1
|
Chen RY, Liu YJ, Wang R, Yu J, Shi JJ, Yang GJ, Chen J. Fingerprint of ubiquitin coupled enzyme UBC13 in health and disease. Bioorg Chem 2025; 161:108524. [PMID: 40319811 DOI: 10.1016/j.bioorg.2025.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Ubiquitination is one of the most well-known post-translational modifications in eukaryotes. UBC13 is an E2 ubiquitin coupling enzyme, which interacts with different E3 ligases and exerts ubiquitination activity to assemble and synthesize lysine-63-linked (Lys63) ubiquitin strands, thus playing an important role in cell homeostasis, various diseases caused by inflammation, and the occurrence and development of cancer. In this paper, we review the structure and function of UBC13, summarize the diverse pathways it mediates, and discuss its involvement in bacterial and non-bacterial inflammatory diseases. Additionally, we explore UBC13's role in physiological damage repair mechanisms, cancer development, DNA damage repair, immune cell maturation, and function. Furthermore, We also elucidate the progress of the discovery of small molecule inhibitors targeting UBC13 and summarize their structure, which suggests that targeting UBC13 may be a potential disease treatment strategy.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
3
|
de Jesús-Campos D, Bojórquez-Velázquez E, Ruiz-May E, Fimbres-Olivarría D, Hayano-Kanashiro C, Huerta-Ocampo JÁ. Proteomic insights into cell signaling and stress response mechanisms in Chaetoceros muelleri under nitrogen limitation. J Proteomics 2025; 316:105435. [PMID: 40122379 DOI: 10.1016/j.jprot.2025.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/09/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Microalgae are often called "green factories" because they can perform photosynthesis, converting sunlight into biomass and high-value metabolites. Nitrogen concentration is a critical factor influencing protein accumulation. Unfortunately, nitrogen deprivation often negatively impacts biomass production. Understanding the relationship between nitrogen concentration and protein accumulation is crucial for harnessing the potential of microalgae in various industries and addressing environmental challenges. Here, we quantitatively compared the proteomic profiles of Chaetoceros muelleri diatom, grown in two Nitrogen-deficient conditions and control treatment by employing a Tandem Mass Tag-based quantitative proteomic approach. Proteins involved in photosynthesis were differentially accumulated under moderately nitrogen-deficient conditions. In contrast, proteins involved in cell signaling and protection mechanisms were differentially accumulated under severely nitrogen-limited conditions. Proteins associated with nitrogen metabolism, carbohydrate metabolism, and protein biosynthesis were differentially decreased in severely nitrogen-limited conditions, indicating differential response mechanisms of C. muelleri to varying nitrogen conditions. Our results show that C. muelleri employs distinct strategies in response to nitrogen limitation. These results provide valuable insights into the adaptive strategies of C. muelleri under nitrogen limitation, offering potential applications in optimizing microalgal cultures for the enhanced production of target metabolites in industrial bioreactors. BIOLOGICAL SIGNIFICANCE: The marine diatom Chaetoceros muelleri accumulates lipids and carbohydrates under low nitrogen conditions without affecting its biomass. Response to nitrogen limitation in C. muelleri was examined by isobaric labelling-based proteomics. We identified changes mainly focused on photosynthesis pathways, cell signaling and protection mechanisms, nitrogen and carbohydrate metabolism, as well as protein biosynthesis. Our results indicate that C. muelleri activate unique strategies in response to different nitrogen concentrations, and this differential response represents a key factor for inducing metabolite accumulation without affecting biomass production.
Collapse
Affiliation(s)
- Damaristelma de Jesús-Campos
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico
| | | | - Eliel Ruiz-May
- Instituto de Ecología, A.C., Xalapa-Veracruz CP 91073, Mexico
| | - Diana Fimbres-Olivarría
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico
| | - Corina Hayano-Kanashiro
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico.
| | | |
Collapse
|
4
|
Claustre A, Malige M, Macheton M, Combaret L, Lefai E, Fafournoux P, Taillandier D, Henri J, Polge C. Structure predictions of MuRF1-UBE2 complexes identify amino acid residues governing interaction selectivity for each MuRF1-E2 pair. FEBS J 2025; 292:2559-2577. [PMID: 39930652 PMCID: PMC12103069 DOI: 10.1111/febs.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/03/2024] [Accepted: 01/31/2025] [Indexed: 05/25/2025]
Abstract
The RING-type E3 ubiquitin-protein ligase MuRF1 (also known as TRIM63) plays an important role in skeletal muscle atrophy by targeting contractile proteins. In cellulo, MuRF1 can alternatively interact with four E2 enzymes (UBE2E1, UBE2J1, UBE2J2, or UBE2L3), suggesting different functions or targets for the four MuRF1-E2 complexes. In this article, we studied the interface of these MuRF1-UBE2 complexes based on AlphaFold2 and AlphaFold3 predictions. These predictions revealed the involvement of different residues at the interface of each complex. We confirmed this overall interface difference by the differential sensitivity of MuRF1-E2 complexes to regenerating solutions in surface plasmon resonance experiments. We further confirmed several predictions individually by affinity measurements with point-mutant E2 enzymes and truncated MuRF1. We used the interaction-induced fluorescence change approach with fluorescent MuRF1. Besides canonical E2-RING-type E3 interactions, we were able to identify selective contact points between MuRF1 and its UBE2 partners. Furthermore, in the case of the MuRF1-E2E1 pair, unlike the other MuRF1-E2 pairs, the interaction may also be governed by a domain outside the RING domain. Since the function of RING-type E3s is regulated by E2 enzymes, deciphering the mechanisms of selective recruitment of E2s by MuRF1 paves the way for the development of targeted therapeutics to fight muscle atrophy.
Collapse
Affiliation(s)
- Agnès Claustre
- Université Clermont Auvergne, INRAE, UNHClermont‐FerrandFrance
| | - Mélodie Malige
- Université Clermont Auvergne, INRAE, UNHClermont‐FerrandFrance
| | - Maëlys Macheton
- Université Clermont Auvergne, INRAE, UNHClermont‐FerrandFrance
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNHClermont‐FerrandFrance
| | - Etienne Lefai
- Université Clermont Auvergne, INRAE, UNHClermont‐FerrandFrance
| | | | | | - Julien Henri
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris‐Seine, UMR 7238ParisFrance
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNHClermont‐FerrandFrance
| |
Collapse
|
5
|
Valima E, Varis V, Bureiko K, Lempiäinen JK, Schroderus AM, Oksa L, Lohi O, Kinnunen T, Varjosalo M, Niskanen EA, Paakinaho V, Palvimo JJ. SUMOylation inhibition potentiates the glucocorticoid receptor to program growth arrest of acute lymphoblastic leukemia cells. Oncogene 2025; 44:1259-1271. [PMID: 39953147 PMCID: PMC12048349 DOI: 10.1038/s41388-025-03305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Glucocorticoids are a mainstay in the treatment of B-cell acute lymphoblastic leukemia (B-ALL). The glucocorticoid receptor (GR), a ligand-activated transcription factor (TF), mediates their actions. Chromatin occupancy, chromatin-protein networks (chromatomes) and gene programmes of GR are regulated by SUMOylation, a post-translational modification with therapeutic implications in other hematomalignancies. To unravel the GR-SUMOylation crosstalk in B-ALL, we induced hypoSUMOylation in NALM6 B-ALL cells with a SUMOylation inhibitor (SUMOi, ML-792). Genome-wide profiling of GR and SUMO chromatin-binding and chromatin accessibility revealed that hypoSUMOylation augmented GR chromatin occupancy and altered chromatin openness. Association with transcriptome data indicated that the hypoSUMOylation-induced GR-binding sites predominantly repressed genes associated with cell cycle and DNA replication. Consistently, hypoSUMOylation potentiated glucocorticoid-induced cell cycle arrest and growth suppression. Moreover, our proteomic analyses revealed that the protein network of chromatin-bound GR is tightly intertwined with SUMO2/3 and that SUMOylation modulates the stability of the network. The chromatome contained several B-cell TFs with cognate binding motifs found on GR-adjacent chromatin sites, indicating their simultaneous occupancy on chromatin. In sum, our data imply potential for targeting SUMOylation to increase sensitivity to glucocorticoids in B-ALL, supported by ex vivo data of glucocorticoid and SUMOi TAK-981 combination-treated B-ALL patient samples.
