1
|
Bordini M, Wang Z, Soglia F, Petracci M, Schmidt CJ, Abasht B. RNA-sequencing revisited data shed new light on wooden breast myopathy. Poult Sci 2024; 103:103902. [PMID: 38908127 PMCID: PMC11246058 DOI: 10.1016/j.psj.2024.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Wooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers' breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Ziqing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Cesena, Italy.
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Hou C, Huang M, Wang P, Zhang Q, Wang G, Gao S. Chronic exposure to 3,6-dichlorocarbazole exacerbates non-alcoholic fatty liver disease in zebrafish by disrupting lipid metabolism and inducing special lipid biomarker accumulation. CHEMOSPHERE 2024; 352:141442. [PMID: 38346516 DOI: 10.1016/j.chemosphere.2024.141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Most previous studies have focused primarily on the adverse effects of environmental chemicals on organisms of good healthy. Although global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached approximately 25%, the impact of environmentally persistent organic chemicals on organisms with NAFLD is substantially unknown. Polyhalogenated carbazoles (PHCZs) as emerging contaminants have been frequently detected in the environment and organisms. In this study, we investigated the impact of the most frequently detected PHCZs, 3,6-dichlorocarbazole (36-CCZ), on zebrafish with high-fat diet (HFD)-induced NAFLD. After 4 weeks exposure to environmentally relevant concentrations of 36-CCZ (0.16-0.45 μg/L), the accumulation of lipid in zebrafish liver dramatically increased, and the transcription of genes involved in lipid synthesis, transport and oxidation was significantly upregulated, demonstrating that 36-CCZ had exacerbated the NAFLD in zebrafish. Lipidomic analysis indicated that 36-CCZ had significantly affected liver lipid metabolic pathways, mainly including glycerolipids and glycerophospholipids. Additionally, fifteen lipids were identified as potential lipid biomarkers for 36-CCZ exacerbation of NAFLD, including diacylglycerols (DGs), triglycerides (TGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidic acid (PA), and phosphatidylinositol (PI). These findings demonstrate that long-term exposure to 36-CCZ can promote the progression of NAFLD, which will contribute to raising awareness of the health risks of PHCZs.
Collapse
Affiliation(s)
- Cunchuang Hou
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Mengyao Huang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Pingping Wang
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Qiaoyun Zhang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guowei Wang
- School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Huang X, Sun Y, Song J, Huang Y, Shi H, Qian A, Cao Y, Zhou Y, Wang Q. Prognostic value of fatty acid metabolism-related genes in colorectal cancer and their potential implications for immunotherapy. Front Immunol 2023; 14:1301452. [PMID: 38045683 PMCID: PMC10693327 DOI: 10.3389/fimmu.2023.1301452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Colorectal cancer is one of the most common gastrointestinal cancers and the second leading cause of cancer-related death. Although colonoscopy screening has greatly improved the early diagnosis of colorectal cancer, its recurrence and metastasis are still significant problems. Tumour cells usually have the hallmark of metabolic reprogramming, while fatty acids play important roles in energy storage, cell membrane synthesis, and signal transduction. Many pathways of fatty acid metabolism (FAM) are involved in the occurrence and development of colon cancer, and the complex molecular interaction network contains a variety of genes encoding key enzymes and related products. Methods Clinical information and RNA sequencing data were collected from TCGA and GEO databases. The prognosis model of colon cancer was constructed by LASSO-Cox regression analysis among the selected fatty acid metabolism genes with differential expression. Nomogram for the prognosis model was also constructed in order to analyze its value in evaluating the survival and clinical stage of the colon cancer patients. The differential expression of the selected genes was verified by qPCR and immunohistochemistry. GSEA and GSVA were used to analyze the enrichment pathways for high- and low-risk groups. CIBERSORT was used to analyze the immune microenvironment of colon cancer and to compare the infiltration of immune cells in the high- and low-risk groups. The "circlize" package was used to explore the correlation between the risk score signature and immunotherapy for colon cancer. Results We analysed the differential expression of 704 FAM-related genes between colon tumour and normal tissue and screened 10 genes with prognostic value. Subsequently, we constructed a prognostic model for colon cancer based on eight optimal FAM genes through LASSO Cox regression analysis in the TCGA-COAD dataset, and its practicality was validated in the GSE39582 dataset. Moreover, the risk score calculated based on the prognostic model was validated as an independent prognostic factor for colon cancer patients. We further constructed a nomogram composed of the risk score signature, age and American Joint Committee on Cancer (AJCC) stage for clinical application. The colon cancer cohort was divided into high- and low-risk groups according to the optimal cut-off value, and different enrichment pathways and immune microenvironments were depicted in the groups. Discussion Since the risk score signature was significantly correlated with the expression of immune checkpoint molecules, the prognostic model might be able to predict the immunotherapy response of colon cancer patients. In summary, our findings expand the prognostic value of FAM-related genes in colon cancer and provide evidence for their application in guiding immunotherapy.
Collapse
Affiliation(s)
- Xi Huang
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiwen Sun
- School of Public Health, The University of Sydney Faculty of Medicine and Health, NSW, Sydney, Australia
| | - Jia Song
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yusong Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizhong Shi
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Qian
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncan Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youci Zhou
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qijun Wang
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Hao W, Cha R, Wang M, Li J, Guo H, Du R, Zhou F, Jiang X. Ligand-Modified Gold Nanoparticles as Mitochondrial Modulators: Regulation of Intestinal Barrier and Therapy for Constipation. ACS NANO 2023; 17:13377-13392. [PMID: 37449942 DOI: 10.1021/acsnano.3c01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Intestinal metabolism-related diseases, such as constipation, inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, could be associated with the dysfunction of intestinal mitochondria. The mitochondria of intestinal epithelial cells are of great significance for promoting intestinal motility and maintaining intestinal metabolism. It is necessary for the prophylaxis and therapy of intestinal metabolism-related diseases to improve mitochondrial function. We investigated the effect of 4,6-diamino-2-pyrimidinethiol-modified gold nanoparticles (D-Au NPs) on intestinal mitochondria and studied the regulatory role of D-Au NPs on mitochondria metabolism-related disease. D-Au NPs improved the antioxidation capability of mitochondria, regulated the mitochondrial metabolism, and maintained intestinal cellular homeostasis via the activation of AMPK and regulation of PGC-1α with its downstream signaling (UCP2 and DRP1), enhancing the intestinal mechanical barrier. D-Au NPs improved the intestinal mitochondrial function to intervene in the emergence of constipation, which could help develop drugs to treat and prevent mitochondrial metabolism-related diseases. Our findings provided an in-depth understanding of the mitochondrial effects of Au NPs for improving human intestinal barriers.
Collapse
Affiliation(s)
- Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Mingzheng Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Juanjuan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Hongbo Guo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
5
|
Huang L, Luo J, Song N, Gao W, Zhu L, Yao W. CRISPR/Cas9-Mediated Knockout of miR-130b Affects Mono- and Polyunsaturated Fatty Acid Content via PPARG-PGC1α Axis in Goat Mammary Epithelial Cells. Int J Mol Sci 2022; 23:3640. [PMID: 35409000 PMCID: PMC8998713 DOI: 10.3390/ijms23073640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNA (miRNA)-130b, as a regulator of lipid metabolism in adipose and mammary gland tissues, is actively involved in lipogenesis, but its endogenous role in fatty acid synthesis remains unclear. Here, we aimed to explore the function and underlying mechanism of miR-130b in fatty acid synthesis using the CRISPR/Cas9 system in primary goat mammary epithelial cells (GMEC). A single clone with deletion of 43 nucleotides showed a significant decrease in miR-130b-5p and miR-130b-3p abundances and an increase of target genes PGC1α and PPARG. In addition, knockout of miR-130b promoted triacylglycerol (TAG) and cholesterol accumulation, and decreased the proportion of monounsaturated fatty acids (MUFA) C16:1, C18:1 and polyunsaturated fatty acids (PUFA) C18:2, C20:3, C20:4, C20:5, C22:6. Similarly, the abundance of fatty acid synthesis genes ACACA and FASN and transcription regulators SREBP1c and SREBP2 was elevated. Subsequently, interference with PPARG instead of PGC1α in knockout cells restored the effect of miR-130b knockout, suggesting that PPARG is responsible for miR-130b regulating fatty acid synthesis. Moreover, disrupting PPARG inhibits PGC1α transcription and translation. These results reveal that miR-130b directly targets the PPARG-PGC1α axis, to inhibit fatty acid synthesis in GMEC. In conclusion, miR-130b could be a potential molecular regulator for improving the beneficial fatty acids content in goat milk.
Collapse
Affiliation(s)
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (N.S.); (W.G.); (L.Z.); (W.Y.)
| | | | | | | | | |
Collapse
|
6
|
Huang X, Pan L, Zuo Z, Li M, Zeng L, Li R, Ye Y, Zhang J, Wu G, Bai R, Zhuang L, Wei L, Zheng Y, Su J, Deng J, Deng S, Zhang S, Zhu S, Che X, Wang C, Wu C, Chen R, Lin D, Zheng J. LINC00842 inactivates transcription co-regulator PGC-1α to promote pancreatic cancer malignancy through metabolic remodelling. Nat Commun 2021; 12:3830. [PMID: 34158490 PMCID: PMC8219694 DOI: 10.1038/s41467-021-23904-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism underlying pancreatic ductal adenocarcinoma (PDAC) malignancy remains unclear. Here, we characterize a long intergenic non-coding RNA LINC00842 that plays a role in PDAC progression. LINC00842 expression is upregulated in PDAC and induced by high concentration of glucose via transcription factor YY1. LINC00842 binds to and prevents acetylated PGC-1α from deacetylation by deacetylase SIRT1 to form PGC-1α, an important transcription co-factor in regulating cellular metabolism. LINC00842 overexpression causes metabolic switch from mitochondrial oxidative catabolic process to fatty acid synthesis, enhancing the malignant phenotypes of PDAC cells. High LINC00842 levels are correlated with elevated acetylated- PGC-1α levels in PDAC and poor patient survival. Decreasing LINC00842 level and inhibiting fatty acid synthase activity significantly repress PDAC growth and invasiveness in mouse pancreatic xenograft or patient-derived xenograft models. These results demonstrate that LINC00842 plays a role in promoting PDAC malignancy and thus might serve as a druggable target.
