1
|
Liu HX, Wang YY, Yang XF. Differential expression of plasma cytokines in sepsis patients and their clinical implications. World J Clin Cases 2024; 12:5681-5696. [PMID: 39247745 PMCID: PMC11263047 DOI: 10.12998/wjcc.v12.i25.5681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Sepsis, which is characterized by acute systemic inflammation and is associated with high rates of morbidity and mortality, presents a significant challenge in health care. Some scholars have found that the sequential organ failure assessment (SOFA) and quick SOFA scores are not ideal for predicting severe sepsis and mortality. Microbial culture takes a long time (2-3 d) and provides no information for early diagnosis and treatment. Therefore, new diagnostic methods for sepsis need to be explored. AIM To assess cytokine levels in the plasma of sepsis patients and identify potential biomarkers for diagnosing sepsis. METHODS Ten sepsis patients admitted to the emergency department within 24 h of onset were enrolled as the observation group, whereas ten noninfected patients served as the control group. Of the 10 noninfected patients, 9 hypertension combined with cerebral infarction, 1 patients with vertiginous syndrome. Plasma Cytokines were measured using the Bio-Plex Pro™ Human Chemokine Panel 40-plex. Differentially expressed cytokines in plasma of sepsis and nonsepsis patients were analyzed using Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. RESULTS Interleukin (IL)-16, granulocyte-macrophage granulocyte-macrophage colony-stimulating factor (GM-CSF), CX3CL1, CXCL9, CXCL16, CCL25, and CCL23 plasma levels were significantly increased in sepsis patients. GO analysis revealed that these cytokines were mainly associated with cellular structures such as intermediates, nuclear plaques, adhesion plaques, lateral plasma membranes, and cell matrix junctions. These genes were involved in various molecular functions, such as cytokine activity, receptor ligand activity, and signal receptor activator activity, contributing to various biological functions, such as leukocyte chemotaxis, migration, and chemotaxis. KEGG analysis indicated involvement in cytokine cytokine receptor interactions, chemokine signaling pathways, virus-protein interactions with cytokines and cytokine receptors, and the tumor necrosis factor signaling pathway. CONCLUSION Elevated serum levels of IL-16, GM-CSF, CX3CL1, CXCL9, CXCL16, CCL25, and CCL23 in sepsis patients suggest their potential as diagnostic biomarkers for sepsis.
Collapse
Affiliation(s)
- Hui-Xiu Liu
- Interventional Diagnosis and Treatment Center, The Affiliated Second Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Yu-Ying Wang
- Department of Emergency, The Shanghai Putuo District People's Hospital, Shanghai 200060, China
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China
| | - Xue-Feng Yang
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China
| |
Collapse
|
2
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
3
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-421. [PMID: 38259085 DOI: 10.1111/ddg.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 01/24/2024]
Abstract
Non-biologic immunosuppressive drugs, such as azathioprine, dapsone or methotrexate are fundamental treatment options for a wide range of autoimmune and chronic inflammatory skin diseases. Some of these drugs were initially used for malignancies (e.g., azathioprine or methotrexate) or infectious diseases (e.g., hydroxychloroquine or dapsone) but are nowadays mostly used for their immunosuppressive/immunomodulating action. Although dermatologists have years of clinical experience with these drugs, some of the mechanisms of action are not fully understood and are the subject of research. Although these drugs are commonly used, lack of experience or knowledge regarding their safety profiles and management leads to skepticism among physicians. Here, we summarize the mechanism of action and detailed management of adverse effects of the most commonly used immunosuppressive drugs for skin diseases. Furthermore, we discuss the management of these drugs during pregnancy and breastfeeding, as well as their interaction and handling during vaccination.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Euna Bodner
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
4
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Nicht-Biologika-Immunsuppressiva bei entzündlichen und autoimmunen Hautkrankheiten: Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-423. [PMID: 38450929 DOI: 10.1111/ddg.15270_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 03/08/2024]
Abstract
ZusammenfassungNicht‐Biologika‐Immunsuppressiva wie Azathioprin, Dapson oder Methotrexat sind grundlegende Behandlungsmöglichkeiten für ein breites Spektrum von Autoimmunerkrankungen und chronisch‐entzündlichen Hauterkrankungen. Einige dieser Medikamente wurden ursprünglich bei malignen Erkrankungen (zum Beispiel Azathioprin oder Methotrexat) oder Infektionskrankheiten (zum Beispiel Hydroxychloroquin oder Dapson) eingesetzt, werden aber heute hauptsächlich wegen ihrer immunsuppressiven/immunmodulierenden Wirkung verwendet. Obwohl Dermatologen über jahrelange klinische Erfahrung mit diesen Arzneimitteln verfügen, sind einige der Wirkmechanismen noch nicht vollständig geklärt und noch Gegenstand der Forschung. Obwohl diese Medikamente häufig eingesetzt werden, führen mangelnde Erfahrung oder fehlendes Wissen über ihre Sicherheitsprofile und ihr Management zu einer skeptischen Haltung bei den Ärzten. Hier fassen wir den Wirkmechanismus und das detaillierte Management der Nebenwirkungen der am häufigsten verwendeten immunsuppressiven Medikamente für Hautkrankheiten zusammen. Darüber hinaus diskutieren wir den Umgang mit diesen Medikamenten während der Schwangerschaft und Stillzeit sowie ihre Wechselwirkung und Handhabung im Zusammenhang mit Impfungen.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Euna Bodner
