1
|
Moreno-Villanueva M, Jimenez-Chavez LE, Krieger S, Ding LH, Zhang Y, Babiak-Vazquez A, Berres M, Splinter S, Pauken KE, Schaefer BC, Crucian BE, Wu H. Transcriptomics analysis reveals potential mechanisms underlying mitochondrial dysfunction and T cell exhaustion in astronauts' blood cells in space. Front Immunol 2025; 15:1512578. [PMID: 39902046 PMCID: PMC11788081 DOI: 10.3389/fimmu.2024.1512578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction The impact of spaceflight on the immune system and mitochondria has been investigated for decades. However, the molecular mechanisms underlying spaceflight-induced immune dysregulations are still unclear. Methods In this study, blood from eleven crewmembers was collected before and during International Space Station (ISS) missions. Transcriptomic analysis was performed in isolated peripheral blood mononuclear cells (PBMCs) using RNA-sequencing. Differentially expresses genes (DEG) in space were determined by comparing of the inflight to the preflight samples. Pathways and statistical analyses of these DEG were performed using the Ingenuity Pathway Analysis (IPA) tool. Results In comparison to pre-flight, a total of 2030 genes were differentially expressed in PBMC collected between 135 and 210 days in orbit, which included a significant number of surface receptors. The dysregulated genes and pathways were mostly involved in energy and oxygen metabolism, immune responses, cell adhesion/migration and cell death/survival. Discussion Based on the DEG and the associated pathways and functions, we propose that mitochondria dysfunction was caused by constant modulation of mechano-sensing receptors in microgravity, which triggered a signaling cascade that led to calcium overloading in mitochondria. The response of PBMC in space shares T-cell exhaustion features, likely initiated by microgravity than by infection. Consequences of mitochondria dysfunction include immune dysregulation and prolonged cell survival which potentially explains the reported findings of inhibition of T cell activation and telomere lengthening in astronauts. Conclusion Our study potentially identifies the upstream cause of mitochondria dysfunction and the downstream consequences in immune cells.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Luis E. Jimenez-Chavez
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | | | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ye Zhang
- National Aeronautics and Space Administration, Kennedy Space Center, Cape Canaveral, FL, United States
| | - Adriana Babiak-Vazquez
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mark Berres
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Sandra Splinter
- Bioinformatics Resource and Gene Expression Center, University of Wisconsin, Madison, WI, United States
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Brian E. Crucian
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Honglu Wu
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
2
|
Poon CCW, Au-Yeung C, Wong KY, Chan Z, Zhou LP, Li G, Wang Y, Zhang Y, Wong MS. Icariin promotes cell adhesion for osteogenesis in bone marrow stromal cells via binding to integrin α5β1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155887. [PMID: 39067311 DOI: 10.1016/j.phymed.2024.155887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND PURPOSE Icariin, an 8-prenylated flavonoid glycoside, is an anabolic agent that could exert rapid estrogenic actions via ligand-independent activation of estrogen receptor alpha (ERα) in osteoblastic cells to promote osteogenesis. However, relatively little is known about its direct cellular target, its protective effects, and cell adhesion activities in bone marrow stromal cells (BMSCs) against microgravity. In the present study, the effects of icariin on osteogenesis and cell adhesion under microgravity were examined with the involvement of integrin receptor α5β1, connexin 43, and CAMs. STUDY DESIGN AND METHODS Icariin was orally administered to 6-month-old ovariectomized (OVX) Sprague-Dawley (SD) rats for 3 months through daily intake of phytoestrogen-free rodent diets containing icariin at 2 different dosages (50 and 500 ppm). BMSCs were harvested for experiments and RNA-sequencing analysis to examine the mechanism of action of icariin and its direct cellular target in stimulating osteogenesis. RESULTS The results revealed that icariin induced the expression of cell adhesion molecules (CAMs) and protected against microgravity-induced disruption of actin cytoskeleton and the loss of osteogenic activities in BMSCs through the activation of connexin-43 (Cx43) and Ras homolog family member A (RhoA) and Rac family small GTPase 1 (Rac1)-mediated signaling pathways. Computerized molecular docking techniques and the competitive solid-phase binding ELISA assay confirmed that icariin could be a direct ligand of integrin alpha 5 beta 1 (α5β1), and it could also increase the protein expression of integrin α5β1 for mechanosensing. CONCLUSION Our findings suggest that icariin could directly activate cell adhesion signaling by binding to integrin α5β1, which opens up new avenues for the development of integrin α5β1 ligand as an agent to protect against unloading-induced bone loss.
