1
|
Knezovic A, Salkovic-Petrisic M. Cholinergic neurotransmission in the brain of streptozotocin-induced rat model of sporadic Alzheimer's disease: long-term follow up. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02887-2. [PMID: 39891708 DOI: 10.1007/s00702-025-02887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Rats treated intracerebroventricularly with streptozotocin (STZ-icv) develop pathologic features, which resemble those in Alzheimer's disease and have been proposed as a non-transgenic model for sporadic type of the disease (sAD). We aimed to characterize cholinergic transmission in the rat brain as a function of STZ-icv dose and time after the treatment. Acetylcholinesterase (AChE) activity and expression of muscarinic (M1, M4) and nicotinic (α7) receptors, cholin acetyltransferase (ChAT) and glial fibrillary acidic protein (GFAP) were measured in hippocampus (HPC) and parietotemporal cortex (CTX) of STZ-icv and age-matched control rats one week, and one, three, six and nine months after the icv administration of STZ (0.3, 1 and 3 mg/kg), respectively. Cholinergic and astroglial changes were found most pronounced with a highest STZ dose in time-dependent manner. The cortex and hippocampus exhibited specific alterations in cholinergic transmission following STZ-icv administration, with either similar or distinct patterns depending on the parameter observed: increased AChE activity in HPC and invariable in CTX; increased M4 and ChAT levels in both regions; substantial cortical M1 level increment and moderate hippocampal M1 decrement; and decreased α7 levels in both regions, with subsequent increase observed only in HPC. Alterations in cerebral cholinergic neurotransmission in STZ-icv rat model were mostly following a threephasic time pattern: acute response (Phase I), complete/partial compensation (Phase II), and reappearance/progression of changes (Phase III). Staging structure of cholinergic changes in STZ-icv rat model might be speculated to partly correlate with cholinergic pathology in clinical AD stages.
Collapse
Affiliation(s)
- Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, Zagreb, 10 000, Croatia.
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, 10 000, Croatia.
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, Zagreb, 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, 10 000, Croatia
| |
Collapse
|
2
|
Ni W, Ding J, Gong P, Tan X, Li J. Inhibition of Kv1.1 channels ameliorates Cu(II)-induced microglial activation and cognitive impairment in mice. Neurochem Int 2025; 183:105936. [PMID: 39814318 DOI: 10.1016/j.neuint.2025.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia. This study was designed to explore the role of Kv1.1 channels in copper-evoked microglial neuroinflammation. BV-2 microglial cells were treated with Cu(II). DiBAC4(3) was used to measure membrane potential. Microglial activation and neuronal loss were detected by enzyme-linked immunosorbent assay, Western blotting, and immunostaining. Learning and memory function was assessed with Morris water maze task. Cu(II) caused a hyperpolarized membrane potential in microglial cells, an effect abolished by functional Kv1.1 blockade. Blockade of Kv1.1 and knock-down of Kv1.1 with small interfering RNA repressed Cu(II)-induced microglial production of pro-inflammatory mediators. Also, Kv1.1 inhibition attenuated activation of PI3K/Akt-ERK1/2 signaling pathway and production of mitochondrial reactive oxidative species as well as nuclear factor-κB activation in Cu(II)-stimulated microglia. Moreover, the Cu(II)-caused, microglia-mediated neurotoxicity (indicated by reduced neuronal survival and increased dendritic loss) was attenuated by Kv1.1 knock-down. In an in vivo mouse model, hippocampal injection of Cu(II) caused elevated Kv1.1 mRNA (but not other Kv1 channels) expression and enhanced microglial Kv1.1 immunoreactivity in the hippocampus. Furthermore, blockade of Kv1.1 attenuated Cu(II)-induced microglial activation and neuronal dendritic loss in the hippocampus and learning and memory dysfunction. These findings suggest that inhibition of Kv1.1 ameliorates Cu(II)-induced microglial activation and cognitive impairment. Thus, it might represent a potential molecular target for anti-inflammatory therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Wenwen Ni
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Jiani Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Ping Gong
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Xiaofang Tan
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Juan Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| |
Collapse
|
3
|
Yohn SE, Harvey PD, Brannan SK, Horan WP. The potential of muscarinic M 1 and M 4 receptor activators for the treatment of cognitive impairment associated with schizophrenia. Front Psychiatry 2024; 15:1421554. [PMID: 39483736 PMCID: PMC11525114 DOI: 10.3389/fpsyt.2024.1421554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cognitive impairment is a core symptom of schizophrenia and a major determinant of poor long-term functional outcomes. Despite considerable efforts, we do not yet have any approved pharmacological treatments for cognitive impairment associated with schizophrenia (CIAS). A combination of advances in pre-clinical research and recent clinical trial findings have led to a resurgence of interest in the cognition-enhancing potential of novel muscarinic acetylcholine receptor (mAChR) agonists in schizophrenia. This article provides an overview of the scientific rationale for targeting M1 and M4 mAChRs. We describe the evolution of neuroscience research on these receptors since early drug discovery efforts focused on the mAChR agonist xanomeline. This work has revealed that M1 and M4 mAChRs are highly expressed in brain regions that are implicated in cognition. The functional significance of M1 and M4 mAChRs has been extensively characterized in animal models via use of selective receptor subtype compounds through neuronal and non-neuronal mechanisms. Recent clinical trials of a dual M1/M4 mAChR agonist show promising, replicable evidence of potential pro-cognitive effects in schizophrenia, with several other mAChR agonists in clinical development.