Collapse
Affiliation(s)
- Emma Valima
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vera Varis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kseniia Bureiko
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | - Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - Tuure Kinnunen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- ISLAB Laboratory Centre, Kuopio, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- HiLIFE-Proteomics Unit, University of Helsinki, Helsinki, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Smith C, Hajisadeghian M, van Noort GJVDH, Deery MJ, Pinto-Fernández A, Kessler BM, Artavanis-Tsakonas K. Activity-based protein profiling reveals both canonical and novel ubiquitin pathway enzymes in Plasmodium. PLoS Pathog 2025; 21:e1013032. [PMID: 40249735 PMCID: PMC12007708 DOI: 10.1371/journal.ppat.1013032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/11/2025] [Indexed: 04/20/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is essential for Plasmodium falciparum survival and represents a potential target for antimalarial therapies. We utilised a ubiquitin- activity based probe (Ub-Dha) to capture active components of the ubiquitin conjugating machinery during asexual blood-stage development. Several E2 ubiquitin-conjugating enzymes, the E1 activating enzyme, and the HECT E3 ligase PfHEUL were identified and validated through in vitro ubiquitination assays. We also demonstrate selective functional interactions between PfHEUL and a subset of both human and P. falciparum E2s. Additionally, the Ub-Dha probe captured an uncharacterized protein, PF3D7_0811400 (C0H4U0) with no known homology to ubiquitin-pathway enzymes in other organisms. Through structural and biochemical analysis, we validate it as a novel E2 enzyme, capable of binding ubiquitin in a cysteine-specific manner. These findings contribute to our understanding of the P. falciparum UPS, identifying promising novel drug targets and highlighting the evolutionary uniqueness of the Ub-proteasome system in this parasite.
Collapse
Affiliation(s)
- Cameron Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Michael J. Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Adán Pinto-Fernández
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
7
|
Silva BR, Mendes LC, Echeverry MB, Juliano MA, Beraldo-Neto E, Alberto-Silva C. Peptide Fraction from Naja mandalayensis Snake Venom Showed Neuroprotection Against Oxidative Stress in Hippocampal mHippoE-18 Cells but Not in Neuronal PC12 Cells. Antioxidants (Basel) 2025; 14:277. [PMID: 40227273 PMCID: PMC11939396 DOI: 10.3390/antiox14030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Functional characterization of peptide fraction (PF) from snake venom has provided novel opportunities to investigate possible neuroprotective compounds relevant to pharmaceuticals. This study was performed to investigate the PF-mediated neuroprotection obtained from Naja mandalayensis snake venom, a member of the Elapidae family, using two neuronal cell lines, undifferentiated PC12 and differentiated mHippoE-18, in response to H2O2-induced oxidative stress. Cells were pre-treated for 4 h with PF (10, 1, 0.01, and 0.001 μg mL-1), and thereafter exposed to H2O2 (0.5 mmol L-1) for 20 h. Then, the oxidative stress markers and label-free differential proteome strategy were analyzed to understand the neuroprotective effects of PF. In PC12 cells, PF showed no neuroprotective effects against oxidative stress. In mHippoE-18 cells, PF at 0.01 and 0.001 μg mL-1 increased the viability and metabolism of cells against H2O2-induced neurotoxicity, reducing reactive oxygen species (ROS) generation. Interestingly, PF also exhibited a substantial reduction in baseline ROS levels compared to the control, indicating that PF could have compounds with antioxidant features. The comparative proteomic profiling identified 53 proteins with differential expression related to antioxidant action, catalysis, molecular function regulators, structural molecule activity, translation regulatory activity, ATP, and binding. The PF + H2O2 group indicated that protein expression is 6% upregulated, 4% downregulated, and 94% unchanged compared to the H2O2 group. Three significant proteins upregulated in the PF + H2O2 group, including elongation factor 2 (P58252), proteasome subunit alpha type (E9Q0X0), and E2 ubiquitin-conjugating enzyme (A0A338P786), suggested that PF-mediated neuroprotection happens through translational regulation and the degradation of defective proteins via the proteasome complex. Additionally, differential protein expression in PF changed the metabolism, protein synthesis, synaptic activity, and intracellular transport, suggesting that PF contains the rich mixture of bioactive peptides of interest pharmacologically. Overall, this study offers new opportunities for evaluating whether PF's neuroprotective features in specific neuronal cells are maintained and to investigate neurodegenerative disease drug development processes.
Collapse
Affiliation(s)
- Brenda R. Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil;
| | - Lais C. Mendes
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (L.C.M.); (E.B.-N.)
| | - Marcela B. Echeverry
- Center for Mathematics, Computation and Cognition (CMCC), Universidade Federal do ABC UFABC, São Bernardo do Campo 09606-070, SP, Brazil;
| | - Maria Aparecida Juliano
- Departament of Biophysical, Escola Paulista de Medicina, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil;
| | - Emidio Beraldo-Neto
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (L.C.M.); (E.B.-N.)
| | - Carlos Alberto-Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil;
| |
Collapse
|
8
|
Xu Q, Zhang X, Zhao R, Li S, Liesche J. UBIQUITIN-CONJUGATING ENZYME34 mediates pyrophosphatase AVP1 turnover and regulates abiotic stress responses in Arabidopsis. PLANT PHYSIOLOGY 2025; 197:kiaf015. [PMID: 39797907 PMCID: PMC11809586 DOI: 10.1093/plphys/kiaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton-pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana). Through in vitro and in vivo assays, we established that UBC34 interacts with and ubiquitylates AVP1. Mutant lines in which UBC34 was downregulated showed higher tolerance to salt and low inorganic phosphate (Pi) stresses, while we observed the opposite for plants overexpressing UBC34. Our results showed that UBC34 co-localizes with AVP1, and AVP1 activity is enhanced in the plasma membrane fractions of ubc34 mutants, indicating that UBC34 mediates the turnover of plasma membrane-localized AVP1. We also observed that UBC34 affects the apoplastic pH but not the vacuolar pH of root cells. Based on our results, we propose a mechanistic model in which UBC34 mediates AVP1 turnover at the plasma membrane of root epidermal cells. Downregulation of UBC34 under salt and phosphate starvation conditions enhances AVP1 activity, leading to a higher proton gradient available for sodium sequestration and phosphate uptake.
