1
|
Mori K, Naganuma T, Kihara A. Role of 2-hydroxy acyl-CoA lyase HACL2 in odd-chain fatty acid production via α-oxidation in vivo. Mol Biol Cell 2023; 34:ar85. [PMID: 37285239 PMCID: PMC10398889 DOI: 10.1091/mbc.e23-02-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Although most fatty acids (FAs) are even chain, certain tissues, including brain, contain relatively large quantities of odd-chain FAs in their sphingolipids. One of the pathways producing odd-chain FAs is the α-oxidation of 2-hydroxy (2-OH) FAs, where 2-OH acyl-CoA lyases (HACL1 and HACL2) catalyze the key cleavage reaction. However, the contribution of each HACL to odd-chain FA production in vivo remains unknown. Here, we found that HACL2 and HACL1 play major roles in the α-oxidation of 2-OH FAs (especially very-long-chain types) and 3-methyl FAs (other α-oxidation substrates), respectively, using ectopic expression systems of human HACL2 and HACL1 in yeast and analyzing Hacl1 and/or Hacl2 knockout (KO) CHO-K1 cells. We then generated Hacl2 KO mice and measured the quantities of odd-chain and 2-OH lipids (free FAs and sphingolipids [ceramides, sphingomyelins, and monohexosylceramides]) in 17 tissues. We observed fewer odd-chain lipids and more 2-OH lipids in many tissues of Hacl2 KO mice than in wild-type mice, and of these differences the reductions were most prominent for odd-chain monohexosylceramides in the brain and ceramides in the stomach. These results indicate that HACL2-involved α-oxidation of 2-OH FAs is mainly responsible for odd-chain FA production in the brain and stomach.
Collapse
Affiliation(s)
- Keisuke Mori
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Sundarrajan S, Venkatesan A, Kumar S U, Gopikrishnan M, Tayubi IA, Aditya M, Siddaiah GB, George Priya Doss C, Zayed H. Exome sequence analysis of rare frequency variants in Late-Onset Alzheimer Disease. Metab Brain Dis 2023; 38:2025-2036. [PMID: 37162726 PMCID: PMC10348954 DOI: 10.1007/s11011-023-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Alzheimer disease (AD) is a leading cause of dementia in elderly patients who continue to live between 3 and 11 years of diagnosis. A steep rise in AD incidents is observed in the elderly population in East-Asian countries. The disease progresses through several changes, including memory loss, behavioural issues, and cognitive impairment. The etiology of AD is hard to determine because of its complex nature. The whole exome sequences of late-onset AD (LOAD) patients of Korean origin are investigated to identify rare genetic variants that may influence the complex disorder. Computational annotation was performed to assess the function of candidate variants in LOAD. The in silico pathogenicity prediction tools such as SIFT, Polyphen-2, Mutation Taster, CADD, LRT, PROVEAN, DANN, VEST3, fathmm-MKL, GERP + + , SiPhy, phastCons, and phyloP identified around 17 genes harbouring deleterious variants. The variants in the ALDH3A2 and RAD54B genes were pathogenic, while in 15 other genes were predicted to be variants of unknown significance. These variants can be potential risk candidates contributing to AD. In silico computational techniques such as molecular docking, molecular dynamic simulation and steered molecular dynamics were carried out to understand the structural insights of RAD54B with ATP. The simulation of mutant (T459N) RAD54B with ATP revealed reduced binding strength of ATP at its binding site. In addition, lower binding free energy was observed when compared to the wild-type RAD54B. Our study shows that the identified uncommon variants are linked to AD and could be probable predisposing genetic factors of LOAD.
Collapse
Affiliation(s)
| | - Arthi Venkatesan
- BIOVIA Specialist, VIAS 3D, MG Road, Bengaluru, 560001, Karnataka, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Iftikhar Aslam Tayubi
- Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - M Aditya
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India
| | | | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Ota A, Morita H, Naganuma T, Miyamoto M, Jojima K, Nojiri K, Matsuda J, Kihara A. Bifunctional DEGS2 has higher hydroxylase activity toward substrates with very-long-chain fatty acids in the production of phytosphingosine ceramides. J Biol Chem 2023; 299:104603. [PMID: 36907437 PMCID: PMC10140171 DOI: 10.1016/j.jbc.2023.104603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11-C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production.