Collapse
Affiliation(s)
| | - Phillip D. Harvey
- Division of Psychology, University of Miami, Miami, FL, United States
| | | | - William P. Horan
- Bristol Myers Squibb, Princeton, NJ, United States
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
5
|
Hao F, Bu Y, Huang S, Li W, Feng H, Wang Y. Maternal exposure to deltamethrin during pregnancy and lactation impairs neurodevelopment of male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116196. [PMID: 38461575 DOI: 10.1016/j.ecoenv.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Deltamethrin (DM) is a highly effective and widely used pyrethroid pesticide. It is an environmental factor affecting public and occupational health and exerts direct toxic effects on the central nervous system. As the major target organs for neurotoxicity of DM, the hippocampus and the cerebellum are critical to the learning and motor function. Pregnant Wistar rats were randomly divided into four groups and gavaged at doses of 0, 1, 4or 10 mg/kg/d DM from gestational day (GD) 0 to postnatal day (PN) 21. The PC12 cells were selected to further verify the regulatory mechanisms of DM on the neurodevelopmental injury. We found that maternal exposure to DM caused learning, memory and motor dysfunction in male offspring. Maternal exposure to DM induced the decrease in the density of hippocampal dendritic spines in male offspring through the reduced expression of M1 mAchRs, which in turn reduced the mediated AKT/mTOR signaling pathway, contributing to the inhibition of dynamic changes of GluA1. Meanwhile, DM exposure inhibited the BDNF/TrkB signaling pathway, thereby reducing phosphorylation of stathmin and impairing cerebellar purkinje cell dendrite growth and development. Taken together, maternal exposure to DM during pregnancy and lactation could impair neurodevelopment of male offspring.
Collapse
Affiliation(s)
- Fei Hao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China; The Center for Disease Control and Prevention, Dalian Jinzhou New District, Dalian, China
| | - Ye Bu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China; Department of Planned Immunization, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Shasha Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wanqi Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Huiwen Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Jana S, Dines M, Lalzar M, Lamprecht R. Fear Conditioning Leads to Enduring Alterations in RNA Transcripts in Hippocampal Neuropil that are Dependent on EphB2 Forward Signaling. Mol Neurobiol 2023; 60:2320-2329. [PMID: 36637747 DOI: 10.1007/s12035-022-03191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
Alterations in mRNA transcription have been associated with changes in brain functions. We wanted to examine if fear conditioning causes long-term changes in transcriptome profiles in the basolateral amygdala (BLA) and hippocampus using RNA-Seq and laser microdissection microscopy. We further aimed to uncover whether these changes are involved in memory formation by monitoring their levels in EphB2lacZ/lacZ mice, which lack EphB2 forward signaling and can form short-term fear conditioning memory but not long-term fear conditioning memory. We found transcriptome signatures unique to each brain region that are comprise of specific cellular pathways. We also revealed that fear conditioning leads to alterations in mRNAs levels 24 h after training in hippocampal neuropil, but not in hippocampal cell layers or BLA. The two main groups of altered mRNAs encode proteins involved in neuronal transmission, neuronal morphogenesis and neuronal development and the vast majority are known to be enriched in neurons. None of these mRNAs levels were altered by fear conditioning in EphB2lacZ/lacZ mice, which were also impaired in long-term fear memory. We show here that fear conditioning leads to an enduring alteration in mRNAs levels in hippocampal neuropil that is dependent on processes mediated by EphB2 that are needed for long-term memory formation.
