for the future development of innovative therapeutic and preventive approaches that could improve the quality of life of the millions of people affected worldwide.
Collapse
Affiliation(s)
- M Di Stazio
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy.
| | - A Morgan
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - M Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - S Bassani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - D Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - V Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - P Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy; Interdepartimental Centre L. Galvani (CIG), University of Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - C Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Italy; School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom
| | - P Gasparini
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - G Girotto
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
5
|
Wang C, Buolamwini JK. A novel RNA variant of human concentrative nucleoside transporter 1 (hCNT1) that is a potential cancer biomarker. Exp Hematol Oncol 2019; 8:18. [PMID: 31440421 PMCID: PMC6704654 DOI: 10.1186/s40164-019-0144-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Background The human concentrative nucleoside transporter 1 (hCNT1) a product of the SLC28A1 gene is one of the three concentrative nucleoside transporters, with a substrate specificity for physiological pyrimidine nucleosides. It has recently been implicated in tumor suppression. We have unraveled a splice variant RNA transcript that is overexpressed in some tumor tissues and some cancer cells. This study established that observation. Methods We examined several clones of hCNT1 generated from RT-PCR of total RNA from human kidney tissue purchased from Ambion. The resulting cDNA clones were then sequenced, and a variant that retained intron 4, and skipped some exons fully or partly, specifically exons 5 and 13 were completely missed and only part of exon 6 was spliced. Tissue expression analysis by PCR indicated a similar distribution of expression of RNA of the splice variant hCNT1-IR as that of the dominant variant hCNT1, particularly in the small intestine, kidney and liver. Further, analysis of various tumor samples with PCR primers designed from this novel hCNT1 splice variant (hCNT1-IR) revealed interestingly that it is overexpressed in some cancer tissues relative to normal tissues, particularly kidney, liver and pancreatic cancers. Conclusion We have identified a novel intron retaining and exon skipping splice variant of the hCNT1 nucleoside transporter, and designated it hCNT1-IR, which has a similar tissue expression distribution as the normal hCNT1 variant, but unlike the normal transcript, hCNT1-IR is overexpressed in some cancers and may serve as a potential cancer biomarker.
Collapse
Affiliation(s)
- Chunmei Wang
- 1Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Sciences Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - John K Buolamwini
- 1Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Sciences Center, 881 Madison Avenue, Memphis, TN 38163 USA.,2Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| |
Collapse
|
6
|
Levin M, Stark M, Berman B, Assaraf YG. Surmounting Cytarabine-resistance in acute myeloblastic leukemia cells and specimens with a synergistic combination of hydroxyurea and azidothymidine. Cell Death Dis 2019; 10:390. [PMID: 31101804 PMCID: PMC6525253 DOI: 10.1038/s41419-019-1626-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) patients display dismal prognosis due to high prevalence of refractory and relapsed disease resulting from chemoresistance. Treatment protocols, primarily based on the anchor drug Cytarabine, remained chiefly unchanged in the past 50 years with no standardized salvage regimens. Herein we aimed at exploring potential pre-clinical treatment strategies to surmount Cytarabine resistance in human AML cells. We established Cytarabine-resistant sublines derived from human leukemia K562 and Kasumi cells, and characterized the expression of Cytarabine-related genes using real-time PCR and Western blot analyses to uncover the mechanisms underlying their Cytarabine resistance. This was followed by growth inhibition assays and isobologram analyses testing the sublines’ sensitivity to the clinically approved drugs hydroxyurea (HU) and azidothymidine (AZT), compared to their parental cells. All Cytarabine-resistant sublines lost deoxycytidine kinase (dCK) expression, rendering them refractory to Cytarabine. Loss of dCK function involved dCK gene deletions and/or a novel frameshift mutation leading to dCK transcript degradation via nonsense-mediated decay. Cytarabine-resistant sublines displayed hypersensitivity to HU and AZT compared to parental cells; HU and AZT combinations exhibited a marked synergistic growth inhibition effect on leukemic cells, which was intensified upon acquisition of Cytarabine-resistance. In contrast, HU and AZT combination showed an antagonistic effect in non-malignant cells. Finally, HU and AZT synergism was demonstrated on peripheral blood specimens from AML patients. These findings identify a promising HU and AZT combination for the possible future treatment of relapsed and refractory AML, while sparing normal tissues from untoward toxicity.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bluma Berman
