1
|
Popa AD, Gherasim A, Caba L, Niță O, Graur M, Mihalache L, Arhire LI. Cathelicidin: Insights into Its Impact on Metabolic Syndrome and Chronic Inflammation. Metabolites 2024; 14:672. [PMID: 39728453 DOI: 10.3390/metabo14120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: LL-37 is associated with metabolic syndrome (MetS), a constellation of risk factors comprising obesity, insulin resistance (IR), dyslipidemia, and hypertension, which elevates the risk of cardiovascular disease and type 2 diabetes. Methods: In this narrative review, we analyzed the literature focusing on recent developments in the relationship between cathelicidin and various components of MetS to provide a comprehensive overview. Results: Studies have shown that LL-37 is linked to inflammation in adipose tissue (AT) and the development of IR in obesity. Cathelicidin can enhance inflammation by activating pro-inflammatory genes, as well as modulate the inflammatory response. The mechanisms of IR include the activation of complex signaling pathways that induce inflammation and reduce insulin signaling in adipocytes. The activation of Toll-like receptors (TLRs) by cathelicidin stimulates the secretion of pro-inflammatory cytokines, contributing to the disruption of insulin function in adipose cells. Cathelicidin also influences lipid metabolism, with recent research showing a negative relationship between LL-37 levels and HDL cholesterol. Therefore, LL-37 is involved not only in the regulation of inflammation but also in lipid metabolism, potentially aggravating the cardiovascular complications associated with MetS. Conclusions: Cathelicidin plays a crucial role in regulating the balance between inflammatory and anti-inflammatory responses in MetS. Understanding the impact of LL-37 on these mechanisms may unveil novel approaches for addressing MetS and its associated complications.
Collapse
Affiliation(s)
- Alina Delia Popa
- Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Andreea Gherasim
- Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania
| | - Otilia Niță
- Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University "Ștefan cel Mare" of Suceava, 720229 Suceava, Romania
| | - Laura Mihalache
- Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Lidia Iuliana Arhire
- Internal Medicine II Department, Faculty of Medicine, University of Medicine, and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| |
Collapse
|
2
|
Cristelo C, Nunes R, Pinto S, Marques JM, Gama FM, Sarmento B. Targeting β Cells with Cathelicidin Nanomedicines Improves Insulin Function and Pancreas Regeneration in Type 1 Diabetic Rats. ACS Pharmacol Transl Sci 2023; 6:1544-1560. [PMID: 37854630 PMCID: PMC10580391 DOI: 10.1021/acsptsci.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 10/20/2023]
Abstract
Type 1 diabetes (T1D) is an incurable condition with an increasing incidence worldwide, in which the hallmark is the autoimmune destruction of pancreatic insulin-producing β cells. Cathelicidin-based peptides have been shown to improve β cell function and neogenesis and may thus be relevant while developing T1D therapeutics. In this work, a cathelicidin-derived peptide, LLKKK18, was loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), surface-functionalized with exenatide toward a GLP-1 receptor, aiming the β cell-targeted delivery of the peptide. The NPs present a mean size of around 100 nm and showed long-term stability, narrow size distribution, and negative ζ-potential (-10 mV). The LLKKK18 association efficiency and loading were 62 and 2.9%, respectively, presenting slow and sustained in vitro release under simulated physiologic fluids. Glucose-stimulated insulin release in the INS-1E cell line was observed in the presence of the peptide. In addition, NPs showed a strong association with β cells from isolated rat islets. After administration to diabetic rats, NPs induced a significant reduction of the hyperglycemic state, an improvement in the pancreatic insulin content, and glucose tolerance. Also remarkable, a considerable increase in the β cell mass in the pancreas was observed. Overall, this novel and versatile nanomedicine showed glucoregulatory ability and can pave the way for the development of a new generation of therapeutic approaches for T1D treatment.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Rute Nunes
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| | - Soraia Pinto
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Moreira Marques
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Faculdade
de Farmácia, Universidade do Porto, Porto 4099-002, Portugal
| | - Francisco Miguel Gama
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Bruno Sarmento
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| |
Collapse
|
3
|
Pan LL, Ren ZN, Yang J, Li BB, Huang YW, Song DX, Li X, Xu JJ, Bhatia M, Zou DW, Zhou CH, Sun J. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria. Acta Pharm Sin B 2023; 13:4202-4216. [PMID: 37799394 PMCID: PMC10547962 DOI: 10.1016/j.apsb.2023.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