Collapse
Affiliation(s)
- Subhajit Jana
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Monica Dines
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci 2023; 17:1124333. [PMID: 36909280 PMCID: PMC9992992 DOI: 10.3389/fncel.2023.1124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
Collapse
Affiliation(s)
- Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Andrew B Tobin
- Advanced Research Centre (ARC), School of Molecular Bioscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Richard A A Kanaan
- Department of Psychiatry, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
8
|
Kumaran KR, Wahab HA, Hassan Z. Nootropic effect of Syzygium polyanthum (Wight) Walp leaf extract in chronic cerebral hypoperfusion rat model via cholinergic restoration: a potential therapeutic agent for dementia. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Fisher VL, Ortiz LS, Powers AR. A computational lens on menopause-associated psychosis. Front Psychiatry 2022; 13:906796. [PMID: 35990063 PMCID: PMC9381820 DOI: 10.3389/fpsyt.2022.906796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Psychotic episodes are debilitating disease states that can cause extreme distress and impair functioning. There are sex differences that drive the onset of these episodes. One difference is that, in addition to a risk period in adolescence and early adulthood, women approaching the menopause transition experience a second period of risk for new-onset psychosis. One leading hypothesis explaining this menopause-associated psychosis (MAP) is that estrogen decline in menopause removes a protective factor against processes that contribute to psychotic symptoms. However, the neural mechanisms connecting estrogen decline to these symptoms are still not well understood. Using the tools of computational psychiatry, links have been proposed between symptom presentation and potential algorithmic and biological correlates. These models connect changes in signaling with symptom formation by evaluating changes in information processing that are not easily observable (latent states). In this manuscript, we contextualize the observed effects of estrogen (decline) on neural pathways implicated in psychosis. We then propose how estrogen could drive changes in latent states giving rise to cognitive and psychotic symptoms associated with psychosis. Using computational frameworks to inform research in MAP may provide a systematic method for identifying patient-specific pathways driving symptoms and simultaneously refine models describing the pathogenesis of psychosis across all age groups.
Collapse
Affiliation(s)
- Victoria L Fisher
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Liara S Ortiz
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| | - Albert R Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
10
|
Kamdi SP, Badwaik HR, Raval A, Ajazuddin, Nakhate KT. Ameliorative potential of phloridzin in type 2 diabetes-induced memory deficits in rats. Eur J Pharmacol 2021; 913:174645. [PMID: 34800467 DOI: 10.1016/j.ejphar.2021.174645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Diabetes associated oxidative stress and impaired cholinergic neurotransmission causes cognitive deficits. Although phloridzin shows antioxidant- and insulin sensitizing-activities, its ameliorative potential in diabetes-induced memory dysfunction remains unexplored. In the present study, type 2 diabetes (T2D) was induced by streptozotocin (35 mg/kg, intraperitoneal) in rats on ad libitum high-fat diet. Diabetic animals were treated orally with phloridzin (10 and 20 mg/kg) for four weeks. Memory functions were evaluated by passive avoidance test (PAT) and novel object recognition (NOR) test. Brains of rats were subjected to biochemical analysis of glutathione (GSH), brain-derived neurotrophic factor (BDNF), malonaldehyde (MDA) and acetylcholinesterase (AChE). Role of cholinergic system in the effects of phloridzin was evaluated by scopolamine pre-treatment in behavioral studies. While diabetic rats showed a significant decrease in step through latency in PAT, and exploration time and discrimination index in NOR test; a substantial increase in all parameters was observed following phloridzin treatment. Phloridzin reversed abnormal levels of GSH, BDNF, MDA and AChE in the brain of diabetic animals. Moreover, in silico molecular docking study revealed that phloridzin acts as a potent agonist at M1 receptor as compared to acetylcholine. Viewed collectively, reversal of T2D-induced memory impairment by phloridzin might be attributed to upregulation of neurotrophic factors, reduced oxidative stress and increased cholinergic signaling in the brain. Therefore, phloridzin may be a promising molecule in the management of cognitive impairment comorbid with T2D.
