1
|
Yang C, Cai YX, Wang ZF, Tian SF, Li ZQ. Tertiary lymphoid structures in the central nervous system. Trends Mol Med 2024:S1471-4914(24)00281-8. [PMID: 39578120 DOI: 10.1016/j.molmed.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Tertiary lymphoid structures (TLSs) frequently occur at sites of chronic inflammation. A more advanced stage of multiple sclerosis (MS) has been associated with certain TLSs. However, tumor-associated TLSs have been shown to correlate with a greater treatment response rate and a better prognosis in glioma mouse models. In this review, we evaluate the clinical significances of TLSs in prognosis and treatment response, as well as the status of TLS-directed therapies targeting alternative biochemical pathways in various central nervous system (CNS) disorders. Potential molecular mechanisms underlying the development of TLSs are also discussed. Exploring these areas may provide an essential understanding of the processes behind disease advancement, uncover new therapeutic objectives, and detect biomarkers that forecast disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu-Xiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Byrne CM, Márquez AC, Cai B, Coombs D, Gantt S. Spatial kinetics and immune control of murine cytomegalovirus infection in the salivary glands. PLoS Comput Biol 2024; 20:e1011940. [PMID: 39150988 DOI: 10.1371/journal.pcbi.1011940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/28/2024] [Accepted: 07/30/2024] [Indexed: 08/18/2024] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. Several HCMV vaccines are in development, but none have yet been approved. An understanding of the kinetics of CMV replication and transmission may inform the rational design of vaccines to prevent this infection. The salivary glands (SG) are an important site of sustained CMV replication following primary infection and during viral reactivation from latency. As such, the strength of the immune response in the SG likely influences viral dissemination within and between hosts. To study the relationship between the immune response and viral replication in the SG, and viral dissemination from the SG to other tissues, mice were infected with low doses of murine CMV (MCMV). Following intra-SG inoculation, we characterized the viral and immunological dynamics in the SG, blood, and spleen, and identified organ-specific immune correlates of protection. Using these data, we constructed compartmental mathematical models of MCMV infection. Model fitting to data and analysis indicate the importance of cellular immune responses in different organs and point to a threshold of infection within the SG necessary for the establishment and spread of infection.
Collapse
Affiliation(s)
- Catherine M Byrne
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ana Citlali Márquez
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Bing Cai
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Daniel Coombs
- Department of Mathematics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Microbiota-dependent and -independent postnatal development of salivary immunity. Cell Rep 2023; 42:111981. [PMID: 36640306 DOI: 10.1016/j.celrep.2022.111981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
While saliva regulates the interplay between the microbiota and the oral immune system, the mechanisms establishing postnatal salivary immunity are ill-defined. Here, we show that high levels of neutrophils and neonatal Fc receptor (FcRn)-transferred maternal IgG are temporarily present in the neonatal murine salivary glands in a microbiota-independent manner. During weaning, neutrophils, FcRn, and IgG decrease in the salivary glands, while the polymeric immunoglobulin receptor (pIgR) is upregulated in a growth arrest-specific 6 (GAS6)-dependent manner independent of the microbiota. Production of salivary IgA begins following weaning and relies on CD4-help, IL-17, and the microbiota. The weaning phase is characterized by a transient accumulation of dendritic cells capable of migrating from the oral mucosa to the salivary glands upon exposure to microbial challenges and activating T cells. This study reveals the postnatal mechanisms developed in the salivary glands to induce immunity and proposes the salivary glands as an immune inductive site.