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Kamran Ghoreschi
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Katharina Meier
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Farzan Solimani
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
- BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité - Universitätsmedizin Berlin
| |
Collapse
|
5
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Fadel L, Dacic M, Fonda V, Sokolsky BA, Quagliarini F, Rogatsky I, Uhlenhaut NH. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023; 251:108531. [PMID: 37717739 PMCID: PMC10841922 DOI: 10.1016/j.pharmthera.2023.108531] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.
Collapse
Affiliation(s)
- Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vlera Fonda
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Baila A Sokolsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Fabiana Quagliarini
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany; Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor11 Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
7
|
Harrison KS, Wijesekera N, Robinson AGJ, Santos VC, Oakley RH, Cidlowski JA, Jones C. Impaired glucocorticoid receptor function attenuates herpes simplex virus 1 production during explant-induced reactivation from latency in female mice. J Virol 2023; 97:e0130523. [PMID: 37823644 PMCID: PMC10617412 DOI: 10.1128/jvi.01305-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE A correlation exists between stress and increased episodes of human alpha-herpes virus 1 reactivation from latency. Stress increases corticosteroid levels; consequently, the glucocorticoid receptor (GR) is activated. Recent studies concluded that a GR agonist, but not an antagonist, accelerates productive infection and reactivation from latency. Furthermore, GR and certain stress-induced transcription factors cooperatively transactivate promoters that drive the expression of infected cell protein 0 (ICP0), ICP4, and VP16. This study revealed female mice expressing a GR containing a serine to alanine mutation at position 229 (GRS229A) shed significantly lower levels of infectious virus during explant-induced reactivation compared to male GRS229A or wild-type parental C57BL/6 mice. Furthermore, female GRS229A mice contained fewer VP16 + TG neurons compared to male GRS229A mice or wild-type mice during the early stages of explant-induced reactivation from latency. Collectively, these studies revealed that GR transcriptional activity has female-specific effects, whereas male mice can compensate for the loss of GR transcriptional activation.
Collapse
Affiliation(s)
- Kelly S. Harrison
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nishani Wijesekera
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Anastasia G. J. Robinson
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Vanessa C. Santos
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robert H. Oakley
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John A. Cidlowski
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
9
|
Jeanneteau F, Meijer OC, Moisan MP. Structural basis of glucocorticoid receptor signaling bias. J Neuroendocrinol 2023; 35:e13203. [PMID: 36221223 DOI: 10.1111/jne.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Dissociation between the healthy and toxic effects of cortisol, a major stress-responding hormone has been a widely used strategy to develop anti-inflammatory glucocorticoids with fewer side effects. Such strategy falls short when treating brain disorders as timing and activity state within large-scale neuronal networks determine the physiological and behavioral specificity of cortisol response. Advances in structural molecular dynamics posit the bases for engineering glucocorticoids with precision bias for select downstream signaling pathways. Design of allosteric and/or cooperative control for the glucocorticoid receptor could help promote the beneficial and reduce the deleterious effects of cortisol on brain and behavior in disease conditions.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de génomique fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Onno C Meijer
- Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
10
|
Khadka S, Druffner SR, Duncan BC, Busada JT. Glucocorticoid regulation of cancer development and progression. Front Endocrinol (Lausanne) 2023; 14:1161768. [PMID: 37143725 PMCID: PMC10151568 DOI: 10.3389/fendo.2023.1161768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Glucocorticoids are steroid hormones that regulate a host of cellular and physiological functions. However, they are arguably best known for their potent anti-inflammatory properties. Chronic inflammation is well-known to promote the development and progression of numerous types of cancer, and emerging evidence suggests that glucocorticoid regulation of inflammation affects cancer development. However, the timing, intensity, and duration of glucocorticoid signaling have important but often contradictory effects on cancer development. Moreover, glucocorticoids are widely used in parallel with radiation and chemotherapy to control pain, dyspnea, and swelling, but their use may compromise anti-tumor immunity. This review will explore the effects of glucocorticoids on cancer development and progression with particular focus on pro and anti-tumor immunity.