Collapse
Affiliation(s)
- Ai Ota
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroya Morita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuro Naganuma
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Keisuke Jojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Koki Nojiri
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
5
|
Kurihara Y, Mitsunari K, Mukae N, Shoji H, Miyakawa T, Shirane M. PDZD8-deficient mice manifest behavioral abnormalities related to emotion, cognition, and adaptation due to dyslipidemia in the brain. Mol Brain 2023; 16:11. [PMID: 36658656 PMCID: PMC9854033 DOI: 10.1186/s13041-023-01002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Although dyslipidemia in the brain has been implicated in neurodegenerative disorders, the molecular mechanisms underlying its pathogenesis have been largely unclear. PDZD8 is a lipid transfer protein and mice deficient in PDZD8 (PDZD8-KO mice) manifest abnormal accumulation of cholesteryl esters (CEs) in the brain due to impaired lipophagy, the degradation system of lipid droplets. Here we show the detailed mechanism of PDZD8-dependent lipophagy. PDZD8 transports cholesterol to lipid droplets (LDs), and eventually promotes fusion of LDs and lysosomes. In addition, PDZD8-KO mice exhibit growth retardation, hyperactivity, reduced anxiety and fear, increased sensorimotor gating, and impaired cued fear conditioned memory and working memory. These results indicate that abnormal CE accumulation in the brain caused by PDZD8 deficiency affects emotion, cognition and adaptive behavior, and that PDZD8 plays an important role in the maintenance of brain function through lipid metabolism.
Collapse
Affiliation(s)
- Yuji Kurihara
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Kotone Mitsunari
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Nagi Mukae
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Hirotaka Shoji
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Tsuyoshi Miyakawa
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Michiko Shirane
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| |
Collapse
|
6
|
Nagai M, Iemura K, Kikkawa T, Naher S, Hattori S, Hagihara H, Nagata KI, Anzawa H, Kugisaki R, Wanibuchi H, Abe T, Inoue K, Kinoshita K, Miyakawa T, Osumi N, Tanaka K. Deficiency of CHAMP1, a gene related to intellectual disability, causes impaired neuronal development and a mild behavioural phenotype. Brain Commun 2022; 4:fcac220. [PMID: 36106092 PMCID: PMC9465530 DOI: 10.1093/braincomms/fcac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
CHAMP1 is a gene associated with intellectual disability, which was originally identified as being involved in the maintenance of kinetochore–microtubule attachment. To explore the neuronal defects caused by CHAMP1 deficiency, we established mice that lack CHAMP1. Mice that are homozygous knockout for CHAMP1 were slightly smaller than wild-type mice and died soon after birth on pure C57BL/6J background. Although gross anatomical defects were not found in CHAMP1−/− mouse brains, mitotic cells were increased in the cerebral cortex. Neuronal differentiation was delayed in CHAMP1−/− neural stem cells in vitro, which was also suggested in vivo by CHAMP1 knockdown. In a behavioural test battery, adult CHAMP1 heterozygous knockout mice showed mild memory defects, altered social interaction, and depression-like behaviours. In transcriptomic analysis, genes related to neurotransmitter transport and neurodevelopmental disorder were downregulated in embryonic CHAMP1−/− brains. These results suggest that CHAMP1 plays a role in neuronal development, and CHAMP1-deficient mice resemble some aspects of individuals with CHAMP1 mutations.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Sharmin Naher
- Department of Developmental Neuroscience, Tohoku University Graduate School of Life Sciences , Sendai, Miyagi 980-8575 , Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute of Developmental Research, Aichi Developmental Disability Center , Kasugai, Aichi 480-0392 , Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine , Nagoya, Aichi 466-8550 , Japan
| | - Hayato Anzawa
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
| | - Risa Kugisaki
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine , Osaka 545-8585 , Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
