1
|
Wang M, Liu L. Advances of IGF-1R inhibitors in Graves' ophthalmopathy. Int Ophthalmol 2024; 44:435. [PMID: 39578269 DOI: 10.1007/s10792-024-03358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Graves' ophthalmopathy is the most common extra-thyroidal organ manifestation of Graves' disease. The mainstay of clinical treatment is glucocorticoids; however, side effects and relapse are common problems, and current treatment options cannot alter the disease progression. IGF-1R is an important component of the signaling pathway in Graves' ophthalmopathy, and downstream signaling of IGF-1 and IGF-1R plays a role in many immune-related diseases, possibly leading to disease occurrence through changes in immune phenotype and protein synthesis. Teprotumumab is a human monoclonal antibody targeting the insulin-like growth factor-I receptor (IGF-1R). Clinical trials have shown that teprotumumab reduces proptosis better than placebo, and may be beneficial for patients with worsening disease after steroid cessation. In this review, we discuss the role and prospects of IGF-1R inhibitors in thyroid-associated ophthalmopathy.
Collapse
Affiliation(s)
- Meilan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
2
|
Kang HS, Grimm SA, Liao XH, Jetten AM. GLIS3 expression in the thyroid gland in relation to TSH signaling and regulation of gene expression. Cell Mol Life Sci 2024; 81:65. [PMID: 38281222 PMCID: PMC10822819 DOI: 10.1007/s00018-024-05113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
Kang HS, Grimm SA, Liao XH, Jetten AM. Role of GLIS3 in thyroid development and in the regulation of gene expression in thyroid specific Glis3KO mice. RESEARCH SQUARE 2023:rs.3.rs-3044388. [PMID: 37461635 PMCID: PMC10350233 DOI: 10.21203/rs.3.rs-3044388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time when GLIS3 target genes, such as Slc5a5 (Nis), become also expressed. We further show that Glis3KO mice do not display any major changes in prenatal thyroid gland morphology indicating that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of thyroid-specific Glis3 knockout (Glis3-Pax8Cre) mice fed either a normal or low-iodine diet (ND or LID) revealed that, in contrast to ubiquitous Glis3KO mice, thyroid follicular cell proliferation and the expression of cell cycle genes were not repressed suggesting that the inhibition of thyroid follicular cell proliferation in ubiquitous Glis3KO mice is related to loss of GLIS3 function in other cell types. However, the expression of several thyroid hormone biosynthesis-, extracellular matrix (ECM)-, and inflammation-related genes was still suppressed in Glis3-Pax8Cre mice particularly under conditions of high blood levels of thyroid stimulating hormone (TSH). We further demonstrate that treatment with TSH, protein kinase A (PKA) or adenylyl cyclase activators or expression of constitutively active PKA enhances GLIS3 protein and activity, suggesting that GLIS3 transcriptional activity is regulated in part by TSH/TSHR-mediated activation of the PKA pathway. This mechanism of regulation provides an explanation for the dramatic increase in GLIS3 protein expression and the subsequent induction of GLIS3 target genes, including several thyroid hormone biosynthetic genes, in thyroid follicular cells of mice fed a LID.
Collapse
|
4
|
Mo C, Chen H, Guo Y, Li Z, Wang Y, Zhong L. The Effect and Potential Mechanism Analysis of Growth Hormone-Secreting Pituitary Adenomas on Thyroid Function. Endocr Pract 2023; 29:546-552. [PMID: 37217118 DOI: 10.1016/j.eprac.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Current studies on the effect of high growth hormone (GH)/insulin-like growth factor (IGF)-1 on thyroid function are inconsistent. The aim was to explore the effect and potential mechanism of high GH/IGF-1 on thyroid function by analyzing the changes of thyroid function in patients with growth hormone-secreting pituitary adenoma (GHPA). METHODS This was a retrospective cross-sectional study. Demographic and clinical data of 351 patients with GHPA who were first admitted to Beijing Tiantan Hospital, Capital Medical University, from 2015 to 2022 were collected to analyze the relationship between high GH/IGF-1 levels and thyroid function. RESULTS GH was negatively correlated with total thyroxine (TT4), free thyroxine (FT4), and thyroid-stimulating hormone (TSH). IGF-1 was positively correlated with total triiodothyronine (TT3), free triiodothyronine (FT3), and FT4 and negatively correlated with TSH. Insulin-like growth factor-binding protein (IGFBP)-3 was positively correlated with TT3, FT3, and FT3:FT4 ratio. The FT3, TT3, TSH, and FT3:FT4 ratio of patients with GHPA and diabetes mellitus (DM) were significantly lower than those with GHPA but without DM. With the increase of tumor volume, thyroid function gradually decreased. GH and IGF-1 were correlated negatively with age in patients with GHPA. CONCLUSION The study emphasized the complex interaction between the GH and the thyroid axes in patients with GHPA and highlighted the potential effect of glycemic status and tumor volume on thyroid function.
