1
|
Wang J, Cheng W, Yang R. Nervous system-gut microbiota-immune system axis: future directions for preventing tumor. Front Immunol 2025; 16:1535955. [PMID: 40376000 PMCID: PMC12078214 DOI: 10.3389/fimmu.2025.1535955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Tumor is one of the leading causes of death worldwide. The occurrence and development of tumors are related to multiple systems and factors such as the immune system, gut microbiota, and nervous system. The immune system plays a critical role in tumor development. Studies have also found that the gut microbiota can directly or indirectly affect tumorigenesis and tumor development. With increasing attention on the tumor microenvironment in recent years, the nervous system has emerged as a novel regulator of tumor development. Some tumor therapies based on the nervous system have also been tested in clinical trials. However, the nervous system can not only directly interact with tumor cells but also indirectly affect tumor development through the gut microbiota. The nervous system-mediated gut microbiota can regulate tumorigenesis, growth, invasion, and metastasis through the immune system. Here, we mainly explore the potential effects of the nervous system-gut microbiota-immune system axis on tumorigenesis and tumor development. The effects of the nervous system-gut microbiota-immune system axis on tumors involve the nervous system regulating immune cells through the gut microbiota, which can prevent tumor development. Meanwhile, the direct effects of the gut microbiota on tumors and the regulation of the immune system by the nervous system, which can affect tumor development, are also reviewed.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Truong LD, Trostel J, Roncal C, Cara-Fuentes G, Miyazaki M, Miyazaki-Anzai S, Andres-Hernando A, Sasai F, Lanaspa M, Johnson RJ, Garcia GE. Production of Acetylcholine by Podocytes and its Protection from Kidney Injury in GN. J Am Soc Nephrol 2025; 36:205-218. [PMID: 39302734 PMCID: PMC11801748 DOI: 10.1681/asn.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Key Points Our study demonstrated the sole enzyme responsible for acetylcholine production, choline acetyltransferase, was expressed in podocytes. Acetylcholine decreased glomerular injury in GN by reducing inflammation and protecting endothelium. Choline acetyltransferase/acetylcholine production was induced in podocytes with drugs already available. Background One of the most important factors modulating endothelial health is acetylcholine; and while it is associated as a cholinergic neurotransmitter, it is also expressed by non-neuronal cells. However, its role in the kidney, which does not receive cholinergic innervation, remains unknown. Methods To determine whether acetylcholine is produced in the kidney, we used choline acetyltransferase (ChAT) (BAC)–enhanced green fluorescent protein (ChAT mice) transgenic mice in which enhanced green fluorescent protein is expressed under the control of the endogenous ChAT transcriptional regulatory elements. We then investigated the role of acetylcholine in kidney disease by inducing antiglomerular basement membrane GN (anti-GBM GN) in ChAT transgenic mice. Results We demonstrate ChAT, the sole enzyme responsible for acetylcholine production, was expressed in glomerular podocytes and produced acetylcholine. We also show during anti-GBM GN in ChAT transgenic mice, ChAT expression was induced in the glomeruli, mainly in podocytes, and protects mice from kidney injury with marked reduction of glomerular proliferation/fibrinoid necrosis (by 71%), crescent formation (by 98%), and tubular injury (by 78%). By contrast, specific knockout of podocyte ChAT worsened the severity of the disease. The mechanism of protection included reduction of inflammation, attenuation of angiogenic factors reduction, and increase of endothelial nitric oxide synthase expression. In vitro and in vivo studies demonstrated available drugs such as cholinesterase inhibitors and ChAT inducers increased the expression of podocyte-ChAT and acetylcholine production. Conclusions These findings suggest de novo synthesis of acetylcholine by podocytes protected against inflammation and glomerular endothelium damage in anti-GBM GN. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_12_05_ASN0000000000000492.mp3
Collapse
Affiliation(s)
- Luan D. Truong
- Department of Pathology, Baylor College of Medicine, The Houston Methodist Hospital, Houston, Texas
| | - Jessica Trostel
