1
|
Liu F, Wawersik S, Tomlinson S, Thurman JM, Holers VM. Tissue-targeted regulators of complement for amelioration of human disease: rationale and novel therapeutic strategies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf053. [PMID: 40258303 DOI: 10.1093/jimmun/vkaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025]
Abstract
The complement system is an essential part of innate immunity, and dysregulated complement is an underlying driver in many inflammatory and autoimmune diseases. Currently approved complement-focused therapeutics rely on systemic blockade of complement activation, but a major challenge with this approach is that complement components exist in high abundance and undergo rapid systemic turnover, creating a large pharmacologic sink. To improve the arsenal of complement therapies, tissue-targeting has emerged as a strategy to re-regulate complement in diseased tissue, while limiting systemic blockade. This approach, which is based on directing complement modulators to tissues through the recognition of tissue-fixed activated complement fragments, tissue-specific epitopes, or injury-associated neoepitopes, has the potential for enhanced potency and durability and reduced infection risk. In this review, we discuss the rationale for tissue-targeted complement therapies, the strategies taken to achieve local regulation, current state of preclinical and clinical stage tissue-targeted therapeutics, and potential future directions.
Collapse
Affiliation(s)
- Fei Liu
- Q32 Bio Inc., Waltham, MA, United States
| | | | - Stephen Tomlinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| | - Joshua M Thurman
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
2
|
Li L, Ding P, Dong Y, Shen S, Lv X, Yu J, Li L, Chen J, Wang P, Han B, Xu T, Hu W. CG001, a C3b-targeted complement inhibitor, blocks 3 complement pathways: development and preclinical evaluation. Blood Adv 2024; 8:4181-4193. [PMID: 38865712 PMCID: PMC11334799 DOI: 10.1182/bloodadvances.2024012874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024] Open
Abstract
ABSTRACT Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) x2, termed CG001, that could potently block all 3 complement pathways. Complement receptor of the immunoglobulin superfamily (CRIg) and factor H (FH) bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, whereas FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in alternative pathways-induced hemolytic mouse and classical pathways-induced mesangial proliferative glomerulonephritis rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.
Collapse
Affiliation(s)
- Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Shupei Shen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xinyue Lv
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Jie Yu
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Luying Li
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pilin Wang
- Alphamab Co Ltd., Suzhou, Jiangsu, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ting Xu
- Alphamab Co Ltd., Suzhou, Jiangsu, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Ding T, Wang Y, Meng Y, Wu E, Shao Q, Lin S, Yu Y, Qian J, He Q, Zhang J, Wang J, Kohane DS, Zhan C. Reciprocal Interaction with Neutrophils Facilitates Cutaneous Accumulation of Liposomes. ACS NANO 2024; 18:18769-18784. [PMID: 38950189 DOI: 10.1021/acsnano.4c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Liposomes are versatile drug delivery systems in clinical use for cancer and many other diseases. Unfortunately, PEGylated liposomal doxorubicin (sLip/DOX) exhibits serious dose-limiting cutaneous toxicities, which are closely related to the extravascular accumulation of sLip/DOX in the dermis. No clinical interventions have been proposed for cutaneous toxicities due to the elusive transport pathways. Herein, we showed that the reciprocal interaction between liposomes and neutrophils played pivotal roles in liposome extravasation into the dermis. Neutrophils captured liposomes via the complement receptor 3 (CD11b/CD18) recognizing the fragment of complement component C3 (iC3b) deposited on the liposomal surface. Uptake of liposomes also activated neutrophils to induce CD11b upregulation and enhanced the ability of neutrophils to migrate outside the capillaries. Furthermore, inhibition of complement activation either by CRIg-L-FH (a C3b/iC3b targeted complement inhibitor) or blocking the phosphate negative charge in mPEG-DSPE could significantly reduce liposome uptake by neutrophils and alleviate the cutaneous accumulation of liposomes. These results validated the liposome extravasation pathway mediated by neutrophils and provided potential solutions to the devastating cutaneous toxicities occurring during sLip/DOX treatment.