Collapse
Affiliation(s)
- Caiyan Mo
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Han Chen
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Guo
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liyong Zhong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Gulbins A, Horstmann M, Daser A, Flögel U, Oeverhaus M, Bechrakis NE, Banga JP, Keitsch S, Wilker B, Krause G, Hammer GD, Spencer AG, Zeidan R, Eckstein A, Philipp S, Görtz GE. Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1211473. [PMID: 37435490 PMCID: PMC10331459 DOI: 10.3389/fendo.2023.1211473] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Michael Oeverhaus
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J. Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Krause
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Ock S, Choi SW, Choi SH, Kang H, Kim SJ, Lee WS, Kim J. Insulin signaling is critical for sinoatrial node maintenance and function. Exp Mol Med 2023; 55:965-973. [PMID: 37121973 PMCID: PMC10238478 DOI: 10.1038/s12276-023-00988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 05/02/2023] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) signaling regulate cellular growth and glucose metabolism in the myocardium. However, their physiological role in the cells of the cardiac conduction system has never been explored. Therefore, we sought to determine the spatiotemporal function of insulin/IGF-1 receptors in the sinoatrial node (SAN). We generated cardiac conduction cell-specific inducible IGF-1 receptor (IGF-1R) knockout (KO) (CSIGF1RKO), insulin receptor (IR) KO (CSIRKO), and IR/IGF-1R double-KO (CSDIRKO) mice and evaluated their phenotypes. Telemetric electrocardiography revealed regular sinus rhythm in CSIGF1RKO mice, indicating that IGF-1R is dispensable for normal pacemaking. In contrast, CSIRKO and CSDIRKO mice exhibited profound sinus bradycardia. CSDIRKO mice showed typical sinus node dysfunction characterized by junctional rhythm and sinus pauses on electrocardiography. Interestingly, the lack of an insulin receptor in the SAN cells of CSIRKO and CSDIRKO mice caused sinus nodal fibrosis. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) protein expression significantly decreased in the CSIRKO and CSDIRKO mice relative to the controls. A patch-clamp study of the SAN cells of CSIRKO mice revealed a significant decrease in the funny current, which is responsible for spontaneous diastolic depolarization in the SAN. This result suggested that insulin receptor loss reduces the heart rate via downregulation of the HCN4 channel. Additionally, HCN1 expression was decreased in CSDIRKO mice, explaining their sinus node dysfunction. Our results reveal a previously unrecognized role of insulin/IGF-1 signaling in sinus node structural maintenance and pacemaker function.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seong Woo Choi
- Departments of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Seung Hee Choi
- Division of Endocrinology and Metabolism, Departments of Internal Medicine and Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hyun Kang
- Department of Anesthesiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sung Joon Kim
- Departments of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
7
|
Cui X, Wang F, Liu C. A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front Immunol 2023; 14:1062045. [PMID: 36742308 PMCID: PMC9893276 DOI: 10.3389/fimmu.2023.1062045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Graves' orbitopathy (GO) is an organ-specific autoimmune disease, but its pathogenesis remains unclear. There are few review articles on GO research from the perspective of target cells and target antigens. A systematic search of PubMed was performed, focusing mainly on studies published after 2015 that involve the role of target cells, orbital fibroblasts (OFs) and orbital adipocytes (OAs), target antigens, thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R), and their corresponding antibodies, TSHR antibodies (TRAbs) and IGF-1R antibodies (IGF-1R Abs), in GO pathogenesis and the potentially effective therapies that target TSHR and IGF-1R. Based on the results, OFs may be derived from bone marrow-derived CD34+ fibrocytes. In addition to CD34+ OFs, CD34- OFs are important in the pathogenesis of GO and may be involved in hyaluronan formation. CD34- OFs expressing Slit2 suppress the phenotype of CD34+ OFs. β-arrestin 1 can be involved in TSHR/IGF-1R crosstalk as a scaffold. Research on TRAbs has gradually shifted to TSAbs, TBAbs and the titre of TRAbs. However, the existence and role of IGF-1R Abs are still unknown and deserve further study. Basic and clinical trials of TSHR-inhibiting therapies are increasing, and TSHR is an expected therapeutic target. Teprotumumab has become the latest second-line treatment for GO. This review aims to effectively describe the pathogenesis of GO from the perspective of target cells and target antigens and provide ideas for its fundamental treatment.
Collapse
Affiliation(s)
- Xuejiao Cui
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Futao Wang
- Department of Endocrinology, Changchun Central Hospital, Changchun, China
| | - Cong Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wang CL, Gao MZ, Gao XJ, Mu XY, Wang JQ, Gao DM, Qiao MQ. Mechanism Study on Chinese Medicine in Treatment of Nodular Goiter. Chin J Integr Med 2022; 29:566-576. [PMID: 36044118 DOI: 10.1007/s11655-022-3724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Nodular goiter has become increasingly prevalent in recent years. Clinically, there has been a burgeoning interest in nodular goiter due to the risk of progression to thyroid cancer. This review aims to provide a comprehensive summary of the mechanisms underlying the therapeutic effect of Chinese medicine (CM) in nodular goiter. Articles were systematically retrieved from databases, including PubMed, Web of Science and China National Knowledge Infrastructure. New evidence showed that CM exhibited multi-pathway and multi-target characteristics in the treatment of nodular goiter, involving hypothalamus-pituitary-thyroid axis, oxidative stress, blood rheology, cell proliferation, apoptosis, and autophagy, especially inhibition of cell proliferation and promotion of cell apoptosis, involving multiple signal pathways and a variety of cytokines. This review provides a scientific basis for the therapeutic use of CM against nodular goiter. Nonetheless, future studies are warranted to identify more regulatory genes and pathways to provide new approaches for the treatment of nodular goiter.
Collapse
Affiliation(s)
- Chang-Lin Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Research and Innovation Team of Emotional Diseases and Syndromes of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Jinan, 250355, China
| | - Ming-Zhou Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Research and Innovation Team of Emotional Diseases and Syndromes of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Jinan, 250355, China
| | - Xiang-Ju Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Research and Innovation Team of Emotional Diseases and Syndromes of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Jinan, 250355, China
| | - Xiang-Yu Mu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Research and Innovation Team of Emotional Diseases and Syndromes of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Jinan, 250355, China
| | - Jie-Qiong Wang
- Research and Innovation Team of Emotional Diseases and Syndromes of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Jinan, 250355, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Youth Research and Innovation Team of Pharmacology of Liver Viscera in Emotional Disease and Syndromes, Jinan, 250355, China
| | - Dong-Mei Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Research and Innovation Team of Emotional Diseases and Syndromes of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Jinan, 250355, China
| | - Ming-Qi Qiao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. .,Research and Innovation Team of Emotional Diseases and Syndromes of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. .,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Jinan, 250355, China.
| |
Collapse
|
9
|
Girnita L, Smith TJ, Janssen JAMJL. It Takes Two to Tango: IGF-I and TSH Receptors in Thyroid Eye Disease. J Clin Endocrinol Metab 2022; 107:S1-S12. [PMID: 35167695 PMCID: PMC9359450 DOI: 10.1210/clinem/dgac045] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Thyroid eye disease (TED) is a complex autoimmune disease process. Orbital fibroblasts represent the central orbital immune target. Involvement of the TSH receptor (TSHR) in TED is not fully understood. IGF-I receptor (IGF-IR) is overexpressed in several cell types in TED, including fibrocytes and orbital fibroblasts. IGF-IR may form a physical and functional complex with TSHR. OBJECTIVE Review literature relevant to autoantibody generation in TED and whether these induce orbital fibroblast responses directly through TSHR, IGF-IR, or both. EVIDENCE IGF-IR has traditionally been considered a typical tyrosine kinase receptor in which tyrosine residues become phosphorylated following IGF-I binding. Evidence has emerged that IGF-IR possesses kinase-independent activities and can be considered a functional receptor tyrosine kinase/G-protein-coupled receptor hybrid, using the G-protein receptor kinase/β-arrestin system. Teprotumumab, a monoclonal IGF-IR antibody, effectively reduces TED disease activity, proptosis, and diplopia. In addition, the drug attenuates in vitro actions of both IGF-I and TSH in fibrocytes and orbital fibroblasts, including induction of proinflammatory cytokines by TSH and TED IgGs. CONCLUSIONS Although teprotumumab has been proven effective and relatively safe in the treatment of TED, many questions remain pertaining to IGF-IR, its relationship with TSHR, and how the drug might be disrupting these receptor protein/protein interactions. Here, we propose 4 possible IGF-IR activation models that could underlie clinical responses to teprotumumab observed in patients with TED. Teprotumumab is associated with several adverse events, including hyperglycemia and hearing abnormalities. Underpinning mechanisms of these are being investigated. Patients undergoing treatment with drug must be monitored for these and managed with best medical practices.