- Division of Integrated Genomics, Tohoku Medical Megabank Organization, Tohoku University , Sendai, 980-8573 , Japan
- Department of In Silico Analysis, Institute of Development, Aging and Cancer, Tohoku University , Sendai, 980-8575 , Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| |
Collapse
|
7
|
Arai A, Takeichi T, Wakamoto H, Sassa T, Ito Y, Murase Y, Ogi T, Akiyama M, Kihara A. Ceramide profiling of stratum corneum in Sjögren-Larsson syndrome. J Dermatol Sci 2022; 107:114-122. [PMID: 35973883 DOI: 10.1016/j.jdermsci.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sjögren-Larsson syndrome (SLS) is a neurocutaneous disorder whose causative gene is the fatty aldehyde dehydrogenase ALDH3A2 and of which ichthyosis is the major skin symptom. The stratum corneum contains a variety of ceramides, among which ω-O-acylceramides (acylceramides) and protein-bound ceramides are essential for skin permeability barrier formation. OBJECTIVES To determine the ceramide classes/species responsible for SLS pathogenesis and the enzymes that are impaired in SLS. METHODS Genomic DNA was collected from peripheral blood samples from an SLS patient and her parents, and whole-genome sequencing and Sanger sequencing were performed. Lipids were extracted from stratum corneum samples from the SLS patient and healthy volunteers and subjected to ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS A duplication (c.55_130dup) and a missense mutation (p.Lys447Glu) were found in the patient's ALDH3A2 gene. The patient had reduced levels of all acylceramide classes, with total acylceramide levels at 25 % of healthy controls. Reductions were also observed for several nonacylated ceramides: ceramides with phytosphingosine or 6-hydroxysphingosine in the long-chain base moiety were reduced to 24 % and 41 % of control levels, respectively, and ceramides with an α-hydroxy fatty acid as the fatty acid moiety were reduced to 29 %. The fatty acid moiety was shortened in many nonacylated ceramide classes. CONCLUSION These results suggest that reduced acylceramide levels are a primary cause of the ichthyosis symptoms of SLS, but reductions in other ceramide classes may also be involved.
Collapse
Affiliation(s)
- Ayami Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Wakamoto
- Department of Pediatrics, Ehime Rehabilitation Center for Children, Ehime, Japan
| | - Takayuki Sassa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasutoshi Ito
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Murase
- Department of Pediatrics, Ehime Rehabilitation Center for Children, Ehime, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Impaired skin barrier function due to reduced ω- O-acylceramide levels in a mouse model of Sjögren-Larsson syndrome. Mol Cell Biol 2021; 41:e0035221. [PMID: 34370553 DOI: 10.1128/mcb.00352-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sjögren-Larsson syndrome (SLS) is an inherited neurocutaneous disorder whose causative gene encodes the fatty aldehyde dehydrogenase ALDH3A2. To date, the detailed molecular mechanism of the skin pathology of SLS has remained largely unclear. We generated double knockout (DKO) mice for Aldh3a2 and its homolog Aldh3b2 (a pseudogene in humans). These mice showed hyperkeratosis and reduced fatty aldehyde dehydrogenase activity and skin barrier function. The levels of ω-O-acylceramides (acylceramides), which are specialized ceramides essential for skin barrier function, in the epidermis of DKO mice were about 60% of those in wild type mice. In the DKO mice, levels of acylceramide precursors (ω-hydroxy ceramides and triglycerides) were increased, suggesting that the final step of acylceramide production was inhibited. A decrease in acylceramide levels was also observed in human immortalized keratinocytes lacking ALDH3A2. Differentiated keratinocytes prepared from the DKO mice exhibited impaired long-chain base metabolism. Based on these results, we propose that the long-chain-base-derived fatty aldehydes that accumulate in DKO mice and SLS patients attack and inhibit the enzyme involved in the final step of acylceramide. Our findings provide insight into the pathogenesis of the skin symptoms of SLS, i.e., decreased acylceramide production, and its molecular mechanism.
