1
|
Pu Q, Gao H, Xiao D, Wang M, Yang Z, He Q, Liu M, Zhu X, Pan T, Ma Z, Wang J, Liu Y. Tetramethylpyrazine: A Fermented Alcohol Product that Mitigates Alcoholic Liver Disease in Mice. Free Radic Biol Med 2025:S0891-5849(25)00698-7. [PMID: 40412569 DOI: 10.1016/j.freeradbiomed.2025.05.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Alcoholic liver disease (ALD) is a leading cause of premature death globally yet remains under-controlled. In this study, we investigated the protective effects of tetramethylpyrazine (TMP), an aromatic compound found in fermented alcohol, against ALD in a National Institute on Alcohol Abuse and Alcoholism (NIAAA) mice model. Our results demonstrated that TMP significantly reduced alcohol-induced liver injury, steatosis, oxidative stress, and mitochondrial damage, while restoring NAD+ levels and the NAD+/NADH ratio, increasing ATP production, regulating energy metabolism disorders, and restoring metabolic balance (P < 0.05). Liver transcriptomic analysis identified 906 ALD-associated genes enriched in energy and lipid metabolism pathways, with a molecular signature of NAD-dependent oxidoreductase activity. Protein interaction analysis predicted Nicotinamide Phosphoribosyltransferase (NAMPT) as a key rate-limiting enzyme in NAD metabolism. Cellular Thermal Shift Assay (CETSA) experiments and molecular docking studies further confirmed that TMP can restore the level of NAD+ by stabilizing the NAMPT protein. TMP is present in various foods, including Semen Sojae Preparatum, a TMP-rich fermented food commonly used in Traditional Chinese Medicine for ALD treatment. This food exhibited significant protective effects against ALD. In conclusion, TMP, an aromatic compound in fermented alcohol, could protect the liver from alcohol-induced damage. Enhancing TMP content in fermented alcohol holds significant promise for mitigating the adverse effects of alcohol consumption on the liver.
Collapse
Affiliation(s)
- Qing Pu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Han Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dake Xiao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Manyuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zhiyun Yang
- Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China; Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiang He
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Min Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Xuejin Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Tao Pan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Zhitao Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China; Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China.
| | - Yao Liu
- Department of Hepatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
2
|
Kim OH, Kim TW, Kang H, Jeon TJ, Chang ES, Lee HJ, Kim WY. Early, very high-dose, and prolonged vitamin C administration in murine sepsis. Sci Rep 2025; 15:17513. [PMID: 40394136 PMCID: PMC12092791 DOI: 10.1038/s41598-025-02622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
This proof-of-concept study aimed to assess the optimal timing, dosing, and duration of vitamin C administration to increase survival and attenuate organ injuries in murine sepsis. Mice were randomized to receive ascorbic acid (AscA) at 1 or 6 h after cecal ligation and puncture (CLP). At each time point, mice randomly received AscA for 4 or 8 d. Mice were assigned to sham and CLP groups, as well as CLP + AscA groups that were treated with AscA at doses of 90, 180, or 360 mg/kg/d. The survival curves diverged significantly when AscA was injected at doses of 180 or 360 mg/kg/d for 8 d, although this was not observed when the treatment was limited to 4 d. AscA at doses of 180 or 360 mg/kg/d for 8 d preserved lung architecture while attenuating the abnormal expression of tight junction proteins. Kidney and liver injuries were evident in CLP mice, with elevated expression of biomarkers and inflammatory mediators; however, exposure to AscA at doses of 180 or 360 mg/kg/d for 8 d improved the histological changes and decreased biomarker expression levels. Very high-dose and prolonged vitamin C administration may potentially play a role in the management of sepsis-associated organ injuries.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae Wan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hana Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Eun Seo Chang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Won-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Yin D, Li F, Xia L, Wei T, Shan C, Zhang Z, Wei R. GLP-1 receptor agonists show no detrimental effect on sperm quality in mouse models and cell lines. Endocrine 2025:10.1007/s12020-025-04245-4. [PMID: 40347306 DOI: 10.1007/s12020-025-04245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/18/2025] [Indexed: 05/12/2025]
Abstract
PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) agonists exert multiple beneficial effects. However, their effects on reproduction system are controversial. Here, we aimed to investigate their effects on male reproduction and provide safety evidence for future clinical use. METHODS Male diabetic mice and aged mice were treated with liraglutide or vehicle, and sperm concentration and motility were assessed. The expression and location of GLP-1R in testicular tissues and in four testicular cell lines (spermatogonia, spermatocytes, Leydig cells, and Sertoli cells) were detected. Cauda epididymis and testicular cells were treated with liraglutide, semaglutide or vehicle, and sperm motility and cell proliferation were detected to determine the direct effect of GLP-1R agonists. Global Glp1r knockout mice were constructed, and testicular morphology, sperm concentration and motility were detected to confirm the effects of GLP-1R signaling on male reproduction. RESULTS Liraglutide significantly reduced blood glucose levels, but did not improve sperm parameters in diabetic mice. No significant differences were observed between liraglutide and control group in aged mice. GLP-1R was expressed in testicular tissues and all four cell lines, with the highest expression in Leydig cells. Liraglutide or semaglutide had no impacts on sperm count and motility in vitro, and had no effects on cell proliferation in four cell lines. The Glp1r knockout mice exhibited higher blood glucose levels and preserved normal testicular morphology, but their sperm concentration was higher than that in wildtype mice. CONCLUSION GLP-1R agonists have no detrimental effect on sperm concentration and motility in vivo and in vitro, while GLP-1R absence increase the sperm concentration.
Collapse
Affiliation(s)
- Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Chunhua Shan
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Feng ZG, Geng ZJ, Song Q, Hu H, Tan XY, Zeng SY, Zhou RY, Ma X, Liu Y, Zhang Y. Metabolomics based analysis reveals the therapeutic effects of Incarvillea arguta (Royle) Royle aqueous extract against alcohol-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156639. [PMID: 40085992 DOI: 10.1016/j.phymed.2025.156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Alcohol-induced liver injury (ALI) poses a significant threat to global human health. The Chinese Yi medicine Liangtoumao (LTM), which originated from the whole plant of Incarvillea arguta Royle (Royle), has been widely used by the Yi ethnic group to prevent and treat ALI and other liver diseases. However, its effectiveness and mechanisms are still under-researched. PURPOSE The objective of our research is to investigate the chemical composition of LTM aqueous extract, evaluate its potential therapeutic intervention effect on ALI, and explore its mechanisms in rat models. METHODS The chemical components and constituents of LTM aqueous extract migrating to the blood were analyzed by UPLC-Q-TOF/MS. Sprague-Dawley rats subjected to chronic binge alcohol exposure were utilized to establish chronic ALI models and evaluate the therapeutic effects of LTM aqueous extract. Serum and spatial metabolomics analyses were used to investigate potential mechanisms. RESULTS A total of 60 chemical components in LTM aqueous extract were identified, with 67 absorbed into the blood, including 29 original compounds and 38 metabolites. Treatment with LTM aqueous extract remarkably alleviated hepatic lesions in livers of ALI rats, improved liver function, reduced oxidative stress and inflammation. Serum metabolomics and hepatic spatial metabolomics identified 30 and 215 differential metabolites, respectively. Metabolic pathways of glyoxylate and dicarboxylate, glycerophospholipid, linoleic acid, taurine and hypotaurine, and cysteine and methionine were closely related to the hepaprotective effects of LTM. CONCLUSION Our research confirmed significant effects of LTM on ALI prevention and treatment for the first time. Metabolomic findings revealed that LTM significantly influences various aspects of lipid metabolism. This study supports expanded mechanism investigations of LTM and explores its possibility as a potential ALI therapy.
Collapse
Affiliation(s)
- Zi-Ge Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Zang-Jia Geng
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Qin Song
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Hu Hu
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Xiao-Yan Tan
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Shang-Yu Zeng
- Urban Vocational College of Sichuan, Chengdu 610110, China
| | - Rong-Yu Zhou
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610225, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Siddiq A A, Dileep SA, Sj AR, Singam SSR, Martin A. Saffron and its active constituents ameliorate hypercholesterolemia by inhibiting PCSK9 and modulating Sortilin, LDLR, and SREBP-2 signaling in high fat diet induced hypercholesterolemic C57BL/6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119697. [PMID: 40157403 DOI: 10.1016/j.jep.2025.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron (Crocus sativus L.) has long been used in Ayurveda, Iranian, and Chinese traditional medicine as a natural remedy for hypercholesterolemia, obesity, and liver disorders though its therapeutic mechanism remains unclear. AIM OF THE STUDY This study explores the mechanism by which saffron extract (SE), crocin (CN), and crocetin (CR) mitigate high fat diet (HFD) induced hypercholesterolemia and hepatic inflammation in C57BL/6 mice, focusing on their inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9). MATERIALS AND METHODS C57BL/6 mice (N = 10/group) were fed either a, normal diet, HFD, or HFD supplemented with SE, CN, CR, or atorvastatin for 12 weeks. Plasma lipids and inflammatory markers were measured. Histopathological changes were assessed via H&E and Sudan black staining. Gene expression was analyzed using qRT-PCR, and ligand-protein interactions were studied using molecular docking, simulation, and thermophoresis. RESULTS HFD-fed mice exhibited dyslipidemia, liver damage, and inflammation, which SE, CN, and CR significantly improved. Treatments reduced cholesterol, triglycerides, and reactive oxygen species, reversed fatty liver degeneration, and downregulated PCSK9 and sortilin expression while upregulating LDLR. They suppressed transcription factors SREBP-1C and SREBP-2 and reduced inflammatory markers, including TNF-α, while increasing IL-10 expression. CR reduced plasma PCSK9 secretion by 39.9 % (p < 0.05). Docking and simulation studies confirmed the strong binding potential of CR and CN to PCSK9. CONCLUSION Saffron and its active components (CN and CR) are novel natural PCSK9 inhibitors that effectively ameliorate hypercholesterolemia by modulating sortilin, LDLR and SREBP-2 pathway, potentially opening the way for developing new therapeutic approaches for managing cholesterol related disorders.
Collapse
Affiliation(s)
- Aisha Siddiq A
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Shaik Abdul Dileep
- Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
| | - Aditya Rao Sj
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
| | - Siva Sankara Reddy Singam
- Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
| | - Asha Martin
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
6
|
Li H, Zhou D, Wang W, Aimaier R, JunYang, Zhao H, Zhao H, Li J, Pang X, Zhou Q, Zhao H. Mycosubtilin Induces G1 Phase Block and Autophagy in Cervical Cancer HeLa Cells. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10534-1. [PMID: 40240746 DOI: 10.1007/s12602-025-10534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Cyclic lipopeptides secreted by the probiotic bacterium Bacillus subtilis have attracted much attention due to their antitumor activities and low toxicity. However, the role of Mycosubtilin (Myco) in the prevention and treatment of cervical cancer remains unclear. In the present study, we conducted a systematic evaluation of Myco's anti-cervical cancer effects to identify its molecular mechanism of action using proteomics technology. The results reveal that Myco inhibited the growth of HeLa and SiHa cervical cancer cell lines in a dose-dependent (3-15 µg/mL) and time-dependent (12-48 h) manner and significantly reduced colony formation and migration in HeLa cells, highlighting its potential to suppress tumor spread. Moreover, autophagosome and autolysosome numbers were significantly increased after Myco treatment, and the expression of autophagy-related proteins was significantly modulated, suggesting that autophagy plays a role in its anti-cancer mechanism. Myco treatment also induced G1 phase cell cycle arrest in HeLa cells, as confirmed by proteomics analysis. Myco was shown to induce cell cycle arrest in HeLa cells by regulating the P53 pathway and autophagy-dependent cell death via the PI3K/AKT/mTOR signaling pathway, demonstrating its multidimensional effect on cervical cancer cell growths. Myco treatment significantly inhibited tumor growth in vivo in a nude mouse cervical cancer xenograft model, providing direct evidence of its potential as a therapeutic candidate for cervical cancer. Given its unique anti-cancer mechanism and significant therapeutic efficacy, Myco should be considered a promising therapeutic agent for cervical cancer.
Collapse
Affiliation(s)
- Haoran Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Dongyuan Zhou
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Weiquan Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Reyihanguli Aimaier
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - JunYang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Haoran Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jinyu Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Qian Zhou
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China.