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Pastor-Anglada M, Urtasun N, Pérez-Torras S. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. Compr Physiol 2018; 8:1003-1017. [PMID: 29978890 DOI: 10.1002/cphy.c170039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is the absorptive organ for nutrients found in foods after digestion. Nucleosides and, to a lesser extent nucleobases, are the late products of nucleoprotein digestion. These metabolites are absorbed by nucleoside (and nucleobase) transporter (NT) proteins. NTs are differentially distributed along the gastrointestinal tract showing also polarized expression in epithelial cells. Concentrative nucleoside transporters (CNTs) are mainly located at the apical side of enterocytes, whereas equilibrative nucleoside transporters (ENTs) facilitate the basolateral efflux of nucleosides and nucleobases to the bloodstream. Moreover, selected nucleotides and the bioactive nucleoside adenosine act directly on intestinal cells modulating purinergic signaling. NT-polarized insertion is tightly regulated. However, not much is known about the modulation of intestinal NT function in humans, probably due to the lack of appropriate cell models retaining CNT functional expression. Thus, the possibility of nutritional regulation of intestinal NTs has been addressed using animal models. Besides the nutrition-related role of NT proteins, orally administered drugs also need to cross the intestinal barrier, this event being a major determinant of drug bioavailability. In this regard, NT proteins might also play a role in pharmacology, thereby allowing the absorption of nucleoside- and nucleobase-derived drugs. The relative broad selectivity of these membrane transporters also suggests clinically relevant drug-drug interactions when using combined therapies. This review focuses on all these physiological and pharmacological aspects of NT protein biology. © 2017 American Physiological Society. Compr Physiol 8:1003-1017, 2018.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Urtasun
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
8
|
Pastor-Anglada M, Pérez-Torras S. Who Is Who in Adenosine Transport. Front Pharmacol 2018; 9:627. [PMID: 29962948 PMCID: PMC6010718 DOI: 10.3389/fphar.2018.00627] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine concentrations are regulated by a panel of membrane transporters which, in most cases, mediate its uptake into cells. Adenosine transporters belong to two gene families encoding Equilibrative and Concentrative Nucleoside Transporter proteins (ENTs and CNTs, respectively). The lack of appropriate pharmacological tools targeting every transporter subtype has introduced some bias on the current knowledge of the role of these transporters in modulating adenosine levels. In this regard, ENT1, for which pharmacology is relatively well-developed, has often been identified as a major player in purinergic signaling. Nevertheless, other transporters such as CNT2 and CNT3 can also contribute to purinergic modulation based on their high affinity for adenosine and concentrative capacity. Moreover, both transporter proteins have also been shown to be under purinergic regulation via P1 receptors in different cell types, which further supports its relevance in purinergic signaling. Thus, several transporter proteins regulate extracellular adenosine levels. Moreover, CNT and ENT proteins are differentially expressed in tissues but also in particular cell types. Accordingly, transporter-mediated fine tuning of adenosine levels is cell and tissue specific. Future developments focusing on CNT pharmacology are needed to unveil transporter subtype-specific events.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases – CIBER ehd, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases – CIBER ehd, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
9
|
Jo JK, Oh JJ, Kim YT, Moon HS, Choi HY, Park S, Ho JN, Yoon S, Park HY, Byun SS. A genetic variant in SLC28A3, rs56350726, is associated with progression to castration-resistant prostate cancer in a Korean population with metastatic prostate cancer. Oncotarget 2017; 8:96893-96902. [PMID: 29228579 PMCID: PMC5722531 DOI: 10.18632/oncotarget.18298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
Background Genetic variation which related with progression to castration-resistant prostate cancer (CRPC) during androgen-deprivation therapy (ADT) has not been elucidated in patients with metastatic prostate cancer (mPCa). Therefore, we assessed the association between genetic variats in mPCa and progession to CRPC. Results Analysis of exome genotypes revealed that 42 SNPs were significantly associated with mPCa. The top five polymorphisms were statistically significantly associated with metastatic disease. In addition, one of these SNPs, rs56350726, was significantly associated with time to CRPC in Kaplan-Meier analysis (Log-rank test, p = 0.011). In multivariable Cox regression, rs56350726 was strongly associated with progression to CRPC (HR = 4.172 95% CI = 1.223-14.239, p = 0.023). Materials and Methods We assessed genetic variation among 1000 patients with PCa with or without metastasis, using 242,221 single nucleotide polymorphisms (SNPs) on the custom HumanExome BeadChip v1.0 (Illuminam Inc.). We analyzed the time to CRPC in 110 of the 1000 patients who were treated with ADT. Genetic data were analyzed using unconditional logistic regression and odds ratios calculated as estimates of relative risk of metastasis. We identified SNPs associated with metastasis and analyzed the relationship between these SNPs and time to CRPC in mPCa. Conclusions Based on a genetic variation, the five top SNPs were observed to associate with mPCa. And one (SLC28A3, rs56350726) of five SNP was found the association with the progression to CRPC in patients with mPCa.