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fumihiko Sasai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Miguel Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Lu XY, Wen YX, Jiang N, Zhou SQ, Yang T, Shi LL, Guo HM, Zhang W, Zhang QP, Zhang NN. DREADDs-Based Chemogenetics Induced Slow Transit Constipation via Inhibition of Enteric Neurons. J Dig Dis 2025; 26:62-73. [PMID: 40223443 PMCID: PMC12038534 DOI: 10.1111/1751-2980.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools are commonly used to activate or silence targeted neurons by the agonistic ligand deschloroclozapine (DCZ). This study aimed to establish a Gi-DREADD-based murine model of slow transit constipation (STC) and elucidate its pathophysiological mechanisms. METHODS Adeno-associated virus (AAV) 9-hM4Di was injected into the intestinal wall of mice, and colonic motility was evaluated. The efficiency and immunogenicity of AAV9-hM4Di transduction in the enteric nervous system (ENS) were evaluated. Nitric oxide (NO), acetylcholine (ACh), and substance P (SP) in the colonic tissues and serum samples were analyzed. Calcium (Ca2+) imaging was performed to evaluate the responses of AAV9-hM4Di on enteric nerves. RESULTS AAV9-hM4Di-treated mice showed gastrointestinal motility dysfunction, including reduced fecal pellets and decreased fecal mass and water content. Electrophysiological recording of muscle contraction in the isolated colonic tissues from the chemogenetic mice showed decreased frequency and amplitude after DCZ treatment. The mice treated with AAV9-hM4Di showed the highest levels of transduction in the myenteric plexuses of the ENS. There were no differences in transduction in neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT) neurons. Gi-DREADDs significantly downregulated ACh but not NO or SP expression in the distal colon in the chemogenetic mice. Ca2+ transient in neurons of ENS in chemogenetic mice was strongly inhibited by DCZ. CONCLUSIONS It is feasible to apply the DREADDs-based chemogenetic tools to the ENS. Gi-DREADDs can selectively modulate the ENS, inducing STC without excitatory-neural bias, offering targeted neuromodulation for gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Xin Yi Lu
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu ProvinceChina
- Department of GastroenterologyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingJiangsu ProvinceChina
| | - Yu Xiang Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life SciencesNanjing UniversityNanjingJiangsu ProvinceChina
| | - Ni Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Si Qi Zhou
- Department of GastroenterologyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingJiangsu ProvinceChina
| | - Tian Yang
- Department of GastroenterologyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingJiangsu ProvinceChina
| | - Liang Liang Shi
- Department of GastroenterologyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingJiangsu ProvinceChina
| | - Hui Min Guo
- Department of GastroenterologyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingJiangsu ProvinceChina
| | - Wei Zhang
- Department of GastroenterologyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingJiangsu ProvinceChina
| | - Qi Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life SciencesNanjing UniversityNanjingJiangsu ProvinceChina
| | - Ni Na Zhang
- Department of GastroenterologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsu ProvinceChina
- Department of GastroenterologyNanjing University Medical School Affiliated Nanjing Drum Tower HospitalNanjingJiangsu ProvinceChina
| |
Collapse
|
4
|
Zhou P, Wang X, Sun M, Yan S. Effects of natural products on functional constipation: analysis of active ingredient and mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2083-2103. [PMID: 37870581 DOI: 10.1007/s00210-023-02786-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Constipation is a prevalent clinical ailment of the gastrointestinal system, yet its pathogenesis remains ambiguous. Despite the availability of numerous treatment modalities, they are insufficient in resolving the issue for patients. This work conducted a comprehensive review of the existing literature pertaining to the utilization of natural products for the treatment of constipation, with a focus on the efficacy of natural products in treating constipation, and to provide a comprehensive summary of their underlying mechanisms of action. Upon conducting a thorough review of the extant literature, we found that natural products can effectively treat constipation as modern synthetic drugs and compounded drugs with acetylcholinesterase (AChE) effects, rich in fiber and mucus, and the effects of increasing the tension of the ileum and gastrointestinal tract muscle, mediating signaling pathways, cytokine, excitability of the smooth muscle of the gastrointestinal tract, and regulating the homeostasis of intestinal flora. However, there is a wide variety of natural products, and there are still relatively few studies; the composition of natural products is complex, and the mechanism of action of natural products cannot be clarified. In the future, we need to further improve the detailed mechanism of natural products for the treatment of constipation.