Chronic pancreatitis (CP) is a progressive and irreversible fibroinflammatory disorder, accompanied by pancreatic exocrine insufficiency and dysregulated gut microbiota. Recently, accumulating evidence has supported a correlation between gut dysbiosis and CP development. However, whether gut microbiota dysbiosis contributes to CP pathogenesis remains unclear. Herein, an experimental CP was induced by repeated high-dose caerulein injections. The broad-spectrum antibiotics (ABX) and ABX targeting Gram-positive (G+) or Gram-negative bacteria (G-) were applied to explore the specific roles of these bacteria. Gut dysbiosis was observed in both mice and in CP patients, which was accompanied by a sharply reduced abundance for short-chain fatty acids (SCFAs)-producers, especially G+ bacteria. Broad-spectrum ABX exacerbated the severity of CP, as evidenced by aggravated pancreatic fibrosis and gut dysbiosis, especially the depletion of SCFAs-producing G+ bacteria. Additionally, depletion of SCFAs-producing G+ bacteria rather than G- bacteria intensified CP progression independent of TLR4, which was attenuated by supplementation with exogenous SCFAs. Finally, SCFAs modulated pancreatic fibrosis through inhibition of macrophage infiltration and M2 phenotype switching. The study supports a critical role for SCFAs-producing G+ bacteria in CP. Therefore, modulation of dietary-derived SCFAs or G+ SCFAs-producing bacteria may be considered a novel interventive approach for the management of CP.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Zheng-Nan Ren
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jun Yang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Bin-Bin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yi-Wen Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dong-Xiao Song
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xuan Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia-Jia Xu
- Department of General Medicine, Beicai Community Health Service Center of Pudong New District, Shanghai 214001, China
| | - Madhav Bhatia
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Duo-Wu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chun-Hua Zhou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Gonzalez P, Dos Santos A, Darnaud M, Moniaux N, Rapoud D, Lacoste C, Nguyen TS, Moullé VS, Deshayes A, Amouyal G, Amouyal P, Bréchot C, Cruciani-Guglielmacci C, Andréelli F, Magnan C, Faivre J. Antimicrobial protein REG3A regulates glucose homeostasis and insulin resistance in obese diabetic mice. Commun Biol 2023; 6:269. [PMID: 36918710 PMCID: PMC10015038 DOI: 10.1038/s42003-023-04616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.
Collapse
Affiliation(s)
- Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Valentine S Moullé
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | | | | | | | | | - Fabrizio Andréelli
- Sorbonne Université, INSERM, NutriOmics team, Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, 75013, France
| | - Christophe Magnan
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France.
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University Department (DMU) Biology, Genetics, Pharmacy, Paul-Brousse Hospital, Villejuif, 94800, France.
| |
Collapse
|
5
|
Wang Y, Liang Z, Shen F, Zhou W, Manaer T, Jiaerken D, Nabi X. Exploring the immunomodulatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides based on network pharmacology and molecular docking. Front Pharmacol 2023; 13:1038812. [PMID: 36686662 PMCID: PMC9846521 DOI: 10.3389/fphar.2022.1038812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose: Fermented camel milk from Xinjiang is rich in probiotics and has immunomodulatory effects as an important source of bioactive peptides. However, it is not clear whether it is the probiotic or the bioactive peptide that acts. The present study aimed to extract and identify bioactive peptides from fermented camel milk in Xinjiang and investigate their immunomodulatory effects and mechanisms based on network pharmacology and molecular docking. Methods: Four probiotic bacteria were used to ferment the fresh camel milk and the bioactive peptides were extracted and isolated by ultrafiltration and column chromatography. Network pharmacology predicts targets and pathways of action. GeneCards and OMIM-GENE-MAP database were used in order to search disease target genes and screen common target genes. Then we used STRING web to construct a protein-protein interaction (PPI) interaction network of the common target protein. The key targets were analyzed by GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis through the David database. The "drug (bioactive peptide)-disease-targets-pathway" network was established and molecular docking was used for prediction. Results: Two fractions were obtained by UV spectrophotometer; whey acidic protein, α-lactalbumin, and peptidoglycan recognition protein 1 were the main protein-like components of Xinjiang fermented camel milk-derived bioactive peptides. The repeat sequence of peptidoglycan recognition protein 1 was selected and then seven bioactive peptides were obtained. Bioactive peptides had 222 gene targets, anti-inflammatory diseases had 2598 gene targets, and immune regulation had 866 gene targets, the intersection of which was 66 in common gene targets. Gene ontology and KEGG analysis reveals that bioactive peptides mainly play a vital role in the signaling pathways of lipid and atherosclerosis, pathways in cancer. The molecular docking results showed that the seven bioactive peptides bound well to the top four scoring proteins. Conclusion: The immunomodulatory and anti-inflammatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides were initially investigated by network pharmacology and molecular docking, providing a scientific basis for future studies.