Collapse
Affiliation(s)
- Jung Ku Jo
- Department of Urology, Hanyang University Hospital, Seoul, Korea
| | - Jong Jin Oh
- Department of Urology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Tae Kim
- Department of Urology, Hanyang University Hospital, Seoul, Korea
| | - Hong Sang Moon
- Department of Urology, Hanyang University Guri Hospital, Guri-si, Korea
| | - Hong Yong Choi
- Department of Urology, Hanyang University Guri Hospital, Guri-si, Korea
| | - Seunghyun Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jin-Nyoung Ho
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hae Young Park
- Department of Urology, Hanyang University Hospital, Seoul, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
10
|
Li X, Mei S, Gong X, Zhou H, Yang L, Zhou A, Liu Y, Li X, Zhao Z, Zhang X. Relationship between Azathioprine metabolites and therapeutic efficacy in Chinese patients with neuromyelitis optica spectrum disorders. BMC Neurol 2017; 17:130. [PMID: 28679367 PMCID: PMC5498874 DOI: 10.1186/s12883-017-0903-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are demyelinating autoimmune diseases in the central nervous system (CNS) that are characterized by a high relapse rate and the presence of anti-aquaporin 4 antibodies (AQP4-IgG) in the serum. Azathioprine (AZA) is a first-line immunomodulatory drug that is widely used for the treatment of patients with NMOSD. However, the efficacy and safety of AZA vary in different individuals. METHOD Thirty-two patients with NMOSD who regularly took AZA were enrolled in the study at Beijing Tiantan Hospital, Capital Medical University. The efficacy of AZA was evaluated using the expanded disability status scale (EDSS) and the annual relapse rate (ARR). The erythrocyte concentrations of AZA metabolites were detected using an LC-MS/MS method. RESULTS The erythrocyte concentrations of 6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-MMPNs) were 202.03 ± 63.35 pmol/8*108 RBC and 1618.90 ± 1607.06 pmol/8*108 RBC, respectively. After the patients had received AZA therapy for more than one year, the EDSS score decreased from 5.21 ± 0.24 to 2.57 ± 0.33 (p < 0.0001), and the ARR decreased from 1.41 ± 0.23 to 0.36 ± 0.09 (p < 0.0001). The 6-TGN and 6-MMPN levels were significantly different between the non-relapsed and relapsed groups (p < 0.0001, p = 0.006, respectively). A higher ARR was significantly correlated with higher erythrocyte concentrations of 6-TGNs (p < 0.0001) and 6-MMPNs (p = 0.004). CONCLUSION AZA can reduce the EDSS score and ARR in NMOSD patients. Additionally, the efficacy of AZA is significantly related to the erythrocyte concentrations of 6-TGNs and 6-MMPNs. Within the safe upper limits, a higher concentration of 6-TGNs is associated with better efficacy of AZA. TRIAL REGISTRATION NUMBER ISRCTN16551495 , retrospectively registered on May 22, 2017.
Collapse
Affiliation(s)
- Xindi Li
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Xiaoqing Gong
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Heng Zhou
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Li Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Anna Zhou
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Yonghong Liu
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Xingang Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China.
| | - Xinghu Zhang
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
11
|
Liu Y, Zhang T, Li C, Ye L, Gu H, Zhong L, Sun H, Sun Y, Peng Z, Fan J. SLC28A3 rs7853758 as a new biomarker of tacrolimus elimination and new-onset hypertension in Chinese liver transplantation patients. Biomark Med 2017. [PMID: 28621555 DOI: 10.2217/bmm-2017-0128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM The effect of SLC28A3 on tacrolimus disposition and new-onset hypertension (NOHP) after liver transplantation (LT) remains unclear. Methodology & results: A total of 169 patients in two cohorts from the China Liver Transplant Registry database were included. Rs7853758 in recipients'SLC28A3 could predict tacrolimus pharmacokinetics in two sets. The model of donors' CYP3A5 rs776746 and recipients' CYP3A4 rs2242480 could predict tacrolimus metabolism at week 1 and the model of donors' CYP3A5 rs776746, recipients' CYP3A4 rs2242480, recipients' SLC28A3 rs7853758 and hemoglobin could predict tacrolimus disposition at weeks 2, 3 and 4. Besides, recipients' SLC28A3 rs7853758 was a new risk factor of NOHP after LT. CONCLUSION Rs7853758 in recipients' SLC28A3 has a correlation with tacrolimus pharmacokinetics and the risk of NOHP in Chinese LT patients.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changcan Li
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Ye
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Gu
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhong
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongcheng Sun
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahuang Sun
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihai Peng
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Fan
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Salsoso R, Farías M, Gutiérrez J, Pardo F, Chiarello DI, Toledo F, Leiva A, Mate A, Vázquez CM, Sobrevia L. Adenosine and preeclampsia. Mol Aspects Med 2017; 55:126-139. [DOI: 10.1016/j.mam.2016.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023]
|
13
|
Deng Y, Wang ZV, Gordillo R, An Y, Zhang C, Liang Q, Yoshino J, Cautivo KM, De Brabander J, Elmquist JK, Horton JD, Hill JA, Klein S, Scherer PE. An adipo-biliary-uridine axis that regulates energy homeostasis. Science 2017; 355:355/6330/eaaf5375. [PMID: 28302796 DOI: 10.1126/science.aaf5375] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
Uridine, a pyrimidine nucleoside present at high levels in the plasma of rodents and humans, is critical for RNA synthesis, glycogen deposition, and many other essential cellular processes. It also contributes to systemic metabolism, but the underlying mechanisms remain unclear. We found that plasma uridine levels are regulated by fasting and refeeding in mice, rats, and humans. Fasting increases plasma uridine levels, and this increase relies largely on adipocytes. In contrast, refeeding reduces plasma uridine levels through biliary clearance. Elevation of plasma uridine is required for the drop in body temperature that occurs during fasting. Further, feeding-induced clearance of plasma uridine improves glucose metabolism. We also present findings that implicate leptin signaling in uridine homeostasis and consequent metabolic control and thermoregulation. Our results indicate that plasma uridine governs energy homeostasis and thermoregulation in a mechanism involving adipocyte-dependent uridine biosynthesis and leptin signaling.