Collapse
Affiliation(s)
- Sandesh P Kamdi
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Udaipur, 313001, Rajasthan, India.
| | - Hemant R Badwaik
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, Chhattisgarh, India
| | - Amit Raval
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Udaipur, 313001, Rajasthan, India
| | - Ajazuddin
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, 425405, Maharashtra, India
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, Chhattisgarh, India; Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| |
Collapse
|
11
|
Llorente-Ovejero A, Martínez-Gardeazabal J, Moreno-Rodríguez M, Lombardero L, González de San Román E, Manuel I, Giralt MT, Rodríguez-Puertas R. Specific Phospholipid Modulation by Muscarinic Signaling in a Rat Lesion Model of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2167-2181. [PMID: 34037379 PMCID: PMC9162383 DOI: 10.1021/acschemneuro.1c00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Alzheimer’s disease (AD) represents
the most common cause
of dementia worldwide and has been consistently associated with the
loss of basal forebrain cholinergic neurons (BFCNs) leading to impaired
cholinergic neurotransmission, aberrant synaptic function, and altered
structural lipid metabolism. In this sense, membrane phospholipids
(PLs) can be used for de novo synthesis of choline (Ch) for the further
obtaining of acetylcholine (ACh) when its availability is compromised.
Specific lipid species involved in the metabolism of Ch have been
identified as possible biomarkers of phenoconversion to AD. Using
a rat model of BFCN lesion, we have evaluated the lipid composition
and muscarinic signaling in brain areas related to cognitive processes.
The loss of BFCN resulted in alterations of varied lipid species related
to Ch metabolism at nucleus basalis magnocellularis (NMB) and cortical
projection areas. The activity of muscarinic receptors (mAChR) was
decreased in the NMB and increased in the hippocampus according to
the subcellular distribution of M1/M2 mAChR
which could explain the learning and memory impairment reported in
this AD rat model. These results suggest that the modulation of specific
lipid metabolic routes could represent an alternative therapeutic
strategy to potentiate cholinergic neurotransmission and preserve
cell membrane integrity in AD.
Collapse
Affiliation(s)
- Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Laura Lombardero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Estíbaliz González de San Román
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
12
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
13
|
Schöbi D, Homberg F, Frässle S, Endepols H, Moran RJ, Friston KJ, Tittgemeyer M, Heinzle J, Stephan KE. Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses. Neuroimage 2021; 237:118096. [PMID: 33940149 DOI: 10.1016/j.neuroimage.2021.118096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Drugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeutic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect in the reverse direction, i.e., to infer the status of specific neuromodulatory systems from electrophysiological measures. In this study, we provide proof-of-concept that the functional status of cholinergic (specifically muscarinic) receptors can be inferred from electrophysiological data using generative (dynamic causal) models. To this end, we used epidural EEG recordings over two auditory cortical regions during a mismatch negativity (MMN) paradigm in rats. All animals were treated, across sessions, with muscarinic receptor agonists and antagonists at different doses. Together with a placebo condition, this resulted in five levels of muscarinic receptor status. Using a dynamic causal model - embodying a small network of coupled cortical microcircuits - we estimated synaptic parameters and their change across pharmacological conditions. The ensuing parameter estimates associated with (the neuromodulation of) synaptic efficacy showed both graded muscarinic effects and predictive validity between agonistic and antagonistic pharmacological conditions. This finding illustrates the potential utility of generative models of electrophysiological data as computational assays of muscarinic function. In application to EEG data of patients from heterogeneous spectrum diseases, e.g. schizophrenia, such models might help identify subgroups of patients that respond differentially to cholinergic treatments. SIGNIFICANCE STATEMENT: In psychiatry, the vast majority of pharmacological treatments affect actions of neuromodulatory transmitters, e.g. dopamine or acetylcholine. As treatment is largely trial-and-error based, one of the goals for computational psychiatry is to construct mathematical models that can serve as "computational assays" and infer the status of specific neuromodulatory systems in individual patients. This translational neuromodeling strategy has great promise for electrophysiological data in particular but requires careful validation. The present study demonstrates that the functional status of cholinergic (muscarinic) receptors can be inferred from electrophysiological data using dynamic causal models of neural circuits. While accuracy needs to be enhanced and our results must be replicated in larger samples, our current results provide proof-of-concept for computational assays of muscarinic function using EEG.
Collapse
Affiliation(s)
- Dario Schöbi
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland
| | - Fabienne Homberg
- Boston Scientific Medizintechnik GmbH, Daniel-Goldbach-Strasse 17-27, 40880 Ratingen, Germany
| | - Stefan Frässle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland
| | - Heike Endepols
- Preclinical Imaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Rosalyn J Moran
- Department of Neuroimaging, Institute for Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London Se5 8AF, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3AR, UK
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Cluster of Excellence in Cellular Stress and Aging associated Disease (CECAD), 50931 Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland.