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China.
| |
Collapse
|
7
|
Zhou Z, Li T, Qin H, Wang X, He S, Fan Z, Ye Q, Du Y. Acacetin as a natural cardiovascular therapeutic: mechanisms and preclinical evidence. Front Pharmacol 2025; 16:1493981. [PMID: 40255574 PMCID: PMC12006078 DOI: 10.3389/fphar.2025.1493981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/06/2025] [Indexed: 04/22/2025] Open
Abstract
Globally, cardiovascular disease (CVD) has emerged as a leading cause of mortality and morbidity. As the world's population ages, CVD incidence is on the rise, and extensive attention has been drawn to optimizing the therapeutic regimens. Acacetin, a natural flavonoid derived from various plants, has been demonstrated to have a wide spectrum of pharmacological properties, such as antioxidant, anti-inflammatory, anti-bacterial, and anti-tumor activities, as well as protective effects on diverse tissues and organs. Recently, increasing numbers of studies (mostly preclinical) have indicated that acacetin has potential cardiovascular protective effects and might become a novel therapeutic strategy for CVDs. The importance of acacetin in CVD treatment necessitates a systematic and comprehensive review of its protective effects on the cardiovascular system and the underlying mechanisms involved. Here, we first provide an overview of some basic properties of acacetin. Subsequently, the protective effects of acacetin on multiple CVDs, like arrhythmias, cardiac ischemia/reperfusion injury, atherosclerosis, myocardial hypertrophy and fibrosis, drug-induced cardiotoxicity, diabetic cardiomyopathy, hypertension, and cardiac senescence, are discussed in detail. The underlying mechanisms by which acacetin exhibits cardiovascular protection appear to involve suppressing oxidative stress, reducing inflammation, preventing cardiomyocyte apoptosis and endothelial cell injury, as well as regulating mitochondrial autophagy and lipid metabolism. Meanwhile, several critical signaling pathways have also been found to mediate the protection of acacetin against CVDs, including phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/Akt/mTOR), sirtuin 1/AMP-activated protein kinase/peroxisome proliferator-activated receptor-γ coactivator-1α (Sirt1/AMPK/PGC-1α), transforming growth factor-β1/small mothers against decapentaplegic 3 (TGF-β1/Smad3), protein kinase B/endothelial nitric oxide synthase (Akt/eNOS), and others. Finally, we highlight the existing problems associated with acacetin that need to be addressed, such as the requirement for clinical evidence and enhanced bioavailability, as well as its potential as a promising cardiovascular drug candidate.
Collapse
Affiliation(s)
- Zihe Zhou
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological key Laboratory of Sichuan Province, Institute of Cardiovascular Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Helin Qin
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological key Laboratory of Sichuan Province, Institute of Cardiovascular Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shanshan He
- Department of Basic Medicine, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanfei Du
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological key Laboratory of Sichuan Province, Institute of Cardiovascular Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Cho N, Ho J, Rosario GD, Yu SF, Ferl GZ, Boswell CA. Measurement of specific and nonspecific tissue uptake of antibodies in tumor by SPECT imaging and nonlinear compartmental modeling. EJNMMI Res 2025; 15:15. [PMID: 39994098 PMCID: PMC11850665 DOI: 10.1186/s13550-025-01207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Understanding the mechanisms driving specific and nonspecific tissue uptake of antibodies can inform protein engineering strategies that maximize therapeutic efficacy in target tissues while minimizing off-target tissue toxicities. While in vitro cell assays are typically used to study these internalization mechanisms, there are few methods readily available to evaluate these pathways in vivo. Single photon emission computed tomography (SPECT) imaging with a non-residualizing radiohalogen probe can measure total levels of intact antibody, and a residualizing radiometal-chelate probe, in combination with a non-residualizing probe, can measure catabolized antibody associated with receptor-mediated and nonspecific internalization processes. Here, we describe a SPECT imaging study in human epidermal growth factor receptor 2 (HER2)-expressing tumor-bearing mice aimed at measuring whole body disposition kinetics of tumor-targeting trastuzumab (anti-HER2) and non-targeting (anti-gD) antibodies. Mice received these molecules labeled with either a non-residualizing prosthetic group ([125I]SIB) or with a residualizing radiometal-chelate (111In-DOTA). RESULTS SPECT imaging data confirmed significant HER2-mediated tumor uptake and catabolism of anti-HER2, evidenced by the high 111In-DOTA-anti-HER2 signal over time relative to 111In-DOTA-anti-gD and the respective [125I]SIB-labeled molecules. [125I]SIB-anti-HER2 still showed noticeably higher tumor signal than [125I]SIB-anti-gD, demonstrating a meaningful pool of intact anti-HER2 in the interstitial tumor compartment. Spleen showed the greatest catabolism of both mAbs amongst all non-tumor tissues. Compartmental modeling of the SPECT data demonstrated that cell-associated anti-HER2 was primarily receptor-bound, with a peak receptor occupancy of 35% at 13 h post administration of a 10 mg/kg dose, with minimal free and pinocytosed mAb. CONCLUSION Here, we successfully developed an imaging and modeling approach to capture anti-HER2 antibody receptor binding as well as specific and nonspecific internalization over time in vivo. These data and analyses demonstrate the power of SPECT imaging using both non-residualizing and residualizing radioisotopes to better characterize the different biological states (free, bound, and catabolized) of antibodies within interstitial and intracellular compartments. Understanding these distinct antibody internalization mechanisms in tumor and non-tumor tissues enables more informed decisions on dose selection to optimize treatment of tumors with heterogeneous antigen expression while minimizing nonspecific toxicities.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jason Ho
- In Vivo Studies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Geoffrey Del Rosario
- Translational Oncology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Shang-Fan Yu
- Translational Oncology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Gregory Z Ferl
- Department of Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Translational Imaging, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - C Andrew Boswell
- Department of Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Translational Imaging, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| |
Collapse
|
9
|
Zhang H, Zhang Y, Zhang Y, Wei H, Jin S, Huo T, Qin L. Combination of inorganic nitrate and vitamin C prevents collagen-induced arthritis in rats by inhibiting pyroptosis. Food Funct 2025; 16:673-690. [PMID: 39717927 DOI: 10.1039/d4fo03096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by synovial inflammation, cartilage damage, and bone loss. Although effective treatments are currently lacking, early interventions hold promise for alleviating RA symptoms. Inorganic nitrates and vitamin C (VC) are essential bioactive substances abundant in fruits and vegetables. Notably, nitrates and VC exhibit synergistic effects in a series of physiological and pathological conditions. In this study, we aim to examine the combination of nitrate and VC for preventing RA in a collagen-induced arthritis (CIA) rat model. Nitrate partly reduced foot swelling and arthritis scores and was more effective when combined with VC. Histopathological and radiological analyses revealed that nitrate + VC treatment alleviated synovial hyperplasia and bone loss. Additionally, nitrate + VC lowered the levels of TNF-α and IL-1β in serum as well as synovial tissue, decreased the expression of NF-κB and reduced the number of macrophages in synovial tissue. Compared to the CIA group, nitrate + VC decreased the levels of NLRP3 and GSDMD in macrophages, thus inhibiting pyroptosis. According to in vitro experiments, nitrate inhibited the activation of the NLRP3/caspase-1/GSDMD pathway in macrophages by conversion into nitrite. VC reduced the expression and phosphorylation of NF-κB in macrophages and thus reduced the expression levels of TNF-α and IL-1β. Therefore, nitrate/nitrite and VC may exert synergistic effects by blocking the interaction between NF-κB and NLRP3, further alleviating the inflammation and pyroptosis of macrophages, which provides a new strategy for RA prevention.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, China.
| | - Yongfeng Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, China.
| | - Yingrui Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, China.
| | - Huishan Wei
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, China.
| | - Shan Jin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, China.
| | - Tianqi Huo
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, China.
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, China.
| |
Collapse
|
10
|
Xu X, Wang X, Zhang L, Jin Y, Li L, Jin M, Li L, Ni H. Nicotinamide adenine dinucleotide treatment confers resistance to neonatal ischemia and hypoxia: effects on neurobehavioral phenotypes. Neural Regen Res 2024; 19:2760-2772. [PMID: 38595293 PMCID: PMC11168517 DOI: 10.4103/nrr.nrr-d-23-01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00031/figure1/v/2024-04-08T165401Z/r/image-tiff Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy. Currently, there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury. Here, we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide, which can protect against hypoxic injury in adulthood, in a mouse model of neonatal hypoxic-ischemic brain injury. In this study, nicotinamide adenine dinucleotide (5 mg/kg) was intraperitoneally administered 30 minutes before surgery and every 24 hours thereafter. The results showed that nicotinamide adenine dinucleotide treatment improved body weight, brain structure, adenosine triphosphate levels, oxidative damage, neurobehavioral test outcomes, and seizure threshold in experimental mice. Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice. Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine (or cysteine) peptidase inhibitor, clade A, member 3N, fibronectin 1, 5'-nucleotidase, cytosolic IA, microtubule associated protein 2, and complexin 2. Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways (e.g., nuclear factor-kappa B, mitogen-activated protein kinase, and phosphatidylinositol 3 kinase/protein kinase B). These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.
Collapse
Affiliation(s)
- Xiaowen Xu
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xinxin Wang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li Zhang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yiming Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Li
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Meifang Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Risen S, Sharma S, Gilberto VS, Brindley S, Aguilar M, Brown JM, Chatterjee A, Moreno JA, Nagpal P. Large- and Small-Animal Studies of Safety, Pharmacokinetics, and Biodistribution of Inflammasome-Targeting Nanoligomer in the Brain and Other Target Organs. ACS Pharmacol Transl Sci 2024; 7:3439-3451. [PMID: 39539269 PMCID: PMC11555505 DOI: 10.1021/acsptsci.4c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 11/16/2024]
Abstract
Immune malfunction or misrecognition of healthy cells and tissue, termed autoimmune disease, is implicated in more than 80 disease conditions and multiple other secondary pathologies. While pan-immunosuppressive therapies like steroids can offer limited relief for systemic inflammation for some organs, many patients never achieve remission, and such drugs do not cross the blood-brain barrier, making them ineffective for tackling neuroinflammation. Especially in the brain, unintended activation of microglia and astrocytes is hypothesized to be directly or indirectly responsible for multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Recent studies have also shown that targeting inflammasomes and specific immune targets can be beneficial for these diseases. Furthermore, our previous studies have shown targeting NF-κB and NLRP3 through brain penetrant Nanoligomer cocktail SB_NI_112 (abbreviated as NI112) can be therapeutic for several neurodegenerative diseases. Here, we show safety-toxicity studies, followed by pharmacokinetics and biodistribution in small- (mice) and large-animal (dog) studies of this inflammasome-targeting Nanoligomer cocktail NI112. We conducted studies using four different routes of administration: intravenous, subcutaneous, intraperitoneal, and intranasal, and identified the drug concentration over time using inductively coupled plasma mass spectrometry in the blood serum, the brain (including different brain regions), and other target organs such as liver, kidney, and colon. Our results indicate that the Nanoligomer cocktail has a strong safety profile and shows high biodistribution (F ∼ 0.98) and delivery across multiple routes of administration. Further analysis showed high brain bioavailability with a ratio of NI112 in brain tissue to blood serum of ∼30%. Our model accurately shows dose scaling, translation between different routes of administration, and interspecies scaling. These results provide an excellent platform for human clinical translation and prediction of therapeutic dosage between different routes of administration.
Collapse
Affiliation(s)
- Sydney Risen
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Vincenzo S. Gilberto
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Mikayla Aguilar
- Department
of Clinical Sciences and Brain Research Center, College of Veterinary
Medicine and Biomedical Sciences, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anushree Chatterjee
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Julie A. Moreno
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| |
Collapse
|
12
|
Bilgin B, Adam M, Hekim MG, Bulut F, Ozcan M. Gadolinium-based contrast agents aggravate mechanical and thermal hyperalgesia in a nitroglycerine-induced migraine model in male mice. Magn Reson Imaging 2024; 111:67-73. [PMID: 38604348 DOI: 10.1016/j.mri.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
In the diagnosis of migraine, which is a neurovascular disease, gadolinium-based contrast agents (GBCAs) are used to rule out more serious conditions. On the other hand, it remains unclear as a scientific gap whether GBCAs may trigger migraine-related pain. The aim of this study was to investigate the effect of GBCAs on mechanical and thermal pain behaviour in a nitroglycerin (NTG)-induced migraine model in mice. NTG (10 mg/kg) was administered intraperitoneally to adult (6-8weeks old) BALB/c mice 2 h before behavioral tests 5 times every other day on days 1st, 3rd, 5th and 9th to induce migraine model (N = 50). As GBCAs, gadobenate dimeglumine (linear-ionic), Gadodiamide (linear-nonionic), and gadobutrol (macrocyclic-nonionic) were delivered intravenously through the tail vein of mice for 5 days on test days. Mechanical pain threshold (plantar and facial withdrawal threshold) was evaluated by plantar von Frey and periorbital von Frey tests on days 1st, 5th, and 9th, and thermal pain threshold (latency) was evaluated by hot plate and cold plate tests on days 3rd and 7th. There was a statistically significant increase in mechanical and thermal hyperalgesia in NTG administered groups compared to the control group. Gadodiamide, gadobutrol and gadobenate dimeglumine administration significantly decreased latency, paw and facial withdrawal threshold (0.18 ± 0.05, 0.17 ± 0.07, 0.16 ± 0.09; 9th day values respectively) compared to NTG group (0.27 ± 0.05). The results of this in vivo study show that GBCAs produce effects that may trigger migraine attacks in migraine. It is recommended that these effects be further investigated and supported by further clinical studies.