Collapse
Affiliation(s)
- Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yu An
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Qiren Liang
- Department of Biochemistry and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly M Cautivo
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jef De Brabander
- Department of Biochemistry and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jay D Horton
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Grañé-Boladeras N, Spring CM, Hanna WJB, Pastor-Anglada M, Coe IR. Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir. Cell Mol Life Sci 2016; 73:4559-4575. [PMID: 27271752 PMCID: PMC11108336 DOI: 10.1007/s00018-016-2288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 10/25/2022]
Abstract
Nucleosides participate in many cellular processes and are the fundamental building blocks of nucleic acids. Nucleoside transporters translocate nucleosides across plasma membranes although the mechanism by which nucleos(t)ides are translocated into the nucleus during DNA replication is unknown. Here, we identify two novel functional splice variants of equilibrative nucleoside transporter 2 (ENT2), which are present at the nuclear envelope. Under proliferative conditions, these splice variants are up-regulated and recruit wild-type ENT2 to the nuclear envelope to translocate nucleosides into the nucleus for incorporation into DNA during replication. Reduced presence of hENT2 splice variants resulted in a dramatic decrease in cell proliferation and dysregulation of cell cycle due to a lower incorporation of nucleotides into DNA. Our findings support a novel model of nucleoside compartmentalisation at the nuclear envelope and translocation into the nucleus through hENT2 and its variants, which are essential for effective DNA synthesis and cell proliferation.
Collapse
Affiliation(s)
- Natalia Grañé-Boladeras
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain.
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| | - Christopher M Spring
- Research Core Facilities, Keenan Research Centre, Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - W J Brad Hanna
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
15
|
Fernández‐Calotti P, Casulleras O, Antolin M, Guarner F, Pastor‐Anglada M. Galectin‐4 interacts with the drug transporter human concentrative nucleoside transporter 3 to regulate its function. FASEB J 2015; 30:544-54. [DOI: 10.1096/fj.15-272773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Paula Fernández‐Calotti
- Department of Biochemistry and Molecular BiologyUniversity of BarcelonaInstitute of Biomedicine (IBUB)BarcelonaSpain
- Oncology ProgramNational Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD)Instituto de Salud Carlos IIIMadridSpain
| | - Olga Casulleras
- Department of Biochemistry and Molecular BiologyUniversity of BarcelonaInstitute of Biomedicine (IBUB)BarcelonaSpain
- Oncology ProgramNational Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD)Instituto de Salud Carlos IIIMadridSpain
| | - María Antolin
- Department of GastroenterologyDigestive System Research UnitInstitut de Recerca Vall d'HebronUniversity Hospital Vall d'HebronUniversitat Autònoma de Barcelona, CIBER EHDBarcelonaSpain
| | - Francisco Guarner
- Department of GastroenterologyDigestive System Research UnitInstitut de Recerca Vall d'HebronUniversity Hospital Vall d'HebronUniversitat Autònoma de Barcelona, CIBER EHDBarcelonaSpain
| | - Marçal Pastor‐Anglada
- Department of Biochemistry and Molecular BiologyUniversity of BarcelonaInstitute of Biomedicine (IBUB)BarcelonaSpain
- Oncology ProgramNational Biomedical Research Institute of Liver and Gastrointestinal Diseases (CIBER EHD)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
16
|
Vuckovic D, Dawson S, Scheffer DI, Rantanen T, Morgan A, Di Stazio M, Vozzi D, Nutile T, Concas MP, Biino G, Nolan L, Bahl A, Loukola A, Viljanen A, Davis A, Ciullo M, Corey DP, Pirastu M, Gasparini P, Girotto G. Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss. Hum Mol Genet 2015; 24:5655-64. [PMID: 26188009 PMCID: PMC4572074 DOI: 10.1093/hmg/ddv279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022] Open
Abstract
Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E−10 and rs7032430, P = 2.39E−09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.
Collapse
Affiliation(s)
- Dragana Vuckovic
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy
| | - Sally Dawson
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Deborah I Scheffer
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Taina Rantanen
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Anna Morgan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy
| | - Mariateresa Di Stazio
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy
| | - Diego Vozzi
- Institute for Maternal and Child Health IRCCS 'Burlo Garofolo', Trieste 34100, Italy
| | - Teresa Nutile
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Maria P Concas
- Institute of Population Genetics, National Research Council of Italy, Sassari 07100, Italy
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia 27100, Italy
| | - Lisa Nolan
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Aileen Bahl
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland and
| | - Anu Loukola
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland and
| | - Anne Viljanen
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Adrian Davis
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Marina Ciullo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - David P Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari 07100, Italy
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy, Institute for Maternal and Child Health IRCCS 'Burlo Garofolo', Trieste 34100, Italy, Experimental Genetics Division, Sidra, Doha, Qatar
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy,
| |
Collapse
|
17
|
Claudio-Montero A, Pinilla-Macua I, Fernández-Calotti P, Sancho-Mateo C, Lostao MP, Colomer D, Grandas A, Pastor-Anglada M. Fluorescent nucleoside derivatives as a tool for the detection of concentrative nucleoside transporter activity using confocal microscopy and flow cytometry. Mol Pharm 2015; 12:2158-66. [PMID: 25923048 DOI: 10.1021/acs.molpharmaceut.5b00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The abundance and function of transporter proteins at the plasma membrane are likely to be crucial in drug responsiveness. Functional detection of human concentrative nucleoside transporters (hCNTs) is of interest for predicting drug sensitivity because of their ability to transport most nucleoside-derived drugs. In the present study, two fluorescent nucleoside analogues, uridine-furan and etheno-cytidine, were evaluated as tools to study in vivo nucleoside transporter-related functions. These two molecules showed high affinity interactions with hCNT1 and hCNT3 and were shown to be substrates of both transporters. Both fluorescence microscopy and flow cytometry experiments showed that uridine-furan uptake was better suited for distinguishing cells that express hCNT1 or hCNT3. These data highlight the usefulness of fluorescent nucleoside derivatives, as long as they fulfill the requirements of confocal microscopy and flow cytometry, for in vivo analysis of hCNT-related function.