Collapse
|
11
|
Wenjie L, Fazhi Q. Hypothesis of immune homeostasis regulator: the nervous system regulates glucose immunometabolism to control immunity. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
13
|
Jaumotte JD, Franks AL, Bargerstock EM, Kisanga EP, Menden HL, Ghersi A, Omar M, Wang L, Rudine A, Short KL, Silswal N, Cole TJ, Sampath V, Monaghan-Nichols AP, DeFranco DB. Ciclesonide activates glucocorticoid signaling in neonatal rat lung but does not trigger adverse effects in the cortex and cerebellum. Neurobiol Dis 2021; 156:105422. [PMID: 34126164 DOI: 10.1016/j.nbd.2021.105422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/15/2022] Open
Abstract
Synthetic glucocorticoids (sGCs) such as dexamethasone (DEX), while used to mitigate inflammation and disease progression in premature infants with severe bronchopulmonary dysplasia (BPD), are also associated with significant adverse neurologic effects such as reductions in myelination and abnormalities in neuroanatomical development. Ciclesonide (CIC) is a sGC prodrug approved for asthma treatment that exhibits limited systemic side effects. Carboxylesterases enriched in the lower airways convert CIC to the glucocorticoid receptor (GR) agonist des-CIC. We therefore examined whether CIC would likewise activate GR in neonatal lung but have limited adverse extra-pulmonary effects, particularly in the developing brain. Neonatal rats were administered subcutaneous injections of CIC, DEX or vehicle from postnatal days 1-5 (PND1-PND5). Systemic effects linked to DEX exposure, including reduced body and brain weight, were not observed in CIC treated neonates. Furthermore, CIC did not trigger the long-lasting reduction in myelin basic protein expression in the cerebral cortex nor cerebellar size caused by neonatal DEX exposure. Conversely, DEX and CIC were both effective at inducing the expression of select GR target genes in neonatal lung, including those implicated in lung-protective and anti-inflammatory effects. Thus, CIC is a promising, novel candidate drug to treat or prevent BPD in neonates given its activation of GR in neonatal lung and limited adverse neurodevelopmental effects. Furthermore, since sGCs such as DEX administered to pregnant women in pre-term labor can adversely affect fetal brain development, the neurological-sparing properties of CIC, make it an attractive alternative for DEX to treat pregnant women severely ill with respiratory illness, such as with asthma exacerbations or COVID-19 infections.
Collapse
Affiliation(s)
- Juliann D Jaumotte
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexis L Franks
- Department of Pediatrics, Division of Child Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bargerstock
- Department of Pediatrics, Division of Newborn Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwina Philip Kisanga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy Kansas City, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Alexis Ghersi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mahmoud Omar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liping Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony Rudine
- Department of Neonatology, St. David's Medical Center, Austin, TX, USA
| | - Kelly L Short
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Neerupama Silswal
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Timothy J Cole
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy Kansas City, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - A Paula Monaghan-Nichols
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute of Neurodegenerative Disease (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Wepler M, Preuss JM, Merz T, McCook O, Radermacher P, Tuckermann JP, Vettorazzi S. Impact of downstream effects of glucocorticoid receptor dysfunction on organ function in critical illness-associated systemic inflammation. Intensive Care Med Exp 2020; 8:37. [PMID: 33336296 PMCID: PMC7746781 DOI: 10.1186/s40635-020-00325-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are stress hormones that regulate developmental and physiological processes and are among the most potent anti-inflammatory drugs to suppress chronic and acute inflammation. GCs act through the glucocorticoid receptor (GR), a ubiquitously expressed ligand-activated transcription factor, which translocates into the nucleus and can act via two different modes, as a GR monomer or as a GR dimer. These two modes of action are not clearly differentiated in practice and may lead to completely different therapeutic outcomes. Detailed aspects of GR mechanisms are often not taken into account when GCs are used in different clinical scenarios. Patients, with critical illness-related corticosteroid insufficiency, treated with natural or synthetic GCs are still missing a clearly defined therapeutic strategy. This review discusses the different modes of GR function and its importance on organ function in vivo.