Collapse
Affiliation(s)
- Christina Chui-Wa Poon
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
| | - Chun Au-Yeung
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
| | - Ka-Ying Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
| | - Zoe Chan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
| | - Li-Ping Zhou
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Yan Wang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Yan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Man-Sau Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China..
| |
Collapse
|
3
|
Hariom SK, Nelson EJR. Cardiovascular adaptations in microgravity conditions. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:64-71. [PMID: 39067992 DOI: 10.1016/j.lssr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024]
Abstract
Gravity has had a significant impact on the evolution of life on Earth with organisms developing necessary biological adaptations over billions of years to counter this ever-existing force. There has been an exponential increase in experiments using real and simulated gravity environments in the recent years. Although an understanding followed by discovery of counter measures to negate diminished gravity in space had been the driving force of research initially, there has since been a phenomenal leap wherein a force unearthly as microgravity is beginning to show promising potential. The current review summarizes pathophysiological changes that occur in multiple aspects of the cardiovascular system when exposed to an altered gravity environment leading to cardiovascular deconditioning and orthostatic intolerance. Gravity influences not just the complex multicellular systems but even the survival of organisms at the molecular level by intervening fundamental cellular processes, directly affecting those linked to actin and microtubule organization via mechano-transduction pathways. The reach of gravity ranges from cytoskeletal rearrangement that regulates cell adhesion and migration to intracellular dynamics that dictate cell fate commitment and differentiation. An understanding that microgravity itself is not present on Earth propels the scope of simulated gravity conditions to be a unique and useful environment that could be explored for enhancing the potential of stem cells for a wide range of applications as has been highlighted here.
Collapse
Affiliation(s)
- Senthil Kumar Hariom
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, TN, India
| | - Everette Jacob Remington Nelson
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, TN, India.
| |
Collapse
|
4
|
Wu F, Du H, Overbey E, Kim J, Makhijani P, Martin N, Lerner CA, Nguyen K, Baechle J, Valentino TR, Fuentealba M, Bartleson JM, Halaweh H, Winer S, Meydan C, Garrett-Bakelman F, Sayed N, Melov S, Muratani M, Gerencser AA, Kasler HG, Beheshti A, Mason CE, Furman D, Winer DA. Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight. Nat Commun 2024; 15:4795. [PMID: 38862487 PMCID: PMC11166937 DOI: 10.1038/s41467-023-42013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/27/2023] [Indexed: 06/13/2024] Open
Abstract
Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.
Collapse
Grants
- R01 MH117406 NIMH NIH HHS
- T32 AG000266 NIA NIH HHS
- This work was supported in part through funds derived from the Buck Institute for Research on Aging (D.A.W., D.F.), and the Huiying Memorial Foundation (D.A.W.). T.V. and J.B. are funded by a T32 NIH fellowship grant (NIA T32 AG000266). C.E.M. thanks the Scientific Computing Unit (SCU) at WCM, the WorldQuant Foundation, NASA (NNX14AH50G, NNX17AB26G, 80NSSC22K0254, NNH18ZTT001N-FG2, 80NSSC22K0254, NNX16AO69A), the National Institutes of Health (R01MH117406), and LLS (MCL7001-18, LLS 9238-16).
Collapse
Affiliation(s)
- Fei Wu
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Huixun Du
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Priya Makhijani
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nicolas Martin
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Chad A Lerner
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Khiem Nguyen
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jordan Baechle
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | | | | | - Heather Halaweh
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94043, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina.
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
5
|
Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D. Omics Studies of Tumor Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:926. [PMID: 38255998 PMCID: PMC10815863 DOI: 10.3390/ijms25020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.