Collapse
Affiliation(s)
- Leonard Girnita
- Department of Oncology and Pathology, BioClinicum, Karolinska Institutet and Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Terry J Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Joseph A M J L Janssen
- Erasmus Medical Center, Department of Internal Medicine, Division of Endocrinology, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
10
|
Bai X, Huang M, Chen X, Cai Q, Jiang Z, Chen L, Huang H. Microarray profiling and functional analysis reveal the regulatory role of differentially expressed plasma circular RNAs in Hashimoto’s thyroiditis. Immunol Res 2022; 70:331-340. [DOI: 10.1007/s12026-021-09241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
|
11
|
Liu R, Qin Y, Diao J, Zhang H. Xenopus laevis tadpoles exposed to metamifop: Changes in growth, behavioral endpoints, neurotransmitters, antioxidant system and thyroid development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112417. [PMID: 34126306 DOI: 10.1016/j.ecoenv.2021.112417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Pesticides are a major cause of the reduction in the global amphibian population. In this study, the acute toxicity and chronic effects of metamifop on Xenopus laevis (X. laevis) tadpoles were investigated. The 96 h-LC50 value of metamifop on X. laevis tadpoles was 0.634 mg/L, which indicated that metamifop was highly toxic to tadpoles. In the chronic toxicity study, tadpoles were exposed to 0.063 mg/L of metamifop. After 14, 21 and 35 d of exposure, metamifop significantly inhibited the body weight and neurotransmitter synthesis of tadpoles, caused abnormal behavior and interfered with fat metabolism. According to the results of antioxidant enzymes and malondialdehyde (MDA), tadpoles exposed to 0.063 mg/L metamifop suffered severe lipid oxidative damage. Compared with the control group, the thyroid hormone (TH) levels and related gene expression in tadpoles in the treatment group were affected, reflecting the endocrine interference effect of metamifop. The data of this study can enrich our knowledge of the effects of aryloxyphenoxy propionate pesticides on amphibians and highlight the role of metamifop and other pesticides play in global decline of amphibians.
Collapse
Affiliation(s)
- Rui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yinan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), No. 22 Maizidian Street, Chaoyang, Beijing 100125, PR China.
| |
Collapse
|
12
|
Ding Y, Yang S, Gao H. Teprotumumab: The Dawn of Therapies in Moderate-to-Severe Thyroid-Associated Ophthalmopathy. Horm Metab Res 2021; 53:211-218. [PMID: 33853117 DOI: 10.1055/a-1386-4512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a potentially sight-threatening ocular disease. About 3-5% of patients with TAO have severe disease with intense pain, inflammation, and sight-threatening corneal ulceration or compressive optic neuropathy. The current treatments of TAO are often suboptimal, mainly because the existing therapies do not target the pathogenesis of the disease. TAO mechanism is unclear. Ocular fibrocytes express relatively high levels of the functional TSH receptor (TSHR), and many indirect evidences support its participation. Over expression of insulin-like growth factor-1 receptor (IGF-IR) in fibroblasts, leading to inappropriate expression of inflammatory factors, production of hyaluronic acid and cell activation in orbital fibroblasts are also possible mechanisms. IGF-1R and TSHR form a physical and functional signaling complex. Inhibition of IGF-IR activity leads to the attenuation of signaling initiated at either receptor. Teprotumumab (TMB) is a human immunoglobulin G1 monoclonal antibody, binding to IGF-IR. Recently two TMB clinical trials had been implemented in TAO patients, indicating dramatic reductions in disease activity and severity, which approved its use for the treatment of TAO in the US. This review summarizes the treatments of TAO, focusing on the pathogenesis of IGF-1R in TAO and its application prospects.
Collapse
Affiliation(s)
- Yizhi Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaoqin Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Gao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Janssen JA, Smith TJ. Lessons Learned from Targeting IGF-I Receptor in Thyroid-Associated Ophthalmopathy. Cells 2021; 10:cells10020383. [PMID: 33673340 PMCID: PMC7917650 DOI: 10.3390/cells10020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Complex immunological mechanisms underlie the pathogenesis of thyroid-associated ophthalmopathy (TAO). Historical models of Graves’ disease and TAO have focused almost entirely on autoimmune reactivity directed against the thyrotropin receptor (TSHR). The insulin-like growth factor-I receptor (IGF-IR) has been proposed as a second participating antigen in TAO by virtue of its interactions with IGFs and anti-IGF-IR antibodies generated in Graves’ disease. Furthermore, the IGF-IR forms with TSHR a physical and functional complex which is involved in signaling downstream from both receptors. Inhibition of IGF-IR activity results in attenuation of signaling initiated at either receptor. Based on the aggregate of findings implicating IGF-IR in TAO, the receptor has become an attractive therapeutic target. Recently, teprotumumab, a human monoclonal antibody IGF-IR inhibitor was evaluated in two clinical trials of patients with moderate to severe, active TAO. Those studies revealed that teprotumumab was safe and highly effective in reducing disease activity and severity. Targeting IGF-IR with specific biologic agents may result in a paradigm shift in the therapy of TAO.
Collapse
Affiliation(s)
- Joseph A.M.J.L. Janssen
- Erasmus Medical Center, Department of Internal Medicine, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7040704
| | - Terry J. Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA;
- Division of Metabolism, Department of Internal Medicine, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
14
|
Abstract
The insulin-like growth factor (IGF) pathway comprises two activating ligands (IGF-I and IGF-II), two cell-surface receptors (IGF-IR and IGF-IIR), six IGF binding proteins (IGFBP) and nine IGFBP related proteins. IGF-I and the IGF-IR share substantial structural and functional similarities to those of insulin and its receptor. IGF-I plays important regulatory roles in the development, growth, and function of many human tissues. Its pathway intersects with those mediating the actions of many cytokines, growth factors and hormones. Among these, IGFs impact the thyroid and the hormones that it generates. Further, thyroid hormones and thyrotropin (TSH) can influence the biological effects of growth hormone and IGF-I on target tissues. The consequences of this two-way interplay can be far-reaching on many metabolic and immunologic processes. Specifically, IGF-I supports normal function, volume and hormone synthesis of the thyroid gland. Some of these effects are mediated through enhancement of sensitivity to the actions of TSH while others may be independent of pituitary function. IGF-I also participates in pathological conditions of the thyroid, including benign enlargement and tumorigenesis, such as those occurring in acromegaly. With regard to Graves' disease (GD) and the periocular process frequently associated with it, namely thyroid-associated ophthalmopathy (TAO), IGF-IR has been found overexpressed in orbital connective tissues, T and B cells in GD and TAO. Autoantibodies of the IgG class are generated in patients with GD that bind to IGF-IR and initiate the signaling from the TSHR/IGF-IR physical and functional protein complex. Further, inhibition of IGF-IR with monoclonal antibody inhibitors can attenuate signaling from either TSHR or IGF-IR. Based on those findings, the development of teprotumumab, a β-arrestin biased agonist as a therapeutic has resulted in the first medication approved by the US FDA for the treatment of TAO. Teprotumumab is now in wide clinical use in North America.