Collapse
|
4
|
Alghonemy WY, Helal MB. Systemic immune response development in Albino rats after retrograde instillation of COVID-19 vaccine to submandibular salivary gland: An experimental study. J Oral Biol Craniofac Res 2022; 12:332-338. [PMID: 35341219 PMCID: PMC8938316 DOI: 10.1016/j.jobcr.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/26/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022] Open
Abstract
Objective This study aimed to investigate whether using the submandibular gland duct (SMD) as an alternative mucosal route for vaccine administration induced anti-COVID-19 specific immunity. Material and methods Forty rats were randomized equally into four groups; Group I: Rats did not receive any intervention. Group II: Rats were subjected to intramuscular (IM) injection of COVID-19 vaccine. Group III: Rats were subjected to ductal cannulation by retrograde instillation of sterile saline into right SMD. Group IV: Rats in this group who had 0.5 ml of COVID-19 vaccine retrogradely injected into the right SMD. Subsequently, rats were examined for anti-COVID-19 specific antibodies (IgG). Also, light microscopic observation of glandular changes and immunohistochemical staining for CD20 was performed. Results The obtained results demonstrated a significant increase in anti-COVID-19 IgG levels in all rats vaccinated via intraductal immunization (group IV) compared to group II. Histologically, ectopic follicles were found within the glandular lobules of the inoculated submandibular gland (SMG) in group IV. In addition, the nearby lymph node in group IV demonstrated reactive follicle characteristics in the form of activated secondary follicles with germinal centers (GCs). Immunohistochemically, CD20 was localized in group IV in GCs of the ectopic lymphoid tissue and the nearby lymph nodes while group I, group II, and III demonstrated negative immunoreactivity. Conclusion The immune response demonstrated by intraductal SG immunization is generally more significant than that elicited by IM inoculation of the same vaccine. Salivary gland intraductal vaccination developed a systemic immune response. High antibody levels are obtained via salivary glands intraductal vaccination. Salivary glands are a potential mucosal route for administering vaccines.
Collapse
Affiliation(s)
- Wafaa Yahia Alghonemy
- Corresponding author. Faculty of Dentistry, Tanta University, Faculty of Dentistry, El-Giesh St, Tanta, Gharbia, Egypt.
| | | |
Collapse
|
5
|
CD4 T Cell-Mediated Immune Control of Cytomegalovirus Infection in Murine Salivary Glands. Pathogens 2021; 10:pathogens10121531. [PMID: 34959486 PMCID: PMC8704252 DOI: 10.3390/pathogens10121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.
Collapse
|
6
|
Marinkovic T, Marinkovic D. Biological mechanisms of ectopic lymphoid structure formation and their pathophysiological significance. Int Rev Immunol 2020; 40:255-267. [PMID: 32631119 DOI: 10.1080/08830185.2020.1789620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ectopic lymphoid structures (ELS) or tertiary lymphoid organs are structures with the organization similar to the one of secondary lymphoid organs, formed in non-lymphoid tissues. They are considered to be an important site for the lymphocytic physiological and pathological role in conditions such are chronic infections, autoimmune diseases, cancer, and allograft rejection. Although similar to the secondary lymphoid tissues, the initiation of ELS formation is not preprogramed and requires chronic inflammation, expression of homeostatic chemokines, and lymphotoxin beta receptor activation. Importantly, while ELS formation may be considered beneficiary in antimicrobial and antitumor immunity, the persistence of these active lymphoid structures within the tissue increase the chance for development of autoimmunity and lymphoma. This paper is providing an overview of biological mechanisms involved in ELS formation, as well as the overview of the pathophysiological role of these structures. In addition, the paper discusses the possibility to therapeutically target ELS formation, bearing in mind their bivalent nature and role in different pathophysiological conditions.
Collapse
Affiliation(s)
- Tatjana Marinkovic
- Department of Medical Sciences, Western Serbia Academy of Applied Sciences, Uzice, Serbia
| | - Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Lymph node stromal cells: cartographers of the immune system. Nat Immunol 2020; 21:369-380. [PMID: 32205888 DOI: 10.1038/s41590-020-0635-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
Lymph nodes (LNs) are strategically positioned at dedicated sites throughout the body to facilitate rapid and efficient immunity. Central to the structural integrity and framework of LNs, and the recruitment and positioning of leukocytes therein, are mesenchymal and endothelial lymph node stromal cells (LNSCs). Advances in the last decade have expanded our understanding and appreciation of LNSC heterogeneity, and the role they play in coordinating immunity has grown rapidly. In this review, we will highlight the functional contributions of distinct stromal cell populations during LN development in maintaining immune homeostasis and tolerance and in the activation and control of immune responses.