Collapse
Affiliation(s)
- Yuxing Wang
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Shen
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Wenting Zhou
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Tabusi Manaer
- Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumqi, China
| | - Didaier Jiaerken
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Xinhua Nabi
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China,*Correspondence: Xinhua Nabi,
| |
Collapse
|
6
|
Carry PM, Waugh K, Vanderlinden LA, Johnson RK, Buckner T, Rewers M, Steck AK, Yang I, Fingerlin TE, Kechris K, Norris JM. Changes in the Coexpression of Innate Immunity Genes During Persistent Islet Autoimmunity Are Associated With Progression of Islet Autoimmunity: Diabetes Autoimmunity Study in the Young (DAISY). Diabetes 2022; 71:2048-2057. [PMID: 35724268 PMCID: PMC9450568 DOI: 10.2337/db21-1111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/08/2022] [Indexed: 11/13/2022]
Abstract
Longitudinal changes in gene expression during islet autoimmunity (IA) may provide insight into biological processes that explain progression to type 1 diabetes (T1D). We identified individuals from Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, autoantibodies present on two or more visits. Illumina's NovaSeq 6000 was used to quantify gene expression in whole blood. With linear mixed models we tested for changes in expression after IA that differed across individuals who progressed to T1D (progressors) (n = 25), reverted to an autoantibody-negative stage (reverters) (n = 47), or maintained IA positivity but did not develop T1D (maintainers) (n = 66). Weighted gene coexpression network analysis was used to identify coexpression modules. Gene Ontology pathway analysis of the top 150 differentially expressed genes (nominal P < 0.01) identified significantly enriched pathways including leukocyte activation involved in immune response, innate immune response, and regulation of immune response. We identified a module of 14 coexpressed genes with roles in the innate immunity. The hub gene, LTF, is known to have immunomodulatory properties. Another gene within the module, CAMP, is potentially relevant based on its role in promoting β-cell survival in a murine model. Overall, results provide evidence of alterations in expression of innate immune genes prior to onset of T1D.
Collapse
Affiliation(s)
- Patrick M. Carry
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| | - Kathleen Waugh
- Barbara Davis Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Randi K. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Teresa Buckner
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| | - Marian Rewers
- Barbara Davis Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrea K. Steck
- Barbara Davis Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ivana Yang
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tasha E. Fingerlin
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | | | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
- Barbara Davis Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
7
|
Mallone R, Halliez C, Rui J, Herold KC. The β-Cell in Type 1 Diabetes Pathogenesis: A Victim of Circumstances or an Instigator of Tragic Events? Diabetes 2022; 71:1603-1610. [PMID: 35881836 PMCID: PMC9490354 DOI: 10.2337/dbi21-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Abstract
Recent reports have revived interest in the active role that β-cells may play in type 1 diabetes pathogenesis at different stages of disease. In some studies, investigators suggested an initiating role and proposed that type 1 diabetes may be primarily a disease of β-cells and only secondarily a disease of autoimmunity. This scenario is possible and invites the search for environmental triggers damaging β-cells. Another major contribution of β-cells may be to amplify autoimmune vulnerability and to eventually drive it into an intrinsic, self-detrimental state that turns the T cell-mediated homicide into a β-cell suicide. On the other hand, protective mechanisms are also mounted by β-cells and may provide novel therapeutic targets to combine immunomodulatory and β-cell protective agents. This integrated view of autoimmunity as a disease of T-cell/β-cell cross talk will ultimately advance our understanding of type 1 diabetes pathogenesis and improve our chances of preventing or reversing disease progression.