Collapse
|
15
|
AATF and SMARCA2 are associated with thyroid volume in Hashimoto's thyroiditis patients. Sci Rep 2020; 10:1754. [PMID: 32019955 PMCID: PMC7000742 DOI: 10.1038/s41598-020-58457-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid volume of Hashimoto’s thyroiditis (HT) patients varies in size over the course of disease and it may reflect changes in biological function of thyroid gland. Patients with subclinical hypothyroidism predominantly have increased thyroid volume whereas patients with more pronounced hypothyroidism have smaller thyroid volumes. Suggested mechanism for thyroid atrophy is thyrocyte death due to apoptosis. We performed the first genome-wide association study (GWAS) of thyroid volume in two groups of HT patients, depending on levothyroxine (LT4) therapy, and then meta-analysed across. Study included 345 HT patients in total and 6 007 322 common autosomal genetic variants. Underlying hypothesis was that genetic components that are involved in regulation of thyroid volume display their effect in specific pathophysiologic conditions of thyroid gland of HT patients. We additionally performed immunohistochemical analysis using thyroid tissues and analysed differences in expression levels of identified proteins and apoptotic marker between HT patients and controls. We found genome-wide significant association of two loci, both involved in apoptosis, with thyroid volume of HT patients: rs7212416 inside apoptosis-antagonizing transcription factor AATF (P = 8.95 × 10−9) and rs10738556 near chromatin-remodeling SMARCA2 (P = 2.83 × 10−8). In immunohistochemical analysis we observed that HT patients with homozygous AATF risk genotypes have decreased AATF expression (0.46-fold, P < 0.0001) and increased apoptosis (3.99-fold, P = 0.0001) in comparison to controls. HT patients with heterozygous SMARCA2 genotypes have decreased SMARCA2 expression, albeit without reaching statistical significance (1.07-fold, P = 0.5876), and significantly increased apoptosis (4.11-fold, P < 0.0001). By two lines of evidence we show that two highly plausible genetic loci, AATF and SMARCA2, may be involved in determining the thyroid volume of HT patients. The results of our study significantly add to the current knowledge of disturbed biological mechanisms in thyroid gland of HT patients.
Collapse
|
16
|
Solovyev N, Vanhaecke F, Michalke B. Selenium and iodine in diabetes mellitus with a focus on the interplay and speciation of the elements. J Trace Elem Med Biol 2019; 56:69-80. [PMID: 31442957 DOI: 10.1016/j.jtemb.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease caused by insulin deficiency (type I) or dysfunction (type II). Diabetes is a threatening public health concern. It is considered as one of the priority non-communicable diseases, due to its high and increasing incidence, the associated healthcare costs, and threatening medical complications. Two trace elements selenium (Se) and iodine (I) were intensively discussed in the context of diabetic pathology and, possibly, etiology. It seems there is a multilayer involvement of these essential nutrients in glucose tolerance, energy metabolism, insulin signaling and resistance, which are mainly related to the antioxidant selenoenzymes and the thyroid hormones. Other factors might be related to (auto)immunity, protection against endoplasmic reticulum stress, and leptin signaling. The aim of the current review is to evaluate the current understanding of the role of selenium and iodine in diabetes with a focus on the biochemical interplay between the elements, their possible role as biomarkers, and their chemical speciation. Possible impacts from novel analytical techniques related to trace element speciation and isotopic analysis are outlined.
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation; Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Bernhard Michalke
- Helmhotz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
17
|
Smith TJ, Janssen JAMJL. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr Rev 2019; 40:236-267. [PMID: 30215690 PMCID: PMC6338478 DOI: 10.1210/er.2018-00066] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a complex disease process presumed to emerge from autoimmunity occurring in the thyroid gland, most frequently in Graves disease (GD). It is disfiguring and potentially blinding, culminating in orbital tissue remodeling and disruption of function of structures adjacent to the eye. There are currently no medical therapies proven capable of altering the clinical outcome of TAO in randomized, placebo-controlled multicenter trials. The orbital fibroblast represents the central target for immune reactivity. Recent identification of fibroblasts that putatively originate in the bone marrow as monocyte progenitors provides a plausible explanation for why antigens, the expressions of which were once considered restricted to the thyroid, are detected in the TAO orbit. These cells, known as fibrocytes, express relatively high levels of functional TSH receptor (TSHR) through which they can be activated by TSH and the GD-specific pathogenic antibodies that underpin thyroid overactivity. Fibrocytes also express insulin-like growth factor I receptor (IGF-IR) with which TSHR forms a physical and functional signaling complex. Notably, inhibition of IGF-IR activity results in the attenuation of signaling initiated at either receptor. Some studies suggest that IGF-IR-activating antibodies are generated in GD, whereas others refute this concept. These observations served as the rationale for implementing a recently completed therapeutic trial of teprotumumab, a monoclonal inhibitory antibody targeting IGF-IR in TAO. Results of that trial in active, moderate to severe disease revealed dramatic and rapid reductions in disease activity and severity. The targeting of IGF-IR with specific biologic agents may represent a paradigm shift in the therapy of TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
18
|
Ock S, Ahn J, Lee SH, Kim HM, Kang H, Kim YK, Kook H, Park WJ, Kim S, Kimura S, Jung CK, Shong M, Holzenberger M, Abel ED, Lee TJ, Cho BY, Kim HS, Kim J. Thyrocyte-specific deletion of insulin and IGF-1 receptors induces papillary thyroid carcinoma-like lesions through EGFR pathway activation. Int J Cancer 2018; 143:2458-2469. [PMID: 30070361 DOI: 10.1002/ijc.31779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 01/25/2023]
Abstract
Insulin and insulin-like growth factor (IGF)-1 signaling in the thyroid are thought to be permissive for the coordinated regulation by thyroid-stimulating hormone (TSH) of thyrocyte proliferation and hormone production. However, the integrated role of insulin receptor (IR) and IGF-1 receptor (IGF-1R) in thyroid development and function has not been explored. Here, we generated thyrocyte-specific IR and IGF-1R double knockout (DTIRKO) mice to precisely evaluate the coordinated functions of these receptors in the thyroid of neonates and adults. Neonatal DTIRKO mice displayed smaller thyroids, paralleling defective folliculogenesis associated with repression of the thyroid-specific transcription factor Foxe1. By contrast, at postnatal day 14, absence of IR and IGF-1R paradoxically induced thyrocyte proliferation, which was mediated by mTOR-dependent signaling pathways. Furthermore, we found elevated production of TSH during the development of follicular hyperplasia at 8 weeks of age. By 50 weeks, all DTIRKO mice developed papillary thyroid carcinoma (PTC)-like lesions that correlated with induction of the ErbB pathway. Taken together, these data define a critical role for IR and IGF-1R in neonatal thyroid folliculogenesis. They also reveal an important reciprocal relationship between IR/IGF-1R and TSH/ErbB signaling in the pathogenesis of thyroid follicular hyperplasia and, possibly, of papillary carcinoma.