Collapse
Affiliation(s)
- Qiyu Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Xingjian Zhang
- Institute of Biology, University of Graz, 8020 Graz, Austria
| | - Ruifeng Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | | |
Collapse
|
9
|
Huang H, Zhu W, Huang B, Fu Z, Xiong Y, Cao D, Ye Y, Chang Q, Li W, Li L, Zhou H, Niu X, Zhang W. Structural insights into the biochemical mechanism of the E2/E3 hybrid enzyme UBE2O. Structure 2025; 33:274-288.e4. [PMID: 39740670 DOI: 10.1016/j.str.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
The E2/E3 hybrid enzyme UBE2O plays important roles in key biological events, but its autoubiquitination mechanism remains largely unclear. In this study, we determined the crystal structures of full-length (FL) UBE2O from Trametes pubescens (tp) and its ubiquitin-conjugating (UBC) domain. The dimeric FL-tpUBE2O structure revealed interdomain interactions between the conserved regions (CR1-CR2) and UBC. The dimeric intermolecular and canonical ubiquitin/UBC interactions are mechanistically important for UBE2O functions in catalyzing the formation of free polyubiquitin chains and substrate ubiquitination. Beyond dimerization, autoubiquitination within the CR1-CR2 domain also regulates tpUBE2O activity. Additionally, we show that tpUBE2O catalyzes the formation of all seven types of polyubiquitin chains in vitro. The CR1-CR2/UBC and canonical ubiquitin/UBC interactions are important for the polyubiquitination of AMP-activated protein kinase α2 (AMPKα2) by human UBE2O (hUBE2O), which leads to tumorigenesis. These structural insights lay the groundwork for understanding UBE2O's mechanisms and developing structure-based therapeutics targeting UBE2O.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| | - Wenning Zhu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bin Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziyang Fu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dan Cao
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxin Ye
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qing Chang
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenqi Li
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| | - Huan Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Omar EA, R R, Das PK, Pal R, Purawarga Matada GS, Maji L. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance. Eur J Med Chem 2025; 281:117034. [PMID: 39527893 DOI: 10.1016/j.ejmech.2024.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
One of the major obstacles to sustained cancer treatment effectiveness is the development of medication resistance. Current therapies that block proteins associated with cancer progression often lose their efficacy due to acquired drug resistance, which is frequently driven by mutated or overexpressed protein targets. Proteolysis-targeting chimeras (PROTACs) offer an alternative therapeutic strategy by hijacking the cell's ubiquitin-proteasome system to degrade disease-causing proteins, presenting several potential advantages. Over the past few years, PROTACs have been developed to target various cancer-related proteins, offering new treatment options for patients with previously untreatable malignancies and serving as a foundation for next-generation therapeutics. One of the notable benefits of PROTACs is their ability to overcome certain resistance mechanisms that limit the effectiveness of conventional targeted therapies, as shown in several recent studies. Additionally, research teams are investigating how PROTACs can selectively degrade mutant proteins responsible for resistance to first-line cancer therapies. In the pursuit of novel and effective treatments, this review highlights recent advancements in the development of PROTACs aimed at overcoming cancer resistance. When it comes to drug design, heterocyclic scaffolds often serve as a foundational framework, offering opportunities for modification and optimization of novel molecules. Researchers are similarly exploring various heterocyclic derivatives as "warheads" in the design of PROTACs has been instrumental in pushing the boundaries of targeted protein degradation. As warheads, these heterocyclic compounds are responsible for recognizing and binding to the target protein, which ultimately leads to its degradation via the ubiquitin-proteasome system. This study aims to provide a comprehensive overview of cutting-edge strategies in PROTAC design, offering detailed insights into key concepts and methodologies for creating effective PROTACs. Special emphasis is placed on structure-based rational design, the development of novel warheads, and their critical in influencing biological activity.
Collapse
Affiliation(s)
- Ebna Azizal Omar
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rajesh R
- Centre for Excellence in Drug Analysis, Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Lalmohan Maji
- Tarifa Memorial Institute of Pharmacy, Department of Pharmaceutical Chemistry, Murshidabad, 742166, West Bengal, India
| |
Collapse
|
11
|
Hunt LC, Curley M, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala VR, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D maintains a youthful proteome and ensures protein quality control during aging by sustaining proteasome activity. PLoS Biol 2025; 23:e3002998. [PMID: 39879147 PMCID: PMC11778781 DOI: 10.1371/journal.pbio.3002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Mechanistically, UBE2D/eff is necessary to maintain optimal proteasome function: UBE2D/eff knockdown reduces the proteolytic activity of the proteasome, and this is rescued by transgenic expression of human UBE2D2, an eff homolog. Likewise, human UBE2D2 partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi and re-establishes the physiological levels of effRNAi-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. However, some of the proteins that are concertedly up-regulated by aging and effRNAi are proteostasis regulators (e.g., chaperones and Pomp) that are transcriptionally induced presumably as part of an adaptive stress response to the loss of proteostasis. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
12
|
Bao Q, Wan N, He Z, Cao J, Yuan W, Hao H, Ye H. Subcellular Proteomic Mapping of Lysine Lactylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39569522 DOI: 10.1021/jasms.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Protein lactylation is a novel post-translational modification (PTM) involved in many important physiological processes such as macrophage polarization, immune regulation, and tumor cell growth. However, traditional methodologies for studying lactylation have predominantly relied on peptide enrichment from whole-cell lysates, which tend to favor the detection of high-abundance peptides, thus limiting the identification of low-abundance lactylated peptides. To address this limitation, here, we employed subcellular fractionation to separate proteins and map lactylated peptides from each isolated subcellular fraction using a model cell line. In brief, we identified 1,217 lysine lactylation (Kla) sites on 553 proteins across four subcellular fractions. Subsequent pathway enrichment analysis revealed that Kla proteins participate in distinct pathways depending on the subcellular contexts. In addition, this subcellular fractionation method enabled the discovery of 36 previously unreported Kla proteins and 223 novel Kla sites, many of which are present in low abundance. Notably, several proteins contain multiple newly identified Kla sites, exemplified by the transcriptional regulator ATRX. Furthermore, our results indicate the possibility of PTM crosstalk between Kla and other PTMs such as ubiquitination and sumoylation. In conclusion, subcellular fractionation facilitates the identification of Kla proteins that have been previously uncovered and could be overlooked by affinity enrichment of whole-cell lysates.
Collapse
Affiliation(s)
- Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ning Wan
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Zimeng He
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ji Cao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Wenjie Yuan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
13
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
14
|
Paubel A, Marouillat S, Dangoumau A, Maurel C, Haouari S, Blasco H, Corcia P, Laumonnier F, Andres CR, Vourc’h P. Dynamic Expression of Genes Encoding Ubiquitin Conjugating Enzymes (E2s) During Neuronal Differentiation and Maturation: Implications for Neurodevelopmental Disorders and Neurodegenerative Diseases. Genes (Basel) 2024; 15:1381. [PMID: 39596581 PMCID: PMC11593721 DOI: 10.3390/genes15111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The ubiquitination process plays a crucial role in neuronal differentiation and function. Numerous studies have focused on the expression and functions of E3 ligases during these different stages, far fewer on E2 conjugating enzymes. In mice, as in humans, these E2s belong to 17 conjugating enzyme families. Objectives: We analyzed by real-time PCR the expression dynamics of all known E2 genes during an in vitro differentiation of mouse hippocampal neuronal cultures, and after, we analyzed their stimulation with N-methyl-D-aspartate (NMDA). Results: We found that 36 of the 38 E2 genes were expressed in hippocampal neurons. Many were up-regulated during neuritogenesis and/or synaptogenesis stages, such as Ube2h, Ube2b, and Aktip. Rapid and delayed responses to NMDA stimulation were associated with the increased expression of several E2 genes, such as Ube2i, the SUMO-conjugating E2 enzyme. We also observed similar expression profiles within the same E2 gene family, consistent with the presence of similar transcription factor binding sites in their respective promoter sequences. Conclusions: Our study indicates that specific expression profiles of E2 genes are correlated with changes in neuronal differentiation and activity. A better understanding of the regulation and function of E2s is needed to better understand the role played by the ubiquitination process in physiological mechanisms and pathophysiological alterations involved in neurodevelopmental or neurodegenerative diseases.