Collapse
Affiliation(s)
- Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yang Wang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanchun Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Ercan Wu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Qianwen Shao
- School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 201203, P. R. China
| | - Shiqi Lin
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jun Qian
- School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 201203, P. R. China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
- School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
5
|
Liu B, Cheng L, Gao H, Zhang J, Dong Y, Gao W, Yuan S, Gong T, Huang W. The biology of VSIG4: Implications for the treatment of immune-mediated inflammatory diseases and cancer. Cancer Lett 2023; 553:215996. [PMID: 36343787 DOI: 10.1016/j.canlet.2022.215996] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
V-set and immunoglobulin domain containing 4 (VSIG4), a type I transmembrane receptor exclusively expressed in a subset of tissue-resident macrophages, plays a pivotal role in clearing C3-opsonized pathogens and their byproducts from the circulation. VSIG4 maintains immune homeostasis by suppressing the activation of complement pathways or T cells and inducing regulatory T-cell differentiation, thereby inhibiting the development of immune-mediated inflammatory diseases but enhancing cancer progression. Consequently, VSIG4 exhibits a potential therapeutic effect for immune-mediated inflammatory diseases, but also is regarded as a novel target of immune checkpoint inhibition in cancer therapy. Recently, soluble VSIG4, the extracellular domain of VSIG4, shed from the surface of macrophages, has been found to be a biomarker to define macrophage activation-related diseases. This review mainly summarizes recent new findings of VSIG4 in macrophage phagocytosis and immune homeostasis, and discusses its potential diagnostic and therapeutic usage in infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Bei Liu
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China
| | - Li Cheng
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Honghao Gao
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, 02021, USA
| | - Shunzong Yuan
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China.
| | - Wenrong Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
6
|
Zhou X, Khan S, Huang D, Li L. V-Set and immunoglobulin domain containing (VSIG) proteins as emerging immune checkpoint targets for cancer immunotherapy. Front Immunol 2022; 13:938470. [PMID: 36189222 PMCID: PMC9520664 DOI: 10.3389/fimmu.2022.938470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of immune checkpoint inhibitors is becoming a promising approach to fight cancers. Antibodies targeting immune checkpoint proteins such as CTLA-4 and PD-1 can reinvigorate endogenous antitumor T-cell responses and bring durable advantages to several malignancies. However, only a small subset of patients benefit from these checkpoint inhibitors. Identification of new immune checkpoints with the aim of combination blockade of multiple immune inhibitory pathways is becoming necessary to improve efficiency. Recently, several B7 family-related proteins, TIGIT, VSIG4, and VSIG3, which belong to the VSIG family, have attracted substantial attention as coinhibitory receptors during T-cell activation. By interacting with their corresponding ligands, these VSIG proteins inhibit T-cell responses and maintain an immune suppressive microenvironment in tumors. These results indicated that VSIG family members are becoming putative immune checkpoints in cancer immunotherapy. In this review, we summarized the function of each VSIG protein in regulating immune responses and in tumor progression, thus providing an overview of our current understanding of VSIG family members.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sohail Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dabing Huang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Dabing Huang, ; Lu Li,
| | - Lu Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Dabing Huang, ; Lu Li,
| |
Collapse
|
7
|
Song J, Zhao R, Yan C, Luo S, Xi J, Ding P, Li L, Hu W, Zhao C. A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats via Immune Modulation. Front Immunol 2022; 13:746068. [PMID: 35154091 PMCID: PMC8825366 DOI: 10.3389/fimmu.2022.746068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-induced complement activation may cause injury of the neuromuscular junction (NMJ) and is thus considered as a primary pathogenic factor in human myasthenia gravis (MG) and animal models of experimental autoimmune myasthenia gravis (EAMG). In this study, we tested whether CRIg/FH, a targeted complement inhibitor, could attenuate NMJ injury in rat MG models. We first demonstrated that CRIg/FH could inhibit complement-dependent cytotoxicity on human rhabdomyosarcoma TE671 cells induced by MG patient-derived IgG in vitro. Furthermore, we investigated the therapeutic effect of CRIg/FH in a passive and an active EAMG rodent model. In both models, administration of CRIg/FH could significantly reduce the complement-mediated end-plate damage and suppress the development of EAMG. In the active EAMG model, we also found that CRIg/FH treatment remarkably reduced the serum concentration of autoantibodies and of the cytokines including IFN-γ, IL-2, IL-6, and IL-17, and upregulated the percentage of Treg cells in the spleen, which was further verified in vitro. Therefore, our findings indicate that CRIg/FH may hold the potential for the treatment of MG via immune modulation.