Collapse
Affiliation(s)
- Sangmi Ock
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jihyun Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seok Hong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Kang
- Department of Anesthesiology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Korea
| | - Woo Jin Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, Korea
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University, Daejeon, Korea
| | - Martin Holzenberger
- INSERM and Sorbonne University, Saint-Antoine Research Center, Paris, France
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Tae Jin Lee
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Bo Youn Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
19
|
Mohyi M, Smith TJ. IGF1 receptor and thyroid-associated ophthalmopathy. J Mol Endocrinol 2018; 61:T29-T43. [PMID: 29273685 PMCID: PMC6561656 DOI: 10.1530/jme-17-0276] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a vexing and poorly understood autoimmune process involving the upper face and tissues surrounding the eyes. In TAO, the orbit can become inflamed and undergo substantial remodeling that is disfiguring and can lead to loss of vision. There are currently no approved medical therapies for TAO, the consequence of its uncertain pathogenic nature. It usually presents as a component of the syndrome known as Graves' disease where loss of immune tolerance to the thyrotropin receptor (TSHR) results in the generation of activating antibodies against that protein and hyperthyroidism. The role for TSHR and these antibodies in the development of TAO is considerably less well established. We have reported over the past 2 decades evidence that the insulin-like growth factorI receptor (IGF1R) may also participate in the pathogenesis of TAO. Activating antibodies against IGF1R have been detected in patients with GD. The actions of these antibodies initiate signaling in orbital fibroblasts from patients with the disease. Further, we have identified a functional and physical interaction between TSHR and IGF1R. Importantly, it appears that signaling initiated from either receptor can be attenuated by inhibiting the activity of IGF1R. These findings underpin the rationale for therapeutically targeting IGF1R in active TAO. A recently completed therapeutic trial of teprotumumab, a human IGF1R inhibiting antibody, in patients with moderate to severe, active TAO, indicates the potential effectiveness and safety of the drug. It is possible that other autoimmune diseases might also benefit from this treatment strategy.
Collapse
Affiliation(s)
- Michelle Mohyi
- Department of Ophthalmology and Visual SciencesUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Terry J Smith
- Department of Ophthalmology and Visual SciencesUniversity of Michigan, Ann Arbor, Michigan, USA
- Division of MetabolismEndocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Thyroid-Associated Orbitopathy and Biomarkers: Where We Are and What We Can Hope for the Future. DISEASE MARKERS 2018; 2018:7010196. [PMID: 29736194 PMCID: PMC5875031 DOI: 10.1155/2018/7010196] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 01/30/2018] [Indexed: 01/10/2023]
Abstract
Background Thyroid-associated orbitopathy (TAO) is the most common autoimmune disease of the orbit. It occurs more often in patients presenting with hyperthyroidism, characteristic of Graves' disease, but may be associated with hypothyroidism or euthyroidism. The diagnosis of TAO is based on clinical orbital features, radiological criteria, and the potential association with thyroid disease. To date, there is no specific marker of the orbital disease, making the early diagnosis difficult, especially if the orbital involvement precedes the thyroid dysfunction. Summary The goal of this review is to present the disease and combine the available data in the literature concerning investigation of TAO biomarkers. Conclusions Despite the progress done in the understanding of TAO disease, some important pieces are still missing. Typically, for the future, major efforts have to be done in the discovery of new biomarkers, validation of the suspected candidates on multicenter cohorts with standardized methodologies, and establishment of their clinical performances on the specific clinical application fields in order to improve not only the management of the TAO patients but also the therapeutic options and follow-up.
Collapse
|
21
|
Wu C, Wang L, Chen W, Zou S, Yang A. Associations between body mass index and lymph node metastases of patients with papillary thyroid cancer: A retrospective study. Medicine (Baltimore) 2017; 96:e6202. [PMID: 28248875 PMCID: PMC5340448 DOI: 10.1097/md.0000000000006202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epidemiological studies suggest that obesity is a risk of thyroid cancer, especially papillary thyroid cancer (PTC). However, the associations of obesity and clinic-pathological features, especially the association of body mass index (BMI) and lymph node metastasis of thyroid cancer are unclear. Seven hundred ninety-six primary patients with PTC were enrolled in this retrospective cohort study. The relationships between BMI and clinic-pathological features of PTC were evaluated by logistic regression models based on the 5-point increase in BMI and BMI quartiles (underweight, normal weight, overweight, and obesity). The 5-point increase in BMI was strongly associated with extra-thyroidal invasion [odds ratio (OR) 2.201, P < 0.001], primary tumor size larger than 1 cm (OR 1.267, P = 0.027), advanced tumor node metastasis (TNM) staging (OR 1.479, P = 0.004), and multifocality (OR 1.31, P = 0.01) in multivariable-adjusted models. The relationships between BMI and lymph node metastasis of PTC were evaluated by Mann-Whitney U test. The mean number of positive central lymph nodes and lateral nodes were increased with the increase of BMI when BMI ≥18.5 kg/m. It was not shown in underweight group. The present study found that increased BMI was associated with the lymph node metastases (LNMs) of patients with PTC, and other invasive features, including large tumor size, extra-thyroidal invasion, advanced TNM staging, and multifocality. Further studies with long-term follow-up are needed to confirm this finding.