Collapse
Affiliation(s)
- Martin Wepler
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany. .,Department of Anesthesia, University Hospital Ulm, Ulm, Germany.
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Símaro GV, Lemos M, Silva JJMD, Cunha WR, Carneiro LJ, Ambrósio SR, Cunha NL, de Andrade SF, Arruda C, Banderó-Filho VC, Sasse A, Sheridan H, Bastos JK, Silva MLAE. In vivo study of anti-inflammatory and antinociceptive activities of Copaifera pubiflora Benth oleoresin. Nat Prod Res 2020; 36:1129-1133. [PMID: 33291984 DOI: 10.1080/14786419.2020.1855639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copaifera pubiflora Benth oleoresin (CPO) is used as an anti-inflammatory, wound healing, and antimicrobial. This paper reports the cytotoxic, anti-inflammatory, and antinociceptive activities of CPO. CPO (10 mg/kg) did not affect locomotor capacity in the open-field and rotarod tests and was not cytotoxic to CHO-k1, THP-1, and L929 cell lines. It was active in the formalin test at 3 mg/kg by 86 ± 3% and 96 ± 3%, respectively, for the first and second phases. At 10 mg/kg, CPO inhibited 90 ± 7%, the pain in the mechanical hyperalgesia test. In the tail-flick test, CPO at 3 mg/kg affected the tail-flick latencies in mice by 77 ± 20%, which in combination with naloxone was only partially reduced. At 3 mg/kg CPO inhibited 80 ± 12% the carrageenan-induced paw edema, and at 3 mg/kg it reduced by 91 ± 5% the nociception on acetic acid-induced abdominal writhing. Therefore, CPO possesses anti-inflammatory and antinociceptive activities.
Collapse
Affiliation(s)
- Guilherme Venâncio Símaro
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marivane Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Wilson Roberto Cunha
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | | | | | | | - Sérgio Faloni de Andrade
- CBIOS - Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Vilmar C Banderó-Filho
- CBIOS - Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Astrid Sasse
- NatPro Centre. School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Helen Sheridan
- NatPro Centre. School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Meduri GU, Chrousos GP. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front Endocrinol (Lausanne) 2020; 11:161. [PMID: 32390938 PMCID: PMC7189617 DOI: 10.3389/fendo.2020.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In critical illness, homeostatic corrections representing the culmination of hundreds of millions of years of evolution, are modulated by the activated glucocorticoid receptor alpha (GRα) and are associated with an enormous bioenergetic and metabolic cost. Appreciation of how homeostatic corrections work and how they evolved provides a conceptual framework to understand the complex pathobiology of critical illness. Emerging literature place the activated GRα at the center of all phases of disease development and resolution, including activation and re-enforcement of innate immunity, downregulation of pro-inflammatory transcription factors, and restoration of anatomy and function. By the time critically ill patients necessitate vital organ support for survival, they have reached near exhaustion or exhaustion of neuroendocrine homeostatic compensation, cell bio-energetic and adaptation functions, and reserves of vital micronutrients. We review how critical illness-related corticosteroid insufficiency, mitochondrial dysfunction/damage, and hypovitaminosis collectively interact to accelerate an anti-homeostatic active process of natural selection. Importantly, the allostatic overload imposed by these homeostatic corrections impacts negatively on both acute and long-term morbidity and mortality. Since the bioenergetic and metabolic reserves to support homeostatic corrections are time-limited, early interventions should be directed at increasing GRα and mitochondria number and function. Present understanding of the activated GC-GRα's role in immunomodulation and disease resolution should be taken into account when re-evaluating how to administer glucocorticoid treatment and co-interventions to improve cellular responsiveness. The activated GRα interdependence with functional mitochondria and three vitamin reserves (B1, C, and D) provides a rationale for co-interventions that include prolonged glucocorticoid treatment in association with rapid correction of hypovitaminosis.