Collapse
|
8
|
Liu G, Zhang F, Wang R, London SD, London L. Salivary gland immunization via Wharton's duct activates differential T-cell responses within the salivary gland immune system. FASEB J 2019; 33:6011-6022. [PMID: 30817215 PMCID: PMC6463922 DOI: 10.1096/fj.201801993r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
Salivary glands are a major component of the mucosal immune system that confer adaptive immunity to mucosal pathogens. As previously demonstrated, immunization of the submandibular gland with tissue culture-derived murine cytomegalovirus (tcMCMV) or replication-deficient adenoviruses expressing individual murine cytomegalovirus (MCMV) genes protected mice against a lethal MCMV challenge. Here, we report that salivary gland inoculation of BALB/cByJ mice with tcMCMV or recombinant adenoviruses differentially activates T helper (Th)1, -2, and -17 cells in the salivary glands vs. the associated lymph nodes. After inoculation with tcMCMV, lymphocytes from the submandibular gland preferentially express the transcription factor T-cell-specific T-box transcription factor (T-bet), which controls the expression of the hallmark Th1 cytokine, IFN-γ. Lymphocytes from the periglandular lymph nodes (PGLNs) express both T-bet and GATA-binding protein 3 (GATA3), which promotes the secretion of IL-4, -5, and -10 from Th2 cells. In contrast, after inoculation with replication-deficient adenoviruses, lymphocytes from the submandibular gland express T-bet, GATA3, and RAR-related orphan receptor γ, thymus-specific isoform (RORγt) (required for differentiation of Th17 cells) and forkhead box P3 (Foxp3) (required for the differentiation of regulatory T cells). Lymphocytes from the PGLNs were not activated. The differential induction of Th responses in the salivary gland vs. the PGLNs after inoculation with attenuated virus vs. a nominal protein antigen supports the use of the salivary as an alternative mucosal route for administering vaccines.-Liu, G., Zhang, F., Wang, R., London, S. D., London, L. Salivary gland immunization via Wharton's duct activates differential T-cell responses within the salivary gland immune system.
Collapse
Affiliation(s)
- Guangliang Liu
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fangfang Zhang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ruixue Wang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Steven D. London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lucille London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
9
|
Magrone T, Jirillo E. Development and Organization of the Secondary and Tertiary Lymphoid Organs: Influence of Microbial and Food Antigens. Endocr Metab Immune Disord Drug Targets 2019; 19:128-135. [DOI: 10.2174/1871530319666181128160411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
Background:Secondary lymphoid organs (SLO) are distributed in many districts of the body and, especially, lymph nodes, spleen and gut-associated lymphoid tissue are the main cellular sites. On the other hand, tertiary lymphoid organs (TLO) are formed in response to inflammatory, infectious, autoimmune and neoplastic events. </P><P> Developmental Studies: In the present review, emphasis will be placed on the developmental differences of SLO and TLO between small intestine and colon and on the role played by various chemokines and cell receptors. Undoubtedly, microbiota is indispensable for the formation of SLO and its absence leads to their poor formation, thus indicating its strict interaction with immune and non immune host cells. Furthermore, food antigens (for example, tryptophan derivatives, flavonoids and byphenils) bind the aryl hydrocarbon receptor on innate lymphoid cells (ILCs), thus promoting the development of postnatal lymphoid tissues. Also retinoic acid, a metabolite of vitamin A, contributes to SLO development during embryogenesis. Vitamin A deficiency seems to account for reduction of ILCs and scarce formation of solitary lymphoid tissue. </P><P> Translational Studies: The role of lymphoid organs with special reference to intestinal TLO in the course of experimental and human disease will also be discussed. </P><P> Future Perspectives: Finally, a new methodology, the so-called “gut-in-a dish”, which has facilitated the in vitro interaction study between microbe and intestinal immune cells, will be described.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
10
|
Bates MA, Akbari P, Gilley KN, Wagner JG, Li N, Kopec AK, Wierenga KA, Jackson-Humbles D, Brandenberger C, Holian A, Benninghoff AD, Harkema JR, Pestka JJ. Dietary Docosahexaenoic Acid Prevents Silica-Induced Development of Pulmonary Ectopic Germinal Centers and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse. Front Immunol 2018; 9:2002. [PMID: 30258439 PMCID: PMC6143671 DOI: 10.3389/fimmu.2018.02002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022] Open
Abstract