Collapse
Affiliation(s)
- Ana Claudio-Montero
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain.,⊥Department of Organic Chemistry, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain
| | - Itziar Pinilla-Macua
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Fernández-Calotti
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlos Sancho-Mateo
- #Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - María Pilar Lostao
- #Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Dolors Colomer
- §Hematopathology Unit, Hospital Clínic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Grandas
- ⊥Department of Organic Chemistry, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain
| | - Marçal Pastor-Anglada
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
18
|
Young JD, Yao SYM, Baldwin JM, Cass CE, Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med 2013; 34:529-47. [PMID: 23506887 DOI: 10.1016/j.mam.2012.05.007] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/11/2012] [Indexed: 12/23/2022]
Abstract
Nucleoside transport in humans is mediated by members of two unrelated protein families, the SLC28 family of cation-linked concentrative nucleoside transporters (CNTs) and the SLC29 family of energy-independent, equilibrative nucleoside transporters (ENTs). These families contain three and four members, respectively, which differ both in the stoichiometry of cation coupling and in permeant selectivity. Together, they play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis. Moreover, they facilitate cellular uptake of several nucleoside and nucleobase drugs used in cancer chemotherapy and treatment of viral infections. Thus, the transporter content of target cells can represent a key determinant of the response to treatment. In addition, by regulating the concentration of adenosine available to cell surface receptors, nucleoside transporters modulate many physiological processes ranging from neurotransmission to cardiovascular activity. This review describes the molecular and functional properties of the two transporter families, with a particular focus on their physiological roles in humans and relevance to disease treatment.
Collapse
Affiliation(s)
- James D Young
- Membrane Protein Research Group, Edmonton, Alberta, Canada T6G 2H7.
| | | | | | | | | |
Collapse
|
19
|
Thakkar N, Kim K, Jang ER, Han S, Kim K, Kim D, Merchant N, Lockhart AC, Lee W. A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm of colon and pancreatic cancer cells. Mol Pharm 2012; 10:406-16. [PMID: 23215050 DOI: 10.1021/mp3005353] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OATP1B3 is a member of the OATP (organic anion transporting polypeptides) superfamily, responsible for mediating the transport of numerous endogenous and xenobiotic substances. Although initially reported to be exclusively expressed in the liver, several studies reported that OATP1B3 is frequently expressed in multiple types of cancers and may be associated with differing clinical outcomes. However, a detailed investigation on the expression and function of OATP1B3 protein in cancer has been lacking. In this study, we confirmed that colon and pancreatic cancer cells express variant forms of OATP1B3, different from OATP1B3 wild-type (WT) expressed in the normal liver. OATP1B3 variant 1 (V1), the most prevalent form among the variants, contains alternative exonic sequences (exon 2a) instead of exons 1 and 2 present in OATP1B3 WT. The translated product of OATP1B3 V1 is almost identical to OATP1B3 WT, with exception to the first 28 amino acids at the N-terminus. Exogenous expression of OATP1B3 V1 revealed that OATP1B3 V1 undergoes post-translational modifications and proteasomal degradation to a differing extent compared to OATP1B3 WT. OATP1B3 V1 showed only modest transport activity toward cholecystokin-8 (CCK-8, a prototype OATP1B3 substrate) in contrast to OATP1B3 WT showing a markedly efficient uptake of CCK-8. Consistent with these results, OATP1B3 V1 was localized mainly in the cytoplasm with a much lower extent of trafficking to the surface membrane compared to OATP1B3 WT. In summary, our results demonstrate that colon and pancreatic cancer cells express variant forms of OATP1B3 with only limited transport activity and different subcellular localization compared to OATP1B3 WT. These observed differences at the molecular and functional levels will be important considerations for further investigations of the biological and clinical significance of OATP1B3 expression in cancer.