Collapse
Affiliation(s)
- Agathe Paubel
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Sylviane Marouillat
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Audrey Dangoumau
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Cindy Maurel
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Shanez Haouari
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Hélène Blasco
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37032 Tours, France
| | - Philippe Corcia
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Neurologie, Centre SLA, CHU de Tours, 37032 Tours, France
| | - Frédéric Laumonnier
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Christian R. Andres
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37032 Tours, France
| | - Patrick Vourc’h
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37032 Tours, France
| |
Collapse
|
15
|
Wang J, Wang Z, Zhang K, Cui Y, Zhou J, Liu J, Li H, Zhao M, Jiang J. The role of the ubiquitin system in the onset and reversal of neuropathic pain. Biomed Pharmacother 2024; 179:117127. [PMID: 39191026 DOI: 10.1016/j.biopha.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingruo Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiazhou Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanyi Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingxia Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
17
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
18
|
Zhou QX, Tian SY, Liu XN, Xiang SP, Lin XJ, Tan F, Mou YN. Research progress of ubiquitin and ubiquitin-like signaling in Toxoplasma gondii. Acta Trop 2024; 257:107283. [PMID: 38955322 DOI: 10.1016/j.actatropica.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.
Collapse
Affiliation(s)
- Qi-Xin Zhou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Si-Yu Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xiao-Na Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Shi-Peng Xiang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Xue-Jing Lin
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China
| | - Ya-Ni Mou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, PR China.
| |
Collapse
|
19
|
Li X, Li W, Zhang Y, Xu L, Song Y. Exploiting the potential of the ubiquitin-proteasome system in overcoming tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Genes Dis 2024; 11:101150. [PMID: 38947742 PMCID: PMC11214299 DOI: 10.1016/j.gendis.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 07/02/2024] Open
Abstract
The advent of tyrosine kinase inhibitors (TKI) targeting BCR-ABL has drastically changed the treatment approach of chronic myeloid leukemia (CML), greatly prolonged the life of CML patients, and improved their prognosis. However, TKI resistance is still a major problem with CML patients, reducing the efficacy of treatment and their quality of life. TKI resistance is mainly divided into BCR-ABL-dependent and BCR-ABL-independent resistance. Now, the main clinical strategy addressing TKI resistance is to switch to newly developed TKIs. However, data have shown that these new drugs may cause serious adverse reactions and intolerance and cannot address all resistance mutations. Therefore, finding new therapeutic targets to overcome TKI resistance is crucial and the ubiquitin-proteasome system (UPS) has emerged as a focus. The UPS mediates the degradation of most proteins in organisms and controls a wide range of physiological processes. In recent years, the study of UPS in hematological malignant tumors has resulted in effective treatments, such as bortezomib in the treatment of multiple myeloma and mantle cell lymphoma. In CML, the components of UPS cooperate or antagonize the efficacy of TKI by directly or indirectly affecting the ubiquitination of BCR-ABL, interfering with CML-related signaling pathways, and negatively or positively affecting leukemia stem cells. Some of these molecules may help overcome TKI resistance and treat CML. In this review, the mechanism of TKI resistance is briefly described, the components of UPS are introduced, existing studies on UPS participating in TKI resistance are listed, and UPS as the therapeutic target and strategies are discussed.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanli Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Linping Xu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
20
|
Wei Z, Su L, Gao S. The roles of ubiquitination in AML. Ann Hematol 2024; 103:3413-3428. [PMID: 37603061 DOI: 10.1007/s00277-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneously malignant disorder resulting in poor prognosis. Ubiquitination, a major post-translational modification (PTM), plays an essential role in regulating various cellular processes and determining cell fate. Despite these initial insights, the precise role of ubiquitination in AML pathogenesis and treatment remains largely unknown. In order to address this knowledge gap, we explore the relationship between ubiquitination and AML from the perspectives of signal transduction, cell differentiation, and cell cycle control; and try to find out how this relationship can be utilized to inform new therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
21
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Kaminskaya AN, Evpak AS, Belogurov AA, Kudriaeva AA. Tracking of Ubiquitin Signaling through 3.5 Billion Years of Combinatorial Conjugation. Int J Mol Sci 2024; 25:8671. [PMID: 39201358 PMCID: PMC11354881 DOI: 10.3390/ijms25168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.
Collapse
Affiliation(s)
- Alena N. Kaminskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alena S. Evpak
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
- Department of Biological Chemistry, Russian University of Medicine, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| |
Collapse
|
23
|
Zhou J, Chuang Y', Redding-Ochoa J, Zhang R, Platero AJ, Barrett AH, Troncoso JC, Worley PF, Zhang W. The autophagy adaptor TRIAD3A promotes tau fibrillation by nested phase separation. Nat Cell Biol 2024; 26:1274-1286. [PMID: 39009640 PMCID: PMC11921440 DOI: 10.1038/s41556-024-01461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Multiple neurodegenerative diseases are characterized by aberrant proteinaceous accumulations of tau. Here, we report a RING-in-between-RING-type E3 ligase, TRIAD3A, that functions as an autophagy adaptor for tau. TRIAD3A(RNF216) is an essential gene with mutations causing age-progressive neurodegeneration. Our studies reveal that TRIAD3A E3 ligase catalyses mixed K11/K63 polyubiquitin chains and self-assembles into liquid-liquid phase separated (LLPS) droplets. Tau is ubiquitinated and accumulates within TRIAD3A LLPS droplets and, via LC3 interacting regions, targets tau for autophagic degradation. Unexpectedly, tau sequestered within TRIAD3A droplets rapidly converts to fibrillar aggregates without the transitional liquid phase of tau. In vivo studies show that TRIAD3A decreases the accumulation of phosphorylated tau in a tauopathy mouse model, and a disease-associated mutation of TRIAD3A increases accumulation of phosphorylated tau, exacerbates gliosis and increases pathological tau spreading. In human Alzheimer disease brain, TRIAD3A co-localizes with tau amyloid in multiple histological forms, suggesting a role in tau proteostasis. TRIAD3A is an autophagic adaptor that utilizes E3 ligase and LLPS as a mechanism to capture cargo and appears especially relevant to neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang 'an Chuang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Neuroscience and Brain Disease Center, China Medical University Hospital, Taichung, Taiwan, Republic of China
- Department of Psychology, Asia University, Taichung, Taiwan, Republic of China
| | - Javier Redding-Ochoa
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rongzhen Zhang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi City, People's Republic of China
| | - Alexander J Platero
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander H Barrett
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Lagunes L, Briggs K, Martin-Holder P, Xu Z, Maurer D, Ghabra K, Deeds EJ. Modeling reveals the strength of weak interactions in stacked-ring assembly. Biophys J 2024; 123:1763-1780. [PMID: 38762753 PMCID: PMC11267433 DOI: 10.1016/j.bpj.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Cells employ many large macromolecular machines for the execution and regulation of processes that are vital for cell and organismal viability. Interestingly, cells cannot synthesize these machines as functioning units. Instead, cells synthesize the molecular parts that must then assemble into the functional complex. Many important machines, including chaperones such as GroEL and proteases such as the proteasome, comprise protein rings that are stacked on top of one another. While there is some experimental data regarding how stacked-ring complexes such as the proteasome self-assemble, a comprehensive understanding of the dynamics of stacked-ring assembly is currently lacking. Here, we developed a mathematical model of stacked-trimer assembly and performed an analysis of the assembly of the stacked homomeric trimer, which is the simplest stacked-ring architecture. We found that stacked rings are particularly susceptible to a form of kinetic trapping that we term "deadlock," in which the system gets stuck in a state where there are many large intermediates that are not the fully assembled structure but that cannot productively react. When interaction affinities are uniformly strong, deadlock severely limits assembly yield. We thus predicted that stacked rings would avoid situations where all interfaces in the structure have high affinity. Analysis of available crystal structures indicated that indeed the majority-if not all-of stacked trimers do not contain uniformly strong interactions. Finally, to better understand the origins of deadlock, we developed a formal pathway analysis and showed that, when all the binding affinities are strong, many of the possible pathways are utilized. In contrast, optimal assembly strategies utilize only a small number of pathways. Our work suggests that deadlock is a critical factor influencing the evolution of macromolecular machines and provides general principles for understanding the self-assembly efficiency of existing machines.