Collapse
Affiliation(s)
- Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Jinxiu Rui
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| |
Collapse
|
8
|
Deficiency of Cathelicidin Attenuates High-Fat Diet Plus Alcohol-Induced Liver Injury through FGF21/Adiponectin Regulation. Cells 2021; 10:cells10123333. [PMID: 34943840 PMCID: PMC8699208 DOI: 10.3390/cells10123333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol consumption and obesity are known risk factors of steatohepatitis. Here, we report that the deficiency of CRAMP (cathelicidin-related antimicrobial peptide—gene name: Camp) is protective against a high-fat diet (HFD) plus acute alcohol (HFDE)-induced liver injury. HFDE markedly induced liver injury and steatosis in WT mice, which were attenuated in Camp–/– mice. Neutrophil infiltration was lessened in the liver of Camp–/– mice. HFDE feeding dramatically increased epididymal white adipose tissue (eWAT) mass and induced adipocyte hypertrophy in WT mice, whereas these effects were attenuated by the deletion of Camp. Furthermore, Camp–/– mice had significantly increased eWAT lipolysis, evidenced by up-regulated expression of lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). The depletion of Camp also increased uncoupling protein 1 (UCP1)-dependent thermogenesis in the brown adipose tissue (BAT) of mice. HFDE fed Camp–/– mice had elevated protein levels of fibroblast growth factor 21 (FGF21) in the eWAT, with an increased adiponectin production, which had been shown to alleviate hepatic fat deposition and inflammation. Collectively, we have demonstrated that Camp–/– mice are protected against HFD plus alcohol-induced liver injury and steatosis through FGF21/adiponectin regulation. Targeting CRAMP could be an effective approach for prevention/treatment of high-fat diet plus alcohol consumption-induced steatohepatitis.
Collapse
|
9
|
Camaya I, Mok TY, Lund M, To J, Braidy N, Robinson MW, Santos J, O'Brien B, Donnelly S. The parasite-derived peptide FhHDM-1 activates the PI3K/Akt pathway to prevent cytokine-induced apoptosis of β-cells. J Mol Med (Berl) 2021; 99:1605-1621. [PMID: 34374810 DOI: 10.1007/s00109-021-02122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by the destruction of the insulin-producing beta (β)-cells within the pancreatic islets. We have previously identified a novel parasite-derived molecule, termed Fasciola hepatica helminth defence molecule 1 (FhHDM-1), that prevents T1D development in non-obese diabetic (NOD) mice. In this study, proteomic analyses of pancreas tissue from NOD mice suggested that FhHDM-1 activated the PI3K/Akt signalling pathway, which is associated with β-cell metabolism, survival and proliferation. Consistent with this finding, FhHDM-1 preserved β-cell mass in NOD mice. Examination of the biodistribution of FhHDM-1 after intraperitoneal administration in NOD mice revealed that the parasite peptide localised to the pancreas, suggesting that it exerted a direct effect on the survival/function of β-cells. This was confirmed in vitro, as the interaction of FhHDM-1 with the NOD-derived β-cell line, NIT-1, resulted in increased levels of phosphorylated Akt, increased NADH and NADPH and reduced activity of the NAD-dependent DNA nick sensor, poly(ADP-ribose) polymerase (PARP-1). As a consequence, β-cell survival was enhanced and apoptosis was prevented in the presence of the pro-inflammatory cytokines that destroy β-cells during T1D pathogenesis. Similarly, FhHDM-1 protected primary human islets from cytokine-induced apoptosis. Importantly, while FhHDM-1 promoted β-cell survival, it did not induce proliferation. Collectively, these data indicate that FhHDM-1 has significant therapeutic applications to promote β-cell survival, which is required for T1D and T2D prevention and islet transplantation. KEY MESSAGES: FhHDM-1 preserves β-cell mass in NOD mice and prevents the development of T1D. FhHDM-1 enhances phosphorylation of Akt in mouse β-cell lines. FhHDM-1 increases levels of NADH/NADPH in mouse β-cell lines in vitro. FhHDM-1 prevents cytokine-induced cell death of mouse β-cell lines and primary human β-cells in vitro via activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Inah Camaya
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Tsz Y Mok
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Maria Lund
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Joyce To
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Randwick, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Jerran Santos
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, the University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
10
|
Peptidome Analysis of Pancreatic Tissue Derived from T1DM Mice: Insights into the Pathogenesis and Clinical Treatments of T1DM. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9987042. [PMID: 34095316 PMCID: PMC8164536 DOI: 10.1155/2021/9987042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Bioactive peptides attract growing concerns for their participation in multiple biological processes. Their roles in the pathogenesis of type 1 diabetes mellitus remain poorly understood. In this study, we used LC-MS/MS technology to compare the peptide profiling between pancreatic tissue of T1DM mice and pancreatic tissue of matched control groups. A total of 106 peptides were differentially expressed in T1DM pancreatic tissue, including 43 upregulated and 63 downregulated peptides. Most of the precursor proteins are insulin. Further bioinformatics analysis (GO and pathway analysis) indicated that the potential functions of these differential peptides were tightly related to regulation of endoplasmic reticulum stress. In conclusion, this study highlights new candidate peptides and provides a new perspective for exploring T1DM pathogenesis and clinical treatments.