Collapse
Affiliation(s)
- Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guandi Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lusheng Wei
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanfen Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Junge Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shihao Zhu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xu Che
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengfeng Wang
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rufu Chen
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Guo W, Lei L, Shi X, Li R, Wang Q, Han J, Yang L, Chen L, Zhou B. Nonalcoholic Fatty Liver Disease Development in Zebrafish upon Exposure to Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate, a Novel Brominated Flame Retardant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6926-6935. [PMID: 33938212 DOI: 10.1021/acs.est.1c01476] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a novel brominated flame retardant, can potentially cause lipid metabolism disorder; however, its biological effects on lipid homeostasis remain unknown. We investigated its ability to cause nonalcoholic fatty liver disease (NAFLD) in zebrafish. Female zebrafish were fed a high-fat diet (HFD, 24% crude fat) or normal diet (ND, 6% crude fat), and exposed to TBPH (0.02, 2.0 μM) for 2 weeks. Consequently, HFD-fed fish showed a higher measured concentration of TBPH than ND-fed fish. Further, TBPH-treated fish in the HFD group showed higher hepatic triglyceride levels and steatosis. In comparison to ND-fed fish, treating HFD-fed fish with TBPH led to an increase in the concentration of several proinflammatory markers (e.g., TNF-α, IL-6); TBPH exposure also caused oxidative stress. In addition, the mRNA levels of genes encoding peroxisome proliferator-activated receptors were increased, and the transcription of genes involved in lipid synthesis, transport, and oxidation was upregulated in both ND- and HFD-fed fish. Both the ND and HFD groups also showed demethylation of the peroxisome proliferator-activated receptor-γ coactivator 1-α gene promoter, accompanied by the upregulation of tet1 and tet2 transcription. To summarize, we found that TBPH amplified the disruption of lipid homeostasis in zebrafish, leading to the enhancement of diet-induced NAFLD progression.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongjie Shi
- College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan 430014, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
8
|
Li L, Aslam M, Siegler BH, Niemann B, Rohrbach S. Comparative Analysis of CTRP-Mediated Effects on Cardiomyocyte Glucose Metabolism: Cross Talk between AMPK and Akt Signaling Pathway. Cells 2021; 10:cells10040905. [PMID: 33919975 PMCID: PMC8070942 DOI: 10.3390/cells10040905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
C1q/tumor necrosis factor -alpha-related proteins (CTRPs) have been shown to mediate protective cardiovascular effects, but no data exists on their effects on glucose and fatty acid (FA) metabolism in cardiomyocytes. In the present study, adult rat cardiomyocytes and H9C2 cardiomyoblasts were stimulated with various recombinant CTRPs. Glucose or FA uptake, expression of genes involved in glucose or FA metabolism and the role of the AMP-activated protein kinase (AMPK) and Akt were investigated. Although most CTRPs induced an increase in phosphorylation of AMPK and Akt in cardiomyocytes, mainly CTRP2, 7, 9 and 13 induced GLUT1 and GLUT4 translocation and glucose uptake in cardiomyocytes, despite high structural similarities among CTRPs. AMPK inhibition reduced the CTRPs-mediated activation of Akt, while Akt inhibition did not impair AMPK activation. In addition, CTRP2, 7, 9 and 13 mediated strong effects on the expression of enzymes involved in glucose or FA metabolism. Loss of adiponectin receptor 1, which has been suggested to be involved in CTRP-induced signal transduction, abolished the effects of some but not all CTRPs on glucose metabolism. Targeting the AMPK signaling pathway via CTRPs may offer a therapeutic principle to restore glucose homeostasis by acting on glucose uptake independent of the Akt pathway.
Collapse
Affiliation(s)
- Ling Li
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
- Correspondence: ; Tel.: +49-641-99-47342
| | - Muhammad Aslam
- Experimental Cardiology, Department of Cardiology and Angiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Benedikt H. Siegler
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany; (B.H.S.); (S.R.)
| |
Collapse
|
9
|
Tamarindo GH, Góes RM. Docosahexaenoic acid differentially modulates the cell cycle and metabolism- related genes in tumor and pre-malignant prostate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158766. [PMID: 32712248 DOI: 10.1016/j.bbalip.2020.158766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has different molecular features along progression, including androgen profile, which is associated to therapy inefficiency leading to more aggressive phenotype. Docosahexaenoic acid (DHA) has antiproliferative and pro-apoptotic properties in different cancers associated to cell metabolism modulation. The latter is of particular interest since metabolic reprogramming is one of PCa hallmarks, but is not clear how this occurs among disease progression. Therefore, we evaluated DHA antiproliferative potential in distinct androgenic backgrounds associated to metabolism modulation and androgen-regulated genes. For this purpose, pre-malignant PNT1A and tumor AR-positive 22rv1, and AR-negative PC3 cells were incubated with DHA at 100 μM-48 h. DHA reduced at least 26% cell number for all lineages due to S-phase decrease in AR-positive and G2/M arrest in AR-negative. Mitochondrial metabolic rate decreased in PNT1A (~38%) and increased in tumor cells (at least 40%). This was associated with ROS overproduction (1.6-fold PNT1A; 2.1 22rv1; 2.2 PC3), lipid accumulation (3-fold PNT1A; 1.8 22rv1; 3.6 PC3) and mitochondria damage in all cell lines. AKT, AMPK and PTEN were not activated in any cell line, but p-ERK1/2 increased (1.5-fold) in PNT1A. Expression of androgen-regulated and nuclear receptors genes showed that DHA affected them in a distinct pattern in each cell line, but most converged to metabolism regulation, response to hormones, lipids and stress. In conclusion, regardless of androgenic or PTEN background DHA exerted antiproliferative effect associated to cell cycle impairment, lipid deregulation and oxidative stress, but differentially regulated gene expression probably due to distinct molecular features of each pathologic stage.
Collapse
Affiliation(s)
| | - Rejane Maira Góes
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
10
|
Li F, Li J, Li S, Guo S, Li P. Modulatory Effects of Chinese Herbal Medicines on Energy Metabolism in Ischemic Heart Diseases. Front Pharmacol 2020; 11:995. [PMID: 32719602 PMCID: PMC7348053 DOI: 10.3389/fphar.2020.00995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic heart disease (IHD), a major global public health problem, is associated with high morbidity and mortality. Although the very best of modern approaches have proven effective in reducing morbidity and mortality, the poor prognosis of patients with IHD remains a major clinical concern. Cardiac energy metabolism is increasingly recognized as having a role in the pathogenesis of IHD, inducing metabolic substrate alterations, mitochondrial dysfunction, impaired function of the mitochondrial electron transport chain, and deprivation of cardiac energy. Factors involved in cardiac energy metabolism provide potential therapeutic targets for the treatment of IHD. Chinese herbal medicines (CHMs) have a long history of use in the prevention and treatment of cardiovascular diseases with multi-component, multi-target, and multi-signaling. Increasing evidence suggests that Chinese herbal medicines may improve myocardial ischemia through modulating cardiac energy metabolism. Here, we describe the possible targets and pathways of cardiac energy metabolism for CHMs, and appraise the modulatory effects of CHMs on energy metabolism in IHD. Especially, this review focuses on summarizing the metabolic effects and the underlying mechanisms of Chinese herbal medicines (including herbs, major bioactive components, and formulas) in IHD. In addition, we also discuss the current limitations and the major challenges for research investigating the use of CHMs in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Fanghe Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinmao Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Saisai Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuwen Guo
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- The 3rd Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Zhang D, Zhang X, Li F, La Y, Li G, Zhang Y, Li X, Zhao Y, Song Q, Wang W. The association of polymorphisms in the ovine PPARGC1B and ZEB2 genes with body weight in Hu sheep. Anim Biotechnol 2020; 33:90-97. [PMID: 32496943 DOI: 10.1080/10495398.2020.1775626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aims of this study were to analyze the effects of PPARGC1B and ZEB2 polymorphisms on the body weight of Hu sheep. DNA sequencing and KASPar technologies were used to detect single nucleotide polymorphisms (SNPs) within the PPARGC1B and ZEB2 genes of Hu sheep (n = 207). Two synonymous mutations, g.300 G > A and g.645 C > T, were detected in PPARGC1B and ZEB2, respectively. The body weights of sheep were recorded at 80, 100, 120, 140, 160 and 180-days, and associations between these polymorphisms and body weight changes were analyzed. Association analysis demonstrated that the polymorphisms in PPARGC1B and ZEB2 significantly associated with body weight (p < 0.05). At the g.300 G > A locus, individuals with the GG genotype had significantly higher body weight than those with the AA genotype, and at the g.645 C > T locus, individuals with the TT genotype had significantly higher body weight than those with the TC genotype. Individuals with both polymorphisms exhibited significantly different growth (p < 0.05). These data suggest that polymorphisms in the PPARGC1B and ZEB2 genes can be used as candidate molecular markers for the breeding of desirable growth traits in Hu sheep.