Collapse
Affiliation(s)
- Changhua Wu
- Department of School of Medical and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences
- Department of Head and Neck Surgery, Shandong Cancer Hospital affiliated to Shandong University, Jinan, China
| | - Liang Wang
- Department of School of Medical and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences
- Department of Head and Neck Surgery, Shandong Cancer Hospital affiliated to Shandong University, Jinan, China
| | - Wanjun Chen
- Department of Head and Neck Surgery, Shandong Cancer Hospital affiliated to Shandong University, Jinan, China
| | - Shujuan Zou
- Department of Head and Neck Surgery, Shandong Cancer Hospital affiliated to Shandong University, Jinan, China
| | - Aiju Yang
- Department of Head and Neck Surgery, Shandong Cancer Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
22
|
Abstract
INTRODUCTION Graves' disease (GD) and thyroid-associated ophthalmopathy (TAO) are thought to result from actions of pathogenic antibodies mediated through the thyrotropin receptor (TSHR). This leads to the unregulated consequences of the antibody-mediated receptor activity in the thyroid and connective tissues of the orbit. Recent studies reveal antibodies that appear to be directed against the insulin-like growth factor-I receptor (IGF-IR). Areas covered: In this brief article, I attempt to review the fundamental characteristics of the TSHR, its role in GD and TAO, and its relationship to IGF-IR. Strong evidence supports the concept that the two receptors form a physical and functional complex and that IGF-IR activity is required for some of the down-stream signaling initiated through TSHR. Recently developed small molecules and monoclonal antibodies that block TSHR and IGF-IR signaling are also reviewed in the narrow context of their potential utility as therapeutics in GD and TAO. The Pubmed database was searched from its inception for relevant publications. Expert opinion: Those agents that can interrupt the TSHR and IGF-IR pathways possess the potential for offering more specific and better tolerated treatments of both hyperthyroidism and TAO. This would spare patients exposure to toxic drugs, ionizing radiation and potentially hazardous surgeries.
Collapse
Affiliation(s)
- Terry Smith
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
23
|
Giavoli C, Profka E, Rodari G, Lania A, Beck-Peccoz P. Focus on GH deficiency and thyroid function. Best Pract Res Clin Endocrinol Metab 2017; 31:71-78. [PMID: 28477734 DOI: 10.1016/j.beem.2017.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relationships between GH system and hypothalamic-pituitary-thyroid axis are complex and not yet fully understood. The reported effects of GH administration on thyroid status of GHD patients have been remarkably divergent. This review will focus on the main studies aimed to clarify the effects of GH on thyroid function, firstly going through the diagnosis of central hypothyroidism and its possible pitfalls, then elucidating the possible contexts in which GHD may develop and examining the proposed mechanisms at the basis of interactions between the GH-IGF-I system and the hypothalamic-pituitary-thyroid axis.
Collapse
Affiliation(s)
- Claudia Giavoli
- Endocrinology and Diabetology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Eriselda Profka
- Endocrinology and Diabetology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Rodari
- Endocrinology and Diabetology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Lania
- Endocrine Unit, IRCCS Humanitas Research Hospital, Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | | |
Collapse
|
24
|
Morgan SJ, Neumann S, Marcus-Samuels B, Gershengorn MC. Thyrotropin and Insulin-Like Growth Factor 1 Receptor Crosstalk Upregulates Sodium-Iodide Symporter Expression in Primary Cultures of Human Thyrocytes. Thyroid 2016; 26:1794-1803. [PMID: 27638195 PMCID: PMC5175432 DOI: 10.1089/thy.2016.0323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major regulation of thyroid gland function is mediated by thyrotropin (TSH) activating the TSH receptor (TSHR) and inducing upregulation of genes involved in thyroid hormone synthesis. Evidence suggests that the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) may play a role in regulating TSHR functional effects. This study examined the potential role of TSHR/IGF-1R crosstalk in primary cultures of human thyrocytes. RESULTS TSH/IGF-1 co-treatment elicited additive effects on thyroglobulin (TG), thyroperoxidase (TPO), and deiodinase type 2 (DIO2) mRNA levels but synergistic effects on sodium-iodide symporter (NIS) mRNA. Similar cooperativity was seen on the level of TG protein secretion (additive) and NIS protein expression (synergistic). The IGF-1R tyrosine kinase inhibitor linsitinib inhibited TSH-stimulated upregulation of NIS but not TG, indicating that NIS regulation is in part IGF-1R dependent and occurs via receptor crosstalk. Cooperativity was not seen at the level of cAMP/protein kinase A (PKA) signaling, IGF-1R phosphorylation, or Akt activation. However, TSH and IGF-1 synergistically activated ERK1/2. Pharmacological inhibition of ERK1/2 by the MEK1/2 inhibitor U0126 and of Akt by MK-2206 virtually abolished NIS stimulation by TSH and the synergistic effect of IGF-1. CONCLUSION As linsitinib inhibited upregulation of NIS stimulated by TSH alone, it is concluded that crosstalk between TSHR and IGF-1R, without agonist activation of IGF-1R, plays a role in NIS regulation in human thyrocytes via a mechanism involving ERK1/2 and/or Akt. Fully understanding the nature of this crosstalk has clinical implications for the treatment of thyroid diseases, including thyroid cancer.