Collapse
Affiliation(s)
- Batuhan Bilgin
- Gaziantep Islam Science and Technology University Faculty of Medicine, Department of Biophysics, Gaziantep, Turkey.
| | - Muhammed Adam
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey
| | | | - Ferah Bulut
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey
| | - Mete Ozcan
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey
| |
Collapse
|
13
|
Gajardo Cortez AIJ, Lillo-Moya J, San-Martín-Martinez D, Pozo-Martinez J, Morales P, Prieto JC, Aguayo R, Puentes Á, Ramos C, Silva S, Catalán M, Ramos K, Olea-Azar C, Rodrigo R. Safety and Pharmacokinetics of a Combined Antioxidant Therapy against Myocardial Reperfusion Injury: A Phase 1 Randomized Clinical Trial in Healthy Humans. Clin Pharmacol Drug Dev 2024; 13:1051-1060. [PMID: 38973337 DOI: 10.1002/cpdd.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
Myocardial reperfusion injury (MRI) accounts for up to 50% of the final size in acute myocardial infarction and other conditions associated with ischemia-reperfusion. Currently, there is still no therapy to prevent MRI, but it is well known that oxidative stress has a key role in its mechanism. We previously reduced MRI in rats through a combined antioxidant therapy (CAT) of ascorbic acid, N-acetylcysteine, and deferoxamine. This study determines the safety and pharmacokinetics of CAT in a Phase I clinical trial. Healthy subjects (n = 18) were randomized 2:1 to CAT or placebo (NaCl 0.9% i.v.). Two different doses/infusion rates of CATs were tested in a single 90-minute intravenous infusion. Blood samples were collected at specific times for 180 minutes to measure plasma drug concentrations (ascorbic acid, N-acetylcysteine, and deferoxamine) and oxidative stress biomarkers. Adverse events were registered during infusion and followed for 30 days. Both CAT1 and CAT2 significantly increased the CAT drug concentrations compared to placebo (P < .05). Most of the pharmacokinetic parameters were similar between CAT1 and CAT2. In total, 6 adverse events were reported, all nonserious and observed in CAT1. The ferric-reducing ability of plasma (an antioxidant biomarker) increased in both CAT groups compared to placebo (P < .001). The CAT is safe in humans and a potential treatment for patients with acute myocardial infarction undergoing reperfusion therapy.
Collapse
Affiliation(s)
- Abraham I J Gajardo Cortez
- Pathophysiology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Intensive Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniel San-Martín-Martinez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Josue Pozo-Martinez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Laboratorio de Química Médica, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Pablo Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan C Prieto
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Cardiovascular Department, Hospital Clínico Universidad de Chile, University of Chile, Santiago, Chile
| | - Rubén Aguayo
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Santiago, Chile
| | - Ángel Puentes
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Santiago, Chile
| | - Cristobal Ramos
- Department of Radiology, Hospital Clínico Universidad de Chile, Campus Norte, Santiago, Chile
| | - Solange Silva
- Department of Radiology, Hospital Clínico Universidad de Chile, Campus Norte, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karla Ramos
- Intensive Medicine Unit, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Bilal M, Ullah S, Jaehde U, Trueck C, Zaremba D, Wachall B, Wargenau M, Scheidel B, Wiesen MHJ, Gazzaz M, Chen C, Büsker S, Fuhr U, Taubert M, Dokos C. Assessment of body mass-related covariates for rifampicin pharmacokinetics in healthy Caucasian volunteers. Eur J Clin Pharmacol 2024; 80:1271-1283. [PMID: 38722350 PMCID: PMC11303472 DOI: 10.1007/s00228-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Currently, body weight-based dosing of rifampicin is recommended. But lately, fat-free mass (FFM) was reported to be superior to body weight (BW). The present evaluation aimed to assess the influence of body mass-related covariates on rifampicin's pharmacokinetics (PK) parameters in more detail using non-linear mixed effects modeling (NLMEM). METHODS Twenty-four healthy Caucasian volunteers were enrolled in a bioequivalence study, each receiving a test and a reference tablet of 600 mg of rifampicin separated by a wash-out period of at least 9 days. Monolix version 2023R1 was used for NLMEM. Monte Carlo simulations (MCS) were performed to visualize the relationship of body size descriptors to the exposure to rifampicin. RESULTS A one-compartment model with nonlinear (Michaelis-Menten) elimination and zero-order absorption kinetics with a lag time best described the data. The covariate model including fat-free mass (FFM) on volume of distribution (V/F) and on maximum elimination rate (Vmax/F) lowered the objective function value (OFV) by 56.4. The second-best covariate model of sex on V/F and Vmax/F and BW on V/F reduced the OFV by 51.2. The decrease in unexplained inter-individual variability on Vmax/F in both covariate models was similar. For a given dose, MCS showed lower exposure to rifampicin with higher FFM and accordingly in males compared to females with the same BW and body height. CONCLUSION Our results indicate that beyond BW, body composition as reflected by FFM could also be relevant for optimized dosing of rifampicin. This assumption needs to be studied further in patients treated with rifampicin.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Sami Ullah
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Christina Trueck
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dario Zaremba
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bertil Wachall
- InfectoPharm Arzneimittel Und Consilium GmbH, 64646, Heppenheim, Germany
| | | | | | - Martin H J Wiesen
- Pharmacology at the Laboratory Diagnostics Centre, Faculty of Medicine, University Hospital Cologne, University of Cologne, Therapeutic Drug Monitoring, Cologne, Germany
| | - Malaz Gazzaz
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Chunli Chen
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Sören Büsker
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max Taubert
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charalambos Dokos
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Wang Y, Ullah MA, Waltner OG, Bhise SS, Ensbey KS, Schmidt CR, Legg SR, Sekiguchi T, Nelson EL, Kuns RD, Nemychenkov NS, Atilla E, Yeh AC, Takahashi S, Boiko JR, Varelias A, Blazar BR, Koyama M, Minnie SA, Clouston AD, Furlan SN, Zhang P, Hill GR. Calcineurin inhibition rescues alloantigen-specific central memory T cell subsets that promote chronic GVHD. J Clin Invest 2024; 134:e170125. [PMID: 38828727 PMCID: PMC11142741 DOI: 10.1172/jci170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.
Collapse
Affiliation(s)
- Yewei Wang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Olivia G. Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shruti S. Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Samuel R.W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ethan L. Nelson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rachel D. Kuns
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nicole S. Nemychenkov
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Erden Atilla
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Albert C. Yeh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Julie R. Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Bruce R. Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics and
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Jia Z, Lv D, Chen T, Shi Z, Li X, Ma J, Gao Z, Zhong C. Network pharmacology and in vivo experiment-based strategy for investigating the mechanism of chronic prostatitis/chronic pelvic pain syndrome in QianLieJinDan tablets. Heliyon 2024; 10:e29975. [PMID: 38726171 PMCID: PMC11078777 DOI: 10.1016/j.heliyon.2024.e29975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common urinary system disease that is prone to recurrence. It typically leads to varying degrees of pelvic pain and discomfort, as well as symptoms related to the urinary system in affected patients. QianLieJinDan tablets (QLJD), a traditional Chinese medicine, have shown promising therapeutic effects on CP/CPPS in clinical practice, but the underlying mechanisms of QLJD in treating CP/CPPS have not been determined. Objective To reveal the phytochemical characterization and multitarget mechanism of QLJD on CP/CPPS. Methods The concentrations of the components of QLJD were determined using UHPLC-Q Exactive Orbitrap-MS. Utilizing network pharmacology approaches, the potential components, targets, and pathways involved in the treatment of CP/CPPS caused by QLJD were screened. Molecular docking calculations were employed to assess the affinity between the components of the QLJD and potential targets, revealing the optimal molecular conformation and binding site. Finally, the therapeutic efficacy and potential underlying mechanisms of QLJD were investigated through pharmacological experiments. Results In this study, a total of 35 components targeting 29 CP-related genes were identified, among which quercetin, baicalin, icariin, luteolin, and gallic acid were the major constituents. Enrichment analysis revealed that the potential targets were involved mainly in the regulation of cytokines, cell proliferation and apoptosis, and the oxidative stress response and were primarily associated with the cytokine‒cytokine receptor interaction pathway, the IL-17 signaling pathway, the Th17 cell differentiation pathway, and the JAK-STAT signaling pathway. In vivo experiments demonstrated that QLJD effectively attenuated the infiltration of CD3+ T cells and the expression of ROS in a CP/CPPS model rat prostate tissue. Furthermore, through the inhibition of IL-6 and STAT3 expression, QLJD reduced the differentiation of Th17 cells, thereby ameliorating pathological injury and prostatic index in prostate tissue. Conclusion The potential of QLJD as an anti-CP/CPPS agent lies in its ability to interfere with the expression of IL-6 and STAT3, inhibit Th17 cell differentiation, reduce inflammatory cell infiltration in rat prostate tissue, and alleviate oxidative stress damage through its multi-component, multi-target, and multi-pathway effects.
Collapse
Affiliation(s)
- Zhichao Jia
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Dongfang Lv
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Tengfei Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Zhuozhuo Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Xiaolin Li
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Junguo Ma
- Shandong Zhongda Pharmaceutical Company Ltd., Shandong Jinan 250000, China
| | - Zhaowang Gao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Chongfu Zhong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| |
Collapse
|
17
|
Huang L, Zou J, Zhang Y, Gu J, Wu J, Zhang C. Human umbilical cord mesenchymal stem cell therapy for renal dysfunction in Alport syndrome: protocol for an open-label, single-arm trial in China. BMJ Open 2024; 14:e075138. [PMID: 38490657 PMCID: PMC10946359 DOI: 10.1136/bmjopen-2023-075138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Alport syndrome (AS) is one of the most common fatal hereditary renal diseases in human, with a high risk of progressing to end-stage renal disease without effective treatments. Mesenchymal stem cells (MSCs) have recently emerged as a promising therapeutic strategy for chronic kidney disease. However, the safety and therapeutic potential of MSC transfusion for patients with AS are still need to be confirmed. Therefore, we have designed a clinical trial to evaluate the hypothesis that intravenous infusion of human umbilical cord-derived MSC (hUC-MSC) is safe, feasible, and well-tolerated in children with AS. METHODS AND ANALYSIS We report the protocol of the first prospective, open-label, single-arm clinical trial to evaluate the safety and preliminary efficacy of hUC-MSC transfusion in children with early-stage AS. Paediatric patients diagnosed with AS who have persistent albuminuria will be candidates for screening. Twelve eligible patients are planned to recruit and will receive hUC-MSC infusions under close safety monitoring, and complete the efficacy assessments at scheduled follow-up visits. The primary endpoints include the occurrence of adverse events to assess safety and the albuminuria level for efficacy evaluation. Secondary endpoint assessments are based on haematuria and glomerular filtration measurements. Each patient's efficacy endpoints will be evaluated against their baseline levels. Additionally, the underlying mechanism of hUC-MSC therapy will be explored through transcriptomic and proteomic analysis of blood and urine samples. ETHICS AND DISSEMINATION The protocol (V.1.0, date 17 January 2015) was approved by the institutional review board of the Affiliated Taihe Hospital of Hubei University of Medicine (ethical approval 03 March 2015). Written informed consent will be obtained from the patient and/or guardians before study specific process. In addition to publication in a peer-reviewed scientific journal, a lay summary of study will be available for participants and the public on the Chinese Organization for Rare Disorders website (http://www.cord.org.cn/). TRIAL REGISTRATION NUMBER ISRCTN62094626.