Collapse
Affiliation(s)
- Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Guoze Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qizhi Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Supruniuk E, Mikłosz A, Chabowski A, Łukaszuk B. Dose- and time-dependent alterations in lipid metabolism after pharmacological PGC-1α activation in L6 myotubes. J Cell Physiol 2018; 234:11923-11941. [PMID: 30523639 PMCID: PMC6587770 DOI: 10.1002/jcp.27872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
Pyrroloquinoline quinone (PQQ) acts as a powerful modulator of PGC‐1α activation and therefore regulates multiple pathways involved in cellular energy homeostasis. In the present study, we assessed the effects of L6 myotubes incubation with 0.5, 1, and 3 μM PQQ solution for 2 and 24 hr with respect to the cells' lipid metabolism. We demonstrated that PQQ significantly elevates PGC‐1α content in a dose‐ and time‐dependent manner with the highest efficiency for 0.5 and 1 µM. The level of free fatty acids was diminished (24 hr: −66%), while an increase in triacylglycerol (TAG) amount was most pronounced after 0.5 μM (2 hr: +93%, 24 hr: +139%) treatment. Ceramide (CER) content was elevated after 2 hr incubation with 0.5 µM and after prolonged exposure to all PQQ concentrations. The cells treated with PQQ for 2 hr exhibited decreased sphinganine (SFA) and sphinganine‐1‐phosphate (SFA1P) level, while 24 hr incubation resulted in an elevated sphingosine (SFO) amount. In summary, PGC‐1α activation promotes TAG and CER synthesis.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
13
|
Brown EL, Foletta VC, Wright CR, Sepulveda PV, Konstantopoulos N, Sanigorski A, Della Gatta P, Cameron-Smith D, Kralli A, Russell AP. PGC-1α and PGC-1β Increase Protein Synthesis via ERRα in C2C12 Myotubes. Front Physiol 2018; 9:1336. [PMID: 30356878 PMCID: PMC6190860 DOI: 10.3389/fphys.2018.01336] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/25/2022] Open
Abstract
The transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and PGC-1β are positive regulators of skeletal muscle mass and energy metabolism; however, whether they influence muscle growth and metabolic adaptations via increased protein synthesis is not clear. This study revealed PGC-1α or PGC-1β overexpression in C2C12 myotubes increased protein synthesis and myotube diameter under basal conditions and attenuated the loss in protein synthesis following the treatment with the catabolic agent, dexamethasone. To investigate whether PGC-1α or PGC-1β signal through the Akt/mTOR pathway to increase protein synthesis, treatment with the PI3K and mTOR inhibitors, LY294002 and rapamycin, respectively, was undertaken but found unable to block PGC-1α or PGC-1β’s promotion of protein synthesis. Furthermore, PGC-1α and PGC-1β decreased phosphorylation of Akt and the Akt/mTOR substrate, p70S6K. In contrast to Akt/mTOR inhibition, the suppression of ERRα, a major effector of PGC-1α and PGC-1β activity, attenuated the increase in protein synthesis and myotube diameter in the presence of PGC-1α or PGC-1β overexpression. To characterize further the biological processes occurring, gene set enrichment analysis of genes commonly regulated by both PGC-1α and PGC-1β was performed following a microarray screen. Genes were found enriched in metabolic and mitochondrial oxidative processes, in addition to protein translation and muscle development categories. This suggests concurrent responses involving both increased metabolism and myotube protein synthesis. Finally, based on their known function or unbiased identification through statistical selection, two sets of genes were investigated in a human exercise model of stimulated protein synthesis to characterize further the genes influenced by PGC-1α and PGC-1β during physiological adaptive changes in skeletal muscle.
Collapse
Affiliation(s)
- Erin L Brown
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Patricio V Sepulveda
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | | | - Paul Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | - Anastasia Kralli
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
14
|
Supruniuk E, Mikłosz A, Chabowski A. The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues. Front Physiol 2017; 8:923. [PMID: 29187824 PMCID: PMC5694779 DOI: 10.3389/fphys.2017.00923] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, β-oxidation, oxidative phosphorylation and electron transport chain). It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular relocation of the proteins involved in fatty acid transmembrane movement. Studies on cell lines and/or animal models highlighted the existence of an upregulation of the total and mitochondrial FAT/CD36, FABPpm and FATPs content in skeletal muscle in response to PGC-1α stimulation. On the other hand, the association between PGC-1α level or activity and the fatty acids transport in the heart and adipocytes is still elusive. So far, the effects of PGC-1α on the total and sarcolemmal expression of FAT/CD36, FATP1, and FABPpm in cardiomyocytes have been shown to vary in relation to the type of PPAR that was coactivated. In brown adipose tissue (BAT) PGC-1α knockdown was linked with a decreased level of lipid metabolizing enzymes and fatty acid transporters (FAT/CD36, FABP3), whereas the results obtained for white adipose tissue (WAT) remain contradictory. Furthermore, dysregulation in lipid turnover is often associated with insulin intolerance, which suggests the coactivator's potential role as a therapeutic target.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Singh R, De Sarkar N, Sarkar S, Roy R, Chattopadhyay E, Ray A, Biswas NK, Maitra A, Roy B. Analysis of the whole transcriptome from gingivo-buccal squamous cell carcinoma reveals deregulated immune landscape and suggests targets for immunotherapy. PLoS One 2017; 12:e0183606. [PMID: 28886030 PMCID: PMC5590820 DOI: 10.1371/journal.pone.0183606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/08/2017] [Indexed: 01/19/2023] Open
Abstract
Background Gingivo-buccal squamous cell carcinoma (GBSCC) is one of the most common oral cavity cancers in India with less than 50% patients surviving past 5 years. Here, we report a whole transcriptome profile on a batch of GBSCC tumours with diverse tobacco usage habits. The study provides an entire landscape of altered expression with an emphasis on searching for targets with therapeutic potential. Methods Whole transcriptomes of 12 GBSCC tumours and adjacent normal tissues were sequenced and analysed to explore differential expression of genes. Expression changes were further compared with those in TCGA head and neck cohort (n = 263) data base and validated in an independent set of 10GBSCC samples. Results Differentially expressed genes (n = 2176) were used to cluster the patients based on their tobacco habits, resulting in 3 subgroups. Immune response was observed to be significantly aberrant, along with cell adhesion and lipid metabolism processes. Different modes of immune evasion were seen across 12 tumours with up-regulation or consistent expression of CD47, unlike other immune evasion genes such as PDL1, FUT4, CTLA4 and BTLA which were downregulated in a few samples. Variation in infiltrating immune cell signatures across tumours also indicates heterogeneity in immune evasion strategies. A few actionable genes such as ITGA4, TGFB1 and PTGS1/COX1 were over expressed in most samples. Conclusion This study found expression deregulation of key immune evasion genes, such as CD47 and PDL1, and reasserts their potential as effective immunotherapeutic targets for GBSCC, which requires further clinical studies. Present findings reiterate the idea of using transcriptome profiling to guide precision therapeutic strategies.
Collapse
Affiliation(s)
- Richa Singh
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | | | - Sumanta Sarkar
- National Institute of Biomedical Genomics, Kalyani, India
| | - Roshni Roy
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | | | - Anindita Ray
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
16
|
Yao Y, Voillet V, Jegou M, SanCristobal M, Dou S, Romé V, Lippi Y, Billon Y, Père MC, Boudry G, Gress L, Iannucelli N, Mormède P, Quesnel H, Canario L, Liaubet L, Le Huërou-Luron I. Comparing the intestinal transcriptome of Meishan and Large White piglets during late fetal development reveals genes involved in glucose and lipid metabolism and immunity as valuable clues of intestinal maturity. BMC Genomics 2017; 18:647. [PMID: 28830381 PMCID: PMC5568345 DOI: 10.1186/s12864-017-4001-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022] Open
Abstract
Background Maturity of intestinal functions is critical for neonatal health and survival, but comprehensive description of mechanisms underlying intestinal maturation that occur during late gestation still remain poorly characterized. The aim of this study was to investigate biological processes specifically involved in intestinal maturation by comparing fetal jejunal transcriptomes of two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting neonatal vitality and maturity, at two key time points during late gestation (gestational days 90 and 110). MS and LW sows inseminated with mixed semen (from breed LW and MS) gave birth to both purebred and crossbred fetuses. We hypothesized that part of the differences in neonatal maturity between the two breeds results from distinct developmental profiles of the fetal intestine during late gestation. Reciprocal crossed fetuses were used to analyze the effect of parental genome. Transcriptomic data and 23 phenotypic variables known to be associated with maturity trait were integrated using multivariate analysis with expectation of identifying relevant genes-phenotypic variable relationships involved in intestinal maturation. Results A moderate maternal genotype effect, but no paternal genotype effect, was observed on offspring intestinal maturation. Four hundred and four differentially expressed probes, corresponding to 274 differentially expressed genes (DEGs), more specifically involved in the maturation process were further studied. In day 110-MS fetuses, Ingenuity® functional enrichment analysis revealed that 46% of DEGs were involved in glucose and lipid metabolism, cell proliferation, vasculogenesis and hormone synthesis compared to day 90-MS fetuses. Expression of genes involved in immune pathways including phagocytosis, inflammation and defense processes was changed in day 110-LW compared to day 90-LW fetuses (corresponding to 13% of DEGs). The transcriptional regulator PPARGC1A was predicted to be an important regulator of differentially expressed genes in MS. Fetal blood fructose level, intestinal lactase activity and villous height were the best predicted phenotypic variables with probes mostly involved in lipid metabolism, carbohydrate metabolism and cellular movement biological pathways. Conclusions Collectively, our findings indicate that the neonatal maturity of pig intestine may rely on functional development of glucose and lipid metabolisms, immune phagocyte differentiation and inflammatory pathways. This process may partially be governed by PPARGC1A. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4001-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Yao
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Valentin Voillet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Maeva Jegou
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Magali SanCristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Samir Dou
- PEGASE, INRA, Agrocampus Ouest, Saint-Gilles, France
| | - Véronique Romé
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | - Gaëlle Boudry
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Nathalie Iannucelli
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Pierre Mormède
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | | | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Isabelle Le Huërou-Luron
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France.