Collapse
|
9
|
Zeng L, Li X, Preusch CB, He GJ, Xu N, Cheung TH, Qu J, Mak HY. Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans. PLoS Genet 2021; 17:e1009635. [PMID: 34237064 PMCID: PMC8291716 DOI: 10.1371/journal.pgen.1009635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes. Fatty aldehydes are generated during the turnover of membrane lipids and when cells are under oxidative stress. Because excess fatty aldehydes form toxic adducts with proteins and lipids, their levels are tightly controlled by a family of aldehyde dehydrogenases whose dysfunction has been implicated in genetic disease and cancer in humans. Here, we characterize mutant C. elegans that lack a conserved, membrane-associated aldehyde dehydrogenase ALH-4. Despite elevated levels of fatty aldehydes, these mutant worms survive by increasing the abundance of peroxisomes, which are important organelles for lipid metabolism. Such peroxisome proliferative response depends on the activation of transcription factors NHR-49 and NHR-79, via putative endocrine signals. Accordingly, the fertility of alh-4 mutant worms relies on NHR-49. Our work suggests a latent mechanism that may be activated during aldehyde dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lidan Zeng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xuesong Li
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Christopher B. Preusch
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gary J. He
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ningyi Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tom H. Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory in Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jianan Qu
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
10
|
Kakutani N, Takada S, Nambu H, Maekawa S, Hagiwara H, Yamanashi K, Obata Y, Nakano I, Fumoto Y, Hata S, Furihata T, Fukushima A, Yokota T, Kinugawa S. Angiotensin-converting enzyme inhibitor prevents skeletal muscle fibrosis in diabetic mice. Exp Physiol 2021; 106:1785-1793. [PMID: 33998079 DOI: 10.1113/ep089375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/12/2021] [Indexed: 01/25/2023]
Abstract
NEW FINDINGS What is the central question of this study? We questioned whether an angiotensin-converting enzyme (ACE) inhibitor prevents skeletal muscle fibrosis in diabetic mice. What is the main finding and its importance? Administration of ACE inhibitor prevents the increase in skeletal muscle fibrosis during the early phase after induction of diabetes by streptozotocin. Our findings might provide a new therapeutic target for skeletal muscle abnormalities in diabetes. ABSTRACT Fibrosis is characterized by the excessive production and accumulation of extracellular matrix components, including collagen. Although the extracellular matrix is an essential component of skeletal muscle, fibrosis can have negative effects on muscle function. Skeletal muscle fibrosis was shown to be increased in spontaneously hypertensive rats and to be prevented by an angiotensin-converting enzyme (ACE) inhibitor, an antihypertensive drug, in dystrophic mice or a mouse model of myocardial infarction. In this study, we therefore analysed whether (1) there is increased skeletal muscle fibrosis in streptozotocin (STZ)-induced diabetic mice, and (2) a preventive effect on skeletal muscle fibrosis by administration of an ACE inhibitor. Skeletal muscle fibrosis was significantly increased in STZ-induced diabetic mice compared with control mice from 2 to 14 days post-STZ. The ACE inhibitor prevented both skeletal muscle fibrosis and the reduction in muscle function in STZ-treated mice. Our study demonstrated that administration of an ACE inhibitor prevents the increase in skeletal muscle fibrosis during the early phase after onset of diabetes. Our findings might provide a new therapeutic target for skeletal muscle abnormalities in diabetes. Future studies are required to clarify whether skeletal muscle fibrosis is also linked directly to physical activity.
Collapse
Affiliation(s)
- Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Sports Education, Faculty of Lifelong Sport, Hokusho University, Ebetsu, Japan.,Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideo Nambu
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Maekawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Shirane M, Shoji H, Hashimoto Y, Katagiri H, Kobayashi S, Manabe T, Miyakawa T, Nakayama KI. Protrudin-deficient mice manifest depression-like behavior with abnormalities in activity, attention, and cued fear-conditioning. Mol Brain 2020; 13:146. [PMID: 33172474 PMCID: PMC7654181 DOI: 10.1186/s13041-020-00693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Protrudin is a protein that resides in the membrane of the endoplasmic reticulum and is highly expressed in the nervous system. Although mutations in the human protrudin gene (ZFYVE27, also known as SPG33) give rise to hereditary spastic paraplegia (HSP), the physiological role of the encoded protein has been largely unclear. We therefore generated mice deficient in protrudin and subjected them to a battery of behavioral tests designed to examine their intermediate phenotypes. The protrudin-deficient mice were found to have a reduced body size and to manifest pleiotropic behavioral abnormalities, including hyperactivity, depression-like behavior, and deficits in attention and fear-conditioning memory. They exhibited no signs of HSP, however, consistent with the notion that HSP-associated mutations of protrudin may elicit neural degeneration, not as a result of a loss of function, but rather as a result of a gain of toxic function. Overall, our results suggest that protrudin might play an indispensable role in normal neuronal development and behavior.