Collapse
Affiliation(s)
- Li Huang
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jun Zou
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | | | | | - Jianlong Wu
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Che Zhang
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Zhang T, Wang C, Song A, Lei X, Li G, Sun H, Wang X, Geng Z, Shu G, Deng X. Water extract of earthworms mitigates mouse liver fibrosis by potentiating hepatic LKB1/Nrf2 axis to inhibit HSC activation and hepatocyte death. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117495. [PMID: 38016572 DOI: 10.1016/j.jep.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When left untreated, liver fibrosis (LF) causes various chronic liver diseases. Earthworms (Pheretima aspergillum) are widely used in traditional medicine because of their capacity to relieve hepatic diseases. AIM OF THE STUDY This study aimed to explore the anti-LF effects of water extract of earthworms (WEE) and the underlying molecular mechanisms. MATERIALS AND METHODS A CCl4-induced mouse model of LF was used to study the impact of WEE on LF in vivo. The anti-LF activity of WEE in mice was compared with that of silybin, which can be clinically applied in LF intervention and was used as a positive control. Activation of LX-2 hepatic stellate cells (HSCs) and apoptosis and ferroptosis of AML-12 hepatocytes induced by TGFβ1 were used as in vitro models. RESULTS WEE drastically improved LF in mice. WEE reduced markers of activated HSCs in mice and inhibited TGFβ1-induced activation of LX-2 HSCs in vitro. Additionally, WEE suppressed CCl4-induced apoptosis and ferroptosis in mouse hepatocytes. Mechanistically, WEE induced Nrf2 to enter the nuclei of the mouse liver cells, and the hepatic levels of Nrf2-downstream antioxidative factors increased. LKB1/AMPK/GSK3β is an upstream regulatory cascade of Nrf2. In the LF mouse model, WEE increased hepatic phosphorylated LKB1, AMPK, and GSK3β levels. Similar results were obtained for the LX-2 cells. In AML-12 hepatocytes and LX-2 HSCs, WEE elevated intracellular Nrf2 levels, promoted its nuclear translocation, and inhibited TGFβ1-induced ROS accumulation. Knocking down LKB1 abolished the impact of WEE on the AMPK/GSK3β/Nrf2 cascade and eliminated its protective effects against TGFβ1. CONCLUSIONS Our findings reveal that WEE improves mouse LF triggered by CCl4 and supports its application as a promising hepatoprotective agent against LF. The potentiation of the hepatic antioxidative AMPK/GSK3β/Nrf2 cascade by activating LKB1 and the subsequent suppression of HSC activation and hepatocyte apoptosis and ferroptosis are implicated in WEE-mediated alleviation of LF.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Guangqiong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaoming Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
19
|
Ren P, Yue H, Tang Q, Wang Y, Xue C. Astaxanthin exerts an adjunctive anti-cancer effect through the modulation of gut microbiota and mucosal immunity. Int Immunopharmacol 2024; 128:111553. [PMID: 38281337 DOI: 10.1016/j.intimp.2024.111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
This study aimed to investigate the function of gut microbiota in astaxanthin's adjuvant anticancer effects. Our prior research demonstrated that astaxanthin enhanced the antitumor effects of sorafenib by enhancing the body's antitumor immune response; astaxanthin also regulated the intestinal flora composition of tumor-bearing mice. However, it is presently unknown whether this beneficial effect is dependent on the gut microbiota. We first used broad-spectrum antibiotics to eradicate gut microbiota of tumor-bearing mice, followed by the transplantation of fecal microbiota. The results of this study indicate that the beneficial effects of astaxanthin when combined with molecular targeting are dependent on the presence of intestinal microbiota. Astaxanthin facilitates the infiltration of CD8+ T lymphocytes into the tumor microenvironment and increases Granzyme B production by modulating the intestinal flora. Therefore, it strengthens the body's anti-tumor immune response and synergistically boosts the therapeutic efficacy of drugs. Astaxanthin stimulates the production of cuprocytes and mucus in the intestines by promoting the proliferation of Akkermansia. In addition, astaxanthin enhances the intestinal mucosal immunological function. Our research supports the unique ability of astaxanthin to sustain intestinal flora homeostasis and its function as a dietary immune booster for individuals with tumors.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Han Yue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| |
Collapse
|
20
|
Ni H, Liu M, Cao M, Zhang L, Zhao Y, Yi L, Li Y, Liu L, Wang P, Du Q, Zhou H, Dong Y. Sinomenine regulates the cholinergic anti-inflammatory pathway to inhibit TLR4/NF-κB pathway and protect the homeostasis in brain and gut in scopolamine-induced Alzheimer's disease mice. Biomed Pharmacother 2024; 171:116190. [PMID: 38278026 DOI: 10.1016/j.biopha.2024.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.
Collapse
Affiliation(s)
- Haojie Ni
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Muqiu Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Mindie Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingyu Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yijing Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peixun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
21
|
Su H, Yan B, Wang R, Li Z, Xu Z, Xue H, Tan G. Proteomic Analysis Based on TMT Regarding the Therapeutic Action of Rhizoma Drynariae on Rats in an Osteoporosis Model. Comb Chem High Throughput Screen 2024; 27:2223-2238. [PMID: 38099525 PMCID: PMC11348476 DOI: 10.2174/0113862073261905231110061401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 08/21/2024]
Abstract
BACKGROUND Primary osteoporosis has increasingly become one of the risk factors affecting human health, and the clinical effect and action mechanism of traditional Chinese medicine in the treatment of primary osteoporosis have been widely studied. Previous studies have confirmed that in traditional Chinese medicine (TCM), Drynaria rhizome has a role in improving bone density. In this study, a tandem mass tag (TMT)-based proteomic analysis was conducted to derive potential targets for Drynaria rhizome treatment in postmenopausal osteoporosis. METHODS The model group (OVX) and experimental group (OVXDF) for menopausal osteoporosis were established using the universally acknowledged ovariectomy method, and the OVXDF group was given 0.48g/kg Rhizoma Drynariae solution by gavage for 12 weeks. After 12 weeks, femurs of rats selected for this study were examined with a bone mineral density (BMD) test, Micro-CT, ELISABiochemical testing, hematoxylin and eosin (HE) staining, and immunohistochemistry. A certain portion of the bone tissue was studied with a TMT-based proteomic analysis and functional and pathway enrichment analysis. Finally, key target genes were selected for Western blotting for validation. RESULTS The comparison of the OVXDF and OVX groups indicated that Drynaria rhizome could improve bone density. In the TMT-based proteomic analysis, the comparison of these two groups revealed a total of 126 differentially expressed proteins (DEPs), of which 62 were upregulated and 64 were downregulated. Further, by comparing the differential genes between the OVXDF and OVX groups and between the OVX and SHAM groups, we concluded that the 27 differential genes were significantly changed in the rats selected for the osteoporosis model after Drynaria rhizome intragastric administration. The gene ontology (GO) enrichment analysis of DEPs showed that molecular function was mainly involved in biological processes, such as glucose metabolism, carbohydrate metabolism, immune responses, and aging. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEPs revealed that multiple differential genes were enriched in the estrogen and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Relationships with nitrogen metabolism, glycerophospholipid metabolism, secretion systems, and tumor diseases were also observed. Western blotting was consistent with the analysis. CONCLUSIONS We used TMT-based proteomics to analyze the positive effects of TCM Drynaria rhizome, which can regulate related proteins through the unique roles of multiple mechanisms, targets, and pathways. This treatment approach can regulate oxidative stress, improve lipid metabolism, reduce the inflammatory response mechanism, and improve bone density. These benefits highlight the unique advantages of TCM in the treatment of primary osteoporosis.
Collapse
Affiliation(s)
- Hui Su
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Binghan Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruochong Wang
- Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhanwang Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guoqing Tan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
22
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Ren P, Tang Q, He X, Xu J, Wang Y, Xue C. Astaxanthin Augmented the Anti-Hepatocellular Carcinoma Efficacy of Sorafenib Through the Inhibition of the JAK2/STAT3 Signaling Pathway and Mitigation of Hypoxia within the Tumor Microenvironment. Mol Nutr Food Res 2024; 68:e2300569. [PMID: 38059808 DOI: 10.1002/mnfr.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Indexed: 12/08/2023]
Abstract
SCOPE The optimization of anti-cancer drug effectiveness through dietary modifications has garnered significant attention among researchers in recent times. Astaxanthin (AST) has been identified as a safe and biologically active dietary supplement. METHODS AND RESULTS The tumor-bearing mice are treated with sorafenib, along with supplementation of 60 mg kg-1 AST during the treatment. The coadministration of AST and a subclinical dosage of 10 mg kg-1 sorafenib demonstrates a tumor inhibition rate of 76.5%, which is notably superior to the 45% inhibition rate observed with the clinical dosage of 30 mg kg-1 sorafenib (p < 0.05). The administration of AST leads to a tumor inhibition increase of around 25% when combined with the clinical dose of 30 mg kg-1 sorafenib (p <0.05). AST enhances the inhibitory effect of sorafenib on tumor angiogenesis through the JAK2/STAT3 signaling pathway. Furthermore, AST exhibits a reduction in hypoxia within the tumor microenvironment. CONCLUSION The results suggest that AST supplement enhances the inhibitory effects of sorafenib on hepatocellular carcinoma. This study presents a new dietary management program for oncology patients.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinjia He
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
24
|
Popović DJ, Popović KJ, Miljković D, Popović JK, Lalošević D, Poša M, Dolićanin Z, Čapo I. Diclofenac and metformin synergistic dose dependent inhibition of hamster fibrosarcoma, rescued with mebendazole. Biomed Pharmacother 2023; 167:115528. [PMID: 37738800 DOI: 10.1016/j.biopha.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
We examined whether combinig diclofenac and metformin in doses equivalent to human doses would synergize their anticancer activity on fibrosarcoma inoculated to hamsters and in vitro. Rescue experiment was performed to examine whether the prosurvival NF-κB stimulation by mebendazole can reverse anticancer effects of the treatment. BHK-21/C13 cell culture was subcutaneously inoculated to Syrian golden hamsters randomly divided into groups (6 animals per group): 1) untreated control; treated daily with 2) diclofenac; 3) metformin; 4) combinations of diclofenac and metformin at various doses; 5) combination of diclofenac, metformin and mebendazole; 6) mebendazole. Dose response curves were made for diclofenac and metformin combination. Tumor growth kinetics, biophysical, pathological, histological and immunohistochemical characteristics of excised tumors and hamster organs as well as biochemical and hematological blood tests were compared among the groups. Single treatments had no anticancer effects. Diclofenac (60 mg/kg/day) exhibited significant (P < 0.05) synergistic inhibitory effect with metformin (500 mg/kg/day) on all tumor growth parameters, without toxicity and influence on biochemical and hematological blood tests. The same results were obtained with double doses of diclofenac and metformin combination. The addition of mebendazole to the diclofenac and metformin combination rescued tumor expansion. Furthermore, diclofenac with metformin demonstrated antiproliferative effects in hamster fibrosarcoma BHK-21/C13, human lung carcinoma A549 (CCL-185), colon carcinoma HT-29 (HTB-38) and cervical carcinoma HeLa (CCL-2) cell cultures, with markedly lower cytotoxicity in the normal fetal lung MRC-5 cells. In conclusion, diclofenac and metformin combination may be recommended for potential use in oncology, due to synergistic anticancer effect in doses achievable in humans.