Collapse
Affiliation(s)
- Leonila Lagunes
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California
| | - Koan Briggs
- Department of Physics, University of Kansas, Lawrence, Kansas
| | - Paige Martin-Holder
- Department of Molecular Immunology, Microbiology and Genetics, UCLA, Los Angeles, California
| | - Zaikun Xu
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Dustin Maurer
- Center for Computational Biology, University of Kansas, Lawrence, Kansas
| | - Karim Ghabra
- Computational and Systems Biology IDP, UCLA, Los Angeles, California
| | - Eric J Deeds
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California; Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California; Center for Computational Biology, University of Kansas, Lawrence, Kansas.
| |
Collapse
|
25
|
Xin Z, Holgersson K, Zhu P, Tan H, Shi G, Szekely L, Wu T. Silencing UBE2K inhibits the growth of glioma cells by inducing the autophagy-related apoptosis. J Biochem Mol Toxicol 2024; 38:e23758. [PMID: 38963134 DOI: 10.1002/jbt.23758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/19/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Glioma is a central nervous system (CNS) malignant tumor with high heterogeneity and mortality, which severely threatens the health of patients. The overall survival of glioma patients is relatively short and it is critical to identify new molecular targets for developing effective treatment strategies. UBE2K is a ubiquitin conjugating enzyme with oncogenic function in several malignant tumors. However, whether UBE2K participates in gliomas remains unknown. Herein, in glioma cells, UBE2K was found highly expressed in U87 and U251 cells. Subsequently, U87 and U251 cells were transfected with si-UBE2K to silence UBE2K, with the si-NC transfection as the negative control. In both U87 and U251 cells, the cell viability was sharply reduced by transfecting si-UBE2K for 48 and 72 h. Markedly decreased colony number, reduced number of migrated cells and invaded cells, and declined relative wound healing rate were observed in si-UBE2K transfected U87 and U251 cells. Moreover, the Bcl-2 level was markedly reduced, while the Bax and cleaved-caspase-3 levels were sharply increased in U87 and U251 cells after the si-UBE2K transfection. Furthermore, the p62 level was signally declined, while the Beclin-1 and LC-3 II/I levels were greatly increased in U87 and U251 cells by the si-UBE2K transfection. Furthermore, the facilitating effect of si-UBE2K on the apoptosis and autophagy in U87 and U251 cells was abolished by the coculture of 3-MA, an inhibitor of autophagy. Collectively, UBE2K facilitated the in vitro growth of glioma cells, possibly by inhibiting the autophagy-related apoptosis, which might be a promising target for treating glioma.
Collapse
Affiliation(s)
- Zhen Xin
- Medical Laboratory center, The Second Hospital of Shandong University, Jinan, China
| | | | - Pengcheng Zhu
- Interventional department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongtu Tan
- Interventional department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guangyan Shi
- Medical Laboratory center, The Second Hospital of Shandong University, Jinan, China
| | - Laszlo Szekely
- Department of Pathology/Cytology, Karolinska University Laboratory, Stockholm, Sweden
| | - Tao Wu
- Interventional department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
26
|
Li W, Chen C, Zheng H, Lin Y, An M, Liu D, Zhang Y, Gao M, Lan T, He W. UBE2C-induced crosstalk between mono- and polyubiquitination of SNAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest 2024; 134:e179122. [PMID: 38949026 PMCID: PMC11213464 DOI: 10.1172/jci179122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Ubiquitination plays an essential role in protein stability, subcellular localization, and interactions. Crosstalk between different types of ubiquitination results in distinct biological outcomes for proteins. However, the role of ubiquitination-related crosstalk in lymph node (LN) metastasis and the key regulatory factors controlling this process have not been determined. Using high-throughput sequencing, we found that ubiquitin-conjugating enzyme E2 C (UBE2C) was overexpressed in bladder cancer (BCa) and was strongly associated with an unfavorable prognosis. Overexpression of UBE2C increased BCa lymphangiogenesis and promoted LN metastasis both in vitro and in vivo. Mechanistically, UBE2C mediated sodium-coupled neutral amino acid transporter 2 (SNAT2) monoubiquitination at lysine 59 to inhibit K63-linked polyubiquitination at lysine 33 of SNAT2. Crosstalk between monoubiquitination and K63-linked polyubiquitination increased SNAT2 membrane protein levels by suppressing epsin 1-mediated (EPN1-mediated) endocytosis. SNAT2 facilitated glutamine uptake and metabolism to promote VEGFC secretion, ultimately leading to lymphangiogenesis and LN metastasis in patients with BCa. Importantly, inhibition of UBE2C significantly attenuated BCa lymphangiogenesis in a patient-derived xenograft model. Our results reveal the mechanism by which UBE2C mediates crosstalk between the monoubiquitination and K63-linked polyubiquitination of SNAT2 to promote BCa metastasis and identify UBE2C as a promising target for treating LN-metastatic BCa.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Daiyin Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Mingchao Gao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Tianhang Lan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicinem, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangdong, China
| |
Collapse
|
27
|
Zhu L, Sun Y, Ullah N, Zhang G, Liu H, Xu L. UBC Gene Family Analysis in Salvia castanea and Roles of ScUBC2/5 Genes under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1353. [PMID: 38794424 PMCID: PMC11125094 DOI: 10.3390/plants13101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Salvia castanea Diels, a relative of the medicinal plant Salvia miltiorrhiza Bunge, belongs to the genus Salvia and family Lamiaceae. Ubiquitin-conjugating enzyme E2 (UBC) is an important ubiquitin-binding enzyme in protein ubiquitination. This study aimed to analyze the regulatory role of UBC genes, particularly ScUBC2/5, on the growth and adaptation of S. castanea to extreme environments including cold or drought stress. We identified nine UBC genes in S. castanea and found that these genes were extremely stable and more highly expressed in the roots than other tissues. This suggested that UBC genes might play a role in promoting root adaptation to cold and dry environments. Further analysis of UBC gene expression in hairy roots under cold (4 °C) and UV stress also confirmed their importance under stress. The contents of tanshinone and salvianolic acid in hairy roots with the overexpression of ScUBC2/5 were increased compared to non-transgenic wild type, and the cold and UV resistance of hairy roots was increased compared with that of wild type. Together, these findings highlighted the role of ScUBC2/5 in enhancing secondary metabolite accumulation and regulation in response to cold and ultraviolet stress in S. castanea, providing a new perspective for genetic improvement in its phytochemistry.
Collapse
Affiliation(s)
- Longyi Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Z.); (Y.S.); (G.Z.)
| | - Yuee Sun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Z.); (Y.S.); (G.Z.)