Collapse
Affiliation(s)
- Jenny Graf
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| | - Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation (UZH Space Hub), University Zurich, 8006 Zurich, Switzerland
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
6
|
Garbacki N, Willems J, Neutelings T, Lambert C, Deroanne C, Adrian A, Franz M, Maurer M, De Gieter P, Nusgens B, Colige A. Microgravity triggers ferroptosis and accelerates senescence in the MG-63 cell model of osteoblastic cells. NPJ Microgravity 2023; 9:91. [PMID: 38104197 PMCID: PMC10725437 DOI: 10.1038/s41526-023-00339-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
In space, cells sustain strong modifications of their mechanical environment. Mechanosensitive molecules at the cell membrane regulate mechanotransduction pathways that induce adaptive responses through the regulation of gene expression, post-translational modifications, protein interactions or intracellular trafficking, among others. In the current study, human osteoblastic cells were cultured on the ISS in microgravity and at 1 g in a centrifuge, as onboard controls. RNAseq analyses showed that microgravity inhibits cell proliferation and DNA repair, stimulates inflammatory pathways and induces ferroptosis and senescence, two pathways related to ageing. Morphological hallmarks of senescence, such as reduced nuclear size and changes in chromatin architecture, proliferation marker distribution, tubulin acetylation and lysosomal transport were identified by immunofluorescence microscopy, reinforcing the hypothesis of induction of cell senescence in microgravity during space flight. These processes could be attributed, at least in part, to the regulation of YAP1 and its downstream effectors NUPR1 and CKAP2L.
Collapse
Affiliation(s)
- Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Jérôme Willems
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Thibaut Neutelings
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Astrid Adrian
- Airbus Defence and Space, GmbH, 88090, Immenstaad, Germany
| | - Markus Franz
- Airbus Defence and Space, GmbH, 88090, Immenstaad, Germany
| | - Matthias Maurer
- European Space Agency (ESA), European Astronaut Centre (EAC), 51147, Cologne, Germany
| | | | - Betty Nusgens
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
8
|
Kothiyal P, Eley G, Ilangovan H, Hoadley KA, Elgart SR, Mao XW, Eslami P. A multi-omics longitudinal study of the murine retinal response to chronic low-dose irradiation and simulated microgravity. Sci Rep 2022; 12:16825. [PMID: 36207342 PMCID: PMC9547011 DOI: 10.1038/s41598-022-19360-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
The space environment includes unique hazards like radiation and microgravity which can adversely affect biological systems. We assessed a multi-omics NASA GeneLab dataset where mice were hindlimb unloaded and/or gamma irradiated for 21 days followed by retinal analysis at 7 days, 1 month or 4 months post-exposure. We compared time-matched epigenomic and transcriptomic retinal profiles resulting in a total of 4178 differentially methylated loci or regions, and 457 differentially expressed genes. Highest correlation in methylation difference was seen across different conditions at the same time point. Nucleotide metabolism biological processes were enriched in all groups with activation at 1 month and suppression at 7 days and 4 months. Genes and processes related to Notch and Wnt signaling showed alterations 4 months post-exposure. A total of 23 genes showed significant changes in methylation and expression compared to unexposed controls, including genes involved in retinal function and inflammatory response. This multi-omics analysis interrogates the epigenomic and transcriptomic impacts of radiation and hindlimb unloading on the retina in isolation and in combination and highlights important molecular mechanisms at different post-exposure stages.
Collapse
Affiliation(s)
| | - Greg Eley
- Scimentis LLC, Statham, GA, 30666, USA
| | - Hari Ilangovan
- Science Applications International Corporation (SAIC), Reston, VA, 20190, USA
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Xiao W Mao
- Basic Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Parastou Eslami
- Universal Artificial Intelligence Inc., Boston, MA, 02130, USA
| |
Collapse
|
9
|
Man J, Graham T, Squires-Donelly G, Laslett AL. The effects of microgravity on bone structure and function. NPJ Microgravity 2022; 8:9. [PMID: 35383182 PMCID: PMC8983659 DOI: 10.1038/s41526-022-00194-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Humans are spending an increasing amount of time in space, where exposure to conditions of microgravity causes 1-2% bone loss per month in astronauts. Through data collected from astronauts, as well as animal and cellular experiments conducted in space, it is evident that microgravity induces skeletal deconditioning in weight-bearing bones. This review identifies contentions in current literature describing the effect of microgravity on non-weight-bearing bones, different bone compartments, as well as the skeletal recovery process in human and animal spaceflight data. Experiments in space are not readily available, and experimental designs are often limited due to logistical and technical reasons. This review introduces a plethora of on-ground research that elucidate the intricate process of bone loss, utilising technology that simulates microgravity. Observations from these studies are largely congruent to data obtained from spaceflight experiments, while offering more insights behind the molecular mechanisms leading to microgravity-induced bone loss. These insights are discussed herein, as well as how that knowledge has contributed to studies of current therapeutic agents. This review also points out discrepancies in existing data, highlighting knowledge gaps in our current understanding. Further dissection of the exact mechanisms of microgravity-induced bone loss will enable the development of more effective preventative and therapeutic measures to protect against bone loss, both in space and possibly on ground.