Collapse
Affiliation(s)
- Dušica J Popović
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Kosta J Popović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan Miljković
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jovan K Popović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Academy of Medical Sciences of the Serbian Medical Society, 19 George Washington str.,11000 Belgrade, Serbia.
| | - Dušan Lalošević
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Zana Dolićanin
- Department of Biomedical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Ivan Čapo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
25
|
Lei F, Wu Y, Li C, Yan B, Chen S, Peng Q, Yang X, Ma P. Mediation of endoplasmic reticulum stress and NF-κB signaling pathway in DINP-exacerbated allergic asthma: A toxicological study with Balb/c mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132392. [PMID: 37657325 DOI: 10.1016/j.jhazmat.2023.132392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Epidemiological evidence indicates a significant relationship between exposure to diisononyl phthalate and allergic asthma. Despite this, the mechanism underlying this association remains unclear. Previous toxicological researches have suggested that the development of allergic asthma may involve the activation of endoplasmic reticulum stress (ERS) and the nuclear factor κ-B (NF-κB) pathways. Nevertheless, it is currently unknown whether these specific signaling pathways are implicated in diisononyl phthalate (DINP)-induced allergic asthma. The objective of this research was to understand how DINP exacerbates allergic asthma in Balb/c mice through ERS and NF-κB pathways. To systematically examine the aggravated effects of DINP in Balb/c mice, we measured airway hyperresponsiveness (AHR), lung tissue pathology, cytokines, and ERS and NF-κB pathway biomarkers. Additionally, we applied the ERS antagonist phenylbutyric acid (4-PBA) or the NF-κB antagonist pyrrolidine dithiocarbamate (PDTC) to verify the mediating effects of ERS and NF-κB on DINP-exacerbated allergic asthma. The results of our experiment show that oral DINP exposure may exacerbate airway hyperresponsiveness and airway remodeling. This deterioration is accompanied by an imbalance in immunoglobulin levels, Th17/Treg cells, ERS, and NF-κB biomarkers, leading to the activation of pro-inflammatory pathways. Furthermore, our study found that the blocking effect of 4-PBA or PDTC can inhibit the Th17/Treg imbalance and effectively alleviate symptoms resembling allergic asthma. In conclusion, ERS and NF-κB signaling pathways play an important role in regulating DINP-induced allergic asthma exacerbations.
Collapse
Affiliation(s)
- Fan Lei
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Department of Pharmacy, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Chongyao Li
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Biao Yan
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Shaohui Chen
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Qi Peng
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
26
|
Yang S, Yang JF, Gong X, Weiss MA, Strano MS. Rational Design and Efficacy of Glucose-Responsive Insulin Therapeutics and Insulin Delivery Systems by Computation Using Connected Human and Rodent Models. Adv Healthc Mater 2023; 12:e2300587. [PMID: 37319398 PMCID: PMC10592437 DOI: 10.1002/adhm.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Glucose-responsive insulins (GRIs) use plasma glucose levels in a diabetic patient to activate a specifically designed insulin analogue to a more potent state in real time. Alternatively, some GRI concepts use glucose-mediated release or injection of insulin into the bloodstream. GRIs hold promise to exhibit much improved pharmacological control of the plasma glucose concentration, particularly for the problem of therapeutically induced hypoglycemia. Several innovative GRI schemes are introduced into the literature, but there remains a dearth of quantitative analysis to aid the development and optimization of these constructs into effective therapeutics. This work evaluates several classes of GRIs that are proposed using a pharmacokinetic model as previously described, PAMERAH, simulating the glucoregulatory system of humans and rodents. GRI concepts are grouped into three mechanistic classes: 1) intrinsic GRIs, 2) glucose-responsive particles, and 3) glucose-responsive devices. Each class is analyzed for optimal designs that maintain glucose levels within the euglycemic range. These derived GRI parameter spaces are then compared between rodents and humans, providing the differences in clinical translation success for each candidate. This work demonstrates a computational framework to evaluate the potential clinical translatability of existing glucose-responsive systems, providing a useful approach for future GRI development.
Collapse
Affiliation(s)
- Sungyun Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jing Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University of Medicine, Indianapolis, IN, 46202, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
You M, Li S, Yan S, Yao D, Wang T, Wang Y. Exposure to nonylphenol in early life causes behavioural deficits related with autism spectrum disorders in rats. ENVIRONMENT INTERNATIONAL 2023; 180:108228. [PMID: 37802007 DOI: 10.1016/j.envint.2023.108228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Early-life exposure to environmental endocrine disruptors (EDCs) is a potential risk factor for autism spectrum disorder (ASD). Exposure to nonylphenol (NP), a typical EDC, is known to cause some long-term behavioural abnormalities. Moreover, these abnormal behaviours are the most frequent psychiatric co-morbidities in ASD. However, the direct evidence for the link between NP exposure in early life and ASD-like behavioural phenotypes is still missing. In the present study, typical ASD-like behaviours induced by valproic acid treatment were considered as a positive behavioural control. We investigated impacts on social behaviours following early-life exposure to NP, and explored effects of this exposure on neuronal dendritic spines, mitochondria function, oxidative stress, and endoplasmic reticulum (ER) stress. Furthermore, primary cultured rat neurons were employed as in vitro model to evaluate changes in dendritic spine caused by exposure to NP, and oxidative stress and ER stress were specifically modulated to further explore their roles in these changes. Our results indicated rats exposed to NP in early life showed mild ASD-like behaviours. Moreover, we also found the activation of ER stress triggered by oxidative stress may contribute to dendritic spine decrease and synaptic dysfunction, which may underlie neurobehavioural abnormalities induced by early-life exposure to NP.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Tingyu Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
28
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
29
|
Ma Y, Xu H, Chen G, Liu W, Ma C, Meng J, Yuan L, Hua X, Ge G, Lei M. Uncovering the active constituents and mechanisms of Rujin Jiedu powder for ameliorating LPS-induced acute lung injury using network pharmacology and experimental investigations. Front Pharmacol 2023; 14:1186699. [PMID: 37251341 PMCID: PMC10210165 DOI: 10.3389/fphar.2023.1186699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Acute lung injury (ALI) is a common clinical disease with high mortality. Rujin Jiedu powder (RJJD) has been clinically utilized for the treatment of ALI in China, but the active constituents in RJJD and its protective mechanisms against ALI are still unclear. Methodology: ALI mice were established by intraperitoneal injection of LPS to test the effectiveness of RJJD in treating ALI. Histopathologic analysis was used to assess the extent of lung injury. An MPO (myeloperoxidase) activity assay was used to evaluate neutrophil infiltration. Network pharmacology was used to explore the potential targets of RJJD against ALI. Immunohistochemistry and TUNEL staining were performed to detect apoptotic cells in lung tissues. RAW264.7 and BEAS-2B cells were used to explore the protective mechanisms of RJJD and its components on ALI in vitro. The inflammatory factors (TNF-α, IL-6, IL-1β and IL-18) in serum, BALF and cell supernatant were assayed using ELISA. Western blotting was performed to detect apoptosis-related markers in lung tissues and BEAS-2B cells. Results: RJJD ameliorated pathological injury and neutrophil infiltration in the lungs of ALI mice and decreased the levels of inflammatory factors in serum and BALF. Network pharmacology investigations suggested that RJJD treated ALI via regulating apoptotic signaling pathways, with AKT1 and CASP3 as crucial targets and PI3K-AKT signaling as the main pathway. Meanwhile, baicalein, daidzein, quercetin and luteolin were identified as key constituents in RJJD targeting on the above crucial targets. Experimental investigations showed that RJJD significantly upregulated the expression of p-PI3K, p-Akt and Bcl-2, downregulated the expression of Bax, caspase-3 and caspase-9 in ALI mice, and attenuated lung tissue apoptosis. Four active constituents in RJJD (baicalein, daidzein, quercetin and luteolin) inhibited the secretion of TNF-α and IL-6 in LPS-induced RAW264.7 cells. Among these components, daidzein and luteolin activated the PI3K-AKT pathway and downregulated the expression of apoptosis-related markers induced by LPS in BEAS-2B cells. Conclusion: RJJD alleviates the inflammatory storm and prevents apoptosis in the lungs of ALI mice. The mechanism of RJJD in treating ALI is related to the activation of PI3K-AKT signaling pathway. This study provides a scientific basis for the clinical application of RJJD.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Chen
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Ma
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialei Meng
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Hua
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Lei
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Litvak YV, Harapko T, Lytvak V, Foros AI. MORPHOLOGICAL PECULIARITIES OF THE PANCREAS OF MALE RATS AFTER PROLONGED ADMINISTRATION OF MONOSODIUM GLUTAMATE DURING THE RECOVERY PERIOD. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3102-3108. [PMID: 36723334 DOI: 10.36740/wlek202212135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: To study changes in the exocrine and endocrine parts of the pancreas of rats after abolition of monosodium glutamate (MSG) administered in the diet. PATIENTS AND METHODS Materials and methods: White male laboratory rats with a baseline weight of 120 ± 5 g were randomized into 3 groups: 1 - control, 2 - animals with daily feeding of 70 mg/ kg MSG for 8 weeks, 3 - abolition of MSG with transfer of animals to a standard diet and pancreatic examination after 8 weeks. We used histological studies with morphometric analysis and statistical processing of acini and acinar cell areas, Langerhans islets, connective tissue (according to Stolte M.) and adipose tissue. Preparations of pancreas were stained with hematoxylin and eosin and azan. RESULTS Results: The animals of groups 2 and 3 showed atrophic, degenerative and inflammatory disturbances in the exocrine and endocrine parts of the pancreas, which worsened after 8 weeks of MSG withdrawal (3 rd group). In the preparations, the Langerhans islets were of different shapes and sizes. Small islets predominated, as well as islets with low density of α- and β-cells, different capillary filling with blood and overgrowth of connective tissue in the capillary areas. The acinar cells and acini were reduced, and degenerative abnormalities were detected in the structures. CONCLUSION Conclusions: After daily administration of 70 mg/kg MSG for 8 weeks, atrophic and degenerative changes in the exocrine and endocrine parts of the pancreas were revealed. No recovery of pancreatic structures was observed 8 weeks after MSG withdrawal.
Collapse
|
31
|
Guo X, Wang J, Niu R, Li R, Wang J, Fan X, Wang X, Sun Z. Effects of apple juice fermented with Lactobacillus plantarum CICC21809 on antibiotic-associated diarrhea of mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Paternal Nicotine/Ethanol/Caffeine Mixed Exposure Induces Offspring Rat Dysplasia and Its Potential "GC-IGF1" Programming Mechanism. Int J Mol Sci 2022; 23:ijms232315081. [PMID: 36499404 PMCID: PMC9737622 DOI: 10.3390/ijms232315081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical and animal studies suggest that paternal exposure to adverse environments (bad living habits and chronic stress, etc.) has profound impacts on offspring development; however, the mechanism of paternal disease has not been clarified. In this study, a meta-analysis was first performed to suggest that paternal exposure to nicotine, ethanol, or caffeine is a high-risk factor for adverse pregnancy outcomes. Next, we created a rat model of paternal nicotine/ethanol/caffeine mixed exposure (PME), whereby male Wistar rats were exposed to nicotine (0.1 mg/kg/d), ethanol (0.5 g/kg/d), and caffeine (7.5 mg/kg/d) for 8 weeks continuously, then mated with normal female rats to obtain a fetus (n = 12 for control group, n = 10 for PME group). Then, we analyzed the changes in paternal hypothalamic-pituitary-adrenal (HPA) axis activity, testicular function, pregnancy outcomes, fetal serum metabolic indicators, and multiple organ functions to explore the mechanism from the perspective of chronic stress. Our results demonstrated that PME led to enhanced paternal HPA axis activity, decreased sperm quality, and adverse pregnancy outcomes (stillbirth and absorption, decreased fetal weight and body length, and intrauterine growth retardation), abnormal fetal serum metabolic indicators (corticosterone, glucolipid metabolism, and sex hormones), and fetal multi-organ dysfunction (including hippocampus, adrenal, liver, ossification, and gonads). Furthermore, correlation analysis showed that the increased paternal corticosterone level was closely related to decreased sperm quality, adverse pregnancy outcomes, and abnormal offspring multi-organ function development. Among them, the decreased activity of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis may be the main mechanism of offspring development and multi-organ dysfunction caused by PME. This study explored the impact of common paternal lifestyle in daily life on offspring development, and proposed the GC-IGF1 programming mechanisms of paternal chronic stress-induced offspring dysplasia, which provides a novel insight for exploring the important role of paternal chronic stress in offspring development and guiding a healthy lifestyle for men.