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3AR, UK; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| |
Collapse
|
14
|
Standardized Extract (HemoHIM) Protects against Scopolamine-Induced Amnesia in a Murine Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8884243. [PMID: 33815562 PMCID: PMC7990529 DOI: 10.1155/2021/8884243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
HemoHIM is a medicinal herbal preparation of Angelica gigas Nakai (Apiaceae), Cnidium officinale Makino (Umbelliferae), and Paeonia lactiflora Pallas (Paeoniaceae) designed for immune regulation. In the present study, the memory-enhancing effects of a standardized extract (HemoHIM) on scopolamine-induced memory impairment in a murine model was investigated. To induce amnesia, scopolamine (1 mg/kg) was intraperitoneally (i.p.) injected into mice 30 min before the start of behavioral tests. The Y-maze, novel object recognition test (NORT), and passive avoidance task (PAT) were used to evoke memory functions. HemoHIM significantly improved scopolamine-induced memory impairment in ICR mice, which was evidenced by an improvement of spontaneous alternation in the Y-maze, recognition index in NORT, and latency time in PAT. To elucidate the possible mechanism, the cholinergic activity and mRNA levels of choline acetyltransferase (ChAT), muscarinic acetylcholine receptor (mAchR), brain-derived neurotrophic factor (BDNF), and cAMP response element-binding protein (CREB) were measured using reverse transcription (RT-PCR) and western blot analyses, respectively. HemoHIM treatment attenuated the scopolamine-induced hyperactivation of acetylcholinesterase (AchE) activity. In addition, ChAT, mAchR, and CREB mRNA levels were increased in the hippocampus compared with the scopolamine group. Furthermore, HemoHIM treatment resulted in elevated BDNF protein expression. These results indicate that HemoHIM may exert antiamnesic activity by increasing Ach and inhibiting AchE in the hippocampus. In addition, HemoHIM has therapeutic potential by upregulating ChAT, mAchR, and BDNF, which is apparently mediated by activation of the CREB and ERK signaling pathways.
Collapse
|
15
|
Caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1 in Alzheimer's disease. Mol Med 2021; 27:8. [PMID: 33509083 PMCID: PMC7842056 DOI: 10.1186/s10020-021-00273-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 12/05/2022] Open
Abstract
Background Alzheimer's disease is a neurodegenerative disease. Previous study has reported that caspase-1/IL-1β is closely associated with Alzheimer's disease. However, the biological role of caspase-1/IL-1β in Alzheimer's disease has not been fully elucidated. This study aimed to explore the mechanism of action of caspase-1/IL-1β in Alzheimer's disease. Methods Mouse hippocampal neurones were treated with Aβ1-42 to induce Alzheimer's disease cell model. APP/PS1 mice and Aβ1-42-induced hippocampal neurones were treated with AC-YVAD-CMK (caspase-1 inhibitor). Spatial learning and memory ability of mice were detected by morris water maze. Flow cytometry, TUNEL staining, Thioflavin S staining and immunohistochemistry were performed to examine apoptosis and senile plaque deposition. Enzyme linked immunosorbent assay and western blot were performed to assess the levels of protein or cytokines. Co-Immunoprecipitation was performed to verify the interaction between Stargazin and GluA1. Results AC-YVAD-CMK treatment improved spatial learning and memory ability and reduced senile plaque deposition of APP/PS1 mice. Moreover, AC-YVAD-CMK promoted membrane transport of GluA1 in APP/PS1 mice. In vitro, Aβ1-42-induced hippocampal neurones exhibited an increase in apoptosis and a decrease in the membrane transport of GluA1, which was abolished by AC-YVAD-CMK treatment. In addition, Stargazin interacted with GluA1, which was repressed by caspase-1. Caspase-1/IL-1β inhibited membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1. Conclusions Our data demonstrate that caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin in Alzheimer's disease. Thus, caspase-1/IL-1β may be a target for Alzheimer's disease treatment.
Collapse
|
16
|
Luo X, Yu X, Liang J, Sun R, Li C, Jiang J. Involvement of GluA1-AMPAR-mediated LTP in time-dependent decline of cognitive function in rats with temporal lobe epilepsy. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-020-00036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cognitive impairment is one of the common comorbidities in patients with temporal lobe epilepsy (TLE), but the underlying mechanisms remain largely unknown. Previous studies have found significant decay of hippocampal long-term potentiation (LTP) in TLE rats with cognitive impairment. As the activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) is responsible for LTP formation and learning and memory, we investigated whether AMPARs are involved in the LTP inhibition and the TLE-associated cognitive impairments.