Collapse
Affiliation(s)
- Jie Song
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Rui Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
8
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
9
|
Luo S, Hu D, Wang M, Zipfel PF, Hu Y. Complement in Hemolysis- and Thrombosis- Related Diseases. Front Immunol 2020; 11:1212. [PMID: 32754149 PMCID: PMC7366831 DOI: 10.3389/fimmu.2020.01212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system, originally classified as part of innate immunity, is a tightly self-regulated system consisting of liquid phase, cell surface, and intracellular proteins. In the blood circulation, the complement system, platelets, coagulation system, and fibrinolysis system form a close and complex network. They activate and regulate each other and jointly mediate immune monitoring and tissue homeostasis. The dysregulation of each cascade system results in clinical manifestations and the progression of different diseases, such as sepsis, atypical hemolytic uremic syndrome, C3 glomerulonephritis, systemic lupus erythematosus, or ischemia–reperfusion injury. In this review, we summarize the crosstalk between the complement system, platelets, and coagulation, provide integrative insights into how complement dysfunction leads to hemopathic progression, and further discuss the therapeutic relevance of complement in hemolytic and thrombotic diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Shi Y, Yao W, Sun L, Li G, Liu H, Ding P, Hu W, Xu H. The new complement inhibitor CRIg/FH ameliorates lupus nephritis in lupus-prone MRL/lpr mice. BMC Nephrol 2019; 20:424. [PMID: 31752725 PMCID: PMC6873683 DOI: 10.1186/s12882-019-1599-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/23/2019] [Indexed: 01/24/2023] Open
Abstract
Backgrounds The aberrant activation of complement system is critically involved in lupus nephropathy. Recent study showed complement C3 inhibitor was effective in the treatment of lupus nephropathy. In this study, we investigate the effect of a novel complement C3 inhibitor, CRIg/FH, in the treatment of lupus nephropathy in MRL/lpr lupus mice. Methods We treated MRL/lpr female mice with a dose escalation of CRIg/FH (10, 5 and 2 mg/kg) by intraperitoneal injection twice weekly since 12 weeks age. In addition, MRL/lpr mice treated with intraperitoneal injection of normal saline or oral prednisone, along with C57BL/6 J healthy mice were maintained to serve as controls. We started 8-h urine collection weekly to screen proteinuria by measuring the levels of urine urea/creatinine. Serum samples was collected at week 16 and 20 to measure levels of urea nitrogen, creatinine, and immunological markers (C3, C4, A-ds-DNA) before the mice were sacrificed at 20 weeks age to collect kidneys for histopathological examinations. Results Overt skin lesions were observed in MRL/lpr mice treated with normal saline, while skin lesion was not observed in CRIg/FH treated MRL/lpr mice. There was no overt proteinuria observed in MRL/lpr mice treated with CRIg/FH. Serum creatinine and BUN levels in MRL/lpr mice was maintained in highest CRIg/FH dose (10 mg/kg twice a week) to be significantly lower than that in prednisone treated MRL/lpr mice at 20 weeks age. In addition, CRIg/FH treatment in MRL/lpr mice results in a significantly elevated serum C3 and C4 levels when compared to prednisone treatment at both 16 and 20 weeks. Furthermore, our study identified that serum level of A-ds-DNA was also significantly lower in CRIg/FH treatment than that in predisone treated MRL/lpr mice. Renal pathology confirmed that kidneys from CRIg/FH treated MRL/lpr mice suffered less from nephritis and complement disposition. Conclusion Our results showed that the complement inhibitor CRIg/FH can protect MRL/lpr mice from lupus nephropathy by preserving renal function and glomerulus complement activation. Our findings support the positive effect of complement inhibitors in the treatment of lupus nephropathy.