Collapse
|
33
|
Wada H, Sato Y, Fujimoto S, Okamoto K, Bando M, Kawaguchi T, Miyamoto H, Muguruma N, Horimoto K, Matsuzawa Y, Mutoh M, Takayama T. Resveratrol inhibits development of colorectal adenoma via suppression of LEF1; comprehensive analysis with connectivity map. Cancer Sci 2022; 113:4374-4384. [PMID: 36082704 PMCID: PMC9746064 DOI: 10.1111/cas.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Although many chemopreventive studies on colorectal tumors have been reported, no effective and safe preventive agent is currently available. We searched for candidate preventive compounds against colorectal tumor comprehensively from United States Food and Drug Administration (FDA)-approved compounds by using connectivity map (CMAP) analysis coupled with in vitro screening with colorectal adenoma (CRA) patient-derived organoids (PDOs). We generated CRA-specific gene signatures based on the DNA microarray analysis of CRA and normal epithelial specimens, applied them to CMAP analysis with 1309 FDA-approved compounds, and identified 121 candidate compounds that should cancel the gene signatures. We narrowed them down to 15 compounds, and evaluated their inhibitory effects on the growth of CRA-PDOs in vitro. We finally identified resveratrol, one of the polyphenolic phytochemicals, as a compound showing the strongest inhibitory effect on the growth of CRA-PDOs compared with normal epithelial PDOs. When resveratrol was administered to ApcMin/+ mice at 15 or 30 mg/kg, the number of polyps (adenomas) was significantly reduced in both groups compared with control mice. Similarly, the number of polyps (adenomas) was significantly reduced in azoxymethane-injected rats treated with 10 or 100 mg/resveratrol compared with control rats. Microarray analysis of adenomas from resveratrol-treated rats revealed the highest change (downregulation) in expression of LEF1, a key molecule in the Wnt signaling pathway. Treatment with resveratrol significantly downregulated the Wnt-target gene (MYC) in CRA-PDOs. Our data demonstrated that resveratrol can be the most effective compound for chemoprevention of colorectal tumors, the efficacy of which is mediated through suppression of LEF1 expression in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Hironori Wada
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and OncologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
- SOCIUM IncTokyoJapan
| | - Yui Matsuzawa
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and ScreeningNational Cancer CenterTokyoJapan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and ScreeningNational Cancer CenterTokyoJapan
- Department of Molecular‐Targeting Cancer Prevention, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| |
Collapse
|
34
|
Singh S A, Suresh S, Singh A, Chandran L, Vellapandian C. Perspectives of ozone induced neuropathology and memory decline in Alzheimer's disease: A systematic review of preclinical evidences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120136. [PMID: 36089140 DOI: 10.1016/j.envpol.2022.120136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This systematic review aims to discover the plausible mechanism of Ozone in A.D., to boost translational research. The main focus of our review lies in understanding the effects of ozone pollution on the human brain and causing degenerative disease. Owing to the number of works carried out as preclinical evidence in association with oxidative stress and Alzheimer's disease and the lack of systematic review or meta-analysis prompted us to initiate a study on Alzheimer's risk due to ground-level ozone. We found relevant studies from PubMed, ScienceDirect, Proquest, DOAJ, and Scopus, narrowing to animal studies and the English language without any time limit. The searches will be re-run before the final analysis. This work was registered in Prospero with Reg ID CRD42022319360, followed the PRISMA-P framework, and followed the PICO approach involving Population, Intervention/Exposure, Comparison, and Outcomes data. Bibliographic details of 16 included studies were studied for Exposure dose of ozone, duration, exposure, and frequency with control and exposure groups. Primary and secondary outcomes were assessed based on pathology significance, and results were significant in inducing Alzheimer-like pathology by ozone. In conclusion, ozone altered oxidative stress, metabolic pathway, and amyloid plaque accumulation besides endothelial stress response involving mitochondria as the critical factor in ATP degeneration, caspase pathway, and neuronal damage. Thus, ozone is a criteria pollutant to be focused on in mitigating Alzheimer's Disease pathology.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India.
| | - Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India
| | - Anuragh Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India
| | - Lakshmi Chandran
- Department of Pharmacy Practice, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India.
| |
Collapse
|
35
|
Hu HF, Wang Z, Tang WL, Fu XM, Kong XJ, Qiu YK, Xi SY. Effects of Sophora flavescens aiton and the absorbed bioactive metabolite matrine individually and in combination with 5-fluorouracil on proliferation and apoptosis of gastric cancer cells in nude mice. Front Pharmacol 2022; 13:1047507. [PMID: 36438804 PMCID: PMC9681822 DOI: 10.3389/fphar.2022.1047507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Background: Sophora flavescens aiton (SFA) and its main bioactive metabolite matrine are widely used in traditional Chinese medicine (TCM) preparations and have achieved good curative effects for the treatment of various tumors. However, the mechanisms underlying SFA and matrine individually and in combination with chemotherapeutic drugs for treatment of gastric cancer (GC) remain unclear. Aim of the study: To elucidate the mechanisms underlying the ability of SFA and matrine individually and in combination with chemotherapeutic drugs to inhibit proliferation and promote apoptosis of human GC cells. Materials and methods: Forty-eight nude mice were randomly divided into six groups that were treated with normal saline (model group), 5-fluorouracil (5-FU), SFA decoction (SFAD), matrine, SFAD+5-FU, or matrine+5-FU. A subcutaneous heterotopic tumor model was established in nude mice by implantation of human GC BGC-823 cells. All mice were treated for 28 days. Bioactive metabolites in SFA were determined by HPLC-MS/MS. The tumor volume, tumor weight, and tumor inhibition rate of mice were documented. Histopathology and ultramicroscopic pathology of tumor tissues were observed. The tumor cell cycle and apoptosis in vivo were detected. Serum levels of PCNA, BAX, Bcl-2, Caspase-9, Caspase-3 and cleaved Caspase-3 were measured. Protein levels of MS4A10, MS4A8, MS4A7, PCNA, BAX, Bcl-2, Caspase-3, and cleaved Caspase-3 were measured in tumor tissues. Results: Both SFAD and matrine inhibited the growth of transplanted GC cells, which was more effective when combined with 5-FU. The tumor inhibition rates of the 5-FU, SFAD, matrine, SFAD+5-FU, and matrine+5-FU groups were 53.85%, 33.96%, 30.44%, 59.74%, and 56.55%, respectively. The body weight of tumor-bearing nude mice was greater in the SFAD group than the normal saline and matrine groups. SFAD+5-FU and matrine+5-FU blocked BGC-823 cells in the G0-G1/S transition, promoted apoptosis, and significantly decreased the content of serum apoptosis-inhibitory proteins (PCNA and Bcl-2) as well as protein expression of MS4A8, MS4A10, Bcl-2, and PCNA in tumor tissues, while increasing serum levels of pro-apoptotic proteins (Caspase-9, Caspase-3 and cleaved-Caspase-3) and protein expression of BAX and cleaved-Caspase-3 in tumor tissues. Conclusion: SFAD and matrine both individually and in combination with 5-FU ameliorated malignancy of transplanted tumors by reducing proliferation and promoting apoptosis of BGC-823 cells. These findings confirm the anti-tumor synergistic effect of TCM and chemotherapeutic drugs.
Collapse
Affiliation(s)
- Huan-Fu Hu
- School of Medicine, Yueyang Vocational Technical College, Yueyang, Hunan, China
- Yueyang Key Laboratory of Comprehensive Utilization of Characteristic Chinese Herbal Medicines in Dongting Lake District, Yueyang, Hunan, China
| | - Zheng Wang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wen-Li Tang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xue-Ming Fu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang-Jun Kong
- Department of Pharmacy, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ying-Kun Qiu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Traditional Chinese Medicine, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
36
|
Quantitative Measurements of Pharmacological and Toxicological Activity of Molecules. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Toxicity and pharmacological activity scales of molecules, in particular toxicants, xenobiotics, drugs, nutraceuticals, etc., are described by multiples indicators, and the most popular is the median lethal dose (LD50). At the molecular level, reversible inhibition or binding constants provide unique information on the potential activity of molecules. The important problem concerning the meaningfulness of IC50 for irreversible ligands/inhibitors is emphasized. Definitions and principles for determination of these quantitative parameters are briefly introduced in this article. Special attention is devoted to the relationships between these indicators. Finally, different approaches making it possible to link pharmacological and toxicological properties of molecules in terms of molecular interactions (or chemical reactions) with their biological targets are briefly examined. Experimental trends for future high-throughput screening of active molecules are pointed out.
Collapse
|
37
|
Lv D, Ji Y, Zhang Q, Shi Z, Chen T, Zhang C, Wang X, Ren T, Gao Z, Zhong C. Mailuoshutong pill for varicocele-associated male infertility—Phytochemical characterisation and multitarget mechanism. Front Pharmacol 2022; 13:961011. [PMID: 36160417 PMCID: PMC9500298 DOI: 10.3389/fphar.2022.961011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Varicocele (VC) is a relatively common and treatable cause of male infertility. Mailuoshutong pill (MLST), a traditional Chinese patent medicine, is widely used for treating varicose vein disease, but the underlying mechanism of MLST on varicocele-associated male infertility is unclear. Objective: To reveal the phytochemical characterisation and multitarget mechanism of MLST on varicocele-associated male infertility. Methods: The components in MLST were determined using UHPLC-MS/MS. Through network analysis, we constructed the “Drug-Components-Targets-Disease” network and predicted the potential biological functions and signaling pathways of MLST. Finally, the therapeutic effects and potential mechanisms of MLST were discovered by pharmacological experiments. Results: By network analysis, the “Drug-Components-Targets-Disease” network was constructed, 62 components such as apigenin, limonin, kaempferol, and obacunoic acid may be the main active components of MLST for varicocele-associated male infertility, 28 targets such as VEGFA, PIK3CA, AKT1, and MTOR are considered as hub targets, signaling pathways such as HIF-1, Estrogen, PI3K/Akt, and mTOR may be key pathways for MLST against varicocele-associated male infertility. Through pharmacological experiments, we found that MLST ameliorated VC-induced testicular atrophy. Further histomorphology showed that MLST reduced VC-induced damage to testicular spermatogonia and seminiferous tubule, while MLST reduced ROS and MDA levels and increased antioxidant enzymes (GSH, GSH-Px, SOD, and CAT) levels. TUNEL staining and immunofluorescence showed that MLST reduced VC-induced apoptosis in testicular tissue, decreased BAX, and increased BCL2. Western blot results showed that MLST decreased the phosphorylation of PI3K, AKT, and mTOR proteins, and decreased the expression of HIF1α. Conclusion: The phytochemical characterisation and multitarget mechanism of MLST on varicocele-associated male infertility were discovered using network analysis and pharmacological experiments. We verified that MLST can inhibit the activation of the PI3K/Akt/mTOR signaling pathway, reduce the expression of HIF1α, and further attenuate VC-induced oxidative stress and apoptosis in the testis. These findings provide evidence for the therapeutic role of MLST in varicocele-associated male infertility.
Collapse
Affiliation(s)
- Dongfang Lv
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Ji
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhuozhuo Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tengfei Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyun Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Taotao Ren
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaowang Gao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chongfu Zhong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Chongfu Zhong,
| |
Collapse
|
38
|
Zhou WW, Dai C, Liu WZ, Zhang C, Zhang Y, Yang GS, Guo QH, Li S, Yang HX, Li AY. Gentianella acuta improves TAC-induced cardiac remodelling by regulating the Notch and PI3K/Akt/FOXO1/3 pathways. Biomed Pharmacother 2022; 154:113564. [PMID: 35988427 DOI: 10.1016/j.biopha.2022.113564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiac remodelling mainly manifests as excessive myocardial hypertrophy and fibrosis, which are associated with heart failure. Gentianella acuta (G. acuta) is reportedly effective in cardiac protection; however, the mechanism by which it protects against cardiac remodelling is not fully understood. Here, we discuss the effects and mechanisms of G. acuta in transverse aortic constriction (TAC)-induced cardiac remodelling in rats. Cardiac function was analysed using echocardiography and electrocardiography. Haematoxylin and eosin, Masson's trichrome, and wheat germ agglutinin staining were used to observe pathophysiological changes. Additionally, real-time quantitative reverse transcription polymerase chain reaction and western blotting were used to measure protein levels and mRNA levels of genes related to myocardial hypertrophy and fibrosis. Immunofluorescence double staining was used to investigate the co-expression of endothelial and interstitial markers. Western blotting was used to estimate the expression and phosphorylation levels of the regulatory proteins involved in autophagy and endothelial-mesenchymal transition (EndMT). The results showed that G. acuta alleviated cardiac dysfunction and remodelling. The elevated levels of myocardial hypertrophy and fibrosis markers, induced by TAC, decreased significantly after G. acuta intervention. G. acuta decreased the expression of LC3 II and Beclin1, and increased p62 expression. G. acuta upregulated the expression of CD31 and vascular endothelial-cadherin, and prevented the expression of α-smooth muscle actin and vimentin. Furthermore, G. acuta inhibited the PI3K/Akt/FOXO1/3a pathway and activated the Notch signalling. These findings demonstrated that G. acuta has cardioprotective effects, such as alleviating myocardial fibrosis, inhibiting hypertrophy, reducing autophagy, and blocking EndMT by regulating the PI3K/Akt/FOXO1/3a and Notch signalling pathways.