Methods
TLE rat model was established by intraperitoneal injection of lithium chloride-pilocarpine on postnatal day 21 (P21). Learning and memory performance, hippocampal expression of membrane GluA1-AMPARs, and hippocampal LTP were tested by behavioral tests, western blotting, and field potential recording, respectively, at 1, 5 and 13 weeks after induction of status epilepticu (SE). Finally, the effects of (S)-AMPA, an agonist of AMPARs, on LTP and cognitive function were tested.
Results
Results of behavioral tests revealed an time-dependent decline in the learning and memory of TLE rats when compared to the age-matched controls at week 5 and 13, rather than at week 1 after the induction of SE. Western blotting showed that the hippocampal expression of membrane GluA1 was significantly decreased in a time-dependent manner in the TLE rats when compared to the age-matched controls at weeks 5 and 13, rather than at week 1 after the induction of SE. Similarly, the hippocampal LTP was inhibited in a time-dependent manner in TLE rats at weeks 5 and 13, rather than at week 1 after the induction of SE. Moreover, intra-hippocampal injection of (S)-AMPA ameliorated the deficits in learning as well as spatial and emotional memory in a dose-dependent manner, and partially reversed the inhibition of CA1 LTP in the TLE rats at week 13 after the induction of SE.
Conclusions
The reduced expression of hippocampal membrane GluA1 may be involved in LTP decay in CA1 and cognition impairment in TLE rats.
Collapse
|
17
|
Shavit-Stein E, Dori A, Shimon MB, Gofrit SG, Maggio N. Prolonged Systemic Inflammation Alters Muscarinic Long-Term Potentiation (mLTP) in the Hippocampus. Neural Plast 2021; 2021:8813734. [PMID: 33510779 PMCID: PMC7822657 DOI: 10.1155/2021/8813734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
The cholinergic system plays a fundamental role in learning and memory. Pharmacological activation of the muscarinic receptor M1R potentiates NMDA receptor activity and induces short-term potentiation at the synapses called muscarinic LTP, mLTP. Dysfunction of cholinergic transmission has been detected in the settings of cognitive impairment and dementia. Systemic inflammation as well as neuroinflammation has been shown to profoundly alter synaptic transmission and LTP. Indeed, intervention which is aimed at reducing neuroinflammatory changes in the brain has been associated with an improvement in cognitive functions. While cognitive impairment caused either by cholinergic dysfunction and/or by systemic inflammation suggests a possible connection between the two, so far whether systemic inflammation affects mLTP has not been extensively studied. In the present work, we explored whether an acute versus persistent systemic inflammation induced by LPS injections would differently affect the ability of hippocampal synapses to undergo mLTP. Interestingly, while a short exposure to LPS resulted in a transient deficit in mLTP expression, a longer exposure persistently impaired mLTP. We believe that these findings may be involved in cognitive dysfunctions following sepsis and possibly neuroinflammatory processes.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621 Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
18
|
Chen MW, Zhu H, Xiong CH, Li JB, Zhao LX, Chen HZ, Qiu Y. PKC and Ras are Involved in M1 Muscarinic Receptor-Mediated Modulation of AMPA Receptor GluA1 Subunit. Cell Mol Neurobiol 2020; 40:547-554. [PMID: 31721013 PMCID: PMC11448767 DOI: 10.1007/s10571-019-00752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
M1 muscarinic acetylcholine receptors (M1 mAChRs) have long been an attractive target for the treatment of Alzheimer's disease (AD), the most common cause of dementia in the elderly. M1 mAChR agonists show desirably preclinical activities; however, most have not gone further into late clinical trials due to ineffectiveness or side effects. Thus, to understand the signaling pathways involved in M1 mAChR-mediated memory improvement may be important for design of biased agonists with on-target therapeutic effects. M1 mAChRs are classically coupled to Gαq or ectopically to Gαs to activate multiple kinases such as protein kinase C (PKC), Ras and protein kinase A (PKA). Our previous studies have found that M1 mAChRs could improve learning and memory through modulating AMPA receptor GluA1 subunit via PKA-PI3K-Akt signaling. Here, we further investigated whether PKC and Ras were involved in M1 mAChR-mediated modulation of GluA1. We demonstrated the role of PKC and Ras in the signaling pathway, as both PKC inhibitors Ro-31-8425 or Gö6983 and Ras inhibitor salirasib abolished the membrane insertion of GluA1 and enhancement of its phosphorylation at Ser845 induced by M1 mAChRs in the primary cultured neurons and hippocampus in vivo. We further showed that PKC and Ras modulated PKA-PI3K-Akt signaling since the increases of PKA, Akt and mTOR activities by M1 mAChR activation were blocked by PKC and Ras inhibitors. These data demonstrated the detailed mechanism underlying M1 mAChR-mediated modulation of GluA1 through Gαq/11 coupling, broadening the knowledge of the downstream signaling after M1 mAChR-Gαq/11 coupling.