| |
Collapse
|
17
|
Shen Y, Xu X, Yue K, Xu G. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats. Obesity (Silver Spring) 2015; 23:1000-6. [PMID: 25864958 DOI: 10.1002/oby.21056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the efficacy of mild-intensity endurance, high-intensity interval, and concurrent exercise on preventing high-fat diet-induced obesity. METHODS Male rats were divided into five groups, control diet/sedentary group, high-fat diet/sedentary, high-fat diet/endurance exercise, high-fat diet/interval exercise (HI), and high-fat diet/concurrent exercise. All exercise groups were made to exercise for 10 weeks, with matched running distances. Body weight, fat content, blood metabolites, quantitative insulin sensitivity check index (QUICKI), and adipocyte and liver lipid droplet size were assessed, and the expression of fatty acid metabolism-related genes was quantified. RESULTS All exercise protocols reduced body weight, adiposity, serum triglycerides, and fasting glucose and also improved QUICKI to some extent. However, only HI prevented obesity and its associated pathologies completely. The expression of stearoyl-coenzyme A desaturase-1 was elevated in all rats fed a high-fat diet whereas carnitine palmitoyltransferase 1 (CPT1) expression was increased with exercise. Rev-erbα expression was elevated only in the HI group, which also had the highest level of CPT1 expression. CONCLUSIONS The HI-induced increase in Rev-erbα and CPT1 expression was associated with the complete prevention of diet-induced obesity. Moreover, the increased caloric expenditure achieved with this protocol was preferential over other exercise regimens, and might be used to improve lipid metabolism.
Collapse
Affiliation(s)
- Youqing Shen
- School of Physical Education, Hubei University of Education, Wuhan, China
| | | | | | | |
Collapse
|
18
|
Kob R, Bollheimer LC, Bertsch T, Fellner C, Djukic M, Sieber CC, Fischer BE. Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis? Biogerontology 2014; 16:15-29. [PMID: 25376109 DOI: 10.1007/s10522-014-9539-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022]
Abstract
An age-dependent decline in skeletal muscle mass, strength, and endurance during the aging process is a physiological development, but several factors may exacerbate this process, leading to the threatening state of sarcopenia, frailty, and eventually higher mortality rates. Obesity appears to be such a promoting factor and has been linked in several studies to sarcopenia. The reason for this causal association remains poorly understood. Notwithstanding the fact that a higher body mass might simply lead to diminished physical activity and therefore contribute to a decline in skeletal muscle, several molecular mechanisms have been hypothesized. There could be an obesity derived intracellular lipotoxicity (i.e., elevated intramuscular levels of lipids and their derivatives), which induces apoptosis by means of an elevated oxidative stress. Paracrine mechanisms and inflammatory cytokines, such as CRP and IL-6 could be confounders of the actual underlying pathological mechanism. Due to a cross-talk of the hypothalamo-pituitary axis with nutritional status, obese subjects are more in a catabolic state of metabolism, with a higher susceptibility to muscle wasting under energy restriction. Obesity induces insulin resistance in the skeletal muscle, which consequently leads to perturbed metabolism, and misrouted signaling in the muscle cells. In obesity, muscle progenitor cells could differentiate to an adipocyte-like phenotype as a result of paracrine signals from (adipo)cytokines leading to a reduced muscular renewal capacity. The present review outlines current knowledge concerning possible pathways, which might be involved in the molecular pathogenesis of sarcopenic obesity.
Collapse
Affiliation(s)
- Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kobergerstraße 60, 90408, Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Park MJ, Kim DI, Lim SK, Choi JH, Kim JC, Yoon KC, Lee JB, Lee JH, Han HJ, Choi IP, Kim HC, Park SH. Thioredoxin-interacting protein mediates hepatic lipogenesis and inflammation via PRMT1 and PGC-1α regulation in vitro and in vivo. J Hepatol 2014; 61:1151-7. [PMID: 25003952 DOI: 10.1016/j.jhep.2014.06.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 06/17/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and type 2 diabetes. Thioredoxin-interacting protein (TXNIP) regulates the cellular redox state and metabolism and has been linked to many diseases, including diabetes. Therefore, we examined the role of TXNIP in hepatic steatosis in vitro and in vivo. METHODS Lipogenic and inflammatory proteins produced by hepatocytes treated with palmitic acid (PA) or transfected with TXNIP or Txnip siRNA were measured by Western blotting. Lipid accumulation was assessed using Oil Red O staining. Protein interactions were assessed by immunoprecipitation and proximity ligation assay. Hepatic protein levels were measured by Western blotting from wild type or Txnip(-/-) mice fed a high-fat diet (HFD) or chow diet. Livers from NAFLD patients were compared with normal liver by immunohistochemistry. RESULTS PA increased TXNIP, and inflammatory and lipogenic proteins in both AML12 and H4IIE cells. It also increased the peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α), which mediated the expression of lipogenic markers and lipid accumulation. In addition, PA increased protein arginine methyltransferase-1 (PRMT1) and PRMT1 siRNA abolished the increase in lipogenic markers with PGC-1α. Furthermore, TXNIP interacted with PRMT1 in PA-treated hepatocytes. In vivo, levels of lipogenic proteins, inflammatory molecules, PGC-1α, and PRMT1 were increased in the livers of HFD mice compared with those fed a chow diet, and were ameliorated in HFD Txnip(-/-) mice. Moreover, TXNIP, PRMT1, and PGC-1α were elevated in the livers of human NAFLD patients. CONCLUSIONS TXNIP mediates hepatic lipogenesis via PRMT1 and PGC-1α regulation and inflammation in vitro and in vivo, implying that targeting TXNIP and PRMT1 is a potential therapeutic approach for treatment of NAFLD.
Collapse
Affiliation(s)
- Min-Jung Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Dong-Il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seul-Ki Lim
- Metabolism and Functionality Research Group, R & D Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Joo-Hee Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyung-Chul Yoon
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jee-Bum Lee
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jae-Hyuk Lee
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - In-Pyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Republic of Korea
| | - Soo-Hyun Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
20
|
Haramizu S, Ota N, Otsuka A, Hashizume K, Sugita S, Hase T, Murase T, Shimotoyodome A. Dietary milk fat globule membrane improves endurance capacity in mice. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1009-17. [DOI: 10.1152/ajpregu.00004.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Milk fat globule membrane (MFGM) comprises carbohydrates, membrane-specific proteins, glycoproteins, phospholipids, and sphingolipids. We evaluated the effects of MFGM consumption over a 12-wk period on endurance capacity and energy metabolism in BALB/c mice. Long-term MFGM intake combined with regular exercise improved endurance capacity, as evidenced by swimming time until fatigue, in a dose-dependent manner. The effect of dietary MFGM plus exercise was accompanied by higher oxygen consumption and lower respiratory quotient, as determined by indirect calorimetry. MFGM intake combined with exercise increased plasma levels of free fatty acids after swimming. After chronic intake of MFGM combined with exercise, the triglyceride content in the gastrocnemius muscle increased significantly. Mice given MFGM combined with exercise had higher mRNA levels of peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc1α) and CPT-1b in the soleus muscle at rest, suggesting that increased lipid metabolism in skeletal muscle contributes, in part, to improved endurance capacity. MFGM treatment with cyclic equibiaxial stretch consisting of 10% elongation at 0.5 Hz with 1 h on and 5 h off increased the Pgc1α mRNA expression of differentiating C2C12 myoblasts in a dose-dependent manner. Supplementation with sphingomyelin increased endurance capacity in mice and Pgc1α mRNA expression in the soleus muscle in vivo and in differentiating myoblasts in vitro. These results indicate that dietary MFGM combined with exercise improves endurance performance via increased lipid metabolism and that sphingomyelin may be one of the components responsible for the beneficial effects of dietary MFGM.