Collapse
Affiliation(s)
- Wei-Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Cheng Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Wei-Zhe Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang 050091, Hebei, China
| | - Chuang Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Gao-Shan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, Hebei, China
| | - Qiu-Hong Guo
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Si Li
- Department of Technology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hong-Xia Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Ai-Ying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang 050091, Hebei, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, Hebei, China.
| |
Collapse
|
39
|
Liu S, Zhao F, Deng Y, Zeng Y, Yan B, Guo J, Gao Q. Investigating the multi-target therapeutic mechanism of Guihuang formula on Chronic Prostatitis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115386. [PMID: 35580771 DOI: 10.1016/j.jep.2022.115386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic prostatitis (CP) is a complex, intractable and prevalent urological disorder in men with no effective treatment. Guihuang formula (GHF) is a traditional Chinese medicine compound that is advantageous as a CP treatment, but its aetiology is poorly understood. Research and exploration of the mechanism of GHF will help the development of a potentially valuable drug for CP and provide deeper insight into CP. AIM OF THE STUDY To examine and further clarify the multi-target therapeutic mechanism of GHF on CP. MATERIALS AND METHODS The chemical components in GHF were identified using UPLC-Q/TOF-MS. The active components and potential targets of GHF for the treatment of CP were screened and analyzed using network pharmacology and molecular docking. We constructed a CP rat model to investigate the therapeutic effect of GHF on CP and verify the influence of key targets and core pathways based on the results of network pharmacology. RESULTS A total of 143 ingredients were identified in GHF using UPLC-Q/TOF-MS, and 111 potential targets for GHF of CP were predicted. The "drug-ingredient-target-pathway" network was constructed and in compliance with the "Jun-Chen-Zuo-Shi" principle. GHF significantly reduced the prostate index, alleviated histological damage in the prostate, decreased CD3+ T cells and CD45+ leukocyte infiltration in the prostate, downregulated the expression of the proinflammatory cytokines IL-1β, IL-6, IL-18, COX-2, MCP-1 and TNF-α, decreased ROS levels and alleviated the production of MDA accompanied by an increase of SOD and GSH-PX levels. Meanwhile, GHF suppressed apoptosis in macrophages, downregulated the mRNA levels of PI3K, AKT and P65 NF-κB and inhibited the phosphorylation of the PI3K, AKT and P65 NF-κB. CONCLUSION A network pharmacology and experimental validation-based strategy was used to elucidate the underlying "multicomponent, multitarget, and multipathway" mode of action of GHF against CP. We verified that GHF inhibited oxidative stress and inflammatory response, suppressed apoptosis in macrophages, inhibited the activation of the inflammation-related PI3K/AKT/NF-κB pathway in CP rat. These findings extend the conventional views of "one drug hits one target", and offer novel insights and indication paradigm for the future discovery on the multi-target therapeutic mechanism of traditional Chinese medicine compound.
Collapse
Affiliation(s)
- Shengjing Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng Zhao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingjun Deng
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Zeng
- Beijing Chinese Medicine Hospital affiliated to Capital Medical University, Beijing, China
| | - Bin Yan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghe Gao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Su H, Xue H, Gao S, Yan B, Wang R, Tan G, Xu Z, Zeng L. Effect of Rhizoma Drynariae on differential gene expression in ovariectomized rats with osteoporosis based on transcriptome sequencing. Front Endocrinol (Lausanne) 2022; 13:930912. [PMID: 35983515 PMCID: PMC9380231 DOI: 10.3389/fendo.2022.930912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is increasingly becoming a serious problem affecting the quality of life of the older population. Several experimental studies have shown that Chinese medicine has a definite effect on improving osteoporosis. Based on transcriptome sequencing, we analyzed the differential gene expression and mechanism of the related signaling pathways. Fifteen rats were randomly divided into an experimental group, a model group, and a sham surgery group. The rat model for menopausal osteoporosis was established using an ovariectomy method. One week after modeling, the experimental group was administered(intragastric administration)8.1 g/kg of Rhizoma drynariae, whereas the model and sham groups received 0.9% saline solution twice daily for 12 weeks. Subsequently, the rats were sacrificed, and the left femur of each group was removed for computerized tomography testing, while right femurs were used for hematoxylin and eosin staining. High-throughput RNA sequencing and functional and pathway enrichment analyses were performed. Comparing the gene expression between the experimental and model groups, 149 differential genes were identified, of which 44 were downregulated and 105 were upregulated. The criteria for statistical significance were |log2 Fold Change| > 1 and P < 0.05. Gene ontology analysis showed that the differentially expressed genes were enriched in cell component terms such as cell part and outer cell membrane part, and the genes were associated with cell process, biological regulation, metabolic processes, DNA transcription, and catalytic activity. Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathways showed significantly enriched pathways associated with systemic lupus erythematosus, herpes simplex infection, circadian rhythm, vascular smooth muscle contraction, the AGE-RAGE signaling pathway in diabetic complications, and the TNF, Apelin, and Ras signaling pathways. Our results revealed that the Npas2, Dbp, Rt1, Arntl, Grem2, H2bc9, LOC501233, Pla2g2c, Hpgd, Pde6c, and Dner genes, and the circadian rhythm, lipid metabolism, inflammatory signaling pathway, and immune pathways may be the key targets and pathways for traditional Chinese medicine therapy of Rhizoma Drynariae in osteoporosis.
Collapse
Affiliation(s)
- Hui Su
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shang Gao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Binghan Yan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruochong Wang
- College of traditional Chinese medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingfeng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
41
|
Korde A, Mikolajczak R, Kolenc P, Bouziotis P, Westin H, Lauritzen M, Koole M, Herth MM, Bardiès M, Martins AF, Paulo A, Lyashchenko SK, Todde S, Nag S, Lamprou E, Abrunhosa A, Giammarile F, Decristoforo C. Practical considerations for navigating the regulatory landscape of non-clinical studies for clinical translation of radiopharmaceuticals. EJNMMI Radiopharm Chem 2022; 7:18. [PMID: 35852679 PMCID: PMC9296747 DOI: 10.1186/s41181-022-00168-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background The development of radiopharmaceuticals requires extensive evaluation before they can be applied in a diagnostic or therapeutic setting in Nuclear Medicine. Chemical, radiochemical, and pharmaceutical parameters must be established and verified to ensure the quality of these novel products.
Main body To provide supportive evidence for the expected human in vivo behaviour, particularly related to safety and efficacy, additional tests, often referred to as “non-clinical” or “preclinical” are mandatory. This document is an outcome of a Technical Meeting of the International Atomic Energy Agency. It summarises the considerations necessary for non-clinical studies to accommodate the regulatory requirements for clinical translation of radiopharmaceuticals. These considerations include non-clinical pharmacology, radiation exposure and effects, toxicological studies, pharmacokinetic modelling, and imaging studies. Additionally, standardisation of different specific clinical applications is discussed.
Conclusion This document is intended as a guide for radiopharmaceutical scientists, Nuclear Medicine specialists, and regulatory professionals to bring innovative diagnostic and therapeutic radiopharmaceuticals into the clinical evaluation process in a safe and effective way.
Collapse
Affiliation(s)
- Aruna Korde
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| | - Petra Kolenc
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Penelope Bouziotis
- National Centre for Scientific Research "Demokritos", Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, 15341, Athens, Greece
| | - Hadis Westin
- Department of Immunology, Genetics and Pathology, Ridgeview Instruments AB, Uppsala Universitet, Dag Hammarskjölds Väg 36A, 752 37, Uppsala, Sweden
| | - Mette Lauritzen
- Bruker BioSpin MRI GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000, Louvain, Belgium
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Manuel Bardiès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34298, Montpellier, France
| | - Andre F Martins
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Röntgenweg 13/1, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Antonio Paulo
- Centro de Ciências E Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela Lrs, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066, Lisbon, Portugal
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergio Todde
- Department of Medicine and Surgery, University of Milano-Bicocca, Tecnomed Foundation, Milan, Italy
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76, Stockholm, Sweden
| | - Efthimis Lamprou
- Bioemtech, Lefkippos Attica Technology Park-N.C.S.R Demokritos, Athens, Greece
| | - Antero Abrunhosa
- ICNAS/CIBIT, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Francesco Giammarile
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
42
|
Louisa M, Hawa P, Purwantyastuti P, Mardliyati E, Freisleben HJ. Primaquine-chitosan Nanoparticle Improves Drug Delivery to Liver Tissue in Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction:
Primaquine is one of the essential medicines used to treat malaria due to Plasmodium vivax. Primaquine acts by eradicating hypnozoites in the liver, and its effect is dependent on the drug concentrations in the target tissue. The present study aimed to prepare primaquine in nanoparticle formulation using chitosan as carriers and improve on-target primaquine delivery to the liver.
Methods: Primaquine-loaded chitosan nanoparticles were prepared using the ionic gelation method variations. Then, the resulting primaquine-chitosan nanoparticles were administered to the rats and compared with conventional primaquine. Afterward, plasma and liver concentrations of primaquine were quantified.
Results: The primaquine-chitosan nanoparticles obtained were at 47.9 nm. The area under the curve for primaquine-chitosan nanoparticles resulted lower in the area under the curve (AUC) and Cmax, 0.46 and 0.42 times of conventional primaquine, respectively. However, no differences were found in time to reach Cmax (Tmax). Primaquine liver concentrations obtained with primaquine-chitosan nanoprimaquine resulted in 3 times higher than primaquine concentration.
Conclusion: Enhanced drug delivery to rat liver tissue by primaquine-chitosan nanoparticles may improve on-target drug delivery to the liver, enhance primaquine ant hypnozoites effects, and reduce unwanted side effects in the circulation.
Collapse
|
43
|
Creecy A, Smith C, Wallace JM. Dietary supplements do not improve bone morphology or mechanical properties in young female C57BL/6 mice. Sci Rep 2022; 12:9804. [PMID: 35697787 PMCID: PMC9192719 DOI: 10.1038/s41598-022-14068-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bone is a hierarchical material formed by an organic extracellular matrix and mineral where each component and their physical relationship with each other contribute to fracture resistance. Bone quality can be affected by nutrition, and dietary supplements that are marketed to improve overall health may improve the fracture resistance of bone. To test this, 11 week old female C57BL/6 mice were fed either collagen, chondroitin sulfate, glucosamine sulfate, or fish oil 5 times a week for 8 weeks. Femurs, tibiae, and vertebrae were scanned with micro-computed tomography and then mechanically tested. Glucosamine and fish oil lowered elastic modulus, but did not alter the overall strength of the femur. There were no differences in bone mechanics of the tibiae or vertebrae. Overall, the data suggest that dietary supplements did little to improve bone quality in young, healthy mice. These supplements may be more effective in diseased or aged mice.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, SL 220B, 723 W. Michigan St., Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Collier Smith
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, SL 220B, 723 W. Michigan St., Indianapolis, IN, 46202, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, SL 220B, 723 W. Michigan St., Indianapolis, IN, 46202, USA.
| |
Collapse
|
44
|
Griffin RJ, Avery E, Xia CQ. Predicting Approximate Clinically Effective Doses in Oncology Using Preclinical Efficacy and Body Surface Area Conversion: A Retrospective Analysis. Front Pharmacol 2022; 13:830972. [PMID: 35559235 PMCID: PMC9087189 DOI: 10.3389/fphar.2022.830972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
The correlation between efficacious doses in human tumor-xenograft mouse models and the human clinical doses of approved oncology agents was assessed using published preclinical data and recommended clinical doses. For 90 approved small molecule anti-cancer drugs, body surface area (BSA) corrected mouse efficacious doses were strongly predictive of human clinical dose ranges with 85.6% of the predictions falling within three-fold (3×) of the recommended clinical doses and 63.3% within 2×. These results suggest that BSA conversion is a useful tool for estimating human doses of small molecule oncology agents from mouse xenograft models from the early discovery stage. However, the BSA based dose conversion poorly predicts for the intravenous antibody and antibody drug conjugate anti-cancer drugs. For antibody-based drugs, five out of 30 (16.7%) predicted doses were within 3× of the recommended clinical dose. The body weight-based dose projection was modestly predictive with 66.7% of drugs predicted within 3× of the recommended clinical dose. The correlation was slightly better in ADCs (77.7% in 3×). The application and limitations of such simple dose estimation methods in the early discovery stage and in the design of clinical trials are also discussed in this retrospective analysis.