Collapse
Affiliation(s)
- Gianfranco Umberto Meduri
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
17
|
Tyul’kova EI, Vataeva LA, Stratilov VA, Barysheva VS, Vetrovoy OV. Peculiarities of DNA and Histone H3 Methylation in the Hippocampus and Neocortex of Rats Subjected to Pathological Treatments during the Prenatal Period. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol 2020; 16:133-144. [PMID: 32034322 DOI: 10.1038/s41584-020-0371-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic glucocorticoids have been widely used in rheumatic diseases since they became available over 60 years ago. Despite the advent of more specific biologic therapies, a notable proportion of individuals with chronic rheumatic diseases continue to be treated with these drugs. Glucocorticoids are powerful, broad-spectrum anti-inflammatory agents, but their use is complicated by an equally broad range of adverse effects. The specific cellular mechanisms by which glucocorticoids have their therapeutic action have been difficult to identify, and attempts to develop more selective drugs on the basis of the action of glucocorticoids have proven difficult. The actions of glucocorticoids seem to be highly cell-type and context dependent. Despite emerging data on the effect of tissue-specific manipulation of glucocorticoid receptors in mouse models of inflammation, the cell types and intracellular targets of glucocorticoids in rheumatic diseases have not been fully identified. Although showing some signs of decline, the use of systemic glucocorticoids in rheumatology is likely to continue to be widespread, and careful consideration is required by rheumatologists to balance the beneficial effects and deleterious effects of these agents.
Collapse
Affiliation(s)
- Rowan S Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Mark S Cooper
- ANZAC Research Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
19
|
Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S. Fighting the Fire: Mechanisms of Inflammatory Gene Regulation by the Glucocorticoid Receptor. Front Immunol 2019; 10:1859. [PMID: 31440248 PMCID: PMC6693390 DOI: 10.3389/fimmu.2019.01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Giorgio Caratti
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Aikaterini Mechtidou
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Jan Tuckermann
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sabine Vettorazzi
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
20
|
Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cell Mol Neurobiol 2018; 39:539-549. [PMID: 30291573 PMCID: PMC6469829 DOI: 10.1007/s10571-018-0625-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Corticosteroid hormones act in the brain to support adaptation to stress via binding to mineralocorticoid and glucocorticoid receptors (MR and GR). These receptors act in large measure as transcription factors. Corticosteroid effects can be highly divergent, depending on the receptor type, but also on brain region, cell type, and physiological context. These differences ultimately depend on differential interactions of MR and GR with other proteins, which determine ligand binding, nuclear translocation, and transcriptional activities. In this review, we discuss established and potential mechanisms that confer receptor and cell type-specific effects of the MR and GR-mediated transcriptional effects in the brain.
Collapse
Affiliation(s)
- Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - J C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marcel J M Schaaf
- Department of Animal Sciences and Health (M.J.M.S.), Institute of Biology, Leiden University, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
21
|
Hampton TH, Jackson C, Jung D, Chen CY, Glaholt SP, Stanton BA, Colbourne JK, Shaw JR. Arsenic Reduces Gene Expression Response to Changing Salinity in Killifish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8811-8821. [PMID: 29979584 PMCID: PMC6084426 DOI: 10.1021/acs.est.8b01550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Toxicogenomic approaches can detect and classify adverse interactions between environmental toxicants and other environmental stressors but require more complex experimental designs and analytical approaches. Here we use novel toxicogenomic techniques to analyze the effect of arsenic exposure in wild killifish populations acclimating to changing salinity. Fish from three populations were acclimated to full strength seawater and transferred to fresh water for 1 or 24 h. Linear models of gene expression in gill tissue identified 31 genes that responded to osmotic shock at 1 h and 178 genes that responded at 24 h. Arsenic exposure (100 μg/L) diminished the responses (reaction norms) of these genes by 22% at 1 h ( p = 1.0 × 10-6) and by 10% at 24 h ( p = 3.0 × 10-10). Arsenic also significantly reduced gene coregulation in gene regulatory networks ( p = 0.002, paired Levene's test), and interactions between arsenic and salinity acclimation were uniformly antagonistic at the biological pathway level ( p < 0.05, binomial test). Arsenic's systematic interference with gene expression reaction norms was validated in a mouse multistressor experiment, demonstrating the ability of these toxicogenomic approaches to identify biologically relevant adverse interactions between environmental toxicants and other environmental stressors.
Collapse
Affiliation(s)
- Thomas H. Hampton
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Craig Jackson
- The School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| | - Dawoon Jung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
- Korea Environment Institute, Sejong, Republic of Korea
| | - Celia Y. Chen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Stephen P. Glaholt
- The School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - John K. Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Joseph R. Shaw
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- The School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| |
Collapse
|