Ectopic lymphoid structures (ELS) consist of B-cell and T-cell aggregates that are initiated de novo in inflamed tissues outside of secondary lymphoid organs. When organized within follicular dendritic cell (FDC) networks, ELS contain functional germinal centers that can yield autoantibody-secreting plasma cells and promote autoimmune disease. Intranasal instillation of lupus-prone mice with crystalline silica (cSiO2), a respirable particle linked to human lupus, triggers ELS formation in the lung, systemic autoantibodies, and early onset of glomerulonephritis. Here we tested the hypothesis that consumption of docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid with anti-inflammatory properties, influences the temporal profile of cSiO2-induced pulmonary ectopic germinal center formation and development of glomerulonephritis. Female NZBWF1 mice (6-wk old) were fed purified isocaloric diets supplemented with 0, 4, or 10 g/kg DHA - calorically equivalent to 0, 2, or 5 g DHA per day consumption by humans, respectively. Beginning at age 8 wk, mice were intranasally instilled with 1 mg cSiO2, or saline vehicle alone, once per wk, for 4 wk. Cohorts were sacrificed 1, 5, 9, or 13 wk post-instillation (PI) of the last cSiO2 dose, and lung and kidney lesions were investigated by histopathology. Tissue fatty acid analyses confirmed uniform dose-dependent DHA incorporation across all cohorts. As early as 1 wk PI, inflammation comprising of B (CD45R+) and T (CD3+) cell accumulation was observed in lungs of cSiO2-treated mice compared to vehicle controls; these responses intensified over time. Marked follicular dendritic cell (FDC; CD21+/CD35+) networking appeared at 9 and 13 wk PI. IgG+ plasma cells suggestive of mature germinal centers were evident at 13 wk. DHA supplementation dramatically suppressed cSiO2-triggered B-cell, T-cell, FDC, and IgG+ plasma cell appearance in the lungs as well as anti-dsDNA IgG in bronchial lavage fluid and plasma over the course of the experiment. cSiO2 induced glomerulonephritis with concomitant B-cell accumulation in the renal cortex at 13 wk PI but this response was abrogated by DHA feeding. Taken together, realistic dietary DHA supplementation prevented initiation and/or progression of ectopic lymphoid neogenesis, germinal center development, systemic autoantibody elevation, and resultant glomerulonephritis in this unique preclinical model of environment-triggered lupus.
Collapse
Affiliation(s)
- Melissa A Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Peyman Akbari
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kristen N Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ning Li
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Anna K Kopec
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Kathryn A Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daven Jackson-Humbles
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | | | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Jack R Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Takamura S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front Immunol 2018; 9:1214. [PMID: 29904388 PMCID: PMC5990602 DOI: 10.3389/fimmu.2018.01214] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
12
|
Kaye PM. Stromal Cell Responses in Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:23-36. [DOI: 10.1007/978-3-319-78127-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
14
|
Ponzio TA, Sanders JW. The salivary gland as a target for enhancing immunization response. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2017; 3:4. [PMID: 28883974 PMCID: PMC5531011 DOI: 10.1186/s40794-017-0047-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/02/2022]
Abstract
Background An organism’s immune response to a vaccine is dependent on a number of factors, including the site of immunization. While muscle is the most common site for vaccine administration, other sites, including the salivary gland, are poised to confer stronger and broader immunoprotection. Findings Studies exploring the salivary gland as an immunization site have involved protein antigens, as well as live pathogens and DNA vaccines. While intraductal instillation of protein antigens into the salivary gland may result in a relatively transient increase in antibody production, DNA or attenuated pathogen vaccination appear to confer a lasting widespread mucosal immune response that includes robust salivary and enteric IgA, as well as high levels of circulating IgG. Furthermore, vaginal and lung antibodies are also seen. For enteric pathogens, a common class of pathogen encountered by travelers, this type of immune response provides for a level of redundant protection against foreign microbes with mucosal targets. Conclusion The strength of immune response conferred by salivary gland vaccination is generally stronger than that seen in response to the same vaccine at a comparison site. For example, where other routes fail, immunization of the salivary gland has been shown to confer protection in lethal challenge models of infectious pathogens. A host of vaccines currently under development suffer from immunogenicity challenges, adding to the widespread interest and search for novel routes and adjuvants. With its capability to facilitate a strong and broad immune response, the salivary gland warrants consideration as an immunization site, especially for vaccines with immunogenicity challenges, as well as vaccines that would benefit from combined systemic and mucosal immunity.