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar;
| | - Guilian Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Z.); (Y.S.); (G.Z.)
| | - Hui Liu
- Faculty of Science, UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Z.); (Y.S.); (G.Z.)
| |
Collapse
|
28
|
Yuan R, Luo X, Liang Z, Cai S, Zhao Y, Zhu Q, Li E, Liu X, Mo D, Chen Y. UBE2C promotes myoblast differentiation and skeletal muscle regeneration through the Akt signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1065-1071. [PMID: 38690615 PMCID: PMC11322864 DOI: 10.3724/abbs.2024062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/09/2024] [Indexed: 05/02/2024] Open
Abstract
Ubiquitin-conjugation enzyme E2C (UBE2C) is a crucial component of the ubiquitin-proteasome system that is involved in numerous cancers. In this study, we find that UBE2C expression is significantly increased in mouse embryos, a critical stage during skeletal muscle development. We further investigate the function of UBE2C in myogenesis. Knockdown of UBE2C inhibits C2C12 cell differentiation and decreases the expressions of MyoG and MyHC, while overexpression of UBE2C promotes C2C12 cell differentiation. Additionally, knockdown of UBE2C, specifically in the tibialis anterior muscle (TA), severely impedes muscle regeneration in vivo. Mechanistically, we show that UBE2C knockdown reduces the level of phosphorylated protein kinase B (p-Akt) and promotes the degradation of Akt. These findings suggest that UBE2C plays a critical role in myoblast differentiation and muscle regeneration and that UBE2C regulates myogenesis through the Akt signaling pathway.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
- Guangxi Yangxiang Agriculture and Husbandry Co.Ltd.Guigang537100China
| | - Xiaorong Luo
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Ziyun Liang
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Shufang Cai
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Yunxiang Zhao
- Guangxi Yangxiang Agriculture and Husbandry Co.Ltd.Guigang537100China
| | - Qi Zhu
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Enru Li
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Xiaohong Liu
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Delin Mo
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Yaosheng Chen
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| |
Collapse
|
29
|
Gao W, Zhang L, Zhang Y, Zhang P, Shahinnia F, Chen T, Yang D. Genome‑wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:341. [PMID: 38671351 PMCID: PMC11047035 DOI: 10.1186/s12870-024-05042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.
Collapse
Affiliation(s)
- Weidong Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Long Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fahimeh Shahinnia
- Bioanalytics Gatersleben, Am Schwabenplan 1b, Seeland, 06466, Germany
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
30
|
Du X, Hua R, He X, Hou W, Li S, Yang A, Yang G. Echinococcus granulosus ubiquitin-conjugating enzymes (E2D2 and E2N) promote the formation of liver fibrosis in TGFβ1-induced LX-2 cells. Parasit Vectors 2024; 17:190. [PMID: 38643149 PMCID: PMC11031992 DOI: 10.1186/s13071-024-06222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFβ1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.
Collapse
Affiliation(s)
- Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Hou
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
31
|
Liu D, Yu H, Xue N, Bao H, Gao Q, Tian Y. Alternative splicing patterns of hnrnp genes in gill tissues of rainbow trout (Oncorhynchus mykiss) during salinity changes. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110948. [PMID: 38281704 DOI: 10.1016/j.cbpb.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Alternative splicing (AS) plays an important role in various physiological processes in eukaryotes, such as the stress response. However, patterns of AS events remain largely unexplored during salinity acclimation in fishes. In this study, we conducted AS analysis using RNA-seq datasets to explore splicing patterns in the gill tissues of rainbow trout exposed to altered salinity environments, ranging from 0 ‰ (T0) to 30 ‰ (T30). The results revealed 1441, 351, 483, 1051 and 1049 differentially alternatively spliced (DAS) events in 5 pairwise comparisons, including T6 vs. T0, T12 vs. T0, T18 vs. T0, T24 vs. T0, and T30 vs. T0, respectively. These DAS events were derived from 1290, 328, 444, 963 and 948 genes. Enrichment analysis indicated that these DAS genes were related to RNA splicing and processing. Among these, 14 DAS genes were identified as members of the large heterogeneous nuclear RNP (hnRNP) gene family. Alternative 3' splice site (A3SS), exon skipping (SE) and intron retention (RI) events resulted in the fragmentation or even loss of the functional RNA recognition motif (RRM) domains in hnrnpa0, hnrnp1a, hnrnp1b and hnrnpc genes. The incomplete RRM domains would hinder the interactions between hnRNP genes and pre-mRNAs. It would in turn influence the splicing patterns and mRNA stability of downstream target genes in response to salinity changes. The study provides insights into salinity acclimation in gill tissues of rainbow trout and serves as a significant reference on the osmoregulation mechanisms at post-transcription regulation levels in fish.
Collapse
Affiliation(s)
- Dazhi Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Han Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Na Xue
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Hancheng Bao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China.
| | - Yuan Tian
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
32
|
Rong Z, Zheng K, Chen J, Jin X. The cross talk of ubiquitination and chemotherapy tolerance in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:154. [PMID: 38521878 PMCID: PMC10960765 DOI: 10.1007/s00432-024-05659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Ubiquitination, a highly adaptable post-translational modification, plays a pivotal role in maintaining cellular protein homeostasis, encompassing cancer chemoresistance-associated proteins. Recent findings have indicated a potential correlation between perturbations in the ubiquitination process and the emergence of drug resistance in CRC cancer. Consequently, numerous studies have spurred the advancement of compounds specifically designed to target ubiquitinates, offering promising prospects for cancer therapy. In this review, we highlight the role of ubiquitination enzymes associated with chemoresistance to chemotherapy via the Wnt/β-catenin signaling pathway, epithelial-mesenchymal transition (EMT), and cell cycle perturbation. In addition, we summarize the application and role of small compounds that target ubiquitination enzymes for CRC treatment, along with the significance of targeting ubiquitination enzymes as potential cancer therapies.
Collapse
Affiliation(s)
- Ze Rong
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo, 315211, China.
| |
Collapse
|
33
|
Hunt LC, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala V, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D/eff maintains a youthful proteome and ensures protein quality control during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571303. [PMID: 38168249 PMCID: PMC10759998 DOI: 10.1101/2023.12.12.571303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for regulating protein function and turnover via ubiquitination but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Transgenic expression of human UBE2D2, homologous to eff, partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi by re-establishing the physiological levels of effRNAi-regulated proteins, which include several regulators of proteostasis. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
34
|
Hunt LC, Pagala V, Stephan A, Xie B, Kodali K, Kavdia K, Wang YD, Shirinifard A, Curley M, Graca FA, Fu Y, Poudel S, Li Y, Wang X, Tan H, Peng J, Demontis F. An adaptive stress response that confers cellular resilience to decreased ubiquitination. Nat Commun 2023; 14:7348. [PMID: 37963875 PMCID: PMC10646096 DOI: 10.1038/s41467-023-43262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
35
|
Schnell L, Zubrod A, Catone N, Bialas J, Aichem A. Tumor necrosis factor mediates USE1-independent FAT10ylation under inflammatory conditions. Life Sci Alliance 2023; 6:e202301985. [PMID: 37604583 PMCID: PMC10442930 DOI: 10.26508/lsa.202301985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
The ubiquitin-like modifier FAT10 is up-regulated in many different cell types by IFNγ and TNFα (TNF) and directly targets proteins for proteasomal degradation. FAT10 gets covalently conjugated to its conjugation substrates by the E1 activating enzyme UBA6, the E2 conjugating enzyme USE1, and E3 ligases including Parkin. To date, USE1 was supposed to be the only E2 enzyme for FAT10ylation, and we show here that a knockout of USE1 strongly diminished FAT10 conjugation. Remarkably, under inflammatory conditions in the presence of TNF, FAT10 conjugation appears to be independent of USE1. We report on the identification of additional E2 conjugating enzymes, which were previously not associated with FAT10. We confirm their capacity to be charged with FAT10 onto their active site cysteine, and to rescue FAT10 conjugation in the absence of USE1. This finding strongly widens the field of FAT10 research by pointing to multiple, so far unknown pathways for the conjugation of FAT10, disclosing novel possibilities for pharmacological interventions to regulate FAT10 conjugation under inflammatory conditions and/or viral infections.