Collapse
Affiliation(s)
- Joey Man
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| | - Taylor Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Georgina Squires-Donelly
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew L Laslett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Osteocytes are considered to be the cells responsible for mastering the remodeling process that follows the exposure to unloading conditions. Given the invasiveness of bone biopsies in humans, both rodents and in vitro culture systems are largely adopted as models for studies in space missions or in simulated microgravity conditions models on Earth. RECENT FINDINGS After a brief recall of the main changes in bone mass and osteoclastic and osteoblastic activities in space-related models, this review focuses on the potential role of osteocytes in directing these changes. The role of the best-known signalling molecules is questioned, in particular in relation to osteocyte apoptosis. The mechanotransduction actors identified in spatial conditions and the problems related to fluid flow and shear stress changes, probably enhanced by the alteration in fluid flow and lack of convection during spaceflight, are recalled and discussed.
Collapse
Affiliation(s)
- Donata Iandolo
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Maura Strigini
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Alain Guignandon
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Laurence Vico
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France.
| |
Collapse
|
11
|
Butyrate-containing structured lipids inhibit RAC1 and epithelial-to-mesenchymal transition markers: a chemopreventive mechanism against hepatocarcinogenesis. J Nutr Biochem 2020; 86:108496. [PMID: 32920087 DOI: 10.1016/j.jnutbio.2020.108496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers. The rising incidence of HCC worldwide and its resistance to pharmacotherapy indicate that the prevention of HCC development may be the most impactful strategy to improve HCC-related morbidity and mortality. Among the broad range of chemopreventive agents, the use of dietary and nutritional agents is an attractive and promising approach; however, a better understanding of the mechanisms of their potential cancer suppressive action is needed to justify their use. In the present study, we investigated the underlying molecular pathways associated with the previously observed suppressive effect of butyrate-containing structured lipids (STLs) against liver carcinogenesis using a rat "resistant hepatocyte" model of hepatocarcinogenesis that resembles the development of HCC in humans. Using whole transcriptome analysis, we demonstrate that the HCC suppressive effect of butyrate-containing STLs is associated with the inhibition of the cell migration, cytoskeleton organization, and epithelial-to-mesenchymal transition (EMT), mediated by the reduced levels of RACGAP1 and RAC1 proteins. Mechanistically, the inhibition of the Racgap1 and Rac1 oncogenes is associated with cytosine DNA and histone H3K27 promoter methylation. Inhibition of the RACGAP1/RAC1 oncogenic signaling pathways and EMT may be a valuable approach for liver cancer prevention.
Collapse
|
12
|
Colucci S, Colaianni G, Brunetti G, Ferranti F, Mascetti G, Mori G, Grano M. Irisin prevents microgravity-induced impairment of osteoblast differentiation in vitro during the space flight CRS-14 mission. FASEB J 2020; 34:10096-10106. [PMID: 32539174 DOI: 10.1096/fj.202000216r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 01/25/2023]
Abstract
Understanding molecular mechanisms responsible for bone cells unbalance in microgravity would allow the development of better countermeasures for astronauts, and eventually advancing terrestrial osteoporosis treatments. We conduct a unique investigation by using a controlled 3D in vitro cell model to mimic the bone microenvironment in microgravity aboard the SpaceX Dragon cargo ferry to the ISS. Osteoblasts (OBs), osteoclasts (OCs), and endothelial cells (ECs), seeded on Skelite discs, were cultured w/ or w/o rec-Irisin and exposed to 14 days of microgravity in the eOSTEO hardware. Gene expression analysis was assessed, and results were compared to ground controls treated within identical payloads. Our results show that the microgravity-induced downregulation of mRNA levels of genes encoding for OB key transcription factors (Atf4 -75%, P < .01; RunX2 -87%, P < .001, Osterix -95%, P < .05 vs ground) and proteins (Collagen I -84%, P < .05; Osteoprotegerin -94%, P < .05) were prevented by irisin. Despite it was not effective in preventing Trap and Cathepsin K mRNA increase, irisin induced a 2.8-fold increase of Osteoprotegerin (P < .05) that might act for reducing osteoclastogenesis in microgravity. Our results provide evidence that irisin supports OB differentiation and activity in microgravity and it might represent a countermeasure to prevent bone loss in astronauts.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | | | | | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