Collapse
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yutaka Hashimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hiroyuki Katagiri
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan.
| |
Collapse
|
12
|
Staps P, Rizzo WB, Vaz FM, Bugiani M, Giera M, Heijs B, van Kampen AHC, Pras‐Raves ML, Breur M, Groen A, Ferdinandusse S, van der Graaf M, Van Goethem G, Lammens M, Wevers RA, Willemsen MAAP. Disturbed brain ether lipid metabolism and histology in Sjögren-Larsson syndrome. J Inherit Metab Dis 2020; 43:1265-1278. [PMID: 32557630 PMCID: PMC7689726 DOI: 10.1002/jimd.12275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 02/02/2023]
Abstract
Sjögren-Larsson syndrome (SLS) is a rare neurometabolic syndrome caused by deficient fatty aldehyde dehydrogenase. Patients exhibit intellectual disability, spastic paraplegia, and ichthyosis. The accumulation of fatty alcohols and fatty aldehydes has been demonstrated in plasma and skin but never in brain. Brain magnetic resonance imaging and spectroscopy studies, however, have shown an abundant lipid peak in the white matter of patients with SLS, suggesting lipid accumulation in the brain as well. Using histopathology, mass spectrometry imaging, and lipidomics, we studied the morphology and the lipidome of a postmortem brain of a 65-year-old female patient with genetically confirmed SLS and compared the results with a matched control brain. Histopathological analyses revealed structural white matter abnormalities with the presence of small lipid droplets, deficient myelin, and astrogliosis. Biochemically, severely disturbed lipid profiles were found in both white and gray matter of the SLS brain, with accumulation of fatty alcohols and ether lipids. Particularly, long-chain unsaturated ether lipid species accumulated, most prominently in white matter. Also, there was a striking accumulation of odd-chain fatty alcohols and odd-chain ether(phospho)lipids. Our results suggest that the central nervous system involvement in SLS is caused by the accumulation of fatty alcohols leading to a disbalance between ether lipid and glycero(phospho)lipid metabolism resulting in a profoundly disrupted brain lipidome. Our data show that SLS is not a pure leukoencephalopathy, but also a gray matter disease. Additionally, the histopathological abnormalities suggest that astrocytes and microglia might play a pivotal role in the underlying disease mechanism, possibly contributing to the impairment of myelin maintenance.
Collapse
Affiliation(s)
- Pippa Staps
- Department of Pediatric Neurology, Radboud university medical center, Amalia Children's Hospital, Donders Institute for Brain Cognition and BehaviourNijmegenNetherlands
| | - William B. Rizzo
- Department of Pediatrics, Child Health Research InstituteUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam UMC, University of AmsterdamAmsterdam Gastroenterology & MetabolismAmsterdamNetherlands
| | - Marianna Bugiani
- Department of PathologyVU University Medical CenterAmsterdamNetherlands
| | - Martin Giera
- Center for Proteomics & MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Bram Heijs
- Center for Proteomics & MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Antoine H. C. van Kampen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health research institute, Amsterdam UMCUniversity of AmsterdamNetherlands
- Biosystems Data Analysis, Swammerdam Institute for Life SciencesUniversity of AmsterdamNetherlands
| | - Mia L. Pras‐Raves
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam UMC, University of AmsterdamAmsterdam Gastroenterology & MetabolismAmsterdamNetherlands
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health research institute, Amsterdam UMCUniversity of AmsterdamNetherlands
| | - Marjolein Breur
- Department of PathologyVU University Medical CenterAmsterdamNetherlands
| | - Annemieke Groen
- Department of PathologyVU University Medical CenterAmsterdamNetherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam UMC, University of AmsterdamAmsterdam Gastroenterology & MetabolismAmsterdamNetherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenNetherlands
- Department of Pediatrics, Radboud University Medical CenterAmalia Children's HospitalNijmegenNetherlands
| | - Gert Van Goethem
- Het GielsBos, Gierle, Belgium and Department of NeurologyUniversity Hospital of Antwerp (UZA)AntwerpBelgium