Collapse
Affiliation(s)
- Yu Shi
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wen Yao
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Li Sun
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Guomin Li
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Haimei Liu
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hong Xu
- Division of Rheumatology, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
11
|
Hu C, Li L, Ding P, Li L, Ge X, Zheng L, Wang X, Wang J, Zhang W, Wang N, Gu H, Zhong F, Xu M, Rong R, Zhu T, Hu W. Complement Inhibitor CRIg/FH Ameliorates Renal Ischemia Reperfusion Injury via Activation of PI3K/AKT Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3717-3730. [PMID: 30429287 PMCID: PMC6287101 DOI: 10.4049/jimmunol.1800987] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Complement activation is involved in the pathogenesis of ischemia reperfusion injury (IRI), which is an inevitable process during kidney transplantation. Therefore, complement-targeted therapeutics hold great potential in protecting the allografts from IRI. We observed universal deposition of C3d and membrane attack complex in human renal allografts with delayed graft function or biopsy-proved rejection, which confirmed the involvement of complement in IRI. Using FB-, C3-, C4-, C5-, C5aR1-, C5aR2-, and C6-deficient mice, we found that all components, except C5aR2 deficiency, significantly alleviated renal IRI to varying degrees. These gene deficiencies reduced local (deposition of C3d and membrane attack complex) and systemic (serum levels of C3a and C5a) complement activation, attenuated pathological damage, suppressed apoptosis, and restored the levels of multiple local cytokines (e.g., reduced IL-1β, IL-9, and IL-12p40 and increased IL-4, IL-5, IL-10, and IL-13) in various gene-deficient mice, which resulted in the eventual recovery of renal function. In addition, we demonstrated that CRIg/FH, which is a targeted complement inhibitor for the classical and primarily alternative pathways, exerted a robust renoprotective effect that was comparable to gene deficiency using similar mechanisms. Further, we revealed that PI3K/AKT activation, predominantly in glomeruli that was remarkably inhibited by IRI, played an essential role in the CRIg/FH renoprotective effect. The specific PI3K antagonist duvelisib almost completely abrogated AKT phosphorylation, thus abolishing the renoprotective role of CRIg/FH. Our findings suggested that complement activation at multiple stages induced renal IRI, and CRIg/FH and/or PI3K/AKT agonists may hold the potential in ameliorating renal IRI.
Collapse
Affiliation(s)
- Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; and
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jina Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Na Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Hongyu Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Fan Zhong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China;
- Department of Oncology, Fudan University, Shanghai 200032, China
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Hertz CE, Bayarri-Olmos R, Kirketerp-Møller N, van Putten S, Pilely K, Skjoedt MO, Garred P. Chimeric Proteins Containing MAP-1 and Functional Domains of C4b-Binding Protein Reveal Strong Complement Inhibitory Capacities. Front Immunol 2018; 9:1945. [PMID: 30210498 PMCID: PMC6120983 DOI: 10.3389/fimmu.2018.01945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/07/2018] [Indexed: 01/23/2023] Open
Abstract
The complement system is a tightly regulated network of proteins involved in defense against pathogens, inflammatory processes, and coordination of the innate and adaptive immune responses. Dysregulation of the complement cascade is associated with many inflammatory disorders. Thus, inhibition of the complement system has emerged as an option for treatment of a range of different inflammatory diseases. MAP-1 is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway of the complement system, whereas C4b-binding protein (C4BP) regulates both the classical and lectin pathways. In this study we generated chimeric proteins consisting of MAP-1 and the first five domains of human C4BP (C4BP1−5) in order to develop a targeted inhibitor acting at different levels of the complement cascade. Two different constructs were designed and expressed in CHO cells where MAP-1 was fused with C4BP1−5 in either the C- or N-terminus. The functionality of the chimeric proteins was assessed using different in vitro complement activation assays. Both chimeric proteins displayed the characteristic Ca2+-dependent dimerization and binding to PRMs of native MAP-1, as well as the co-factor activity of native C4BP. In ELISA-based complement activation assays they could effectively inhibit the lectin and classical pathways. Notably, MAP-1:C4BP1−5 was five times more effective than rMAP-1 and rC4BP1−5 applied at the same time, emphasizing the advantage of a single inhibitor containing both functional domains. The MAP-1/C4BP chimeras exert unique complement inhibitory properties and represent a novel therapeutic approach targeting both upstream and central complement activation.