Collapse
Affiliation(s)
- Satoshi Haramizu
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| | - Noriyasu Ota
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| | - Atsuko Otsuka
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| | - Kohjiro Hashizume
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| | - Satoshi Sugita
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| | - Tadashi Hase
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| | - Takatoshi Murase
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| | - Akira Shimotoyodome
- Biological Science Research, Health Science, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi Japan
| |
Collapse
|
21
|
Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes. Mitochondrion 2014; 18:41-8. [PMID: 25260493 DOI: 10.1016/j.mito.2014.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/12/2014] [Accepted: 09/15/2014] [Indexed: 11/21/2022]
Abstract
Down-regulation of PINK1 and PGC-1α proteins is implicated in both mitochondrial dysfunction and oxidative stress potentially linking metabolic abnormality and neurodegeneration. Here, we report that PGC-1α and PINK1 expression is markedly decreased in Alzheimer disease (AD) and diabetic brains. We observed a significant down-regulation of PGC-1α and PINK1 protein expression in H2O2-treated cells but not in those cells treated with N-acetyl cysteine. The protein levels of two key enzymes of the mitochondrial β-oxidation machinery, acyl-coenzyme A dehydrogenase, very long chain (ACADVL) and mitochondrial trifunctional enzyme subunit α are significantly decreased in AD and diabetic brains. Moreover, we observed a positive relationship between ACADVL and 64 kDa PINK1 protein levels in AD and diabetic brains. Overexpression of PGC-1α decreases lipid-droplet accumulation and increases mitochondrial fatty acid oxidation; down-regulation of PINK1 abolishes these effects. Together, these results provide new insights into potential cooperative roles of PINK1 and PGC-1α in mitochondrial fatty acid oxidation, suggesting possible regulatory roles for mitochondrial function in the pathogenesis of AD and diabetes.
Collapse
|
22
|
Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J Lipid Res 2014; 55:2276-86. [PMID: 25193997 DOI: 10.1194/jlr.m050005] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous "beige," and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.
Collapse
Affiliation(s)
- Emilio P Mottillo
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Priya Balasubramanian
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Yun-Hee Lee
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Changren Weng
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
23
|
Huang D, Li T, Li X, Zhang L, Sun L, He X, Zhong X, Jia D, Song L, Semenza G, Gao P, Zhang H. HIF-1-Mediated Suppression of Acyl-CoA Dehydrogenases and Fatty Acid Oxidation Is Critical for Cancer Progression. Cell Rep 2014; 8:1930-1942. [DOI: 10.1016/j.celrep.2014.08.028] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/16/2014] [Accepted: 08/13/2014] [Indexed: 02/05/2023] Open
|
24
|
Joseph AM, Nguyen LMD, Welter AE, Dominguez JM, Behnke BJ, Adhihetty PJ. Mitochondrial adaptations evoked with exercise are associated with a reduction in age-induced testicular atrophy in Fischer-344 rats. Biogerontology 2014; 15:517-534. [PMID: 25108553 DOI: 10.1007/s10522-014-9526-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction in various tissues has been associated with numerous conditions including aging. In testes, aging induces atrophy and a decline in male reproductive function but the involvement of mitochondria is not clear. The purpose of this study was to examine whether the mitochondrial profile differed with (1) aging, and (2) 10-weeks of treadmill exercise training, in the testes of young (6 month) and old (24 month) Fischer-344 (F344) animals. Old animals exhibited significant atrophy (30 % decline; P < 0.05) in testes compared to young animals. However, relative mitochondrial content was not reduced with age and this was consistent with the lack of change in the mitochondrial biogenesis regulator protein, peroxisome proliferator-activated receptor gamma coactivator 1-alpha and its downstream targets nuclear respiratory factor-1 and mitochondrial transcription factor A. No effect was observed in the pro- or anti-apoptotic proteins, Bax and Bcl-2, respectively, but age increased apoptosis inducing factor levels. Endurance training induced beneficial mitochondrial adaptations that were more prominent in old animals including greater increases in relative mtDNA content, biogenesis/remodeling (mitofusin 2), antioxidant capacity (mitochondrial superoxide dismutase) and lower levels of phosphorylated histone H2AX, an early marker of DNA damage (P < 0.05). Importantly, these exercise-induced changes were associated with an attenuation of testes atrophy in older sedentary animals (P < 0.05). Our results indicate that aging-induced atrophy in testes may not be associated with changes in relative mitochondrial content and key regulatory proteins and that exercise started in late-life elicits beneficial changes in mitochondria that may protect against age-induced testicular atrophy.
Collapse
Affiliation(s)
- A-M Joseph
- Institute on Aging, Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - L M-D Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - A E Welter
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - J M Dominguez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - B J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - P J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
25
|
Abstract
Skeletal muscle is the largest organ in the body and contributes to innumerable aspects of organismal biology. Muscle dysfunction engenders numerous diseases, including diabetes, cachexia, and sarcopenia. At the same time, skeletal muscle is also the main engine of exercise, one of the most efficacious interventions for prevention and treatment of a wide variety of diseases. The transcriptional coactivator PGC-1α has emerged as a key driver of metabolic programming in skeletal muscle, both in health and in disease. We review here the many aspects of PGC-1α function in skeletal muscle, with a focus on recent developments.
Collapse
Affiliation(s)
- Mun Chun Chan
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Zolt Arany
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School.
| |
Collapse
|
26
|
Bosma M. Lipid homeostasis in exercise. Drug Discov Today 2014; 19:1019-23. [PMID: 24632001 DOI: 10.1016/j.drudis.2014.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Abstract
Fatty acids (FA) are essential energy substrates during endurance exercise. In addition to systemic supply, intramyocellular neutral lipids form an important source of FA for the working muscle. Endurance exercise training is associated with an increased reliance on lipids as a fuel source, has systemic lipid-lowering effects and results in a remodeling of skeletal muscle lipid metabolism toward increased oxidation, neutral lipid storage and turnover. Interestingly, recent studies have indicated common exercise-induced regulatory pathways for genes involved in skeletal muscle mitochondrial oxidative metabolism and lipid droplet (LD) dynamics. In this review, I discuss lipid homeostasis during acute exercise and adaptations in lipid metabolism upon exercise training in the light of recent advances in the field.
Collapse
Affiliation(s)
- Madeleen Bosma
- Department of Cell and Molecular Biology, Karolinska Institutet, PO Box 285, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Cantoria MJ, Boros LG, Meuillet EJ. Contextual inhibition of fatty acid synthesis by metformin involves glucose-derived acetyl-CoA and cholesterol in pancreatic tumor cells. Metabolomics 2014; 10:91-104. [PMID: 24482631 PMCID: PMC3890070 DOI: 10.1007/s11306-013-0555-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/01/2013] [Indexed: 12/25/2022]
Abstract
Metformin, a generic glucose lowering drug, inhibits cancer growth expressly in models that employ high fat/cholesterol intake and/or low glucose availability. Here we use a targeted tracer fate association study (TTFAS) to investigate how cholesterol and metformin administration regulates glucose-derived intermediary metabolism and macromolecule synthesis in pancreatic cancer cells. Wild type K-ras BxPC-3 and HOM: GGT(Gly) → TGT(Cys) K12 transformed MIA PaCa-2 adenocarcinoma cells were cultured in the presence of [1,2-13C2]-d-glucose as the single tracer for 24 h and treated with either 100 μM metformin (MET), 1 mM cholesteryl hemisuccinate (CHS), or the dose matching combination of MET and CHS (CHS-MET). Wild type K-ras cells used 11.43 % (SD = ±0.32) of new acetyl-CoA for palmitate synthesis that was derived from glucose, while K-ras mutated MIA PaCa-2 cells shuttled less than half as much, 5.47 % [SD = ±0.28 (P < 0.01)] of this precursor towards FAS. Cholesterol treatment almost doubled glucose-derived acetyl-CoA enrichment to 9.54 % (SD = ±0.24) and elevated the fraction of new palmitate synthesis by over 2.5-fold in MIA PaCa-2 cells; whereby 100 μM MET treatment resulted in a 28 % inhibitory effect on FAS. Therefore, acetyl-CoA shuttling towards its carboxylase, from thiolase, produces contextual synthetic inhibition by metformin of new palmitate production. Thereby, metformin, mutated K-ras and high cholesterol each contributes to limit new fatty acid and potentially cell membrane synthesis, demonstrating a previously unknown mechanism for inhibiting cancer growth during the metabolic syndrome.
Collapse
Affiliation(s)
- Mary Jo Cantoria
- Department of Nutritional Sciences, The University of Arizona, 1177 East 4th Street, Shantz Building #309, P.O. Box 210038, Tucson, AZ 85721-0038 USA
| | - László G. Boros
- SiDMAP, LLC, 2990 South Sepulveda Blvd. #300B, Los Angeles, CA 90064 USA
- Department of Pediatrics, Los Angeles Biomedical Research Institute at the Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502 USA
| | - Emmanuelle J. Meuillet
- The University of Arizona Cancer Center, 1515 N. Campbell Ave Levy Building, Tucson, AZ 85724 USA
| |
Collapse
|
28
|
Morris EM, Jackman MR, Meers GME, Johnson GC, Lopez JL, MacLean PS, Thyfault JP. Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1α overexpression. Am J Physiol Gastrointest Liver Physiol 2013; 305:G868-80. [PMID: 24091599 PMCID: PMC3882433 DOI: 10.1152/ajpgi.00179.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in substrate utilization and reduced mitochondrial respiratory capacity following exposure to energy-dense, high-fat diets (HFD) are putatively key components in the development of obesity-related metabolic disease. We examined the effect of a 3-day HFD on isolated liver mitochondrial respiration and whole body energy utilization in obesity-prone (OP) rats. We also examined if hepatic overexpression of peroxisomal proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial respiratory capacity and biogenesis, would modify liver and whole body responses to the HFD. Acute, 3-day HFD (45% kcal) in OP rats resulted in increased daily energy intake, energy balance, weight gain, and adiposity, without an increase in liver triglyceride (triacylglycerol) accumulation. HFD-fed OP rats also displayed decreased whole body substrate switching from the dark to the light cycle, which was paired with reductions in hepatic mitochondrial respiration of multiple substrates in multiple respiratory states. Hepatic PGC-1α overexpression was observed to protect whole body substrate switching, as well as maintain mitochondrial respiration, following the acute HFD. Additionally, liver PGC-1α overexpression did not alter whole body dietary fatty acid oxidation but resulted in greater storage of dietary free fatty acids in liver lipid, primarily as triacylglycerol. Together, these data demonstrate that a short-term HFD can result in a decrease in metabolic flexibility and hepatic mitochondrial respiratory capacity in OP rats that is completely prevented by hepatic overexpression of PGC-1α.