Collapse
Affiliation(s)
- Mu-Wen Chen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Han Zhu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Cai-Hong Xiong
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jia-Bing Li
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201210, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
19
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Francis TC, Yano H, Demarest TG, Shen H, Bonci A. High-Frequency Activation of Nucleus Accumbens D1-MSNs Drives Excitatory Potentiation on D2-MSNs. Neuron 2019; 103:432-444.e3. [PMID: 31221559 DOI: 10.1016/j.neuron.2019.05.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022]
Abstract
Subtypes of nucleus accumbens medium spiny neurons (MSNs) promote dichotomous outcomes in motivated behaviors. However, recent reports indicate enhancing activity of either nucleus accumbens (NAc) core MSN subtype augments reward, suggesting coincident MSN activity may underlie this outcome. Here, we report a collateral excitation mechanism in which high-frequency, NAc core dopamine 1 (D1)-MSN activation causes long-lasting potentiation of excitatory transmission (LLP) on dopamine receptor 2 (D2)-MSNs. Our mechanistic investigation demonstrates that this form of plasticity requires release of the excitatory peptide substance P from D1-MSNs and robust cholinergic interneuron activation through neurokinin receptor stimulation. We also reveal that D2-MSN LLP requires muscarinic 1 receptor activation, intracellular calcium signaling, and GluR2-lacking AMPAR insertion. This study uncovers a mechanism for shaping NAc core activity through the transfer of excitatory information from D1-MSNs to D2-MSNs and may provide a means for altering goal-directed behavior through coordinated MSN activity.
Collapse
Affiliation(s)
- T Chase Francis
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Hideaki Yano
- Intramural Research Program, Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hui Shen
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, School of Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
21
|
Zhao LX, Chen MW, Qian Y, Yang QH, Ge YH, Chen HZ, Qiu Y. M1 Muscarinic Receptor Activation Rescues β-Amyloid-Induced Cognitive Impairment through AMPA Receptor GluA1 Subunit. Neuroscience 2019; 408:239-247. [PMID: 30981860 DOI: 10.1016/j.neuroscience.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
M1 muscarinic receptors have long been identified as a potential therapeutic target for the treatment of cognitive impairment in Alzheimer's disease (AD). Our previous study has shown that M1 receptors promote membrane insertion and synaptic delivery of AMPA receptor GluA1 subunit. In this study, we sought to determine whether activation of M1 receptor would rescue the cognitive impairment in AD model mice through modulation of GluA1 subunit. For the mice injected with aggregated β-amyloid (Aβ) fragments to impair learning and memory, activation of M1 receptors could rescue it by reducing the latency to find the platform and spending more time in the target quadrant in the probe test in the Morris water maze. However, such an effect was ablated in mice with Ser845 residue of GluA1 mutated to alanine. Furthermore, the activation of M1 receptors enhanced the expression of GluA1 and its phosphorylation at Ser845 and drove GluA1 to incorporate with PSD95, a postsynaptic marker, in the hippocampi from Aβ-injected wild type mice but not from the mutant mice. Moreover, for 9-month-old APP/PS1 transgenic AD model mice, which may resemble the late AD, M1 receptor activation could not improve the cognitive impairment significantly. In addition, the enhancement of GluA1 expression and its phosphorylation at Ser845 were not observed in their hippocampi. Taken together, the study indicated that M1 receptor activation rescued the cognitive deficit through modulating the trafficking of GluA1-containing AMPA receptors and the therapeutics targeting M1 receptors should aim at mild AD or even pre-AD.