Collapse
Affiliation(s)
- Nilay Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Errasti-Murugarren E, Fernández-Calotti P, Veyhl-Wichmann M, Diepold M, Pinilla-Macua I, Pérez-Torras S, Kipp H, Koepsell H, Pastor-Anglada M. Role of the transporter regulator protein (RS1) in the modulation of concentrative nucleoside transporters (CNTs) in epithelia. Mol Pharmacol 2012; 82:59-67. [PMID: 22492015 DOI: 10.1124/mol.111.076992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
SLC28 genes encode three plasma membrane transporter proteins, human concentrative nucleoside transporter (CNT)1, CNT2, and CNT3, all of which are implicated in the uptake of natural nucleosides and a variety of nucleoside analogs used in the chemotherapy of cancer and viral and inflammatory diseases. Mechanisms determining their trafficking toward the plasma membrane are not well known, although this might eventually become a target for therapeutic intervention. The transporter regulator RS1, which was initially identified as a short-term, post-transcriptional regulator of the high-affinity, Na(+)-coupled, glucose transporter sodium-dependent glucose cotransporter 1, was evaluated in this study as a candidate for coordinate regulation of membrane insertion of human CNT-type proteins. With a combination of studies with mammalian cells, Xenopus laevis oocytes, and RS1-null mice, evidence that RS1 down-regulates the localization and activity at the plasma membrane of the three members of this protein family (CNT1, CNT2, and CNT3) is provided, which indicates the biochemical basis for coordinate regulation of nucleoside uptake ability in epithelia and probably in other RS1-expressing cell types.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona and National Biomedical Research Institute of Liver and Gastrointestinal Diseases, Diagonal 643, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Structural determinants for rCNT2 sorting to the plasma membrane of polarized and non-polarized cells. Biochem J 2012; 442:517-25. [DOI: 10.1042/bj20110605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
rCNT2 (rat concentrative nucleoside transporter 2) (Slc28a2) is a purine-preferring concentrative nucleoside transporter. It is expressed in both non-polarized and polarized cells, where it is localized in the brush border membrane. Since no information about the domains implicated in the plasma membrane sorting of rCNT2 is available, the present study aimed to identify structural and functional requirements for rCNT2 trafficking. The comprehensive topological mapping of the intracellular N-terminal tail revealed two main features: (i) a glutamate-enriched region (NPGLELME) between residues 21 and 28 that seems to be implicated in the stabilization of rCNT2 in the cell surface, since mutagenesis of these conserved glutamates resulted in enhanced endocytosis; and (ii) mutation of a potential protein kinase CK2 domain that led to a loss of brush border-specific sorting. Although the shortest proteins assayed (rCNT2-74AA, -48AA and -37AA) accumulated intracellularly and lost their brush border membrane preference, they were still functional. A deeper analysis of CK2 implication in CNT2 trafficking, using a CK2-specific inhibitor [DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)] and other complementary mutations mimicking the negative charge provided by phosphorylation (S46D and S46E), demonstrated an effect of this kinase on rCNT2 activity. In summary, the N-terminal tail of rCNT2 contains dual sorting signals. An acidic region is responsible for its proper stabilization at the plasma membrane, whereas the putative CK2 domain (Ser46) is implicated in the apical sorting of the transporter.
Collapse
|
22
|
Errasti-Murugarren E, Díaz P, Godoy V, Riquelme G, Pastor-Anglada M. Expression and distribution of nucleoside transporter proteins in the human syncytiotrophoblast. Mol Pharmacol 2011; 80:809-17. [PMID: 21825094 DOI: 10.1124/mol.111.071837] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plasma membrane distribution and related biological activity of nucleoside transporter proteins (NTs) were investigated in human syncytiotrophoblast from term placenta using a variety of approaches, including nucleoside uptake measurements into vesicles from selected plasma membrane domains, NT immunohistochemistry, and subcellular localization (basal, heavy, and light apical membranes as well as raft-enriched membranes from the apical domain). In contrast with other epithelia, in this epithelium, we have identified the high-affinity pyrimidine-preferring human concentrative nucleoside transporter (hCNT) 1 as the only hCNT-type protein expressed at both the basal and apical membranes. hCNT1 localization in lipid rafts is also dependent on its subcellular localization in the apical plasma membrane, suggesting a complex cellular and regional expression. Overall, this result favors the view that the placenta is a pyrimidine-preferring nucleoside sink from both maternal and fetal sides, and hCNT1 plays a major role in promoting pyrimidine salvage and placental growth. This finding may be of pharmacological relevance, because hCNT1 is known to interact with anticancer nucleoside-derived drugs and other molecules, such as nicotine and caffeine, for which a great variety of harmful effects on placental and fetal development, including intrauterine growth retardation, have been reported.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev 2011; 32:428-57. [DOI: 10.1002/med.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pedro Cano-Soldado
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| |
Collapse
|
24
|
Errasti-Murugarren E, Casado FJ, Pastor-Anglada M. Different N-terminal motifs determine plasma membrane targeting of the human concentrative nucleoside transporter 3 in polarized and nonpolarized cells. Mol Pharmacol 2010; 78:795-803. [PMID: 20643903 DOI: 10.1124/mol.110.065920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human concentrative nucleoside transporter 3 (hCNT3) is a broad-selectivity, high-affinity protein implicated in the uptake of most nucleoside-derived anticancer and antiviral drugs. Regulated trafficking of hCNT3 has been recently postulated as a suitable way to improve nucleoside-based therapies. Moreover, the recent identification of a putative novel hCNT3-type transporter lacking the first 69 amino acids and retained at the endoplasmic reticulum anticipated that the N terminus of hCNT3 contains critical motifs implicated in trafficking. In the current study, we have addressed this issue by using deletions and site-directed mutagenesis and plasma membrane expression and nucleoside uptake kinetic analysis. Data reveal that 1) a segment between amino acids 50 and 62 contains plasma membrane-sorting determinants in nonpolarized cells; 2) in particular, the Val(57)-Thr(58)-Val(59) tripeptide seems to be the core of the export signal, whereas acidic motifs upstream and downstream of it seem to be important for the kinetics of the process; and 3) in polarized epithelia, the β-turn-forming motif (17)VGFQ(20) is necessary for proper apical expression of the protein.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and CIBER EHD, Avda Diagonal 645, Edifici annex, Planta-1, 08028 Barcelona, Spain