Collapse
Affiliation(s)
- Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
25
|
Yamamoto M, Uchihashi K, Aoki S, Koike E, Kakihara N, Toda S. Interaction between thyrocytes and adipose tissue in vitro. Pathol Int 2016; 66:148-157. [DOI: 10.1111/pin.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Mihoko Yamamoto
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| | - Kazuyoshi Uchihashi
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| | - Shigehisa Aoki
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| | | | - Nahoko Kakihara
- Division of Function & Morphology for Nursing; Department of Basic Science of Nursing; Faculty of Medicine; Saga University; Saga Japan
| | - Shuji Toda
- Department of Pathology & Microbiology; Faculty of Medicine; Saga University; Saga Japan
| |
Collapse
|
26
|
Smith TJ, Janssen JAMJL. Building the Case for Insulin-Like Growth Factor Receptor-I Involvement in Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2016; 7:167. [PMID: 28096798 PMCID: PMC5206614 DOI: 10.3389/fendo.2016.00167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of orbital Graves' disease (GD), a process known as thyroid-associated ophthalmopathy (TAO), remains incompletely understood. The thyrotropin receptor (TSHR) represents the central autoantigen involved in GD and has been proposed as the thyroid antigen shared with the orbit that could explain the infiltration of immune cells into tissues surrounding the eye. Another cell surface protein, insulin-like growth factor-I receptor (IGF-IR), has recently been proposed as a second antigen that participates in TAO by virtue of its interactions with anti-IGF-IR antibodies generated in GD, its apparent physical and functional complex formation with TSHR, and its necessary involvement in TSHR post-receptor signaling. The proposal that IGF-IR is involved in TAO has provoked substantial debate. Furthermore, several studies from different laboratory groups, each using different experimental models, have yielded conflicting results. In this article, we attempt to summarize the biological characteristics of IGF-IR and TSHR. We also review the evidence supporting and refuting the postulate that IGF-IR is a self-antigen in GD and that it plays a potentially important role in TAO. The putative involvement of IGF-IR in disease pathogenesis carries substantial clinical implications. Specifically, blocking this receptor with monoclonal antibodies can dramatically attenuate the induction by TSH and pathogenic antibodies generated in GD of proinflammatory genes in cultured orbital fibroblasts and fibrocytes. These cell types appear critical to the development of TAO. These observations have led to the conduct of a now-completed multicenter therapeutic trial of a fully human monoclonal anti-IGF-IR blocking antibody in moderate to severe, active TAO.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
- *Correspondence: Terry J. Smith,
| | - Joseph A. M. J. L. Janssen
- Department of Internal Medicine, Erasmus Medical Center, Division of Endocrinology, Rotterdam, Netherlands
| |
Collapse
|
27
|
Atkins SJ, Lentz SI, Fernando R, Smith TJ. Disrupted TSH Receptor Expression in Female Mouse Lung Fibroblasts Alters Subcellular IGF-1 Receptor Distribution. Endocrinology 2015; 156:4731-40. [PMID: 26389690 PMCID: PMC4655214 DOI: 10.1210/en.2015-1464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A relationship between the actions of TSH and IGF-1 was first recognized several decades ago. The close physical and functional associations between their respective receptors (TSHR and IGF-1R) has been described more recently in thyroid epithelium and human orbital fibroblasts as has the noncanonical behavior of IGF-1R. Here we report studies conducted in lung fibroblasts from female wild-type C57/B6 (TSHR(+/+)) mice and their littermates in which TSHR has been knocked out (TSHR(-/-)). Flow cytometric analysis revealed that cell surface IGF-1R levels are substantially lower in TSHR(-/-) fibroblasts compared with TSHR(+/+) fibroblasts. Confocal immunofluorescence microscopy revealed similar divergence with regard to both cytoplasmic and nuclear IGF-1R. Western blot analysis demonstrated both intact IGF-1R and receptor fragments in both cellular compartments. In contrast, IGF-1R mRNA levels were similar in fibroblasts from mice without and with intact TSHR expression. IGF-1 treatment of TSHR(+/+) fibroblasts resulted in reduced nuclear and cytoplasmic staining for IGF-1Rα, whereas it enhanced the nuclear signal in TSHR(-/-) cells. In contrast, IGF-1 enhanced cytoplasmic IGF-1Rβ in TSHR(-/-) fibroblasts while increasing the nuclear signal in TSHR(+/+) cells. These findings indicate the intimate relationship between TSHR and IGF-1R found earlier in human orbital fibroblasts also exists in mouse lung fibroblasts. Furthermore, the presence of TSHR in these fibroblasts influenced not only the levels of IGF-1R protein but also its subcellular distribution and response to IGF-1. They suggest that the mouse might serve as a suitable model for delineating the molecular mechanisms overarching these two receptors.
Collapse
Affiliation(s)
- Stephen J Atkins
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Stephen I Lentz
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
28
|
Curtò L, Giovinazzo S, Alibrandi A, Campennì A, Trimarchi F, Cannavò S, Ruggeri RM. Effects of GH replacement therapy on thyroid volume and nodule development in GH deficient adults: a retrospective cohort study. Eur J Endocrinol 2015; 172:543-52. [PMID: 25646405 DOI: 10.1530/eje-14-0966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Despite the well-known effects of GH/IGF1 signaling on the thyroid, few data are available on the risk of developing nodular goiter in hypopituitary subjects during GH replacement therapy (GHRT). We aimed to define the effects of GH therapy on thyroid volume (TV) and nodular growth. DESIGN The records of 96 subjects (47 males and 49 females, median age 48 years) with GH deficit (GHD) were investigated. Seventy also had central hypothyroidism (CH). At the time of our retrospective evaluation, median treatment duration was 5 years. RESULTS Pre-treatment TV was smaller in GHD patients than in healthy subjects (P=0.030). During GH treatment, TV significantly increased (P=0.016 for the entire group and P=0.014 in euthyroid GHD patients). Before starting GH therapy, 17 patients harbored thyroid nodules. During GH therapy, nodule size increased slightly in seven patients, and new thyroid nodules occurred in nine patients. Among the 79 patients without pre-existing thyroid nodules, 17 developed one or more nodules. There was no difference in the prevalence of CH in GHD patients with or without thyroid nodules (P=0.915; P=0.841, when patients with pre-therapy nodular goiter were excluded), the main predictor for nodule development being serum IGF1 (P=0.038). CONCLUSIONS GHRT is associated with TV's increase in GHD patients. Thyroid nodules developed in 27% of patients, mainly in relation to pre-therapy IGF1 levels, independently of normal or impaired TSH stimulation.