13
|
Lin X, Zhang K, Wei D, Tian Y, Gao Y, Chen Z, Qian A. The Impact of Spaceflight and Simulated Microgravity on Cell Adhesion. Int J Mol Sci 2020; 21:ijms21093031. [PMID: 32344794 PMCID: PMC7246714 DOI: 10.3390/ijms21093031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Microgravity induces a number of significant physiological changes in the cardiovascular, nervous, immune systems, as well as the bone tissue of astronauts. Changes in cell adhesion properties are one aspect affected during long-term spaceflights in mammalian cells. Cellular adhesion behaviors can be divided into cell-cell and cell-matrix adhesion. These behaviors trigger cell-cell recognition, conjugation, migration, cytoskeletal rearrangement, and signal transduction. Cellular adhesion molecule (CAM) is a general term for macromolecules that mediate the contact and binding between cells or between cells and the extracellular matrix (ECM). In this review, we summarize the four major classes of adhesion molecules that regulate cell adhesion, including integrins, immunoglobulin superfamily (Ig-SF), cadherins, and selectin. Moreover, we discuss the effects of spaceflight and simulated microgravity on the adhesion of endothelial cells, immune cells, tumor cells, stem cells, osteoblasts, muscle cells, and other types of cells. Further studies on the effects of microgravity on cell adhesion and the corresponding physiological behaviors may help increase the safety and improve the health of astronauts in space.
Collapse
Affiliation(s)
- Xiao Lin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kewen Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Daixu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: ; Tel.: +86-135-7210-8260
| |
Collapse
|
14
|
Coulombe JC, Senwar B, Ferguson VL. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep 2020; 18:1-12. [PMID: 31897866 DOI: 10.1007/s11914-019-00540-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Bone mineral density and systemic factors are used to assess skeletal health in astronauts. Yet, even in a general population, these measures fail to accurately predict when any individual will fracture. This review considers how long-duration human spaceflight requires evaluation of additional bone structural and material quality measures that contribute to microgravity-induced skeletal fragility. RECENT FINDINGS In both humans and small animal models following spaceflight, bone mass is compromised via reduced bone formation and elevated resorption levels. Concurrently, bone structural quality (e.g., trabecular microarchitecture) is diminished and the quality of bone material is reduced via impaired tissue mineralization, maturation, and maintenance (e.g., mediated by osteocytes). Bone structural and material quality are both affected by microgravity and may, together, jeopardize astronaut operational readiness and lead to increased fracture risk upon return to gravitational loading. Future studies need to directly evaluate how bone quality combines with diminished bone mass to influence bone strength and toughness (e.g., resistance to fracture). Bone quality assessment promises to identify novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA.
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA.
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA.
| |
Collapse
|
15
|
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review. Curr Genomics 2019; 20:184-198. [PMID: 31929726 PMCID: PMC6935951 DOI: 10.2174/1389202920666190422142053] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Microgravity (μG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. μG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight. Methods We systematically reviewed research data from genomic studies performed in real or simulat-ed μG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors. Results Osteoblastic cells under μG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin-6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the ex-pression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under μG conditions and become sensitized to RANKL. Conclusion Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.