Collapse
Affiliation(s)
- Pengfei Zhou
- Department of Anorectal Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Wang
- Department of Anorectal surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Mingming Sun
- Department of Anorectal surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuai Yan
- Department of Anorectal surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
5
|
Xiong H, Yang Y, Guo W, Yuan J, Yang W, Gao M. Study on quality difference between Belamcanda chinensis (L.) DC and Iris tectorum Maxim. based on chemical chromatogram analysis, biological activity evaluation and in vivo distribution rule. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117091. [PMID: 37634753 DOI: 10.1016/j.jep.2023.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Belamcanda chinensis (L.) DC. (BC) and Iris tectorum Maxim. (ITM) have been widely used in recent years due to their remarkable curative effects on sore throat, cough and asthma. but they are often misused due to their similar appearance. A comprehensive comparison of the chemical composition, biological activity, pharmacokinetics and tissue distribution between the two active differential components has not been performed. Differences in their specific effects have not been fully elucidated. AIM OF THE STUDY This work aims at differentiating between BC and ITM in terms of appearance, chemical composition, biological activity, pharmacokinetics and tissue distribution. MATERIALS AND METHODS In this study, the HPLC-FP method was used to find the differences between the chemical components of BC and ITM. The pharmacological experiments were used to compare the differences in activity, including in vitro anti-inflammatory activity with LPS-induced inflammation model of RAW 264.7 cells, inhibition of AChE activity, and the regulation of isolated small intestinal smooth muscle in mice. The pharmacokinetic and tissue distribution profiles were used to analyze the differences between the two in rats. RESULTS The types of isoflavones in BC and ITM are basically the same, but their contents in ITM is much higher than that in BC. At the same doses, the release of TNF-α, NO, IL-1β and IL-6 from RAW 264.7 cells in the ITM group was lower than that of the BC group, and the in vitro anti-inflammatory activity of ITM was stronger than that of BC. Meanwhile, ITM had stronger inhibition ability to inhibit AChE activity than BC. The BC extract exhibited an inhibitory effect on the isolated small intestinal smooth muscle of mice, and the ITM extract showed stimulatory effect at low concentration and inhibitory effect at high concentration. There were significant differences in drug-time profiles, kinetic parameters and tissue distribution. CONCLUSIONS There are significant differences in the multidimensional aspects of appearance, chemical composition, biological activity, pharmacokinetics, and tissue distribution between BC and ITM. This study provides a theoretical basis for the quality control, pharmacological efficacy and clinical application of the two herbs.
Collapse
Affiliation(s)
- Hao Xiong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yuanfeng Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Wenhui Guo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Jinbin Yuan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Wuliang Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Meng Gao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| |
Collapse
|
6
|
Jiang X, Shi J, Yang H, Zhao Z. The cholinergic pathway transmits signals of neuropeptide F to regulate feeding of Ostrinia furnacalis larvae. PEST MANAGEMENT SCIENCE 2023; 79:3593-3601. [PMID: 37183359 DOI: 10.1002/ps.7544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/02/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Feeding is the basis of animal survival and reproduction. In insects, the neuropeptide F (NPF), a homologous polypeptide of NPY in vertebrates, plays an important role in regulation of feeding behavior. However, relatively little has been known about the molecular mechanism of feeding. RESULTS In this study, we show that the cholinergic pathway is very important in signaling transmission of NPF feeding regulation in Ostrinia furnacalis larvae, in which the choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (vAChT) in presynaptic membrane and the nicotinic acetylcholine receptor (nAChR) in postsynaptic membrane are positively regulated by NPF, while the ace1 and ace2 encoding the acetylcholinesterase (AChE) are negatively regulated by NPF, leading to a balance of acetylcholine (ACh)-the excitatory transmitter. More, the cholinergic pathway further transmits signaling to the downstream pathways of the phosphoInositide-3 kinase (PI3K) and the cAMP responsive element binding protein (CREB), respectively. CONCLUSION The cholinergic transmission, positively regulated by NPF, is involved in feeding of O. furnacalis larvae via downstream PI3K and the CREB pathways, respectively. The deexcitation of cell cholinergic pathway or inhibition of PI3K and CREB lead to decreases of larval feeding amount. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuemin Jiang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haoran Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
7
|