Collapse
|
11
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
12
|
Calabrese CM, Valentini A, Calabrese G. Gut Microbiota and Type 1 Diabetes Mellitus: The Effect of Mediterranean Diet. Front Nutr 2021; 7:612773. [PMID: 33521039 PMCID: PMC7838384 DOI: 10.3389/fnut.2020.612773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease resulting from a complex interplay between genetic susceptibility and environmental factors. Regarding the latter, gut microbiota has a pivotal role in the pathogenesis of T1DM, by affecting intestinal permeability, molecular mimicry, and modulating innate and adaptive immune system, as described in several previous studies. The composition of the gut microbiota is largely influenced by diet. Some observational studies have shown that a low fiber intake is associated with the development of many inflammatory and immune-mediated diseases. In this context, the Mediterranean diet (MD), which is based on high consumption of cereals (preferably as whole grains), legumes, nuts, vegetables, fruits, olive oil, and fish, could play a protective role. Many of the characteristic components of MD have functional characteristics with positive effects on health and well-being. Eating habits are the main significant determinants of the microbial multiplicity of the intestine and the food components influence both microbial populations and their metabolic activities from the early stages of life. Moreover, food metabolites influence the immune response. The intestine is considered the primary site where food metabolites mediate their effects, through epithelial integrity or mucosal immunity. The compromised epithelial integrity allows the translocation of bacteria and/or the diffusion of their products, such as food antigens and lipopolysaccharides, from the intestinal lumen to the tissues, which could enhance the stimulation of immune cells, contributing to the pathogenesis of autoimmune diseases, such as T1DM. The intake of a high amount of fiber and therefore of prebiotics with MD allows the microbiota to have a good microbial balance. Moreover, as more dietary fibers are ingested, a higher amount of short-chain fatty acids (SCFAs) is produced by anaerobic gut microbiota, promoting gut homeostasis, to which also contribute tryptophan metabolites and omega-3-fatty acids. Furthermore, the higher intake of polyunsaturated fatty acids and omega-3-fatty-acids contribute to a better metabolic control. In this review we report the relationship between gut microbiota and T1DM and we explore the effects of Mediterranean diet on microbiota as a potential therapeutic strategy, aimed at preventing or delaying progression of T1DM and its complications.