Collapse
Affiliation(s)
- Lorenzo Curtò
- Unit of EndocrinologyDepartment of Clinical and Experimental Medicine, University of Messina, AOU Policlinico 'G. Martino' (Pad H, Floor 4), Via Consolare Valeria, 1, Messina 98125, ItalyDepartment of Statistical Sciences (SEFISAST)Unit of Nuclear MedicineDepartment of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Salvatore Giovinazzo
- Unit of EndocrinologyDepartment of Clinical and Experimental Medicine, University of Messina, AOU Policlinico 'G. Martino' (Pad H, Floor 4), Via Consolare Valeria, 1, Messina 98125, ItalyDepartment of Statistical Sciences (SEFISAST)Unit of Nuclear MedicineDepartment of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Unit of EndocrinologyDepartment of Clinical and Experimental Medicine, University of Messina, AOU Policlinico 'G. Martino' (Pad H, Floor 4), Via Consolare Valeria, 1, Messina 98125, ItalyDepartment of Statistical Sciences (SEFISAST)Unit of Nuclear MedicineDepartment of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alfredo Campennì
- Unit of EndocrinologyDepartment of Clinical and Experimental Medicine, University of Messina, AOU Policlinico 'G. Martino' (Pad H, Floor 4), Via Consolare Valeria, 1, Messina 98125, ItalyDepartment of Statistical Sciences (SEFISAST)Unit of Nuclear MedicineDepartment of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Francesco Trimarchi
- Unit of EndocrinologyDepartment of Clinical and Experimental Medicine, University of Messina, AOU Policlinico 'G. Martino' (Pad H, Floor 4), Via Consolare Valeria, 1, Messina 98125, ItalyDepartment of Statistical Sciences (SEFISAST)Unit of Nuclear MedicineDepartment of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Salvatore Cannavò
- Unit of EndocrinologyDepartment of Clinical and Experimental Medicine, University of Messina, AOU Policlinico 'G. Martino' (Pad H, Floor 4), Via Consolare Valeria, 1, Messina 98125, ItalyDepartment of Statistical Sciences (SEFISAST)Unit of Nuclear MedicineDepartment of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Rosaria Maddalena Ruggeri
- Unit of EndocrinologyDepartment of Clinical and Experimental Medicine, University of Messina, AOU Policlinico 'G. Martino' (Pad H, Floor 4), Via Consolare Valeria, 1, Messina 98125, ItalyDepartment of Statistical Sciences (SEFISAST)Unit of Nuclear MedicineDepartment of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Abstract
Thyroid-associated ophthalmopathy (TAO) is a vexing and undertreated ocular component of Graves disease in which orbital tissues undergo extensive remodelling. My colleagues and I have introduced the concept that fibrocytes expressing the haematopoietic cell antigen CD34 (CD34(+) fibrocytes), which are precursor cells of bone-marrow-derived monocyte lineage, express the TSH receptor (TSHR). These cells also produce several other proteins whose expression was traditionally thought to be restricted to the thyroid gland. TSHR-expressing fibrocytes in which the receptor is activated by its ligand generate extremely high levels of several inflammatory cytokines. Acting in concert with TSHR, the insulin-like growth factor 1 receptor (IGF-1R) expressed by orbital fibroblasts and fibrocytes seems to be necessary for TSHR-dependent cytokine production, as anti-IGF-1R blocking antibodies attenuate these proinflammatory actions of TSH. Furthermore, circulating fibrocytes are highly abundant in patients with TAO and seem to infiltrate orbital connective tissues, where they might transition to CD34(+) fibroblasts. My research group has postulated that the infiltration of fibrocytes into the orbit, their unique biosynthetic repertoire and their proinflammatory and profibrotic phenotype account for the characteristic properties exhibited by orbital connective tissues that underlie susceptibility to TAO. These insights, which have emerged in the past few years, might be of use in therapeutically targeting pathogenic orbit-infiltrating fibrocytes selectively by utilizing novel biologic agents that interfere with TSHR and IGF-1R signalling.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Room 7112, Brehm Tower, Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
30
|
Abstract
Many studies have provided observational data on the association of obesity and thyroid cancers, but only few of them propose mechanisms that would permit a better understanding of the causal molecular mechanisms of this association. Considering that there is an increasing incidence of both obesity and thyroid cancers, we need to summarize and link recent studies in order to characterize and understand the contribution of obesity-related factors that might affect thyroid cancer development and progression. Adipose tissue is involved in many vital processes, including insulin sensitivity, angiogenesis, regulation of energy balance, activation of the complement system, and responses such as inflammation. Although these processes have their own molecular pathways, they involve the same molecules through which obesity and adipose tissue might exert their roles in carcinogenesis, not only affecting MAPK and PI3K or even insulin pathways, but also recruiting local inflammatory responses that could result in disease formation and progression. This review describes five important issues that might explain the link between excessive weight and thyroid cancer: thyroid hormones, insulin resistance, adipokines, inflammation, and sexual hormones.
Collapse
Affiliation(s)
- Marjory Alana Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM- Unicamp), Rua Tessália Vieira de Camargo 126, Barão Geraldo, Campinas, São Paulo 13083-970, Brazil
| | - Lucas Leite Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM- Unicamp), Rua Tessália Vieira de Camargo 126, Barão Geraldo, Campinas, São Paulo 13083-970, Brazil
| | - Fernando Assis Batista
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM- Unicamp), Rua Tessália Vieira de Camargo 126, Barão Geraldo, Campinas, São Paulo 13083-970, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM- Unicamp), Rua Tessália Vieira de Camargo 126, Barão Geraldo, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
31
|
Differential organ phenotypes after postnatal Igf1r gene conditional deletion induced by tamoxifen in UBC-CreERT2; Igf1r fl/fl double transgenic mice. Transgenic Res 2014; 24:279-94. [DOI: 10.1007/s11248-014-9837-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 11/25/2022]
|
32
|
Liu H, Zeng Q, Cui Y, Yu L, Zhao L, Hou C, Zhang S, Zhang L, Fu G, Liu Y, Jiang C, Chen X, Wang A. The effects and underlying mechanism of excessive iodide on excessive fluoride-induced thyroid cytotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:332-340. [PMID: 25104093 DOI: 10.1016/j.etap.2014.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
In many regions, excessive fluoride and excessive iodide coexist in groundwater, which may lead to biphasic hazards to human thyroid. To explore fluoride-induced thyroid cytotoxicity and the mechanism underlying the effects of excessive iodide on fluoride-induced cytotoxicity, a thyroid cell line (Nthy-ori 3-1) was exposed to excessive fluoride and/or excessive iodide. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) formation, apoptosis, and the expression levels of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were detected. Fluoride and/or iodide decreased cell viability and increased LDH leakage and apoptosis. ROS, the expression levels of glucose-regulated protein 78 (GRP78), IRE1, C/EBP homologous protein (CHOP), and spliced X-box-binding protein-1 (sXBP-1) were enhanced by fluoride or the combination of the two elements. Collectively, excessive fluoride and excessive iodide have detrimental influences on human thyroid cells. Furthermore, an antagonistic interaction between fluoride and excessive iodide exists, and cytotoxicity may be related to IRE1 pathway-induced apoptosis.
Collapse
Affiliation(s)
- Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China; School of Public Health, Tianjin Medical University, 22 Qi Xiang Tai Road, Heping District, Tianjin 300070, PR China.
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China
| | - Yushan Cui
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China
| | - Linyu Yu
- School of Public Health, Tianjin Medical University, 22 Qi Xiang Tai Road, Heping District, Tianjin 300070, PR China
| | - Liang Zhao
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China
| | - Changchun Hou
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China
| | - Shun Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Hubei, Wuhan 430030, PR China
| | - Lei Zhang
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China
| | - Gang Fu
- Tianjin Centers for Disease Control and Prevention, 6 Huayue Road, Hedong District, Tianjin 300011, PR China
| | - Yeming Liu
- School of Public Health, Tianjin Medical University, 22 Qi Xiang Tai Road, Heping District, Tianjin 300070, PR China
| | - Chunyang Jiang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Hubei, Wuhan 430030, PR China
| | - Xuemin Chen
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Hubei, Wuhan 430030, PR China
| | - Aiguo Wang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Hubei, Wuhan 430030, PR China.
| |
Collapse
|