Henderson S, Strait M, Fernandes R, Xu H, Galligan JJ, Swain GM. Ex Vivo Electrochemical Monitoring of Cholinergic Signaling in the Mouse Colon Using an Enzyme-Based Biosensor. ACS Chem Neurosci 2023; 14:3460-3471. [PMID: 37681686 DOI: 10.1021/acschemneuro.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Cholinergic signaling, i.e., neurotransmission mediated by acetylcholine, is involved in a host of physiological processes, including learning and memory. Cholinergic dysfunction is commonly associated with neurodegenerative diseases, including Alzheimer's disease. In the gut, acetylcholine acts as an excitatory neuromuscular signaler to mediate smooth muscle contraction, which facilitates peristaltic propulsion. Gastrointestinal dysfunction has also been associated with Alzheimer's disease. This research focuses on the preparation of an electrochemical enzyme-based biosensor to monitor cholinergic signaling in the gut and its application for measuring electrically stimulated acetylcholine release in the mouse colon ex vivo. The biosensors were prepared by platinizing Pt microelectrodes through potential cycling in a potassium hexachloroplatinate (IV) solution to roughen the electrode surface and improve adhesion of the multienzyme film. These electrodes were then modified with a permselective poly(m-phenylenediamine) polymer film, which blocks electroactive interferents from reaching the underlying substrate while remaining permeable to small molecules like H2O2. A multienzyme film containing choline oxidase and acetylcholinesterase was then drop-cast on these modified electrodes. The sensor responds to acetylcholine and choline through the enzymatic production of H2O2, which is electrochemically oxidized to produce an increase in current with increasing acetylcholine or choline concentration. Important figures of merit include a sensitivity of 190 ± 10 mA mol-1 L cm-2, a limit of detection of 0.8 μmol L-1, and a batch reproducibility of 6.1% relative standard deviation at room temperature. These sensors were used to detect electrically stimulated acetylcholine release from mouse myenteric ganglia in the presence and absence of tetrodotoxin and neostigmine, an acetylcholinesterase inhibitor.
Collapse
Affiliation(s)
- Skye Henderson
- Department of Chemistry, Michigan State University, Ames, East Lansing, Michigan 48824, United States
| | - Madison Strait
- Department of Chemistry, Iowa State University, Ames, Iowa IA50011, United States
| | - Roxanne Fernandes
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hui Xu
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Greg M Swain
- Department of Chemistry, Michigan State University, Ames, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Pendse M, De Selle H, Vo N, Quinn G, Dende C, Li Y, Salinas CN, Srinivasan T, Propheter DC, Crofts AA, Koo E, Hassell B, Ruhn KA, Raj P, Obata Y, Hooper LV. Macrophages regulate gastrointestinal motility through complement component 1q. eLife 2023; 12:e78558. [PMID: 37159507 PMCID: PMC10185340 DOI: 10.7554/elife.78558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.
Collapse
Affiliation(s)
- Mihir Pendse
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Haley De Selle
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Gabriella Quinn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chaitanya Dende
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yun Li
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Cristine N Salinas
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Tarun Srinivasan
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander A Crofts
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Eugene Koo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Brian Hassell
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kelly A Ruhn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
9
|
Leven P, Schneider R, Siemens KD, Jackson WS, Wehner S. Application of a RiboTag-based approach to generate and analyze mRNA from enteric neural cells. Neurogastroenterol Motil 2022; 34:e14309. [PMID: 34939271 DOI: 10.1111/nmo.14309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Transcriptional profiling of specific intestinal cell populations under health and disease is generally based on traditional sorting approaches followed by gene expression analysis. Therein, specific cell populations are identified either by expressing reporter genes under a cell type-specific promotor or by specific surface antigens. This method provides adequate results for blood-derived and tissue-resident immune cells. However, in stromal cell analysis, cellular stress due to digestion often results in degraded RNA. Particularly, ramified cells integrated into the tissue, such as enteric neurons and glial cells, suffer from these procedures. These cell types are involved in various intestinal processes, including a prominent immune-regulatory role, which requires suitable approaches to generate cell-specific transcriptional profiles. METHODS Sox10iCreERT2 and choline acetyltransferase (ChATCre ) mice were crossed with mice labeling the ribosomal Rpl22 protein upon Cre activity with a hemagglutinin tag (Rpl22-HA, termed RiboTag). This approach enabled cellular targeting of enteric glia and neurons and the immediate isolation of cell-specific mRNA from tissue lysates without the need for cell sorting. KEY RESULTS We verified the specific expression of Rpl22-HA in enteric glia and neurons and provided gene expression data demonstrating a successful enrichment of either Sox-10+ glial or ChAT+ neuronal mRNAs by the RiboTag-mRNA procedure using qPCR and RNA-Seq analysis. CONCLUSIONS AND INFERENCES We present a robust and selective protocol that allows the generation of cell type-specific transcriptional in vivo snapshots of distinct enteric cell populations that will be especially useful for various intestinal disease models involving peripheral neural cells.