Collapse
Affiliation(s)
- Todd A Ponzio
- Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD 20910 USA.,Wake Forest University School of Medicine, Winston-Salem, USA
| | - John W Sanders
- Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA.,Hefner Veterans Affairs Medical Center, Salisbury, NC UK
| |
Collapse
|
15
|
Woyciechowski S, Hofmann M, Pircher H. α 4 β 1 integrin promotes accumulation of tissue-resident memory CD8 + T cells in salivary glands. Eur J Immunol 2016; 47:244-250. [PMID: 27861803 DOI: 10.1002/eji.201646722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/19/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
The salivary glands (SGs) of virus-immune mice contain substantial numbers of tissue-resident memory CD8+ T cells (TRM cells) that can provide immunity to local infections. Integrins regulate entry of activated T cells into nonlymphoid tissues but the molecules that mediate migration of virus-specific CD8+ T cells to the SGs have not yet been defined. Here, we found that polyinosinic-polycytidylic acid (poly(I:C)) strongly promoted the accumulation of P14 TCR-transgenic CD8+ TRM cells in SGs in an α4 β1 integrin-dependent manner. After infection with lymphocytic choriomeningitis virus, accumulation of P14 TRM cells in SGs and intestine but not in kidney was also α4 integrin dependent. Blockade of α4 β7 by monoclonal antibodies (mAbs) inhibited lymphocytic choriomeningitis virus-induced accumulation of P14 TRM cells in the intestine but not in SGs. In conclusion, our data reveal that α4 β1 integrin mediates CD8+ TRM accumulation in SGs and that poly(I:C) can be used to direct activated CD8+ T cells to this organ.
Collapse
Affiliation(s)
- Sandra Woyciechowski
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw 2016; 16:271-280. [PMID: 27799872 PMCID: PMC5086451 DOI: 10.4110/in.2016.16.5.271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
17
|
Jones GW, Hill DG, Jones SA. Understanding Immune Cells in Tertiary Lymphoid Organ Development: It Is All Starting to Come Together. Front Immunol 2016; 7:401. [PMID: 27752256 PMCID: PMC5046062 DOI: 10.3389/fimmu.2016.00401] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/21/2016] [Indexed: 01/28/2023] Open
Abstract
Tertiary lymphoid organs (TLOs) are frequently observed in tissues affected by non-resolving inflammation as a result of infection, autoimmunity, cancer, and allograft rejection. These highly ordered structures resemble the cellular composition of lymphoid follicles typically associated with the spleen and lymph node compartments. Although TLOs within tissues show varying degrees of organization, they frequently display evidence of segregated T and B cell zones, follicular dendritic cell networks, a supporting stromal reticulum, and high endothelial venules. In this respect, they mimic the activities of germinal centers and contribute to the local control of adaptive immune responses. Studies in various disease settings have described how these structures contribute to either beneficial or deleterious outcomes. While the development and architectural organization of TLOs within inflamed tissues requires homeostatic chemokines, lymphoid and inflammatory cytokines, and adhesion molecules, our understanding of the cells responsible for triggering these events is still evolving. Over the past 10–15 years, novel immune cell subsets have been discovered that have more recently been implicated in the control of TLO development and function. In this review, we will discuss the contribution of these cell types and consider the potential to develop new therapeutic strategies that target TLOs.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| | - David G Hill
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| | - Simon A Jones
- Division of Infection and Immunity, Systems Immunity URI, The School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
18
|