Collapse
Affiliation(s)
- Leonie Schnell
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alina Zubrod
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Johanna Bialas
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
36
|
Mamun M, Liu Y, Geng YP, Zheng YC, Gao Y, Sun JG, Zhao LF, Zhao LJ, Liu HM. Discovery of neddylation E2s inhibitors with therapeutic activity. Oncogenesis 2023; 12:45. [PMID: 37717015 PMCID: PMC10505188 DOI: 10.1038/s41389-023-00490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
Neddylation is the writing of monomers or polymers of neural precursor cells expressed developmentally down-regulated 8 (NEDD8) to substrate. For neddylation to occur, three enzymes are required: activators (E1), conjugators (E2), and ligators (E3). However, the central role is played by the ubiquitin-conjugating enzymes E2M (UBE2M) and E2F (UBE2F), which are part of the E2 enzyme family. Recent understanding of the structure and mechanism of these two proteins provides insight into their physiological effects on apoptosis, cell cycle arrest and genome stability. To treat cancer, it is therefore appealing to develop novel inhibitors against UBE2M or UBE2F interactions with either E1 or E3. In this evaluation, we summarized the existing understanding of E2 interaction with E1 and E3 and reviewed the prospective of using neddylation E2 as a pharmacological target for evolving new anti-cancer remedies.
Collapse
Affiliation(s)
- Maa Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Ying Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin-Ping Geng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Jian-Gang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
37
|
Wang Y, Wang JM, Xiao Y, Hu XB, Zheng SY, Fu JL, Zhang L, Gan YW, Liang XM, Li DWC. SUMO1-regulated DBC1 promotes p53-dependent stress-induced apoptosis of lens epithelial cells. Aging (Albany NY) 2023; 15:8812-8832. [PMID: 37683133 PMCID: PMC10522365 DOI: 10.18632/aging.205001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it plays a role in lens pathogenesis remains elusive. In the present study, we demonstrated that DBC1 is highly expressed in lens epithelial cells from different vertebrates and in retina pigment epithelial cells as well. Moreover, DBC1 is SUMOylated through SUMO1 conjugation at K591 residue in human and mouse lens epithelial cells. The SUMOylated DBC1 is localized in the nucleus and plays an essential role in promoting stress-induced apoptosis. Silence of DBC1 attenuates oxidative stress-induced apoptosis. In contrast, overexpression of DBC1 enhances oxidative stress-induced apoptosis, and this process depends on p53. Mechanistically, DBC1 interacts with p53 to regulate its phosphorylation status at multiple sites and the SUMOylation of DBC1 enhances its interaction with p53. Together, our results identify that DBC1 is an important regulator mediating stress-induced apoptosis in lens, and thus participates in control of lens cataractogenesis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Xue-Bin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Xing-Miao Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
38
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
39
|
Yan W, Zhong Y, Hu X, Xu T, Zhang Y, Kales S, Qu Y, Talley DC, Baljinnyam B, LeClair CA, Simeonov A, Polster BM, Huang R, Ye Y, Rai G, Henderson MJ, Tao D, Fang S. Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes. Nat Commun 2023; 14:4798. [PMID: 37558718 PMCID: PMC10412574 DOI: 10.1038/s41467-023-40537-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.
Collapse
Affiliation(s)
- Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Tuan Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yinghua Zhang
- Center for Innovative Biomedical Resources, Biosensor Core, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephen Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yanyan Qu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Daniel C Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
40
|
Gu J, Pang L, Yan D, Wang C, Song Y, Jin Z, Xu Z, Mao Y, Liu S, Chen S. Ubiquitin-proteasome system-mediated ubiquitination modification patterns and characterization of tumor microenvironment infiltration, stemness and cellular senescence in low-grade glioma. Aging (Albany NY) 2023; 15:2970-2998. [PMID: 37053008 DOI: 10.18632/aging.204650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023]
Abstract
The Ubiquitin-proteasome system (UPS) performs a crucial role in immune activation and tumorigenesis. Nevertheless, the comprehensive role of the ubiquitin-proteasome system in the low-grade glioma (LGG) tumor microenvironment (TME) remains unknown. Ubiquitination modification patterns in LGG patients and corresponding characteristics of tumor immune traits, CSC stemness, and cellular senescence were evaluated via a comprehensive analysis of 20 ubiquitination modification regulators. For quantification of the ubiquitination modification status of individual patients, the UM-score was constructed and associated with TME characteristics, clinical features, cancer stem cell stemness, cellular senescence, prognosis, and immunotherapy efficacy. We identified that alterations in multiple ubiquitination regulators are linked to patient survival and the shaping of the tumor microenvironment. We found two different styles of ubiquitination modification in patients with low-grade glioma (immune-inflamed differentiation and immune-exclude dedifferentiation), characterized by high and low UM-score, and the two regulatory patterns of ubiquitination modification on immunity, stemness feature, and cellular senescence. We demonstrate that the UM-score could forecast the subtype of LGG, the immunologic infiltration traits, the biological process, the stemness feature, and the cellular senescence trait. Notably, the UM-score was related to immunotherapeutic efficacy, implying that modifying ubiquitination modification patterns by targeting ubiquitination modification regulators or ubiquitination modification pattern signature genes to reverse unfavorable TME properties will provide new insights into cancer immunotherapy. This research indicated that the ubiquitin-proteasome system is crucial in the formation of TME complexity and multiformity. The UM-score can determine ubiquitination modification status in individual patients, bringing about more personalized and effective immunotherapeutic tactics.
Collapse
Affiliation(s)
- Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lijun Pang
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Donghua Yan
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chunming Wang
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuekun Song
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhenwei Xu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuanqing Mao
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shengzhe Liu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
41
|
Yao S, Xie M, Hu M, Cui X, Wu H, Li X, Hu P, Tong C, Yu X. Genome-wide characterization of ubiquitin-conjugating enzyme gene family explores its genetic effects on the oil content and yield of Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1118339. [PMID: 37021309 PMCID: PMC10067767 DOI: 10.3389/fpls.2023.1118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a critical part of the ubiquitin-proteasome pathway and plays crucial roles in growth, development and abiotic stress response in plants. Although UBC genes have been detected in several plant species, characterization of this gene family at the whole-genome level has not been conducted in Brassica napus. In the present study, 200 putative BnUBCs were identified in B. napus, which were clustered into 18 subgroups based on phylogenetic analysis. BnUBCs within each subgroup showed relatively conserved gene architectures and motifs. Moreover, the gene expression patterns in various tissues as well as the identification of cis-acting regulatory elements in BnUBC promoters suggested further investigation of their potential functions in plant growth and development. Furthermore, three BnUBCs were predicted as candidate genes for regulating agronomic traits related to oil content and yield through association mapping. In conclusion, this study provided a wealth of information on the UBC family in B. napus and revealed their effects on oil content and yield, which will aid future functional research and genetic breeding of B. napus.
Collapse
Affiliation(s)
- Shengli Yao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ming Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - XiaoBo Cui
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Haoming Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaohua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoli Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
42
|
Tizoxanide Antiviral Activity on Dengue Virus Replication. Viruses 2023; 15:v15030696. [PMID: 36992406 PMCID: PMC10055917 DOI: 10.3390/v15030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue virus is an important circulating arbovirus in Brazil responsible for high morbidity and mortality worldwide, representing a huge economic and social burden, in addition to affecting public health. In this study, the biological activity, toxicity, and antiviral activity against dengue virus type 2 (DENV-2) of tizoxanide (TIZ) was evaluated in Vero cell culture. TIZ has a broad spectrum of action in inhibiting different pathogens, including bacteria, protozoa, and viruses. Cells were infected for 1 h with DENV-2 and then treated for 24 h with different concentrations of the drug. The quantification of viral production indicated the antiviral activity of TIZ. The protein profiles in infected Vero cells treated and not treated with TIZ were analyzed using the label-free quantitative proteomic approach. TIZ was able to inhibit virus replication mainly intracellularly after DENV-2 penetration and before the complete replication of the viral genome. Additionally, the study of the protein profile of infected not-treated and infected-treated Vero cells showed that TIZ interferes with cellular processes such as intracellular trafficking and vesicle-mediated transport and post-translational modifications when added after infection. Our results also point to the activation of immune response genes that would eventually lead to a decrease of DENV-2 production. TIZ is a promising therapeutic molecule for the treatment of DENV-2 infections.