Collapse
Affiliation(s)
- Patrick Leven
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Kevin D Siemens
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Walker S Jackson
- Department of Biomedical and Clinical Sciences, Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Characterization of Neurochemical Signature Alterations in the Enteric Nervous System in Autoimmune Encephalomyelitis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To date, it has remained unclear whether gastrointestinal symptoms, which are frequently observed in patients with multiple sclerosis (MS), are accompanied by pathology of the enteric nervous system (ENS). Here, the neurotransmitter signature of ENS neurons and morphological alterations of interstitial cells of Cajal (ICCs) were studied in patients with MS and mice with experimental autoimmune encephalomyelitis (EAE), which is an animal model of MS. Immunohistochemical analysis was performed on colonic whole mounts from mice with EAE and on paraffin-embedded sections of intestinal tissue from patients with MS. Antibodies against neurotransmitters or their enzymes (including vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS), and choline acetyltransferase (ChAT)) were used in conjunction with pan-neuronal markers. In addition, the presence of anoctamin 1 (ANO1)-expressing ICCs was studied. ENS changes were observed in the myenteric plexus, but they were absent in the submucosal plexus of both EAE mice and patients with MS. There was a significant decrease in the percentage of ChAT-positive neurons in EAE mice as opposed to a trend toward an increase in patients with MS. Moreover, while ANO1 expression was decreased in EAE mice, patients with MS displayed a significant increase. Although additional studies are necessary to accomplish an in-depth characterization of ENS alterations in MS, our results imply that such alterations exist and may reveal novel insights into the pathophysiology of MS.
Collapse
|
11
|
Su YL, Liu D, Liu YJ, Ji YL, Liu GS, Wang JLT, Wang B, Wang H. Phlorizin alleviates cholinergic memory impairment and regulates gut microbiota in d-galactose induced mice. Exp Gerontol 2022; 165:111863. [PMID: 35660419 DOI: 10.1016/j.exger.2022.111863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
We explored the effect of phlorizin against cholinergic memory impairment and dysbacteriosis in D-galactose induced ICR mice. The control (CON) group, D-galactose model (DGM) group, and three groups (DG-PL, DG-PM, DG-PH) treated with phlorizin at 0.01%, 0.02%, and 0.04% (w/w) in diets were raised for 12 weeks. Supplementing with phlorizin reversed the loss of organ coefficient and body weight caused by D-galactose. The functional abilities of phlorizin on hippocampal-dependent spatial learning and memory, anti-oxidation, anti-inflammation were also observed. Meanwhile, phlorizin intervention upregulated the gene expression of Nrf2, GSH-PX, SOD1, decreased the gene expression of NF-κB, TLR-4, TNF-α, and IL-1β in the hippocampus, while enhanced the gene expression of JAM-A, Mucin2, Occludin in the caecum. Furthermore, a neurotransmitter of acetylcholine (ACh) was enhanced, while acetylcholinesterase (AChE) activity was inhibited by phlorizin administration. Moreover, phlorizin administration increased short-chain fatty acids (SCFAs) content, and reduced lipopolysaccharides (LPS) levels, which may relate to the rebuilding of gut microbiota homeostasis. Treatment with phlorizin may be an effective intervention for alleviating cognitive decline and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yan-Ling Su
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yao-Jie Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang-Lin Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Gui-Shan Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Inner Mongolia, Bayannur 015000, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
13
|
Xie T, Jin F, Jia X, Mao H, Xu Y, Zhang S. High cellulose diet promotes intestinal motility through regulating intestinal immune homeostasis and serotonin biosynthesis. Biol Chem 2021; 403:279-292. [PMID: 34536342 DOI: 10.1515/hsz-2021-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