- Department of Pathology Antwerp University Hospital, Edegem, and Laboratory of Neuropathology, Born‐Bunge InstituteUniversity of AntwerpAntwerpBelgium
| | - Martin Lammens
- Department of Pathology Antwerp University Hospital, Edegem, and Laboratory of Neuropathology, Born‐Bunge InstituteUniversity of AntwerpAntwerpBelgium
| | - Ron A. Wevers
- Department of Laboratory Medicine, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenNetherlands
| | - Michèl A. A. P. Willemsen
- Department of Pediatric Neurology, Radboud university medical center, Amalia Children's Hospital, Donders Institute for Brain Cognition and BehaviourNijmegenNetherlands
| |
Collapse
|
13
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
14
|
Darios F, Mochel F, Stevanin G. Lipids in the Physiopathology of Hereditary Spastic Paraplegias. Front Neurosci 2020; 14:74. [PMID: 32180696 PMCID: PMC7059351 DOI: 10.3389/fnins.2020.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases sharing spasticity in lower limbs as common symptom. There is a large clinical variability in the presentation of patients, partly underlined by the large genetic heterogeneity, with more than 60 genes responsible for HSP. Despite this large heterogeneity, the proteins with known function are supposed to be involved in a limited number of cellular compartments such as shaping of the endoplasmic reticulum or endolysosomal function. Yet, it is difficult to understand why alteration of such different cellular compartments can lead to degeneration of the axons of cortical motor neurons. A common feature that has emerged over the last decade is the alteration of lipid metabolism in this group of pathologies. This was first revealed by the identification of mutations in genes encoding proteins that have or are supposed to have enzymatic activities on lipid substrates. However, it also appears that mutations in genes affecting endoplasmic reticulum, mitochondria, or endolysosome function can lead to changes in lipid distribution or metabolism. The aim of this review is to discuss the role of lipid metabolism alterations in the physiopathology of HSP, to evaluate how such alterations contribute to neurodegenerative phenotypes, and to understand how this knowledge can help develop therapeutic strategy for HSP.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Equipe de Neurogénétique, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
15
|
Kawaguchi M, Sassa T, Kidokoro H, Nakata T, Kato K, Muramatsu H, Okuno Y, Yamamoto H, Kaname T, Kihara A, Natsume J. Novel biallelic FA2H mutations in a Japanese boy with fatty acid hydroxylase-associated neurodegeneration. Brain Dev 2020; 42:217-221. [PMID: 31837835 DOI: 10.1016/j.braindev.2019.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Abstract
FA2H encodes fatty acid 2-hydroxylase, which plays a significant role in maintaining the neuronal myelin sheath. Previous reports have revealed that a FA2H mutation leads to spastic paraplegia, leukodystrophy, and neurodegeneration with brain iron accumulation, collectively referred to as fatty acid hydroxylase-associated neurodegeneration (FAHN). The disease severity of FAHN varies among individual patients and may be explained by the enzyme activity of FA2H mutant proteins. Here we report a 10-year-old Japanese boy with FAHN having novel heterozygous mutations in FA2H. The patient presented with a spastic gait since the age of 5 years and was unable to walk without a cane by the time he was 8 years old. Brain MRI demonstrated a partial thinning of the corpus callosum, slight reduction of cerebellar volume, and posterior dominant periventricular leukodystrophy. Whole exome sequencing revealed two novel missense mutations in FA2H with compound heterozygous inheritance (NM_024306, p.Val149Leu, and p.His260Gln mutations). The enzyme activities of the p.Val149Leu and p.His260Gln variants were 60%-80% and almost 0%, respectively. Our cell-based enzyme assay demonstrated partial functionality for one of the variants, indicating a milder phenotype. However, considered along with previous reports, there was no definite relationship between the disease severity and residual enzyme activity measured using a similar method. Further research is needed to precisely predict the phenotypic severity of this disorder.