Viral Persistence Induces Antibody Inflation without Altering Antibody Avidity. J Virol 2016; 90:4402-4411. [PMID: 26889035 DOI: 10.1128/jvi.03177-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/10/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Antibodies are implicated in long-term immunity against numerous pathogens, and because of this property, antibody induction is the basis for many vaccines. Little is known about the influence of viral persistence on the evolving antibody response. Here, we examined the characteristics of antibody responses to persistent infection by employing the prototypic betaherpesvirus family member cytomegalovirus (CMV) in experimental mouse models. During the course of infection, mouse CMV (MCMV)-specific IgM and IgG responses are elicited; however, IgG levels gradually inflate in the persistent phase of infection while IgM levels are stably maintained. Whereas CD27-CD70 interactions are dispensable, the CD28/B7 costimulatory pathway is critical for the class switching of MCMV-specific IgM-to-IgG B cell responses, which corresponds to the CD28/B7-dependent formation of CD4(+)T follicular helper cells (TFH) and germinal center (GC) B cells. Furthermore, the initial viral inoculum dose dictates the height of the antibody levels during IgG antibody inflation and relates to the induction of long-lived plasma cells and memory B cells. Antibody avidity nonetheless is not altered after the establishment of viral persistence and occurs independently of the inoculum doses. However, repetitive challenge with intact viral particles, accompanied by increased GC reactivity, promotes the development of high-avidity IgG responses with neutralizing capacity. These insights can be used for the rational design of CMV-based vaccines aimed at inducing antibody responses. IMPORTANCE Antibodies provide long-term protection to different pathogens. However, how antibody responses develop during persistent virus infection is not entirely clear. Here, we characterize factors that influence the virus-specific antibody response to persistent CMV. This study describes that during persistent infection, CMV-specific IgM antibody levels are stably maintained while IgG2b and IgG2c levels gradually inflate over time. In contrast, the IgG avidity remains similar after the establishment of viral persistence. The induction of T follicular helper cells and GC B cells requires CD4(+)T cell help and CD28/B7 costimulation signals and is essential for the development of CMV-specific IgG antibody responses. Furthermore, neutralizing CMV-specific antibodies appear to develop late after infection, yet the neutralizing capacity can be improved upon repetitive viral challenge that is associated with increased GC reactivity. The results described here could inform the use of CMV-based vaccines and may help to understand how our immune system copes with this persistent virus.
Collapse
|
19
|
Jones GW, Jones SA. Ectopic lymphoid follicles: inducible centres for generating antigen-specific immune responses within tissues. Immunology 2015; 147:141-51. [PMID: 26551738 PMCID: PMC4717241 DOI: 10.1111/imm.12554] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 02/06/2023] Open
Abstract
Lymphoid neogenesis is traditionally viewed as a pre‐programmed process that promotes the formation of lymphoid organs during development. Here, the spatial organization of T and B cells in lymph nodes and spleen into discrete structures regulates antigen‐specific responses and adaptive immunity following immune challenge. However, lymphoid neogenesis is also triggered by chronic or persistent inflammation. Here, ectopic (or tertiary) lymphoid organs frequently develop in inflamed tissues as a response to infection, auto‐immunity, transplantation, cancer or environmental irritants. Although these structures affect local immune responses, the contribution of these lymphoid aggregates to the underlining pathology are highly context dependent and can elicit either protective or deleterious outcomes. Here we review the cellular and molecular mechanisms responsible for ectopic lymphoid neogenesis and consider the relevance of these structures in human disease.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, The School of Medicine, Cardiff University, Cardiff, UK
| | - Simon A Jones
- Division of Infection and Immunity, The School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Jones GW, Bombardieri M, Greenhill CJ, McLeod L, Nerviani A, Rocher-Ros V, Cardus A, Williams AS, Pitzalis C, Jenkins BJ, Jones SA. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. ACTA ACUST UNITED AC 2015; 212:1793-802. [PMID: 26417004 PMCID: PMC4612100 DOI: 10.1084/jem.20132307] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 08/28/2015] [Indexed: 01/31/2023]
Abstract