It is widely accepted dietary fiber intimately linked to inflammatory and nervous diseases, which often been described with altered gastrointestinal (GI) motility. However, how dose dietary fiber modulate inflammation and crosstalk influence GI function has not been explained in detail. We found fiber-free diet reduced intestinal motility, accompanied by upregulated proinflammatory immunocytes and inflammatory cytokines in colon of mice. We also discovered high-cellulose diet increased synthesis of serotonin and expression of neurotrophic factors, both of that have been reported involved in promoting intestinal motility. In addition, metabolomics analysis showed increased tryptophan metabolites in high-cellulose diet mice, which happened to be required for serotonin biosynthesis. Further analysis revealed high-cellulose diet changed the composition of gut microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes, consequently, concentration of short-chain fatty acids (SCFAs), especially acetate. Orally administration of acetate confirmed its modulating to serotonin synthesis, neurotrophic factors expression and immunocyte differentiation through regulating histone deacetylase (HDAC3) activity in colon. Together, our results demonstrated high-cellulose diet promote intestinal motility through regulating intestinal homeostasis and enteric nervous system by increasing acetate production and HDAC3 inhibition. Thus, rich cellulose diet or acetate supplement can be considered as dietary advice to improve clinically intestinal motility insufficiency.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Fa Jin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Xiaokun Jia
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Hengxu Mao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Yuting Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| | - Shizhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou510282, China
| |
Collapse
|
14
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Electroacupuncture at ST36 Improve the Gastric Motility by Affecting Neurotransmitters in the Enteric Nervous System in Type 2 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6666323. [PMID: 34221088 PMCID: PMC8225438 DOI: 10.1155/2021/6666323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/20/2023]
Abstract
Electroacupuncture (EA) can effectively relieve hyperglycemia and gastric emptying disorders in diabetic gastroparesis (DGP). However, the effect of EA on type 2 diabetes mellitus (T2DM) gastroparesis and its mechanism in the enteric nervous system (ENS) are rarely studied. We investigated the therapeutic effect of EA at ST36 and its effect on the main inhibitory and excitatory neurotransmitters in the ENS in DGP rats. Male Sprague-Dawley (SD) rats were fed a high-fat diet for 2 weeks and injected with streptozotocin (STZ) at 35 mg/kg to induce T2DM. T2DM rats were divided into the diabetic mellitus (DM) group and the EA group. The control (CON) group comprised normal rats without any intervention. EA treatment was started 6 weeks after the induction of DM and continued for 5 weeks. The body weight and food intake of the rats were recorded every week. Blood glucose, insulin, glucose tolerance, gastric emptying, and antral motility were measured after treatment. The expression of protein gene product 9.5 (PGP9.5), neuronal nitric oxide synthase (nNOS), and choline acetyltransferase (ChAT) in gastric antrum were quantified by western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The T2DM gastroparesis model was successfully established. EA treatment reduced the body weight, food intake, and blood glucose; improved glucose intolerance and insulin resistance; increased the gastric emptying rate, the mean antral pressure, and the amplitude of antral motility; and decreased the frequency of antral motility compared with those in the DM group. EA treatment increased the expression level of nNOS, ChAT, and PGP9.5 proteins, and nNOS and ChAT mRNA. The results suggested that EA at ST36 could ameliorate DGP, partly restore the damage to general neurons, and increase nNOS and ChAT in the gastric antrum. EA improved DGP partly via reducing the loss of inhibitory and excitatory neurotransmitters in the ENS.