Collapse
Affiliation(s)
- E. Matthew Morris
- 1Department of Internal Medicine-Gastroenterology, University of Missouri, Columbia, Missouri;
| | - Matthew R. Jackman
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - Grace M. E. Meers
- 1Department of Internal Medicine-Gastroenterology, University of Missouri, Columbia, Missouri;
| | - Ginger C. Johnson
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - Jordan L. Lopez
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - Paul S. MacLean
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,5Department of Physiology and Biophysics, University of Colorado Denver, Denver, Colorado; and ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - John P. Thyfault
- 1Department of Internal Medicine-Gastroenterology, University of Missouri, Columbia, Missouri; ,2Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; ,3Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri;
| |
Collapse
|
29
|
Li L, Jiang J, Wang L, Zhong T, Chen B, Zhan S, Zhang H, Du L. Expression patterns of peroxisome proliferator-activated receptor gamma 1 versus gamma 2, and their association with intramuscular fat in goat tissues. Gene 2013; 528:195-200. [PMID: 23895798 DOI: 10.1016/j.gene.2013.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023]
Abstract
Intramuscular fat (IMF) shortage causes the lack of juiciness and tenderness of goat meat, while peroxisome proliferator-activated receptor gamma 1 (PPARγ1) and gamma 2 (PPARγ2) play key roles in lipid metabolism. Nevertheless, their expression patterns and the relationship with IMF have been poorly exposed. Using quantitative polymerase chain reaction (qPCR), classical Soxhlet extraction, and in situ hybridization, we demonstrated that among 13 goat tissues, expression of PPARγ1 was dramatically higher than that of PPARγ2 except for lung. We further demonstrated the expression patterns of PPARγ1 and PPARγ2 and their negative association with intramuscular fat content in three goat muscles with kids growing. Meanwhile, PPARγ expression was located in the connective tissues. These results suggest that PPARγ1 is rather active for most tissues of goat, and closely related with the muscular fat metabolism during early postnatal life, but a more direct proof remains to be provided.
Collapse
Affiliation(s)
- Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jing E, O’Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, Gibson BW, Kahn CR. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013; 62:3404-17. [PMID: 23835326 PMCID: PMC3781465 DOI: 10.2337/db12-1650] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sirt3 is an NAD(+)-dependent deacetylase that regulates mitochondrial function by targeting metabolic enzymes and proteins. In fasting mice, Sirt3 expression is decreased in skeletal muscle resulting in increased mitochondrial protein acetylation. Deletion of Sirt3 led to impaired glucose oxidation in muscle, which was associated with decreased pyruvate dehydrogenase (PDH) activity, accumulation of pyruvate and lactate metabolites, and an inability of insulin to suppress fatty acid oxidation. Antibody-based acetyl-peptide enrichment and mass spectrometry of mitochondrial lysates from WT and Sirt3 KO skeletal muscle revealed that a major target of Sirt3 deacetylation is the E1α subunit of PDH (PDH E1α). Sirt3 knockout in vivo and Sirt3 knockdown in myoblasts in vitro induced hyperacetylation of the PDH E1α subunit, altering its phosphorylation leading to suppressed PDH enzymatic activity. The inhibition of PDH activity resulting from reduced levels of Sirt3 induces a switch of skeletal muscle substrate utilization from carbohydrate oxidation toward lactate production and fatty acid utilization even in the fed state, contributing to a loss of metabolic flexibility. Thus, Sirt3 plays an important role in skeletal muscle mitochondrial substrate choice and metabolic flexibility in part by regulating PDH function through deacetylation.
Collapse
Affiliation(s)
- Enxuan Jing
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Brian T. O’Neill
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | | - André Kleinridders
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Olga R. Ilkeyeva
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - James R. Bain
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kevin Y. Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Eric M. Verdin
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Corresponding author: C. Ronald Kahn,
| |
Collapse
|
31
|
Camacho A, Huang JK, Delint-Ramirez I, Yew Tan C, Fuller M, Lelliott CJ, Vidal-Puig A, Franklin RJM. Peroxisome proliferator-activated receptor gamma-coactivator-1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. Eur J Neurosci 2013; 38:2672-83. [DOI: 10.1111/ejn.12281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Alberto Camacho
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Jeffrey K. Huang
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine; Cambridge; UK
| | - Ilse Delint-Ramirez
- Department of Pharmacology; Faculty of Medicine; Autonomous University of Nuevo León; Monterrey; Mexico
| | - Chong Yew Tan
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Maria Fuller
- Department of Genetics and Molecular Pathology; SA Pathology; Adelaide; SA; Australia
| | | | - Antonio Vidal-Puig
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Robin J. M. Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine; Cambridge; UK
| |
Collapse
|
32
|
Enguix N, Pardo R, González A, López VM, Simó R, Kralli A, Villena JA. Mice lacking PGC-1β in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance. Mol Metab 2013; 2:215-26. [PMID: 24049736 PMCID: PMC3773830 DOI: 10.1016/j.molmet.2013.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/18/2013] [Accepted: 05/23/2013] [Indexed: 01/14/2023] Open
Abstract
Proper development and function of white adipose tissue (WAT), which are regulated by multiple transcription factors and coregulators, are crucial for glucose homeostasis. WAT is also the main target of thiazolidinediones, which are thought to exert their insulin-sensitizing effects by promoting mitochondrial biogenesis in adipocytes. Besides being expressed in WAT, the role of the coactivator PGC-1β in this tissue has not been addressed. To study its function in WAT, we have generated mice that lack PGC-1β in adipose tissues. Gene expression profiling analysis of WAT reveals that PGC-1β regulates mitochondrial genes involved in oxidative metabolism. Furthermore, lack of PGC-1β prevents the induction of mitochondrial genes by rosiglitazone in WAT without affecting the capacity of thiazolidinediones to enhance insulin sensitivity. Our findings indicate that PGC-1β is important for basal and rosiglitazone-induced mitochondrial function in WAT, and that induction of mitochondrial oxidative capacity is not essential for the insulin-sensitizing effects of thiazolidinediones.
Collapse
Affiliation(s)
- Natàlia Enguix
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Agustí González
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Víctor M. López
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rafael Simó
- Unit of Diabetes and Metabolism, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona; Barcelona, Spain
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas), Instituto de Salud Carlos III, Barcelona, Spain
| | - Anastasia Kralli
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Josep A. Villena
- Laboratory of Metabolism and Obesity, Vall d’Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
33
|
Bosma M, Sparks L, Hooiveld G, Jorgensen J, Houten S, Schrauwen P, Kersten S, Hesselink M. Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:844-52. [DOI: 10.1016/j.bbalip.2013.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 12/11/2022]
|
34
|
Koves TR, Sparks LM, Kovalik JP, Mosedale M, Arumugam R, DeBalsi KL, Everingham K, Thorne L, Phielix E, Meex RC, Kien CL, Hesselink MKC, Schrauwen P, Muoio DM. PPARγ coactivator-1α contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans. J Lipid Res 2013; 54:522-34. [PMID: 23175776 PMCID: PMC3588877 DOI: 10.1194/jlr.p028910] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/27/2012] [Indexed: 11/20/2022] Open
Abstract
Intramuscular accumulation of triacylglycerol, in the form of lipid droplets (LD), has gained widespread attention as a hallmark of metabolic disease and insulin resistance. Paradoxically, LDs also amass in muscles of highly trained endurance athletes who are exquisitely insulin sensitive. Understanding the molecular mechanisms that mediate the expansion and appropriate metabolic control of LDs in the context of habitual physical activity could lead to new therapeutic opportunities. Herein, we show that acute exercise elicits robust upregulation of a broad program of genes involved in regulating LD assembly, morphology, localization, and mobilization. Prominent among these was perilipin-5, a scaffolding protein that affects the spatial and metabolic interactions between LD and their surrounding mitochondrial reticulum. Studies in transgenic mice and primary human skeletal myocytes established a key role for the exercise-responsive transcriptional coactivator PGC-1α in coordinating intramuscular LD programming with mitochondrial remodeling. Moreover, translational studies comparing physically active versus inactive humans identified a remarkably strong association between expression of intramuscular LD genes and enhanced insulin action in exercise-trained subjects. These results reveal an intimate molecular connection between intramuscular LD biology and mitochondrial metabolism that could prove relevant to the etiology and treatment of insulin resistance and other disorders of lipid imbalance.