Collapse
Affiliation(s)
- Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mu-Wen Chen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Qian
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Hao Yang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan-Hui Ge
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
22
|
Xiong CH, Liu MG, Zhao LX, Chen MW, Tang L, Yan YH, Chen HZ, Qiu Y. M1 muscarinic receptors facilitate hippocampus-dependent cognitive flexibility via modulating GluA2 subunit of AMPA receptors. Neuropharmacology 2019; 146:242-251. [DOI: 10.1016/j.neuropharm.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022]
|
23
|
Zhao LX, Ge YH, Li JB, Xiong CH, Law PY, Xu JR, Qiu Y, Chen HZ. M1 muscarinic receptors regulate the phosphorylation of AMPA receptor subunit GluA1 via a signaling pathway linking cAMP-PKA and PI3K-Akt. FASEB J 2019; 33:6622-6631. [PMID: 30794430 DOI: 10.1096/fj.201802351r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
M1 muscarinic acetylcholine receptors are highly expressed in key areas that control cognition, such as the cortex and hippocampus, representing one potential therapeutic target for cognitive dysfunctions of Alzheimer's disease and schizophrenia. We have reported that M1 receptors facilitate cognition by promoting membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor AMPA receptor subunit 1 (GluA1) through phosphorylation at Ser845. However, the signaling pathway is still unclear. Here we showed that adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and PKA inhibitor KT5720 inhibited enhancement of phosphorylation of Ser845 and membrane insertion of GluA1 induced by M1 receptor activation. Furthermore, PI3K inhibitor LY294002 and protein kinase B (Akt) inhibitor IV blocked the effects of M1 receptors as well. Remarkably, the increase of the activity of PI3K-Akt signaling induced by M1 receptor activation could be abolished by cAMP-PKA inhibitors. Moreover, inhibiting the mammalian target of rapamycin (mTOR) complex 1, an important downstream effector of PI3K-Akt, by short-term application of rapamycin attenuated the effects of M1 receptors on GluA1. Furthermore, such effect was unrelated to possible protein synthesis promoted by mTOR. Taken together, these data demonstrate that M1 receptor activation induces membrane insertion of GluA1 via a signaling linking cAMP-PKA and PI3K-Akt-mTOR pathways but is irrelevant to protein synthesis.-Zhao, L.-X., Ge, Y.-H., Li, J.-B., Xiong, C.-H., Law, P.-Y., Xu, J.-R., Qiu, Y., Chen, H.-Z. M1 muscarinic receptors regulate the phosphorylation of AMPA receptor subunit GluA1 via a signaling pathway linking cAMP-PKA and PI3K-Akt.
Collapse
Affiliation(s)
- Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Hui Ge
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bing Li
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Hong Xiong
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA; and
| | - Jian-Rong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Wang XP, Ye P, Lv J, Zhou L, Qian ZY, Huang YJ, Mu ZH, Wang X, Liu XJ, Wan Q, Yang ZH, Wang F, Zou YY. Expression Changes of NMDA and AMPA Receptor Subunits in the Hippocampus in rats with Diabetes Induced by Streptozotocin Coupled with Memory Impairment. Neurochem Res 2019; 44:978-993. [PMID: 30747310 DOI: 10.1007/s11064-019-02733-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 11/30/2022]
Abstract
Cognitive impairment in diabetes (CID) is a severe chronic complication of diabetes mellitus (DM). It has been hypothesized that diabetes can lead to cognitive dysfunction due to expression changes of excitatory neurotransmission mediated by N-methyl-D-aspartate receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR); however, the pathogenesis involved in this has not been fully understood, especially at early phase of DM. Here, we sought to determine the cognitive changes and aim to correlate this with the expression changes of NMDAR and AMPAR of glutamate signaling pathways in the rat hippocampus from early phase of DM and in the course of the disease progression. By Western blot analysis and immunofluorescence labeling, the hippocampus in diabetic rats showed a significant increase in protein expression NMDAR subunits NR1, NR2A and NR2B and AMPAR subunit GluR1. Along with this, behavioral test by Morris water maze showed a significant decline in their performance when compared with the control rats. It is suggested that NR1, NR2A, NR2B and GluR1are involved in learning and memory and that their expression alterations maybe correlated with the occurrence and development of CID in diabetic rats induced by streptozotocin.
Collapse
Affiliation(s)
- Xiao-Peng Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.,Drug Rehabilitation Center, Huaixian Street, Datong, 038300, Shanxi, People's Republic of China
| | - Pin Ye
- Department of Human Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Jiao Lv
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Zhong-Yi Qian
- Department of Morphological Laboratory, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Yong-Jie Huang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.,Emergency Department, First Affiliated Hospital of Kunming, Medical University, 295 Xi Chang Road, Kunming, 650032, People's Republic of China
| | - Zhi-Hao Mu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Xin-Jie Liu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.,Undergraduate of Batch 2016 in Clinical Medicine Major, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zhi-Hong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| | - Fang Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
| |
Collapse
|