Collapse
Affiliation(s)
| | - Ethan Avery
- Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Cindy Q Xia
- Takeda Pharmaceuticals, Cambridge, MA, United States
| |
Collapse
|
45
|
Shen G, Shang Q, Zhang Z, Zhao W, Chen H, Mijiti I, Chen G, Yu X, Yu F, Zhang P, He J, Zhang X, Tang J, Cui J, Liang D, Zeng L, Ren H, Jiang X. Zuo-Gui-Wan Aqueous Extract Ameliorates Glucocorticoid-Induced Spinal Osteoporosis of Rats by Regulating let-7f and Autophagy. Front Endocrinol (Lausanne) 2022; 13:878963. [PMID: 35592785 PMCID: PMC9111739 DOI: 10.3389/fendo.2022.878963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study proposes to explore the protective effect of Zuo-Gui-Wan (ZGW) aqueous extract on spinal glucocorticoid-induced osteoporosis (GIOP) in vivo and in vitro, and the underlying mechanisms of ZGW in GIOP and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) were conducted. METHODS In vivo, SD rats were randomly divided into three groups: control group (CON), dexamethasone (DEXM) group, and ZGW group, which were given vehicle, DEXM injection, and ZGW intragastric administration at the same time. Vertebral bone microarchitecture, biomechanics, histomorphology, serum AKP activity, and the autophagosome of osteoblasts were examined. The mRNA expressions of let-7f, autophagy-associated genes (mTORC1, Beclin-1, ATG12, ATG5, and LC3), Runx2, and CTSK were examined. In vitro, the let-7f overexpression/silencing vector was constructed and transfected to evaluate the osteogenic differentiation of BMSCs. Western blot was employed to detect the expression of autophagy-associated proteins (ULK2, ATG5, ATG12, Beclin-1, LC3). RESULTS In vivo, ZGW promoted the bone quantity, quality, and strength; alleviated histological damage; increased the serum AKP activity; and reduced the autophagosome number in osteoblasts. Moreover, ZGW increased the let-7f, mTORC1, and Runx2 mRNA expressions and reduced the Beclin-1, ATG12, ATG5, LC3, and CTSK mRNA expressions. In vitro, bioinformatics prediction and dual luciferase reporter gene assay verified that let-7f targeted the binding to ULK2 and negatively regulated the ULK2 expression. Furthermore, by let-7f overexpression/silencing, ZGW may promote osteoblast differentiation of BMSCs by regulating let-7f and autophagy as evidenced by Western blot (ULK2, ATG5, ATG12, Beclin-1, LC3). CONCLUSIONS ZGW may ameliorate GC-induced spinal osteoporosis by promoting osteoblast differentiation of BMSCs by activation of let-7f and suppression of autophagy.
Collapse
Affiliation(s)
- Gengyang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Spinal Surgery, Nanshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen Nanshan Hospital of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ibrayinjan Mijiti
- Department of Spinal Surgery, The First People’s Hospital of Kashgar, Kashgar, China
| | - Guifeng Chen
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui He
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuelai Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianchao Cui
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingfeng Zeng
- Department of Orthopedics, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Haouzi P, Tubbs N. Effects of fentanyl overdose-induced muscle rigidity and dexmedetomidine on respiratory mechanics and pulmonary gas exchange in sedated rats. J Appl Physiol (1985) 2022; 132:1407-1422. [PMID: 35421320 DOI: 10.1152/japplphysiol.00819.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of our study was to establish in sedated rats the consequences of high-dose fentanyl-induced acute muscle rigidity on the mechanical properties of the respiratory system and on the metabolic rate. Doses of fentanyl that we have previously shown to produce persistent rigidity of the muscles of the limbs and trunk in the rat (150 -300 microg/kg iv), were administered in 23 volume-controlled mechanically ventilated and sedated rats. The effects of a low dose of the FDA approved central alpha-2 agonist, dexmedetomidine (3 microg/kg iv), which has been suggested to oppose fentanyl-induced muscle rigidity, were determined after fentanyl administration. Fentanyl produced a significant decrease in Crs in the 23 rats that were studied. In 13 rats, an abrupt response occurred within 90 seconds, consisting in rapid rhythmic contractions of most skeletal muscles, that were replaced by persistent tonic/tetanic contractions leading a significant decrease of Crs (from 0.51 ± 0.11 ml/cmH2O to 0.36 ± 0.08 ml/cmH2O, 3 minutes after fentanyl injection). In the other 10 animals, a Crs progressively decreased to 0.26 ± 0.06 ml/cmH2O at 30 minutes. There was a significant rise in V̇O2 during muscle tonic contractions (from 8.48 ± 4.31 to 11.29 ± 2.57 ml/min), which contributed to a significant hypoxemia, despite ventilation being held constant. Dexmedetomidine provoked a significant and rapid increase in Crs towards baseline levels, while decreasing the metabolic rate and restoring normoxemia. We propose that the changes in respiratory mechanics and metabolism produced by opioid-induced muscle rigidity contribute to fentanyl lethality.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, United States
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, United States
| |
Collapse
|
47
|
Dai C, Li M, Sun T, Zhang Y, Wang Y, Shen Z, Velkov T, Tang S, Shen J. Colistin-induced pulmonary toxicity involves the activation of NOX4/TGF-β/mtROS pathway and the inhibition of Akt/mTOR pathway. Food Chem Toxicol 2022; 163:112966. [PMID: 35378205 DOI: 10.1016/j.fct.2022.112966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Colistin therapy can cause pulmonary toxicity, however, our understanding of the underlying molecular mechanism remains incomplete. This study aimed to investigate the molecular mechanism of colistin-induced pulmonary toxicity in vitro and in vivo. Our results showed that intraperitoneal colistin treatment significantly increased the expression of TGF-β and NOX4 protein and mRNA, then triggers oxidative stress, mitochondrial dysfunction, and apoptosis in the lung tissue of mice and A549 cells. Moreover, colistin treatment significantly increased levels of mitochondrial ROS (mtROS) and autophagy flux in A549 cells. Inhibition of NOX4 protected A549 cells against colistin-induced mtROS and apoptosis. Colistin treatment also down-regulated the expression of p-Akt and p-mTOR proteins (all P < 0.05 or 0.01) in lung tissues of mice or A549 cells. Inhibition of autophagy or Akt pathways by chloroquine (CQ), 3-Methyladenine (3-MA) or LY294002 promoted colistin-induced mitochondrial damage, and caspase-dependent cellular apoptosis. Whereas, activation of autophagy by rapamycin pretreatment of A549 cells partly abolished colistin-induced cytotoxicity, mitochondrial dysfunction, and apoptosis. This is first study to show that colistin-induced pulmonary toxicity involves the activation of TGF-β/NOX4/mtROS pathway and the inhibition of Akt/mTOR pathway in lung tissues of mice and highlights the key protective role of autophagy activation.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China.
| | - Meng Li
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Tun Sun
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Zhangqi Shen
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China; Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
48
|
Janhavi P, Divyashree S, Sanjailal KP, Muthukumar SP. DoseCal: a virtual calculator for dosage conversion between human and different animal species. Arch Physiol Biochem 2022; 128:426-430. [PMID: 31746232 DOI: 10.1080/13813455.2019.1687523] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONTEXT The scientists as well as pharmacologists frequently convert the dose of drugs or extracts between human and different animal species. According to the literature, the extrapolation of the dose by simple conversion based only on body weight is not an accurate method. The miscalculation of dosage conversion may result in adverse effects due to overdose or reduced potency due to underdose. AIM To develop a conversion calculator with factual factor like Km factor. METHOD The virtual calculator was developed as a web-based application using hypertext pre-processor programming language. My SQL software was used to store the data related to DoseCal. RESULTS Based on the Km factor, dose conversion calculator called DoseCal was developed. The DoseCal would provide the dosage for both per kg and actual weight of the animal taken for the experiment. CONCLUSION The DoseCal would assist scientists in the dosage conversion easily and accurately between species.
Collapse
Affiliation(s)
- P Janhavi
- Department of Biochemistry, CSIR Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - S Divyashree
- Department of Biochemistry, CSIR Central Food Technological Research Institute, Mysore, India
| | - K P Sanjailal
- Central Instrument Facility Services, CSIR Central Food Technological Research Institute, Mysore, India
| | - S P Muthukumar
- Department of Biochemistry, CSIR Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
49
|
Tao W, Yue X, Ye R, Nabi F, Shang Y, Zhu Z, Ahmed BZ, Liu J. Hepatoprotective Effect of the Penthorum Chinense Pursh Extract against the CCl 4-Induced Acute Liver Injury via NF-κB and p38-MAPK PATHWAYS in Dogs. Animals (Basel) 2022; 12:ani12050569. [PMID: 35268138 PMCID: PMC8909057 DOI: 10.3390/ani12050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI), manifested by acute hepatocellular damages and necrosis, is a life-threatening clinical syndrome and Penthorum Chinense Pursh (PCP) is a well-known folk medicine practiced for liver-related diseases. This study aimed to investigate the ameliorative effects of PCP extract (PCPE) on carbon tetrachloride (CCl4) induced ALI in dogs via mitogen-activated protein kinase (MAPK) and Nuclear factor κB (NF-κB) signaling pathway. Healthy dogs were induced by CCl4 and treated with different dosage regimes of PCPE for 7 days. CCl4 produced acute liver injury and induced both oxidative stress and an inflammatory response in dogs. The PCPE significantly ameliorated and improved vacuolar inflammatory lesions in liver tissues during ALI, enhanced activity of superoxide dismutase, and restored glutathione peroxidase, further significantly reducing the indices of malondialdehyde and nitric oxide in serum. Inflammatory factors (IL-1β, IL-6, and TNF-α) were declined and anti-inflammatory factors (IL-10) were increased by the application of PCPE. PCPE treatment, down-regulated the MEKK4, MKK3, p38MAPK, MSK1, and NF-κB, and upregulated the IkB mRNA levels (p < 0.01) in ALI affected dogs. In conclusion, PCPE repaired acute liver injury by improving antioxidant enzymes and by reducing oxidation products. Furthermore, the PCPE inhibited the MAPK/NF-κB signaling pathway, which resulted in anti-inflammatory and antioxidant effects on ALI-induced dogs. In the future, PCPE could be a useful ethnomedicine in veterinary clinical practices for the treatment of liver injuries or failures.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Xin Yue
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Ruiling Ye
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Yangfei Shang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Zhaorong Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Bhutto Zohaib Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal 90150, Pakistan;
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
50
|
Han M, Lian J, Su Y, Deng C. Cevimeline co-treatment attenuates olanzapine-induced metabolic disorders via modulating hepatic M3 muscarinic receptor: AMPKα signalling pathway in female rats. J Psychopharmacol 2022; 36:202-213. [PMID: 34694173 DOI: 10.1177/02698811211050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Olanzapine is one of the most commonly used antipsychotic drugs; however, its metabolic disorders are the main obstacle in the clinic. Olanzapine is a potent antagonist of the M3 acetylcholine muscarinic receptor (M3R), while the downregulated hepatic M3R-AMPKα signalling pathway is involved in metabolic disorders. AIM This study investigated the effects of chronic co-treatment with cevimeline (an agonist of M3Rs) in attenuating olanzapine-induced metabolic disorders and the underlying mechanisms. METHODS Forty-eight adult female Sprague-Dawley rats were treated orally with olanzapine (2 mg/kg, 3 times/day (t.i.d.)) and/or cevimeline (9 mg/kg, t.i.d.), or control (vehicle) for 9 weeks. RESULTS Cevimeline co-treatment significantly attenuated olanzapine-induced body weight gain and glucolipid metabolic disorders. Importantly, cevimeline co-treatment attenuated olanzapine-induced upregulation of M3Rs, while the co-treatment improved olanzapine-induced downregulation of AMPKα in the liver. Cevimeline co-treatment attenuated olanzapine-induced dyslipidaemia by modulating the hepatic M3R-AMPKα downstream pathways. Cevimeline co-treatment also improved lower activated AKT-GSK3β signalling to reverse impairment of glucose metabolism and insulin resistance caused by chronic olanzapine treatment. CONCLUSION These results not only support the important role of M3R antagonism and its related AMPKα and downstream pathways in antipsychotic-induced metabolic disorders but also indicate that these pathways might be promising targets for pharmacological intervention to control these side effects caused by antipsychotic therapy.
Collapse
Affiliation(s)
- Mei Han
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Yueqing Su
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|