Collapse
Affiliation(s)
- Timothy R. Koves
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
| | - Lauren M. Sparks
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - J. P. Kovalik
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University, Durham, NC
| | - Merrie Mosedale
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University, Durham, NC
| | - Ramamani Arumugam
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University, Durham, NC
| | - Karen L. DeBalsi
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University, Durham, NC
| | - Karen Everingham
- Department of Pediatrics and Medicine, University of Vermont, Colchester, VT
| | - Leigh Thorne
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel-Hill, NC
| | - Esther Phielix
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ruth C. Meex
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - C. Lawrence Kien
- Department of Pediatrics and Medicine, University of Vermont, Colchester, VT
| | - Matthijs K. C. Hesselink
- Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Deborah M. Muoio
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
35
|
Gathercole LL, Morgan SA, Tomlinson JW. Hormonal Regulation of Lipogenesis. VITAMINS & HORMONES 2013; 91:1-27. [DOI: 10.1016/b978-0-12-407766-9.00001-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Capitanio D, Vasso M, Ratti A, Grignaschi G, Volta M, Moriggi M, Daleno C, Bendotti C, Silani V, Gelfi C. Molecular signatures of amyotrophic lateral sclerosis disease progression in hind and forelimb muscles of an SOD1(G93A) mouse model. Antioxid Redox Signal 2012; 17:1333-50. [PMID: 22563797 PMCID: PMC3437050 DOI: 10.1089/ars.2012.4524] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS This study utilized proteomics, biochemical and enzymatic assays, and bioinformatics tools that characterize protein alterations in hindlimb (gastrocnemius) and forelimb (triceps) muscles in an amyotrophic lateral sclerosis (ALS) (SOD1(G93A)) mouse model. The aim of this study was to identify the key molecular signatures involved in disease progression. RESULTS Both muscle types have in common an early down-regulation of complex I. In the hindlimb, early increases in oxidative metabolism are associated with uncoupling of the respiratory chain, an imbalance of NADH/NAD(+), and an increase in reactive oxygen species (ROS) production. The NADH overflow due to complex I inactivation induces TCA flux perturbations, leading to citrate production, triggering fatty acid synthase (FAS), and lipid peroxidation. These early metabolic changes in the hindlimb followed by sustained and comparatively higher metabolic and cytoskeletal derangements over time precede and may catalyze the progressive muscle wasting in this muscle at the late stage. By contrast, in the forelimb, there is an early down-regulation of complexes I and II that is associated with the reduction of oxidative metabolism, which promotes metabolic homeostasis that is accompanied by a greater cytoskeletal stabilization response. However, these early compensatory systems diminish by a later time point. INNOVATION The identification of potential early- and late-stage disease molecular signatures in an ALS model: muscle albumin, complex I, complex II, citrate synthase, FAS, and phosphoinositide 3-kinase functions as diagnostic markers and peroxisome proliferator-activated receptor γ co-activator 1α (PGC1α), Sema-3A, and Rho-associated protein kinase 1 (ROCK1) play the role of disease progression markers. CONCLUSION The differing pattern of cellular metabolism and cytoskeletal derangements in the hind and forelimb identifies the potential dysmetabolism/hypermetabolism molecular signatures associated with disease progression, which may serve as diagnostic/disease progression markers in ALS patients.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Michele Vasso
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Giuliano Grignaschi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Manuela Volta
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
| | - Cristina Daleno
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan, IRCCS Italian Institute for Auxology, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| |
Collapse
|
37
|
Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 2012; 23:459-66. [PMID: 22817841 PMCID: PMC3580164 DOI: 10.1016/j.tem.2012.06.006] [Citation(s) in RCA: 621] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 02/06/2023]
Abstract
Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
38
|
Girnun GD. The diverse role of the PPARγ coactivator 1 family of transcriptional coactivators in cancer. Semin Cell Dev Biol 2012; 23:381-8. [PMID: 22285815 DOI: 10.1016/j.semcdb.2012.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 12/18/2022]
Abstract
The critical role that altered cellular metabolism plays in promoting and maintaining the cancer phenotype has received considerable attention in recent years. For many years it was believed that aerobic glycolysis, also known as the Warburg Effect, played an important role in cancer. However, recent studies highlight the requirement of mitochondrial function, oxidative phosphorylation and biosynthetic pathways in cancer. This has promoted interest into mechanisms controlling these metabolic pathways. The PPARγ coactivator (PGC)-1 family of transcriptional coactivators have emerged as key regulators of several metabolic pathways including oxidative metabolism, energy homeostasis and glucose and lipid metabolism. While PGC-1s have been implicated in a number of metabolic diseases, recent studies highlight an important role in cancer. Studies show that PGC-1s have both pro and anticancer functions and suggests a dynamic role for the PGC-1s in cancer. We discuss in this review the links between PGC-1s and cancer, with a focus on the most well studied family member, PGC-1α.
Collapse
Affiliation(s)
- Geoffrey D Girnun
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
39
|
Mormeneo E, Jimenez-Mallebrera C, Palomer X, De Nigris V, Vázquez-Carrera M, Orozco A, Nascimento A, Colomer J, Lerín C, Gómez-Foix AM. PGC-1α induces mitochondrial and myokine transcriptional programs and lipid droplet and glycogen accumulation in cultured human skeletal muscle cells. PLoS One 2012; 7:e29985. [PMID: 22272266 PMCID: PMC3260188 DOI: 10.1371/journal.pone.0029985] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 12/09/2011] [Indexed: 11/24/2022] Open
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Collapse
Affiliation(s)
- Emma Mormeneo
- CIBER de Diabetes y Enfermedades Metabólicas, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pardo R, Enguix N, Lasheras J, Feliu JE, Kralli A, Villena JA. Rosiglitazone-induced mitochondrial biogenesis in white adipose tissue is independent of peroxisome proliferator-activated receptor γ coactivator-1α. PLoS One 2011; 6:e26989. [PMID: 22087241 PMCID: PMC3210129 DOI: 10.1371/journal.pone.0026989] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/07/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Thiazolidinediones, a family of insulin-sensitizing drugs commonly used to treat type 2 diabetes, are thought to exert their effects in part by promoting mitochondrial biogenesis in white adipose tissue through the transcriptional coactivator PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator-1α). METHODOLOGY/PRINCIPAL FINDINGS To assess the role of PGC-1α in the control of rosiglitazone-induced mitochondrial biogenesis, we have generated a mouse model that lacks expression of PGC-1α specifically in adipose tissues (PGC-1α-FAT-KO mice). We found that expression of genes encoding for mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation, was similar in white adipose tissue of wild type and PGC-1α-FAT-KO mice. Furthermore, the absence of PGC-1α did not prevent the positive effect of rosiglitazone on mitochondrial gene expression or biogenesis, but it precluded the induction by rosiglitazone of UCP1 and other brown fat-specific genes in white adipose tissue. Consistent with the in vivo findings, basal and rosiglitazone-induced mitochondrial gene expression in 3T3-L1 adipocytes was unaffected by the knockdown of PGC-1α but it was impaired when PGC-1β expression was knockdown by the use of specific siRNA. CONCLUSIONS/SIGNIFICANCE These results indicate that in white adipose tissue PGC-1α is dispensable for basal and rosiglitazone-induced mitochondrial biogenesis but required for the rosiglitazone-induced expression of UCP1 and other brown adipocyte-specific markers. Our study suggests that PGC-1α is important for the appearance of brown adipocytes in white adipose tissue. Our findings also provide evidence that PGC-1β and not PGC-1α regulates basal and rosiglitazone-induced mitochondrial gene expression in white adipocytes.
Collapse
Affiliation(s)
- Rosario Pardo
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natàlia Enguix
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Lasheras
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan E. Feliu
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anastasia Kralli
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Josep A. Villena
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Ji H, Lu RH, Chang ZG, Su SS, Yang GS. PGC-1β modulates the expression of genes involved in mitochondrial function and adipogenesis during preadipocyte differentiation. Reprod Domest Anim 2011; 47:419-27. [PMID: 22008020 DOI: 10.1111/j.1439-0531.2011.01894.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study determined the expression of genes involved in mitochondrial function and adipogenesis at mRNA and protein levels by transfecting rat differentiating preadipocytes with siRNA/Lipofectamine complex and pcDNA-PGC-1β (peroxisome proliferator-activated receptor-γ coactivator-1β)/Lipofectamine complex, respectively, to further elucidate the role of PGC-1β in white preadipocyte differentiation. The results showed that the transfection of PGC-1β siRNA inhibited the expressions of mitochondrial genes malate dehydrogenase, carnitine palmitoyltransferase 1, nuclear respiratory factor 1, ATP synthesis, adipocyte differentiation key transcription factor peroxisome proliferator-activated receptor-γ, sterol regulatory element binding protein 1c and fatty acid synthetase, whereas the triglyceride synthesis was retarded (p < 0.05). Furthermore, overexpression of PGC-1β up-regulated the expressions of adipogenic and mitochondrial biosynthetic marker genes and promoted triglyceride accumulation during 3T3-L1 adipocyte differentiation. These observations suggest that PGC-1β modulates the expression of mitochondrial function and adipogenesis-related genes and affects white preadipocyte differentiation.