Decreased interleukin-27 signaling in humans and mice induces the formation of ectopic lymphoid-like structures (ELSs), which are associated with severe disease pathology and resistance to biological therapy in rheumatoid arthritis patients. Increased numbers of podoplanin-expressing Th17 cells in the absence of IL-27R signaling may be involved in driving ELS formation. Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Claire J Greenhill
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson (formerly Monash) Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Vidalba Rocher-Ros
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Anna Cardus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Anwen S Williams
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson (formerly Monash) Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| |
Collapse
|
21
|
Maier-Moore JS, Koelsch KA, Smith K, Lessard CJ, Radfar L, Lewis D, Kurien BT, Wolska N, Deshmukh U, Rasmussen A, Sivils KL, James JA, Farris AD, Scofield RH. Antibody-secreting cell specificity in labial salivary glands reflects the clinical presentation and serology in patients with Sjögren's syndrome. Arthritis Rheumatol 2015; 66:3445-56. [PMID: 25199908 DOI: 10.1002/art.38872] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The serologic hallmark of primary Sjögren's syndrome (SS) is the presence of IgG antibodies specific for Ro (SSA) and La (SSB). The molecular characteristics of gland-derived B cells at the site of primary SS inflammation have been described previously; however, parallels between glandular antibody-secreting cells (ASCs) and serologic antibody specificities have not been evaluated. We used recombinant monoclonal antibody (mAb) technology to study the specificities of salivary gland (SG)-derived ASCs, evaluate their molecular characteristics, and identify IgG antibody specificity. METHODS Human antibodies were generated from glandular IgG ASCs. Heavy chain and light chain use and immunoglobulin subclass were analyzed by sequencing. Enzyme-linked immunosorbent assay, indirect immunofluorescence, enzyme immunoassay, and (35) S-labeled protein immunoprecipitation analysis were used to determine antibody specificity. RESULTS Evaluation of single ASCs in SG biopsy specimens from a patient with primary SS and a patient with SS and overlapping systemic lupus erythematosus revealed significant concordance between serum autoantibody and glandular ASC specificities. Gland-derived ASC heavy chains and light chains were extensively somatically hypermutated, which is indicative of antigen-driven responses. Specifically, we produced the first fully human mAb derived from SGs. CONCLUSION In patients with SS, the SGs are a site for the production of antibodies that extend beyond the canonical Ro and/or La SS specificities. Glandular antibody production strongly reflected the serologic humoral response in the 2 patients whom we studied.
Collapse
Affiliation(s)
- Jacen S Maier-Moore
- Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, and Oklahoma City VA Medical Center, Oklahoma City, and University of Texas at, El Paso
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Y, Zhou J, Zhang Y, Wang L, Liu Y, Fan L, Zhu J, Xu X, Huang G, Li X, Xun W. PRDM1 expression on the epithelial component but not on ectopic lymphoid tissues of Warthin tumour. Oral Dis 2014; 21:432-6. [PMID: 25280345 DOI: 10.1111/odi.12294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/10/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the role of PRDM1, a key molecule for modulating the immune cells, in Warthin tumour (WT) pathogenesis. SUBJECTS AND METHODS Forty paraffin-embedded parotid tissues of patients (mean age: 62.08 ± 11.90) with WT were retrieved from the pathology archives of Qindu Hospital from January 2012 to December 2012. The PRDM1 expression was investigated in a cohort of WT by immunohistochemistry. RESULTS PRDM1 was expressed only on the epithelial component but not on ectopic lymphoid tissue of the tumour. Statistically, PRDM1 expression rates between WT glandular epithelial cells (40/40 cases) and the tumour-adjacent tissues (0/9 cases), and WT germinal centres (0/34 cases) and tonsil tissues (10/10 cases) were significantly different (P < 0.001), respectively. CONCLUSIONS The PRDM1 expression appeared to play an essential role in WT pathogenesis. A better understanding of it might give options for revealing possible novel management strategies.