Collapse
Affiliation(s)
| | - Alessia Valentini
- Dipartimento di Medicina Interna, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Giorgio Calabrese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
13
|
Cristelo C, Machado A, Sarmento B, Gama FM. The roles of vitamin D and cathelicidin in type 1 diabetes susceptibility. Endocr Connect 2021; 10:R1-R12. [PMID: 33263562 PMCID: PMC7923048 DOI: 10.1530/ec-20-0484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes has an increasingly greater incidence and prevalence with no cure available. Vitamin D supplementation is well documented to reduce the risk of developing type 1 diabetes. Being involved in the modulation of cathelicidin expression, the question whether cathelicidin may be one of the underlying cause arises. Cathelicidin has been implicated in both the development and the protection against type 1 diabetes by mediating the interplay between the gut microbiome, the immune system and β cell function. While its potential on type 1 diabetes treatment seems high, the understanding of its effects is still limited. This review aims to contribute to a more comprehensive understanding of the potential of vitamin D and cathelicidin as adjuvants in type 1 diabetes therapy.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - Alexandra Machado
- CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | | |
Collapse
|
14
|
Cryptosporidium parvum Subverts Antimicrobial Activity of CRAMP by Reducing Its Expression in Neonatal Mice. Microorganisms 2020; 8:microorganisms8111635. [PMID: 33113928 PMCID: PMC7690728 DOI: 10.3390/microorganisms8111635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cryptosporidium parvum causes diarrhea in infants under 5 years, in immunosuppressed individuals or in young ruminants. This parasite infects the apical side of ileal epithelial cells where it develops itself and induces inflammation. Antimicrobial peptides (AMPs) are part of the innate immune response, playing a major role in the control of the acute phase of C. parvum infection in neonates. Intestinal AMP production in neonates is characterized by high expressions of Cathelicidin Related Antimicrobial Peptide (CRAMP), the unique cathelicidin in mice known to fight bacterial infections. In this study, we investigated the role of CRAMP during cryptosporidiosis in neonates. We demonstrated that sporozoites are sensitive to CRAMP antimicrobial activity. However, during C. parvum infection the intestinal expression of CRAMP was significantly and selectively reduced, while other AMPs were upregulated. Moreover, despite high CRAMP expression in the intestine of neonates at homeostasis, the depletion of CRAMP did not worsen C. parvum infection. This result might be explained by the rapid downregulation of CRAMP induced by infection. However, the exogenous administration of CRAMP dampened the parasite burden in neonates. Taken together these results suggest that C. parvum impairs the production of CRAMP to subvert the host response, and highlight exogenous cathelicidin supplements as a potential treatment strategy.
Collapse
|
15
|
Liang W, Diana J. The Dual Role of Antimicrobial Peptides in Autoimmunity. Front Immunol 2020; 11:2077. [PMID: 32983158 PMCID: PMC7492638 DOI: 10.3389/fimmu.2020.02077] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune diseases (AiDs) are characterized by the destruction of host tissues by the host immune system. The etiology of AiDs is complex, with the implication of multiple genetic defects and various environmental factors (pathogens, antibiotic use, pollutants, stress, and diet). The interaction between these two compartments results in the rupture of tolerance against self-antigens and the unwanted activation of the immune system. Thanks to animal models, the immunopathology of many AiDs is well described, with the implication of both the innate and adaptive immune systems. This progress toward the understanding of AiDs led to several therapies tested in patients. However, the results from these clinical trials have not been satisfactory, from reversing the course of AiDs to preventing them. The need for a cure has prompted many investigators to explore alternative aspects in the immunopathology of these diseases. Among these new aspects, the role of antimicrobial host defense peptides (AMPs) is growing. Indeed, beyond their antimicrobial activity, AMPs are potent immunomodulatory molecules and consequently are implicated in the development of numerous AiDs. Importantly, according to the disease considered, AMPs appear to play a dual role in autoimmunity with either anti- or pro-inflammatory abilities. Here, we aimed to summarize the current knowledge about the role of AMPs in the development of AiDs and attempt to provide some hypotheses explaining their dual role. Definitely, a complete understanding of this aspect is mandatory before the design of AMP-based therapies against AiDs.