Collapse
Affiliation(s)
- Cecilie E Hertz
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Kirketerp-Møller
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Wen Y, Ouyang Z, Schoonooghe S, Luo S, De Baetselier P, Lu W, Muyldermans S, Raes G, Zheng F. Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity. Immunobiology 2016; 222:807-813. [PMID: 27889311 DOI: 10.1016/j.imbio.2016.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022]
Abstract
Vsig4 is a recently identified immune regulatory protein related to the B7 family with dual functionality: a negative regulator of T cell activation and a receptor for the complement components C3b and C3c. Here we present a structural evaluation of a nanobody, Nb119, against the extracellular IgV domain protein of both mouse and human recombinant Vsig4, which have a high degree of sequence identity. Although mouse and human Vsig4 bind to Nb119 with a 250 times difference in dissociation constants, the interaction results in a highly identical assembly with a RMSD of 0.4Å. The molecular determinants for Vsig4 recognition and cross reactivity unveiled by the atomic structure of Nb119 in complex with mVsig4 and hVsig4 afford new insights useful for the further optimization of the nanobody for potential use in humans. Additionally, structural analysis of the Vsig4-Nb119 complexes indicates that Nb119 occupies the interface on Vsig4 recognized by the macroglobulin-like domains MG4 and MG5 of C3b. Thus an affinity-improved Nb119 may have the potential to influence the activation of both T cells and complement.
Collapse
Affiliation(s)
- Yurong Wen
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenlin Ouyang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Steve Schoonooghe
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium
| | - Siyu Luo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Environment and Genes Related to Diseases, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Patrick De Baetselier
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium
| | - Wuyuan Lu
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Serge Muyldermans
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium
| | - Geert Raes
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium
| | - Fang Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Environment and Genes Related to Diseases, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
14
|
Ding P, Li L, Huang T, Yang C, Xu E, Wang N, Zhang L, Gu H, Yao X, Zhou X, Hu W. Complement component 6 deficiency increases susceptibility to dextran sulfate sodium-induced murine colitis. Immunobiology 2016; 221:1293-303. [DOI: 10.1016/j.imbio.2016.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
15
|
Risitano AM, Marotta S. Therapeutic complement inhibition in complement-mediated hemolytic anemias: Past, present and future. Semin Immunol 2016; 28:223-40. [PMID: 27346521 DOI: 10.1016/j.smim.2016.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/24/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
The introduction in the clinic of anti-complement agents represented a major achievement which gave to physicians a novel etiologic treatment for different human diseases. Indeed, the first anti-complement agent eculizumab has changed the treatment paradigm of paroxysmal nocturnal hemoglobinuria (PNH), dramatically impacting its severe clinical course. In addition, eculizumab is the first agent approved for atypical Hemolytic Uremic Syndrome (aHUS), a life-threatening inherited thrombotic microangiopathy. Nevertheless, such remarkable milestone in medicine has brought to the fore additional challenges for the scientific community. Indeed, the list of complement-mediated anemias is not limited to PNH and aHUS, and other human diseases can be considered for anti-complement treatment. They include other thrombotic microangiopathies, as well as some antibody-mediated hemolytic anemias. Furthermore, more than ten years of experience with eculizumab led to a better understanding of the individual steps of the complement cascade involved in the pathophysiology of different human diseases. Based on this, new unmet clinical needs are emerging; a number of different strategies are currently under development to improve current anti-complement treatment, trying to address these specific clinical needs. They include: (i) alternative anti-C5 agents, which may improve the heaviness of eculizumab treatment; (ii) broad-spectrum anti-C3 agents, which may improve the efficacy of anti-C5 treatment by intercepting the complement cascade upstream (i.e., preventing C3-mediated extravascular hemolysis in PNH); (iii) targeted inhibitors of selective complement activating pathways, which may prevent early pathogenic events of specific human diseases (e.g., anti-classical pathway for antibody-mediated anemias, or anti-alternative pathway for PNH and aHUS). Here we briefly summarize the status of art of current and future complement inhibition for different complement-mediated anemias, trying to identify the most promising approaches for each individual disease.