Collapse
|
16
|
Brzozowska M, Całka J. Review: Occurrence and Distribution of Galanin in the Physiological and Inflammatory States in the Mammalian Gastrointestinal Tract. Front Immunol 2021; 11:602070. [PMID: 33552060 PMCID: PMC7862705 DOI: 10.3389/fimmu.2020.602070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Galanin (GAL) is a broad-spectrum peptide that was first identified 37 years ago. GAL, which acts through three specific receptor subtypes, is one of the most important molecules on an ever-growing list of neurotransmitters. Recent studies indicate that this peptide is commonly present in the gastrointestinal (GI) tract and GAL distribution can be seen in the enteric nervous system (ENS). The function of the GAL in the gastrointestinal tract is, inter alia, to regulate motility and secretion. It should be noted that the distribution of neuropeptides is largely dependent on the research model, as well as the part of the gastrointestinal tract under study. During the development of digestive disorders, fluctuations in GAL levels were observed. The occurrence of GAL largely depends on the stage of the disease, e.g., in porcine experimental colitis GAL secretion is caused by infection with Brachyspira hyodysenteriae. Many authors have suggested that increased GAL presence is related to the involvement of GAL in organ renewal. Additionally, it is tempting to speculate that GAL may be used in the treatment of gastroenteritis. This review aims to present the function of GAL in the mammalian gastrointestinal tract under physiological conditions. In addition, since GAL is undoubtedly involved in the regulation of inflammatory processes, and the aim of this publication is to provide up-to-date knowledge of the distribution of GAL in experimental models of gastrointestinal inflammation, which may help to accurately determine the role of this peptide in inflammatory diseases and its potential future use in the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
17
|
Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM, Lu HY, Wang J, Thompson JD, Lickwar CR, Poss KD, Keating DJ, Jordt SE, Clardy J, Liddle RA, Rawls JF. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 2020; 29:179-196.e9. [PMID: 33352109 DOI: 10.1016/j.chom.2020.11.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium senses nutritional and microbial stimuli using epithelial sensory enteroendocrine cells (EEC). EECs communicate nutritional information to the nervous system, but whether they also relay signals from intestinal microbes remains unknown. Using in vivo real-time measurements of EEC and nervous system activity in zebrafish, we discovered that the bacteria Edwardsiella tarda activate EECs through the receptor transient receptor potential ankyrin A1 (Trpa1) and increase intestinal motility. Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly stimulates vagal sensory ganglia and activates cholinergic enteric neurons by secreting the neurotransmitter 5-hydroxytryptamine (5-HT). A subset of indole derivatives of tryptophan catabolism produced by E. tarda and other gut microbes activates zebrafish EEC Trpa1 signaling. These catabolites also directly stimulate human and mouse Trpa1 and intestinal 5-HT secretion. These results establish a molecular pathway by which EECs regulate enteric and vagal neuronal pathways in response to microbial signals.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel W Thorpe
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alyce M Martin
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - John D Thompson
- Department of Cell Biology, Regeneration Next, Duke University School of Medicine, Durham, NC 27710, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University School of Medicine, Durham, NC 27710, USA
| | - Damien J Keating
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rodger A Liddle
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Veterans Affairs, Durham, NC 27705, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Joly A, Leulier F, De Vadder F. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol 2020; 29:686-699. [PMID: 33309188 DOI: 10.1016/j.tim.2020.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
The gastrointestinal tract harbors an intrinsic neuronal network, the enteric nervous system (ENS). The ENS controls motility, fluid homeostasis, and blood flow, but also interacts with other components of the intestine such as epithelial and immune cells. Recent studies indicate that gut microbiota diversification, which occurs alongside postnatal ENS maturation, could be critical for the development and function of the ENS. Here we discuss the possibility that this functional relationship starts in utero, whereby the maternal microbiota would prime the developing ENS and shape its physiology. We review ENS/microbiota interactions and their modulation in physiological and pathophysiological contexts. While microbial modulation of the ENS physiology is now well established, further studies are required to understand the contribution of the gut microbiota to the development and pathology of the ENS and to reveal the precise mechanisms underlying microbiota-to-ENS communications.
Collapse
Affiliation(s)
- Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France.
| |
Collapse
|
19
|
Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020; 12:toxins12070461. [PMID: 32707706 PMCID: PMC7404981 DOI: 10.3390/toxins12070461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
20
|
Huff K, Suárez-Trujillo A, Kuang S, Plaut K, Casey T. One-to-one relationships between milk miRNA content and protein abundance in neonate duodenum support the potential for milk miRNAs regulating neonate development. Funct Integr Genomics 2020; 20:645-656. [PMID: 32458191 DOI: 10.1007/s10142-020-00743-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Breast milk plays an essential role for offspring development; however, there lacks evidence of how specific milk components like nucleic acids mechanistically function to regulate neonate development. Previously, we found that maternal high-fat diet (HFD) not only significantly affected mRNA and miRNA content of the secreted milk transcriptome in mice but also affected the duodenal proteome of suckling pups. Here, we hypothesized that nucleic acids differentially expressed in milk of HFD fed dams are related to differentially abundant proteins in offspring duodenum nursed by HFD dams. We tested this hypothesis by analyzing one-to-one relationships in RNA-seq data of milk transcriptomes from control (10% kcal fat) and HFD (60% kcal fat) fed mice and liquid chromatography-tandem mass spectrometry (LC-MS/MS) duodenal proteome data from pups exposed to milk. Ten percent of differentially abundant duodenal proteins between controls and HFD-exposed pups had predicted upregulation or downregulation based on differential milk RNA content. Of these, 76% were targets of upregulated miRNA, and linear regression analysis indicated relationships (p < 0.05) between multiple milk miRNA counts and duodenal protein abundance. Duodenal proteins that were potential targets of milk miRNA enriched Gene Ontology (GO) terms and KEGG pathways related to cytoskeletal structure and neural development, suggesting potential regulation of pup enteric nervous system. One-to-one relationships between milk miRNA content and protein abundance in neonate duodenum support the potential for milk miRNAs regulating neonate development. Identification of milk miRNAs that changed in response to maternal diet will enable design of mechanistic studies that test effects on neonate.