Collapse
Affiliation(s)
- Wenjie Liang
- Centre National de la Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France
| | - Julien Diana
- Centre National de la Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France
| |
Collapse
|
16
|
Pan LL, Liang W, Ren Z, Li C, Chen Y, Niu W, Fang X, Liu Y, Zhang M, Diana J, Agerberth B, Sun J. Cathelicidin-related antimicrobial peptide protects against ischaemia reperfusion-induced acute kidney injury in mice. Br J Pharmacol 2020; 177:2726-2742. [PMID: 31976546 DOI: 10.1111/bph.14998] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite recent advances in understanding its pathophysiology, treatment of acute kidney injury (AKI) remains a major unmet medical need, and novel therapeutic strategies are needed. Cathelicidin-related antimicrobial peptide (CRAMP) with immunomodulatory properties has an emerging role in various disease contexts. Here, we aimed to investigate the role of CRAMP and its underlying mechanisms in AKI. EXPERIMENTAL APPROACH The human homologue LL-37 and CRAMP were measured in blood samples of AKI patients and in experimental AKI mice respectively. Experimental AKI was induced in wild-type and CRAMP-deficient (Cnlp-/- ) mice by ischaemia/reperfusion (I/R). Therapeutic evaluation of CRAMP was performed with exogenous CRAMP (5 mg·kg-1 , i.p.) treatment. KEY RESULTS Cathelicidin expression was inversely related to clinical signs in patients and down-regulated in renal I/R-induced injury in mice. Cnlp-/- mice exhibited exacerbated I/R-induced renal dysfunction, aggravated inflammatory responses and apoptosis. Moreover, over-activation of the NLRP3 inflammasome in Cnlp-/- mice was associated with I/R-induced renal injury. Exogenous CRAMP treatment markedly attenuated I/R-induced renal dysfunction, inflammatory response and apoptosis, correlated with modulation of immune cell infiltration and phenotype. Consistent with Cnlp-/- mouse data, CRAMP administration suppressed renal I/R-induced NLRP3 inflammasome activation, and its renal protective effects were mimicked by a specific NLRP3 inhibitor CY-09. The reno-protective and NLRP3 inhibitory effects of CRAMP required the EGF receptor. CONCLUSION AND IMPLICATIONS Our results suggest that CRAMP acts as a novel immunomodulatory mediator of AKI and modulation of CRAMP may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chunqing Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Chen
- Department of Nephrology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenying Niu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Fang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanyan Liu
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Zhang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, F68, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jia Sun
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Controversial Roles of Gut Microbiota-Derived Short-Chain Fatty Acids (SCFAs) on Pancreatic β-Cell Growth and Insulin Secretion. Int J Mol Sci 2020; 21:ijms21030910. [PMID: 32019155 PMCID: PMC7037182 DOI: 10.3390/ijms21030910] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
In the past 15 years, gut microbiota emerged as a crucial player in health and disease. Enormous progress was made in the analysis of its composition, even in the discovery of novel species. It is time to go beyond mere microbiota-disease associations and, instead, provide more causal analyses. A key mechanism of metabolic regulation by the gut microbiota is through the production of short-chain fatty acids (SCFAs). Acting as supplemental nutrients and specific ligands of two G-protein-coupled receptors (GPCRs), they target the intestines, brain, liver, and adipose tissue, and they regulate appetite, energy expenditure, adiposity, and glucose production. With accumulating but sometimes conflicting research results, key questions emerged. Do SCFAs regulate pancreatic islets directly? What is the effect of β-cell-specific receptor deletions? What are the mechanisms used by SCFAs to regulate β-cell proliferation, survival, and secretion? The receptors FFA2/3 are normally expressed on pancreatic β-cells. Deficiency in FFA2 may have caused glucose intolerance and β-cell deficiency in mice. However, this was contrasted by a double-receptor knockout. Even more controversial are the effects of SCFAs on insulin secretion; there might be no direct effect at all. Unable to draw clear conclusions, this review reveals some of the recent controversies.
Collapse
|
18
|
Abdellatif AM, Sarvetnick NE. Current understanding of the role of gut dysbiosis in type 1 diabetes. J Diabetes 2019; 11:632-644. [PMID: 30864231 DOI: 10.1111/1753-0407.12915] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/13/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from destruction of the insulin-producing pancreatic β-cells. The disease mainly affects juveniles. Changes in the composition of the gut microbiota (dysbiosis) and changes in the properties of the gut barrier have been documented in T1D subjects. Because these factors affect immune system functions, they are likely to play a role in disease pathogenesis. However, their exact role is currently not fully understood and is under intensive investigation. In this article we discuss recent advancements depicting the role of intestinal dysbiosis on immunity and autoimmunity in T1D. We also discuss therapies aimed at maintaining a healthy gut barrier as prevention strategies for T1D.