Collapse
Affiliation(s)
- Antonio M Risitano
- Hematology, Department of Clinical Medicine and Surgery; Federico II University, Naples, Italy.
| | - Serena Marotta
- Hematology, Department of Clinical Medicine and Surgery; Federico II University, Naples, Italy
| |
Collapse
|
16
|
Irvine KM, Banh X, Gadd VL, Wojcik KK, Ariffin JK, Jose S, Lukowski S, Baillie GJ, Sweet MJ, Powell EE. CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites. JCI Insight 2016; 1:e86914. [PMID: 27699269 DOI: 10.1172/jci.insight.86914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infections are an important cause of morbidity and mortality in patients with decompensated cirrhosis and ascites. Hypothesizing that innate immune dysfunction contributes to susceptibility to infection, we assessed ascitic fluid macrophage phenotype and function. The expression of complement receptor of the immunoglobulin superfamily (CRIg) and CCR2 defined two phenotypically and functionally distinct peritoneal macrophage subpopulations. The proportion of CRIghi macrophages differed between patients and in the same patient over time, and a high proportion of CRIghi macrophages was associated with reduced disease severity (model for end-stage liver disease) score. As compared with CRIglo macrophages, CRIghi macrophages were highly phagocytic and displayed enhanced antimicrobial effector activity. Transcriptional profiling by RNA sequencing and comparison with human macrophage and murine peritoneal macrophage expression signatures highlighted similarities among CRIghi cells, human macrophages, and mouse F4/80hi resident peritoneal macrophages and among CRIglo macrophages, human monocytes, and mouse F4/80lo monocyte-derived peritoneal macrophages. These data suggest that CRIghi and CRIglo macrophages may represent a tissue-resident population and a monocyte-derived population, respectively. In conclusion, ascites fluid macrophage subset distribution and phagocytic capacity is highly variable among patients with chronic liver disease. Regulating the numbers and/or functions of these macrophage populations could provide therapeutic opportunities in cirrhotic patients.
Collapse
Affiliation(s)
| | | | | | | | - Juliana K Ariffin
- Institute for Molecular Bioscience (IMB), and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth E Powell
- School of Medicine.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A 2015; 112:14319-24. [PMID: 26578778 DOI: 10.1073/pnas.1513698112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of complement is a key determinant of neuropathology and disability after traumatic brain injury (TBI), and inhibition is neuroprotective. However, systemic complement is essential to fight infections, a critical complication of TBI. We describe a targeted complement inhibitor, comprising complement receptor of the Ig superfamily (CRIg) fused with complement regulator CD59a, designed to inhibit membrane attack complex (MAC) assembly at sites of C3b/iC3b deposition. CRIg and CD59a were linked via the IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited MAC formation and prevented complement-mediated lysis in vitro. CD59-2a-CRIg dimer bound C3b-coated surfaces with submicromolar affinity (KD). In experimental TBI, CD59-2a-CRIg administered posttrauma homed to sites of injury and significantly reduced MAC deposition, microglial accumulation, mitochondrial stress, and axonal damage and enhanced neurologic recovery compared with placebo controls. CD59-2a-CRIg inhibited MAC-induced inflammasome activation and IL-1β production in microglia. Given the important anti-infection roles of complement opsonization, site-targeted inhibition of MAC should be considered to promote recovery postneurotrauma.
Collapse
|
18
|
Nordmaj MA, Munthe-Fog L, Hein E, Skjoedt MO, Garred P. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways. FASEB J 2015; 29:4945-55. [PMID: 26260032 DOI: 10.1096/fj.15-277103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Abstract
Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative pathway (AP) is complement factor H (FH). Our aim was to design a dual upstream inhibitor of both human lectin and APs by fusing MAP-1 with a part of FH. There were 2 different recombinant chimeric proteins comprising full-length human MAP-1 and the first 5 N-terminal domains of human FH designed. The FH domains were orientated either in the N- or C-terminal part of MAP-1. The complement inhibition potential in human serum was assessed. Both chimeric constructs displayed the characteristics of the native molecules and bound to the PRMs with an EC50 of ∼ 2 nM. However, when added to serum diluted 1:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect was seen on the classical pathway. Fusion of MAP-1 with FH domains represents a novel therapeutic approach for selective targeting upstream and central complement activation at sites of inflammation.
Collapse
Affiliation(s)
- Mie Anemone Nordmaj
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hein
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology-7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Risitano AM. Complement inhibition for paroxysmal nocturnal hemoglobinuria: where we stand and where we are going. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1041376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Risitano AM. Current and Future Pharmacologic Complement Inhibitors. Hematol Oncol Clin North Am 2015; 29:561-82. [DOI: 10.1016/j.hoc.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|