Collapse
Affiliation(s)
- Y Wang
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pitzalis C, Jones GW, Bombardieri M, Jones SA. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 2014; 14:447-62. [PMID: 24948366 DOI: 10.1038/nri3700] [Citation(s) in RCA: 519] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ectopic lymphoid-like structures often develop at sites of inflammation where they influence the course of infection, autoimmune disease, cancer and transplant rejection. These lymphoid aggregates range from tight clusters of B cells and T cells to highly organized structures that comprise functional germinal centres. Although the mechanisms governing ectopic lymphoid neogenesis in human pathology remain poorly defined, the presence of ectopic lymphoid-like structures within inflamed tissues has been linked to both protective and deleterious outcomes in patients. In this Review, we discuss investigations in both experimental model systems and patient cohorts to provide a perspective on the formation and functions of ectopic lymphoid-like structures in human pathology, with particular reference to the clinical implications and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gareth W Jones
- Cardiff Institute for Infection and Immunity, The School of Medicine, Cardiff University, The Tenovus Building, Heath Campus, Cardiff CF14 4XN, Wales, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Simon A Jones
- Cardiff Institute for Infection and Immunity, The School of Medicine, Cardiff University, The Tenovus Building, Heath Campus, Cardiff CF14 4XN, Wales, UK
| |
Collapse
|
24
|
Liu G, Zhang F, Wang R, London L, London SD. Protective MCMV immunity by vaccination of the salivary gland via Wharton's duct: replication-deficient recombinant adenovirus expressing individual MCMV genes elicits protection similar to that of MCMV. FASEB J 2014; 28:1698-710. [PMID: 24391133 DOI: 10.1096/fj.13-244178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salivary glands, a major component of the mucosal immune system, confer antigen-specific immunity to mucosally acquired pathogens. We investigated whether a physiological route of inoculation and a subunit vaccine approach elicited MCMV-specific and protective immunity. Mice were inoculated by retrograde perfusion of the submandibular salivary glands via Wharton's duct with tcMCMV or MCMV proteins focused to the salivary gland via replication-deficient adenovirus expressing individual MCMV genes (gB, gH, IE1; controls: saline and replication deficient adenovirus without MCMV inserts). Mice were evaluated for MCMV-specific antibodies, T-cell responses, germinal center formation, and protection against a lethal MCMV challenge. Retrograde perfusion with tcMCMV or adenovirus expressed MCMV proteins induced a 2- to 6-fold increase in systemic and mucosal MCMV-specific antibodies, a 3- to 6-fold increase in GC marker expression, and protection against a lethal systemic challenge, as evidenced by up to 80% increased survival, decreased splenic pathology, and decreased viral titers from 10(6) pfu to undetectable levels. Thus, a focused salivary gland immunization via a physiological route with a protein antigen induced systemic and mucosal protective immune responses. Therefore, salivary gland immunization can serve as an alternative mucosal route for administering vaccines, which is directly applicable for use in humans.
Collapse
Affiliation(s)
- Guangliang Liu
- 1Stony Brook University, School of Dental Medicine, Department of Oral Biology and Pathology, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
25
|
E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc Natl Acad Sci U S A 2011; 108:16741-6. [PMID: 21930933 DOI: 10.1073/pnas.1107200108] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The salivary glands are important effector sites for IgA-mediated humoral immunity to protect oral surfaces. Within murine submandibular glands (SMG), we identified a memory CD8 T-cell population that exhibited a unique cell-surface phenotype distinct from memory CD8 T cells in spleen but similar to memory T cells resident in the intraepithelial lymphocyte compartment of the intestinal mucosa. In mice immune to lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus(VSV), virus-specific memory CD8 T cells with this unusual phenotype were present in SMG at remarkably high frequencies. LCMV-specific memory CD8 T cells in SMG showed potent functional activities in vivo, including cytokine-induced bystander proliferation, antigen-triggered IFNγ production, and viral clearance. Adoptive transfer experiments further revealed that the capacity to accumulate in SMG decreased during CD8 T-cell differentiation and that SMG CD8 T cells were poorly replenished from the circulation, indicating that they were tissue-resident. Moreover, they preferentially relocalized within their tissue of origin after adoptive transfer and antigen rechallenge, thus revealing an imprinted differentiation status. Accumulation of memory CD8 T cells within SMG did not require local antigen presentation but was promoted by the epithelial differentiation molecule E-cadherin intrinsically expressed by these CD8 T cells. This finding extends the epithelial-restricted function of E-cadherin to an impact on lymphocyte accumulation within epithelial tissues.
Collapse
|