Collapse
Affiliation(s)
- Ahmed M Abdellatif
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Nora E Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Stenwall A, Ingvast S, Skog O, Korsgren O. Characterization of host defense molecules in the human pancreas. Islets 2019; 11:89-101. [PMID: 31242128 PMCID: PMC6682263 DOI: 10.1080/19382014.2019.1585165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/21/2018] [Accepted: 02/16/2019] [Indexed: 01/07/2023] Open
Abstract
The gut microbiota can play a role in pancreatitis and, likely, in the development of type 1 diabetes (T1D). Anti-microbial peptides and secretory proteins are important mediators of the innate immune response against bacteria but their expression in the human pancreas is not fully known. In this study, immunohistochemistry was used to analyze the expression of seven anti-microbial peptides (Defensin α1, α4, β1-4 and Cathelicidin) and two secretory proteins with known antimicrobial properties (REG3A and GP2) in pancreatic and duodenal biopsies from 10 non-diabetic organ donors and one organ donor that died at onset of T1D. Immunohistochemical data was compared with previously published whole-transcriptome data sets. Seven (Defensin α1, β2, β3, α4, GP2, Cathelicidin, and REG3A) host defense molecules showed positive staining patterns in most non-diabetic organ donors, whereas two (Defensin β1 and β4) were negative in all non-diabetic donors. Two molecules (Defensin α1 and GP2) were restricted to the exocrine pancreas whereas two (Defensin β3, α4) were only expressed in islet tissue. Cathelicidin, β2, and REG3A were expressed in both islets and exocrine tissue. The donor that died at onset of T1D had generally less positivity for the host defense molecules, but, notably, this pancreas was the only one where defensin β1 was found. Neither donor age, immune-cell infiltration, nor duodenal expression correlated to the pancreatic expression of host defense molecules. In conclusion, these findings could have important implications for the inflammatory processes in diabetes and pancreatitis as we find several host defense molecules expressed by the pancreatic tissue.
Collapse
Affiliation(s)
- Anton Stenwall
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Han H, Li Y, Fang J, Liu G, Yin J, Li T, Yin Y. Gut Microbiota and Type 1 Diabetes. Int J Mol Sci 2018; 19:ijms19040995. [PMID: 29584630 PMCID: PMC5979537 DOI: 10.3390/ijms19040995] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Recently, the onset of type 1 diabetes (T1D) has increased rapidly and became a major public health concern worldwide. Various factors are associated with the development of T1D, such as diet, genome, and intestinal microbiota. The gastrointestinal (GI) tract harbors a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host homeostasis and metabolic diseases. Recent evidence shows that altered gut bacterial composition (dysbiosis) is highly associated with the pathogenesis of insulin dysfunction and T1D and, thus, targeting gut microbiota may serve as a therapeutic potential for T1D patients. In this study, we updated the effect of gut microbiota on T1D and potential mechanisms were discussed.
Collapse
Affiliation(s)
- Hui Han
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yuying Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Gang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410128, China.
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China.
| |
Collapse
|
21
|
Musale V, Abdel-Wahab YHA, Flatt PR, Conlon JM, Mangoni ML. Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids 2018; 50:723-734. [DOI: 10.1007/s00726-018-2551-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
|
22
|
Scott FW, Pound LD, Patrick C, Eberhard CE, Crookshank JA. Where genes meet environment-integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179:183-198. [PMID: 27677687 DOI: 10.1016/j.trsl.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
The rise in new cases of type 1 diabetes (T1D) in genetically susceptible individuals over the past half century has been attributed to numerous environmental "triggers" or promoters such as enteroviruses, diet, and most recently, gut bacteria. No single cause has been identified in humans, likely because there are several pathways by which one can develop T1D. There is renewed attention to the role of the gut and its immune system in T1D pathogenesis based largely on recent animal studies demonstrating that altering the gut microbiota affects diabetes incidence. Although T1D patients display dysbiosis in the gut microbiome, it is unclear whether this is cause or effect. The heart of this question involves several moving parts including numerous risk genes, diet, viruses, gut microbiota, timing, and loss of immune tolerance to β-cells. Most clinical trials have addressed only one aspect of this puzzle using some form of immune suppression, without much success. The key location where our genes meet and deal with the environment is the gastrointestinal tract. The influence of all of its major contents, including microbes, diet, and immune system, must be understood as part of the integrative biology of T1D before we can develop durable means of preventing, treating, or curing this disease. In the present review, we expand our previous gut-centric model based on recent developments in the field.
Collapse
Affiliation(s)
- Fraser W Scott
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | - Lynley D Pound
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christopher Patrick
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|