Collapse
Affiliation(s)
- Vasiliki Chatziravdeli
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George N Katsaras
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| | - George I Lambrou
- 18 Orthopedic Department, Shoulder Surgery Unit, General Hospital " Asklepieio", Vassileos Pavlou Av. 1, 16673, Voula, Athens, Greece; 2Graduate Program "Metabolic Bones Diseases", National and Kapodistrian University of Athens, Medical School, Mikras Asias 75, 11527, Goudi, Athens, Greece; 3Neonatal Intensive Care Unit, General Hospital of Nikaia "Aghios Panteleimon", Andrea Petrou Mantouvalou Str. 3, 18454, Nikaia, Piraeus, Greece; 4Laboratory for the Research of Musculoskeletal Disorders, Medical School, National and Kapodistrian University of Athens, Nikis 2, 14561, Kifissia, Athens, Greece; 5First Department of Pediatrics, University of Athens, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
| |
Collapse
|
16
|
Koaykul C, Kim MH, Kawahara Y, Yuge L, Kino-Oka M. Alterations in Nuclear Lamina and the Cytoskeleton of Bone Marrow-Derived Human Mesenchymal Stem Cells Cultured Under Simulated Microgravity Conditions. Stem Cells Dev 2019; 28:1167-1176. [PMID: 31169056 DOI: 10.1089/scd.2018.0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cells sense and respond to environmental changes induced by gravity. Although reactions to conventional culture have been intensively studied, little is known about the cellular reaction to simulated microgravity conditions. Thus, in this study, we investigated the effects of simulated microgravity on human mesenchymal stem cells using a three-dimensional clinostat (Gravite®), a recently developed device used to generate simulated microgravity condition in vitro. Our time-lapse analysis shows that cells cultured under conventional culture conditions have a stretched morphology and undergo unidirectional migration, whereas cells cultured under simulated microgravity conditions undergo multidirectional migration with directional changes of cell movement. Furthermore, cells cultured under conventional culture conditions maintained their spindle shape through fibronectin fibril formation in their bodies and focal adhesion stabilization with enriched stress fibers. However, cells cultured under simulated microgravity conditions were partially contracted and the fibril structures were degraded in the cell bodies. Additionally, paxillin phosphorylation in the cells cultured under simulated microgravity conditions was more intense at the cell periphery in regions near the leading and trailing edges, but was less expressed in the cell bodies compared with that observed in cells cultured under conventional culture conditions. Furthermore, lamin A/C, a major component of the nuclear lamina, was mainly located on the apical side in cells cultured under conventional culture conditions, indicating basal-to-apical polarization. However, cells cultured under simulated microgravity conditions showed lamin A/C localization on both the apical and basal sides. Taken together, these results demonstrate that simulated microgravity-driven fibronectin assembly affects nuclear lamina organization through the spatial reorganization of the cytoskeleton.
Collapse
Affiliation(s)
- Chaiyong Koaykul
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | - Louis Yuge
- Space Bio-Laboratories Co., Ltd., Hiroshima, Japan.,Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20133156. [PMID: 31261642 PMCID: PMC6651518 DOI: 10.3390/ijms20133156] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
With the increasing number of spaceflights, it is crucial to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We tested the effect of r-µg on MCF-7 breast cancer cells with the objective to investigate cytoskeletal alterations and early changes in the gene expression of factors belonging to the cytoskeleton, extracellular matrix, focal adhesion, and cytokines. In the Technische Experimente unter Schwerelosigkeit (TEXUS) 54 rocket mission, we had the opportunity to conduct our experiment during 6 min of r-µg and focused on cytoskeletal alterations of MCF-7 breast cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin as well as the mCherry-tubulin fusion protein using the Fluorescence Microscopy Analysis System (FLUMIAS) for fast live-cell imaging under r-µg. Moreover, in a second mission we investigated changes in RNA transcription and morphology in breast cancer cells exposed to parabolic flight (PF) maneuvers (31st Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). The MCF-7 cells showed a rearrangement of the F-actin and tubulin with holes, accumulations in the tubulin network, and the appearance of filopodia- and lamellipodia-like structures in the F-actin cytoskeleton shortly after the beginning of the r-µg period. PF maneuvers induced an early up-regulation of KRT8, RDX, TIMP1, CXCL8 mRNAs, and a down-regulation of VCL after the first parabola. E-cadherin protein was significantly reduced and is involved in cell adhesion processes, and plays a significant role in tumorigenesis. Changes in the E-cadherin protein synthesis can lead to tumor progression. Pathway analyses indicate that VCL protein has an activating effect on CDH1. In conclusion, live-cell imaging visualized similar changes as those occurring in thyroid cancer cells in r-µg. This result indicates the presence of a common mechanism of gravity perception and sensation.
Collapse
|
18
|
Secretome of Cultured Human Endothelial Cells in Simulated Microgravity. Bull Exp Biol Med 2019; 167:35-38. [PMID: 31177466 DOI: 10.1007/s10517-019-04454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 10/26/2022]
Abstract
The secretome of human umbilical vein endothelial cells (HUVEC) cultured under static conditions and in modeled microgravity for 24 h was studied by chromatography-mass spectrometry. In the secretome of cells exposed to microgravity, we identified a group of microtubule proteins including many structural elements of microtubules and regulatory proteins interacting with Rho-GTPases. Hence, reorganization of actin cytoskeleton and microtubules induced by microgravity is under complex regulation mediated by Rho proteins.