Collapse
|
43
|
Espinoza-Chávez R, Salerno A, Liuzzi A, Ilari A, Milelli A, Uliassi E, Bolognesi ML. Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS BIO & MED CHEM AU 2023; 3:32-45. [PMID: 37101607 PMCID: PMC10125329 DOI: 10.1021/acsbiomedchemau.2c00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 04/28/2023]
Abstract
Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.
Collapse
Affiliation(s)
- Rocío
Marisol Espinoza-Chávez
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anastasia Liuzzi
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Ilari
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
44
|
Sandmann A, Dissmeyer N. In vitro autoubiquitination activity of E3 ubiquitin ligases of the N-degron pathway. Methods Enzymol 2023. [PMID: 37532400 DOI: 10.1016/bs.mie.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
As a part of the ubiquitin-proteasome system, E3 ubiquitin ligases play an important role in the regulation of the proteome in eukaryotic cells. These enzymes are extensively studied because of their crucial function, however it can be challenging to observe E3 ubiquitin ligases in action. Here, we outline a method for determining whether a known or potential E3 ubiquitin ligase exhibits autoubiquitination activity in vitro using PROTEOLYSIS1 (PRT1, AT3G24800), the first identified N-degron pathway E3 ubiquitin ligase from plants as an example. The approach provided here makes it possible to analyze mutations that could reduce or eliminate activity, to test for interaction with E2 ubiquitin conjugating enzymes, as well as to check for in vitro substrate ubiquitination.
Collapse
|
45
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
Lei X, Hu X, Lu Q, Yao Y, Sun W, Ma Q, Huang D, Xu Q. UBE2K promotes the malignant progression of hepatocellular carcinoma by regulating c-Myc. Biochem Biophys Res Commun 2023; 638:210-218. [PMID: 36481361 DOI: 10.1016/j.bbrc.2022.11.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is a serious threat to human health and life due to its high morbidity and mortality. Ubiquitin-conjugating enzymes are players in the ubiquitin proteasome system and are responsible for a great number of physiological activities in cells. The action of ubiquitin-conjugating enzyme UBE2K in HCC has not been reported. Therefore, we studied the function and role of UBE2K in the malignant progression of HCC. An analysis of UBE2K expression in HCC cells was performed using RT-qPCR and protein immunoblotting. CCK-8, Transwell and sphere formation assays were used to identify the potential effects of UBE2K in HCC cell proliferation, migration and stemness property. RT-qPCR, and protein immunoblotting experiments was taken to explore the regulation between UBE2K and c-Myc. Here, we discovered that UBE2K expression was elevated in HCC cells, and elevated UBE2K predicts worse prognosis for HCC patients. Functionally, UBE2K promote, while UBE2K knockdown suppressed cell proliferation, migration and stemness property of HCC cells. Furthermore, c-Myc was identified as a downstream target of UBE2K. Moreover, functional rescue experiments finally proved that UBE2K facilitates the malignant progression of HCC cells by upregulating c-Myc. We clarified through in vivo experiments that UBE2K expression promotes tumor growth in HCC. Taken together, our study results proved the molecular regulation of UBE2K and c-Myc in HCC and the oncogenic role of UBE2K/c-Myc axis in HCC progression, thus it provides a promising molecular target for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiangxiang Lei
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xiaoge Hu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, 266000, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wen Sun
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiancheng Ma
- School of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
47
|
Pouyo R, Chung K, Delacroix L, Malgrange B. The ubiquitin-proteasome system in normal hearing and deafness. Hear Res 2022; 426:108366. [PMID: 34645583 DOI: 10.1016/j.heares.2021.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Post-translational modifications of proteins are essential for the proper development and function of many tissues and organs, including the inner ear. Ubiquitination is a highly selective post-translational modification that involves the covalent conjugation of ubiquitin to a substrate protein. The most common outcome of protein ubiquitination is degradation by the ubiquitin-proteasome system (UPS), preventing the accumulation of misfolded, damaged, and excess proteins. In addition to proteasomal degradation, ubiquitination regulates other cellular processes, such as transcription, translation, endocytosis, receptor activity, and subcellular localization. All of these processes are essential for cochlear development and maintenance, as several studies link impairment of UPS with altered cochlear development and hearing loss. In this review, we provide insight into the well-oiled machinery of UPS with a focus on its confirmed role in normal hearing and deafness and potential therapeutic strategies to prevent and treat UPS-associated hearing loss.
Collapse
Affiliation(s)
- Ronald Pouyo
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Keshi Chung
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Laurence Delacroix
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium.
| |
Collapse
|
48
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
49
|
Toraason E, Adler VL, Libuda DE. Aging and sperm signals alter DNA break formation and repair in the C. elegans germline. PLoS Genet 2022; 18:e1010282. [PMID: 36342909 PMCID: PMC9671421 DOI: 10.1371/journal.pgen.1010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Female reproductive aging is associated with decreased oocyte quality and fertility. The nematode Caenorhabditis elegans is a powerful system for understanding the biology of aging and exhibits age-related reproductive defects that are analogous to those observed in many mammals, including dysregulation of DNA repair. C. elegans germline function is influenced simultaneously by both reproductive aging and signals triggered by limited supplies of sperm, which are depleted over chronological time. To delineate the causes of DNA repair defects in aged C. elegans germlines, we assessed both DNA double strand break (DSB) induction and repair during meiotic prophase I progression in aged germlines which were depleted of self-sperm, mated, or never exposed to sperm. We find that germline DSB induction is dramatically reduced only in hermaphrodites which have exhausted their endogenous sperm, suggesting that a signal due specifically to sperm depletion downregulates DSB formation. We also find that DSB repair is delayed in aged germlines regardless of whether hermaphrodites had either a reduction in sperm supply or an inability to endogenously produce sperm. These results demonstrate that in contrast to DSB induction, DSB repair defects are a feature of C. elegans reproductive aging independent of sperm presence. Finally, we demonstrate that the E2 ubiquitin-conjugating enzyme variant UEV-2 is required for efficient DSB repair specifically in young germlines, implicating UEV-2 in the regulation of DNA repair during reproductive aging. In summary, our study demonstrates that DNA repair defects are a feature of C. elegans reproductive aging and uncovers parallel mechanisms regulating efficient DSB formation in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| | - Victoria L. Adler
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| | - Diana E. Libuda
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| |
Collapse
|
50
|
A dimer-monomer switch controls CHIP-dependent substrate ubiquitylation and processing. Mol Cell 2022; 82:3239-3254.e11. [PMID: 36027913 DOI: 10.1016/j.molcel.2022.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
The high substrate selectivity of the ubiquitin/proteasome system is mediated by a large group of E3 ubiquitin ligases. The ubiquitin ligase CHIP regulates the degradation of chaperone-controlled and chaperone-independent proteins. To understand how CHIP mediates substrate selection and processing, we performed a structure-function analysis of CHIP and addressed its physiological role in Caenorhabditis elegans and human cells. The conserved function of CHIP in chaperone-assisted degradation requires dimer formation to mediate proteotoxic stress resistance and to prevent protein aggregation. The CHIP monomer, however, promotes the turnover of the membrane-bound insulin receptor and longevity. The dimer-monomer transition is regulated by CHIP autoubiquitylation and chaperone binding, which provides a feedback loop that controls CHIP activity in response to cellular stress. Because CHIP also binds other E3 ligases, such as Parkin, the molecular switch mechanism described here could be a general concept for the regulation of substrate selectivity and ubiquitylation by combining different E3s.
Collapse
|