| | | | | |
Collapse
|
25
|
Errasti-Murugarren E, Molina-Arcas M, Casado FJ, Pastor-Anglada M. The human concentrative nucleoside transporter-3 C602R variant shows impaired sorting to lipid rafts and altered specificity for nucleoside-derived drugs. Mol Pharmacol 2010; 78:157-65. [PMID: 20421346 DOI: 10.1124/mol.110.063552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human concentrative nucleoside transporter-3 C602R (hCNT3C602R), a recently identified human concentrative nucleoside transporter-3 (hCNT3) variant, has been shown to interact with natural nucleosides with apparent K(m) values similar to those of the wild-type transporter, although binding of one of the two sodium ions required for nucleoside translocation is impaired, resulting in decreased V(max) values (Mol Pharmacol 73:379-386, 2008). We have further analyzed the properties of this hCNT3 variant by determining its localization in plasma membrane lipid domains and its interaction with nucleoside-derived drugs used in anticancer and antiviral therapies. When expressed heterologously in HeLa cells, wild-type hCNT3 localized to both lipid raft and nonlipid raft domains. Treatment of cells with the cholesterol-depleting agent methyl-beta-cyclodextrin resulted in a marked decrease in hCNT3-related transport activity that was associated with the loss of wild-type hCNT3 from lipid rafts. It is noteworthy that although exogenously expressed hCNT3C602R was present in nonlipid raft domains at a level similar to that of the wild-type transporter, the mutant transporter was present at much lower amounts in lipid rafts. A substrate profile analysis showed that interactions with a variety of nucleoside-derived drugs were altered in the hCNT3C602R variant and revealed that sugar hydroxyl residues are key structural determinants for substrate recognition by the hCNT3C602R variant.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and CIBER EHD, Avda Diagonal 645, Edifici annex, Planta-1, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Kang N, Jun AH, Bhutia YD, Kannan N, Unadkat JD, Govindarajan R. Human equilibrative nucleoside transporter-3 (hENT3) spectrum disorder mutations impair nucleoside transport, protein localization, and stability. J Biol Chem 2010; 285:28343-52. [PMID: 20595384 DOI: 10.1074/jbc.m110.109199] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence reveals that sole mutations in hENT3 cause a spectrum of human genetic disorders. Among these include H syndrome, characterized by scleroderma, hyperpigmentation, hypertrichosis, hepatomegaly, cardiac abnormalities and musculoskeletal deformities, pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndrome, characterized by autoantibody-negative diabetes mellitus and skin deformities, familial Rosai-Dorfman disease, characterized by short stature, familial histiocytosis and sinus histiocytosis with massive lymphadenopathy (SHML), characterized by severe tissue infiltration of immune cells and swollen lymph nodes. hENT3 spectrum disorders share a common mutation and share overlapping clinical manifestations that display many intriguing resemblances to mitochondrial and lysosomal disorders. Although earlier studies identify hENT3 as a mitochondrial and a lysosomal nucleoside transporter, the precise connections between hENT3 and the pathophysiology of these disorders remain unresolved. In this study, we performed functional and biochemical characterization of these mutations in hENT3. We report severe reductions/losses of hENT3 nucleoside transport functions of hENT3 syndrome mutants. In addition to transport alterations, we provide evidence for possible loss of hENT3 functions in all H and pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndromes due to either mistrafficking or altered stability of mutant hENT3 proteins.
Collapse
Affiliation(s)
- Nayoung Kang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
27
|
Molina-Arcas M, Pastor-Anglada M. Role of Nucleoside Transporters in Nucleoside-Derived Drug Sensitivity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:335-46. [DOI: 10.1080/15257771003729823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Effects of Na+ and H+ on steady-state and presteady-state currents of the human concentrative nucleoside transporter 3 (hCNT3). Pflugers Arch 2010; 460:617-32. [DOI: 10.1007/s00424-010-0846-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/13/2010] [Accepted: 05/04/2010] [Indexed: 11/26/2022]
|
29
|
Downie MJ, El Bissati K, Bobenchik AM, Nic Lochlainn L, Amerik A, Zufferey R, Kirk K, Ben Mamoun C. PfNT2, a permease of the equilibrative nucleoside transporter family in the endoplasmic reticulum of Plasmodium falciparum. J Biol Chem 2010; 285:20827-33. [PMID: 20439460 DOI: 10.1074/jbc.m110.118489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The survival and proliferation of the obligate intracellular malaria parasite Plasmodium falciparum require salvage of essential purines from the host. Genetic studies have previously shown that the parasite plasma membrane purine permease, PfNT1, plays an essential function in the transport of all naturally occurring purine nucleosides and nucleobases across the parasite plasma membrane. Here, we describe an intracellular permease, PfNT2. PfNT2 is, like PfNT1, a member of the equilibrative nucleoside transporter family. Confocal and immunoelectron microscopic analyses of transgenic parasites harboring green fluorescent protein- or hemagglutinin-tagged PfNT2 demonstrated endoplasmic reticulum localization. This localization was confirmed by colocalization with the endoplasmic reticulum marker PfBiP. Using yeast as a surrogate system, we show that targeting PfNT2 to the plasma membrane of fui1Delta cells lacking the plasma membrane nucleoside transporter Fui1 confers sensitivity to the toxic nucleoside analog 5-fluorouridine. This study provides the first evidence of an intracellular purine permease in apicomplexan parasites and suggests a novel biological function for the parasite endoplasmic reticulum during malaria infection.