Collapse
Affiliation(s)
- Katelyn Huff
- Biological & Biomedical Sciences Program, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Aridany Suárez-Trujillo
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA.
| |
Collapse
|
21
|
Balkrishna A, Thakur P, Varshney A. Phytochemical Profile, Pharmacological Attributes and Medicinal Properties of Convolvulus prostratus - A Cognitive Enhancer Herb for the Management of Neurodegenerative Etiologies. Front Pharmacol 2020; 11:171. [PMID: 32194410 PMCID: PMC7063970 DOI: 10.3389/fphar.2020.00171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
Convolvulus prostratus Forssk., a nootropic herb used in traditional medicinal systems, is also frequently known by its taxonomic synonym Convolvulus pluricaulis. In Indian medicinal system - Ayurveda - it is named as Shankhpushpi. According to the ancient literature, this herb has been attributed with several therapeutic properties, such as anxiolytic, neuroprotective, antioxidant, analgesic, immunomodulatory, antimicrobial, antidiabetic and cardioprotective activities. This medicinal herb has been reported to contain many bioactive phytoconstituents, such as, alkaloid (convolamine), flavonoid (kaempferol) and phenolics (scopoletin, β-sitosterol and ceryl alcohol), that have been ascribed to the observed medicinal properties. Several research teams across the globe have highlighted the neuro-pharmacological profile of C. prostratus, wherein, the neuroprotective, nootropic and neuro-modulatory roles have been described. Besides, role of C. prostratus extracts in neurodegeneration has been well demonstrated. Despite of such elaborative preclinical pharmacological profile, detailed clinical investigations and mechanistic mode-of-action studies of this important herb are yet to be executed. The present review is attempted to showcase the phytochemical profile, pharmacological attributes and medicinal information of C. prostratus; with comprehensive research gap analysis. It is hoped that the scientific update on the ethnomedicinal aspects of this herb would thrive research propagation and development of the CNS phytopharmaceuticals, originated from C. prostratus.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Pallavi Thakur
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| |
Collapse
|
22
|
Gut microbiota-mediated Gene-Environment interaction in the TashT mouse model of Hirschsprung disease. Sci Rep 2019; 9:492. [PMID: 30679567 PMCID: PMC6345786 DOI: 10.1038/s41598-018-36967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Based on the bilateral relationship between the gut microbiota and formation/function of the enteric nervous system (ENS), we sought to determine whether antibiotics-induced dysbiosis might impact the expressivity of genetically-induced ENS abnormalities. To address this, we took advantage of the TashT mouse model of Hirschsprung disease, in which colonic aganglionosis and hypoganglionosis are both much more severe in males. These defects result into two male-biased colon motility phenotypes: either megacolon that is lethal around weaning age or chronic constipation in adults, the latter being also associated with an increased proportion of nitrergic neurons in the distal ENS. Induction of dysbiosis using a cocktail of broad-spectrum antibiotics specifically impacted the colonic ENS of TashTTg/Tg mice in a stage-dependent manner. It further decreased the neuronal density at post-weaning age and differentially modulated the otherwise increased proportion of nitrergic neurons, which appeared normalized around weaning age and further increased at post-weaning age. These changes delayed the development of megacolon around weaning age but led to premature onset of severe constipation later on. Finally, local inhibition of nitric oxide signaling improved motility and prevented death by megacolon. We thus conclude that exposure to antibiotics can negatively influence the expressivity of a genetically-induced enteric neuropathy.
Collapse
|