Collapse
|
19
|
Tauber S, Lauber BA, Paulsen K, Layer LE, Lehmann M, Hauschild S, Shepherd NR, Polzer J, Segerer J, Thiel CS, Ullrich O. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One 2017; 12:e0175599. [PMID: 28419128 PMCID: PMC5395169 DOI: 10.1371/journal.pone.0175599] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Beatrice A. Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Liliana E. Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Martin Lehmann
- Biozentrum der LMU München, Deptartment of Biology I–Botany, Grosshaderner Strasse 2–4, Planegg-Martinsried, Germany
| | - Swantje Hauschild
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Naomi R. Shepherd
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Jürgen Segerer
- Airbus Defense and Space, GmbH, Claude-Dornier-Strasse, Immenstaad, Germany
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rapid adaptation to microgravity in mammalian macrophage cells. Sci Rep 2017; 7:43. [PMID: 28242876 PMCID: PMC5427920 DOI: 10.1038/s41598-017-00119-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/08/2017] [Indexed: 01/19/2023] Open
Abstract
Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes.
Collapse
|
21
|
Li G, Song Y, Shi M, Du Y, Wang W, Zhang Y. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography. Acta Biomater 2017; 49:235-246. [PMID: 27890731 DOI: 10.1016/j.actbio.2016.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022]
Abstract
Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. STATEMENT OF SIGNIFICANCE Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration.
Collapse
|
22
|
RhoGTPase stimulation is associated with strontium chloride treatment to counter simulated microgravity-induced changes in multipotent cell commitment. NPJ Microgravity 2017. [PMID: 28649629 PMCID: PMC5460183 DOI: 10.1038/s41526-016-0004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microgravity-related cytoskeletal disorganization is associated with an altered balance between osteoblastogenesis and adipogenesis of multipotent cells. Strontium chloride is known to increase osteoblastogenesis and repress adipogenesis, but its effects in microgravity-related conditions have not been established. Our goal was to investigate early events in this process, focusing on RhoGTPases as controllers of cytoskeletal organization leading to stem cell commitment. We cultivated C3H10T1/2 on microspheres using a rotating wall vessel bioreactor (NASA) in order to simulate microgravity-related conditions in adipogenesis and osteoblastogenesis conditions independently. We observed that rotating wall vessel cultures presented increased adipogenesis, while osteoblastogenesis was reduced. Strontium-treated multipotent cells presented a significant repression in adipogenesis (−90 %, p < 0.001 PPARyD8) and an activation of osteoblastogenesis (+95 %, p < 0.001 bone sialoprotein and osteopontin D8), even in gravity altered conditions. We established that concomitant RhoA/Rac1 activations were associated with osteoblastogenesis enhancement and adipogenesis limitation in uncommitted cells. As vascular endothelial growth factor splicing is mechanosensitive and its signaling is central to stem cell commitment, we investigated vascular endothelial growth factor production, isoforms and receptors expressions in our conditions. We observed that vascular endothelial growth factor and receptors expressions were not significantly affected, but we found that presence of soluble vascular endothelial growth factor was associated with RhoA/Rac1 activations, whereas sequestration of vascular endothelial growth factor by cells was associated with RhoA/Rac1 inhibitions. We propose that strontium triggers secretion of vascular endothelial growth factor and the subsequent Rac1 and RhoA activations leading to repression of adipogenesis and osteogenesis stimulation validating strontium as a counter measure for microgravity-induced alteration of cell commitment. A chemical element naturally found for instance in seafood or grains, could counter bone loss from long-term spaceflight. Alain Guignandon and colleagues from the Université de Lyon à St-Etienne in France exposed multipotent embryonic fibroblasts to microgravity conditions similar to those found in space. They found the balance shifted in these stem cells from differentiating to bone-forming cells (osteoblasts) to differentiating to fatty-tissue forming cells (adipocytes). When the cells were treated with strontium, the shift toward osteoblastogenesis was regained. Strontium achieves this by sustaining the activity of two proteins that play a role in bone development but are suppressed in space. Strontium’s effect on the proteins could happen via release of vascular endothelial growth factor, which, under normal gravity conditions, plays a role in committing the cell to differentiation into osteoblasts rather than adipoyctes.