Collapse
Affiliation(s)
- Megan J Downie
- Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06512, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fernández-Calotti P, Pastor-Anglada M. All-trans-retinoic acid promotes trafficking of human concentrative nucleoside transporter-3 (hCNT3) to the plasma membrane by a TGF-beta1-mediated mechanism. J Biol Chem 2010; 285:13589-98. [PMID: 20172853 DOI: 10.1074/jbc.m109.055673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human concentrative nucleoside transporter-3 (hCNT3) is a sodium-coupled nucleoside transporter that exhibits high affinity and broad substrate selectivity, making it the most suitable candidate for mediating the uptake and cytotoxic action of most nucleoside-derived drugs. The drug of this class most commonly used in the treatment of chronic lymphocytic leukemia (CLL) is the pro-apoptotic nucleoside analog fludarabine (Flu), which enters CLL cells primarily through human equilibrative nucleoside transporters (hENTs). Although CLL cells lack hCNT3 activity, they do express this transporter protein, which is located mostly in the cytosol. The aim of our study was to identify agents and mechanisms capable of promoting hCNT3 trafficking to the plasma membrane. Here, we report that all-trans-retinoic acid (ATRA), currently used in the treatment of acute promyelocytic leukemia (APL), increases hCNT3-related activity through a mechanism that involves trafficking of pre-existing hCNT3 proteins to the plasma membrane. This effect is mediated by the autocrine action of transforming growth factor (TGF)-beta1, which is transcriptionally activated by ATRA in a p38-dependent manner. TGF-beta1 acts through activation of ERK1/2 and the small GTPase RhoA to promote plasma membrane trafficking of the hCNT3 protein.
Collapse
Affiliation(s)
- Paula Fernández-Calotti
- Departament de Bioquímica i Biologia Molecular, the Institut de Biomedicina de la Universitat de Barcelona, and CIBER EHD, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | | |
Collapse
|
31
|
Redzic ZB, Malatiali SA, Grujicic D, Isakovic AJ. Expression and functional activity of nucleoside transporters in human choroid plexus. Cerebrospinal Fluid Res 2010; 7:2. [PMID: 20150980 PMCID: PMC2820436 DOI: 10.1186/1743-8454-7-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/11/2010] [Indexed: 01/11/2023] Open
Abstract
Background Human equilibrative nucleoside transporters (hENTs) 1-3 and human concentrative nucleoside transporters (hCNTs) 1-3 in the human choroid plexus (hCP) play a role in the homeostasis of adenosine and other naturally occurring nucleosides in the brain; in addition, hENT1, hENT2 and hCNT3 mediate membrane transport of nucleoside reverse transcriptase inhibitors that could be used to treat HIV infection, 3'-azido-3'-deoxythymidine, 2'3'-dideoxycytidine and 2'3'-dideoxyinosine. This study aimed to explore the expression levels and functional activities of hENTs 1-3 and hCNTs 1-3 in human choroid plexus. Methods Freshly-isolated pieces of lateral ventricle hCP, removed for various clinical reasons during neurosurgery, were obtained under Local Ethics Committee approval. Quantification of mRNAs that encoded hENTs and hCNTs was performed by the hydrolysis probes-based reverse transcription real time-polymerase chain reaction (RT-qPCR); for each gene of interest and for 18 S ribosomal RNA, which was an endogenous control, the efficiency of PCR reaction (E) and the quantification cycle (Cq) were calculated. The uptake of [3H]inosine by the choroid plexus pieces was investigated to explore the functional activity of hENTs and hCNTs in the hCP. Results RT-qPCR revealed that the mRNA encoding the intracellularly located transporter hENT3 was the most abundant, with E-Cq value being only about 40 fold less that the E-Cq value for 18 S ribosomal RNA; mRNAs encoding hENT1, hENT2 and hCNT3 were much less abundant than mRNA for the hENT3, while mRNAs encoding hCNT1 and hCNT2 were of very low abundance and not detectable. Uptake of [3H]inosine by the CP samples was linear and consisted of an Na+-dependent component, which was probably mediated by hCNT3, and Na+-independent component, mediated by hENTs. The latter component was not sensitive to inhibition by S-(4-nitrobenzyl)-6-thioinosine (NBMPR), when used at a concentration of 0.5 μM, a finding that excluded the involvement of hENT1, but it was very substantially inhibited by 10 μM NBMPR, a finding that suggested the involvement of hENT2 in uptake. Conclusion Transcripts for hENT1-3 and hCNT3 were detected in human CP; mRNA for hENT3, an intracellularly located nucleoside transporter, was the most abundant. Human CP took up radiolabelled inosine by both concentrative and equilibrative processes. Concentrative uptake was probably mediated by hCNT3; the equilibrative uptake was mediated only by hENT2. The hENT1 transport activity was absent, which could suggest either that this protein was absent in the CP cells or that it was confined to the basolateral side of the CP epithelium.
Collapse
|