Collapse
Affiliation(s)
- H Ji
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | | | | | | |
Collapse
|
42
|
Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, Fang HB, Vafai SB, Vazquez F, Puigserver P, Boros L, Girnun GD. PGC1α promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res 2011; 71:6888-98. [PMID: 21914785 DOI: 10.1158/0008-5472.can-11-1011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the role of aerobic glycolysis in cancer, recent studies highlight the importance of the mitochondria and biosynthetic pathways as well. PPARγ coactivator 1α (PGC1α) is a key transcriptional regulator of several metabolic pathways including oxidative metabolism and lipogenesis. Initial studies suggested that PGC1α expression is reduced in tumors compared with adjacent normal tissue. Paradoxically, other studies show that PGC1α is associated with cancer cell proliferation. Therefore, the role of PGC1α in cancer and especially carcinogenesis is unclear. Using Pgc1α(-/-) and Pgc1α(+/+) mice, we show that loss of PGC1α protects mice from azoxymethane-induced colon carcinogenesis. Similarly, diethylnitrosamine-induced liver carcinogenesis is reduced in Pgc1α(-/-) mice as compared with Pgc1α(+/+) mice. Xenograft studies using gain and loss of PGC1α expression showed that PGC1α also promotes tumor growth. Interestingly, while PGC1α induced oxidative phosphorylation and tricarboxylic acid cycle gene expression, we also observed an increase in the expression of two genes required for de novo fatty acid synthesis, ACC and FASN. In addition, SLC25A1 and ACLY, which are required for the conversion of glucose into acetyl-CoA for fatty acid synthesis, were also increased by PGC1α, thus linking the oxidative and lipogenic functions of PGC1α. Indeed, using stable (13)C isotope tracer analysis, we show that PGC1α increased de novo lipogenesis. Importantly, inhibition of fatty acid synthesis blunted these progrowth effects of PGC1α. In conclusion, these studies show for the first time that loss of PGC1α protects against carcinogenesis and that PGC1α coordinately regulates mitochondrial and fatty acid metabolism to promote tumor growth.
Collapse
Affiliation(s)
- Kavita Bhalla
- Department of Biochemistry and Molecular Biology, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wright LE, Brandon AE, Hoy AJ, Forsberg GB, Lelliott CJ, Reznick J, Löfgren L, Oscarsson J, Strömstedt M, Cooney GJ, Turner N. Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1β involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 2011; 54:1417-26. [PMID: 21331471 DOI: 10.1007/s00125-011-2068-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/06/2011] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS To determine if acute overexpression of peroxisome proliferator-activated receptor, gamma, coactivator 1 beta (Pgc-1β [also known as Ppargc1b]) in skeletal muscle improves insulin action in a rodent model of diet-induced insulin resistance. METHODS Rats were fed either a low-fat or high-fat diet (HFD) for 4 weeks. In vivo electroporation was used to overexpress Pgc-1β in the tibialis cranialis (TC) and extensor digitorum longus (EDL) muscles. Downstream effects of Pgc-1β on markers of mitochondrial oxidative capacity, oxidative stress and muscle lipid levels were characterised. Insulin action was examined ex vivo using intact muscle strips and in vivo via a hyperinsulinaemic-euglycaemic clamp. RESULTS Pgc-1β gene expression was increased >100% over basal levels. The levels of proteins involved in mitochondrial function, lipid metabolism and antioxidant defences, the activity of oxidative enzymes, and substrate oxidative capacity were all increased in muscles overexpressing Pgc-1β. In rats fed a HFD, increasing the levels of Pgc-1β partially ameliorated muscle insulin resistance, in association with decreased levels of long-chain acyl-CoAs (LCACoAs) and increased antioxidant defences. CONCLUSIONS Our data show that an increase in Pgc-1β expression in vivo activates a coordinated subset of genes that increase mitochondrial substrate oxidation, defend against oxidative stress and improve lipid-induced insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- L E Wright
- Diabetes & Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Overexpression of PGC-1β improves insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. Mol Cell Biochem 2011; 353:215-23. [PMID: 21499715 DOI: 10.1007/s11010-011-0789-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 03/09/2011] [Indexed: 01/14/2023]
Abstract
The co-transcription factor peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) was first identified in 2002. Although the function of PGC-1β in white adipose tissue (WAT) is largely unknown, it has been studied extensively in the liver, cardiac muscle, and skeletal muscle. Herein, we investigated PGC-1β overexpression in 3T3-L1 adipocytes. The main findings were as follows: (i) 3T3-L1 adipocytes overexpressing PGC-1β showed improved insulin sensitivity and elevated insulin-stimulated glucose uptake; (ii) mitochondrial cristae became broader and more ordered, additional smaller mitochondria emerged, mitochondrial DNA increased, and fission 1 protein (Fis1) mRNA expression was greatly elevated; (iii) intracellular ATP levels increased, but no changes were observed in mitochondrial membrane potential, uncoupling protein (UCP) mRNA expression, or reactive oxygen species (ROS) production; and (iv) mitochondrial metabolism factors, namely, acetyl-coenzyme A carboxylase 2 (ACC2) and hexokinase 2 (HK2) were downregulated, while cytochrome c oxidase subunit IV (COX IV) was upregulated. In conclusion, PGC-1β affects not only insulin sensitivity but also mitochondrial biogenesis and function. We believe that the role of PGC-1β is distinct from that of PGC-1α in WAT.
Collapse
|
45
|
Summermatter S, Baum O, Santos G, Hoppeler H, Handschin C. Peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) promotes skeletal muscle lipid refueling in vivo by activating de novo lipogenesis and the pentose phosphate pathway. J Biol Chem 2010; 285:32793-32800. [PMID: 20716531 DOI: 10.1074/jbc.m110.145995] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). PGC-1α enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1α levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1α-mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1α and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1α enhances lipogenesis in skeletal muscle through liver X receptor α-dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1α and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1α coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.
Collapse
Affiliation(s)
- Serge Summermatter
- From the Division of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Oliver Baum
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3009 Bern, Switzerland
| | - Gesa Santos
- From the Division of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Hans Hoppeler
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3009 Bern, Switzerland
| | - Christoph Handschin
- From the Division of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
46
|
Shao D, Liu Y, Liu X, Zhu L, Cui Y, Cui A, Qiao A, Kong X, Liu Y, Chen Q, Gupta N, Fang F, Chang Y. PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion 2010; 10:516-27. [PMID: 20561910 DOI: 10.1016/j.mito.2010.05.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 02/08/2023]
Abstract
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) coactivator-1 beta (PGC-1 beta) is a well-established regulator of the beta-oxidation of fatty acids and the oxidative phosphorylation in mitochondria. However, the underlying mechanism of PGC-1 beta action remains elusive. This study reveals that PGC-1 beta is highly induced during myogenic differentiation and knockdown of endogenous PGC-1 beta by siRNA leads to a decrease in the expression of several mitochondria-related genes. In consistence, the over-expression of PGC-1 beta stimulates its target genes such as cytochrome c, ATP synthase beta and ALAS-1 by its interaction with two transcriptional factors, NRF-1 and ERR alpha. The deletion or mutation of NRF-1 and/or ERR alpha binding sites in target gene promoters attenuates their activation by PGC-1 beta. Moreover, inhibition of NRF-1 or ERR alpha by siRNA ablated the aforesaid function of PGC-1 beta and compromised the oxidative phosphorylation and mitochondrial biogenesis. Taken together, these results confirm the direct interaction of NRF-1 and ERR alpha with PGC-1 beta, and their participation in mitochondrial biogenesis and respiration.
Collapse
Affiliation(s)
- Di Shao
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The pathophysiology of type 2 diabetes mellitus (DM) is varied and complex. However, the association of DM with obesity and inactivity indicates an important, and potentially pathogenic, link between fuel and energy homeostasis and the emergence of metabolic disease. Given the central role for mitochondria in fuel utilization and energy production, disordered mitochondrial function at the cellular level can impact whole-body metabolic homeostasis. Thus, the hypothesis that defective or insufficient mitochondrial function might play a potentially pathogenic role in mediating risk of type 2 DM has emerged in recent years. Here, we summarize current literature on risk factors for diabetes pathogenesis, on the specific role(s) of mitochondria in tissues involved in its pathophysiology, and on evidence pointing to alterations in mitochondrial function in these tissues that could contribute to the development of DM. We also review literature on metabolic phenotypes of existing animal models of impaired mitochondrial function. We conclude that, whereas the association between impaired mitochondrial function and DM is strong, a causal pathogenic relationship remains uncertain. However, we hypothesize that genetically determined and/or inactivity-mediated alterations in mitochondrial oxidative activity may directly impact adaptive responses to overnutrition, causing an imbalance between oxidative activity and nutrient load. This imbalance may lead in turn to chronic accumulation of lipid oxidative metabolites that can mediate insulin resistance and secretory dysfunction. More refined experimental strategies that accurately mimic potential reductions in mitochondrial functional capacity in humans at risk for diabetes will be required to determine the potential pathogenic role in human insulin resistance and type 2 DM.
Collapse
|
48
|
Cheng CF, Ku HC, Lin H. Functional alpha 1 protease inhibitor produced by a human hepatoma cell line. ACTA ACUST UNITED AC 1982; 19:ijms19113447. [PMID: 30400212 PMCID: PMC6274980 DOI: 10.3390/ijms19113447] [Citation(s) in RCA: 306] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Alpha 1 protease inhibitor antigen was identified in the culture medium of the human ascites hepatoma cell line SK-HEP-1. Trypsin inhibitory activity and alpha 1 Pl antigen accumulated in serum-free medium concomitantly over a period of several days. Radioactive alpha 1 Pl antigen was detected in conditioned medium from cultures supplemented with 35S-L-methionine, indicating a synthesis and release of the protein. Alpha 1 Pl antigen in conditioned medium appeared to be antigenically identical to that in human plasma, and the newly synthesized (radiolabeled) antigen co-migrated with plasma, alpha 1 Pl after immunoelectrophoresis or SDS-polyacrylamide gel electrophoresis. Moreover, evidence is presented that the synthesized inhibitor exhibits functional activity, since the 35S-labeled alpha 1 Pl in conditioned medium complexes with trypsin. We conclude that SK-HEP-1 cells in culture produce functionally active alpha 1 Pl which may be identical to that in plasma.
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
- Department of Pediatrics, Tzu Chi University, Hualien 97004, Taiwan.
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
| | - Heng Lin
- Institute of Pharmacology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|