Collapse
|
23
|
Jia XF, Ye F, Wang YB, Feng DX. ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro. Neural Regen Res 2016; 11:983-7. [PMID: 27482229 PMCID: PMC4962598 DOI: 10.4103/1673-5374.184499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Xu-Feng Jia
- Department of Orthopedic Surgery, Jianyang People's Hospital of Sichuan Province, Jianyang, Sichuan Province, China
| | - Fei Ye
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yan-Bo Wang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Da-Xiong Feng
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
24
|
Bauer J, Bussen M, Wise P, Wehland M, Schneider S, Grimm D. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Rev Proteomics 2016; 13:697-705. [DOI: 10.1080/14789450.2016.1197775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Johann Bauer
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Bussen
- Lifescience, Elsevier Information System GmbH, Frankfurt am Main, Germany
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Schneider
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Lee TH, Chennakrishnaiah S, Rak J. Oncogene-dependent survival of highly transformed cancer cells under conditions of extreme centrifugal force - implications for studies on extracellular vesicles. Cell Mol Biol Lett 2016. [PMID: 26204397 DOI: 10.1515/cmble-2015-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are a subject of intense interest due to their emission by cancer cells and role in intercellular communication. Earlier reports suggested that oncogenes, such as RAS, MET or EGFR, drive cellular vesiculation. Interestingly, these oncogenes may also traffic between cells using the EV-mediated emission and uptake processes. One of the main tools in the analysis of EVs are ultracentrifugation protocols designed to efficiently separate parental cells from vesicles through a sequence of steps involving increasing g-force. Here we report that ultracentrifugationonly EV preparations from highly transformed cancer cells, driven by the overexpression of oncogenic H-ras (RAS-3) and v-src (SRC-3), may contain clonogenic cancer cells, while preparations of normal or less aggressive human cell lines are generally free from such contamination. Introduction of a filtration step eliminates clonogenic cells from the ultracentrifugate. The survival of RAS-3 and SRC-3 cells under extreme conditions of centrifugal force (110,000 g) is oncogene-induced, as EV preparations of their parental non-tumourigenic cell line (IEC-18) contain negligible numbers of clonogenic cells. Moreover, treatment of SRC-3 cells with the SRC inhibitor (PP2) markedly reduces the presence of such cells in the unfiltered ultracentrifugate. These observations enforce the notion that EV preparations require careful filtration steps, especially in the case of material produced by highly transformed cancer cell types. We also suggest that oncogenic transformation may render cells unexpectedly resistant to extreme physical forces, which may affect their biological properties in vivo.
Collapse
|
26
|
Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, Lang F, Stournaras C, Föller M. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett 2016; 590:705-15. [DOI: 10.1002/1873-3468.12096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Abul Fajol
- Department of Physiology; University of Tübingen; Germany
| | - Sabina Honisch
- Department of Physiology; University of Tübingen; Germany
| | - Bingbing Zhang
- Department of Physiology; University of Tübingen; Germany
| | | | - Saad Alkahtani
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Saud Alarifi
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Florian Lang
- Department of Physiology; University of Tübingen; Germany
| | - Christos Stournaras
- Department of Physiology; University of Tübingen; Germany
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Michael Föller
- Institute of Agricultural and Nutritional Sciences; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
27
|
Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 2015; 137:3-18. [PMID: 26571091 DOI: 10.1016/j.jprot.2015.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. BIOLOGICAL SIGNIFICANCE Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy
| | - Giuseppe Pani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Barbara Pascucci
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Sandip A Ghuge
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, V.le Forlanini 8, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy.
| | - Angela M Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
28
|
RhoGTPases as key players in mammalian cell adaptation to microgravity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:747693. [PMID: 25649831 PMCID: PMC4310447 DOI: 10.1155/2015/747693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
Abstract
A growing number of studies are revealing that cells reorganize their cytoskeleton when exposed to conditions of microgravity. Most, if not all, of the structural changes observed on flown cells can be explained by modulation of RhoGTPases, which are mechanosensitive switches responsible for cytoskeletal dynamics control. This review identifies general principles defining cell sensitivity to gravitational stresses. We discuss what is known about changes in cell shape, nucleus, and focal adhesions and try to establish the relationship with specific RhoGTPase activities. We conclude by considering the potential relevance of live imaging of RhoGTPase activity or cytoskeletal structures in order to enhance our understanding of cell adaptation to microgravity-related conditions.
Collapse
|