Collapse
Affiliation(s)
- Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Isokawa M, Sassa T, Hattori S, Miyakawa T, Kihara A. Reduced chain length in myelin sphingolipids and poorer motor coordination in mice deficient in the fatty acid elongase Elovl1. FASEB Bioadv 2019; 1:747-759. [PMID: 32123819 PMCID: PMC6996318 DOI: 10.1096/fba.2019-00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/14/2019] [Accepted: 10/30/2019] [Indexed: 11/23/2022] Open
Abstract
Very-long-chain fatty acids, with a chain length of >C20, are abundant in myelin sphingolipids. Recently, a de novo mutation in the ELOVL1 gene, which encodes fatty acid elongase, was identified in patients with neurocutaneous disorders involving skin ichthyosis and multiple neurological abnormalities, including hypomyelination, spastic paraplegia, and high-frequency deafness. However, the consequences of ELOVL1 deficiency for lipid composition and detailed pathological changes in the brain remain unclear. Here, we analyzed Elovl1 mutant mice as a model of human ELOVL1 deficiency. The mice exhibited a decreased postnatal survival rate, and some died of startle epilepsy. The acyl chain length of sphingolipids such as galactosylceramides, sulfatides, sphingomyelins, and ceramides in the brains of these mice was markedly shortened. Moreover, the mice exhibited reduced levels of galactosylceramides, which are important for myelin formation and stability. Electron microscope analysis of the corpus callosum in Elovl1 mutant mice revealed modest hypomyelination, especially in large-diameter axons. Furthermore, behavioral testing of the mice revealed deficits such as poorer motor coordination and reduced acoustic startle response to high-intensity stimulus. These findings provide clues to the molecular mechanism of the neurological symptoms of patients with the ELOVL1 mutation.
Collapse
Affiliation(s)
- Masashi Isokawa
- Laboratory of BiochemistryFaculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Takayuki Sassa
- Laboratory of BiochemistryFaculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Satoko Hattori
- Division of Systems Medical ScienceInstitute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical ScienceInstitute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Akio Kihara
- Laboratory of BiochemistryFaculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| |
Collapse
|
17
|
Yeast Mpo1 Is a Novel Dioxygenase That Catalyzes the α-Oxidation of a 2-Hydroxy Fatty Acid in an Fe 2+-Dependent Manner. Mol Cell Biol 2019; 39:MCB.00428-18. [PMID: 30530523 DOI: 10.1128/mcb.00428-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/02/2018] [Indexed: 01/05/2023] Open
Abstract
Phytosphingosine (PHS) is the major long-chain base component of sphingolipids in Saccharomyces cerevisiae The PHS metabolic pathway includes a fatty acid (FA) α-oxidation reaction. Recently, we identified the novel protein Mpo1, which is involved in PHS metabolism. However, the details of the FA α-oxidation reaction and the role of Mpo1 in PHS metabolism remained unclear. In the present study, we revealed that Mpo1 is involved in the α-oxidation of 2-hydroxy (2-OH) palmitic acid (C16:0-COOH) in the PHS metabolic pathway. Our in vitro assay revealed that not only the Mpo1-containing membrane fraction but also the soluble fraction was required for the α-oxidation of 2-OH C16:0-COOH. The addition of Fe2+ eliminated the need for the soluble fraction. Purified Mpo1 converted 2-OH C16:0-COOH to C15:0-COOH in the presence of Fe2+, indicating that Mpo1 is the enzyme body responsible for catalyzing the FA α-oxidation reaction. This reaction was also found to require an oxygen molecule. Our findings indicate that Mpo1 catalyzes the FA α-oxidation reaction as 2-OH fatty acid dioxygenase, mediated by iron(IV) peroxide. Although numerous Mpo1 homologs exist in bacteria, fungi, protozoa, and plants, their functions had not yet been clarified. However, our findings suggest that these family members function as dioxygenases.
Collapse
|
18
|
Hattori S, Okumura Y, Takao K, Yamaguchi Y, Miyakawa T. Open source code for behavior analysis in rodents. Neuropsychopharmacol Rep 2019; 39:67-69. [PMID: 30659767 PMCID: PMC7292282 DOI: 10.1002/npr2.12047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Aim We have conducted a series of behavioral tests, which cover a broad range of behavioral domains, on various strains of genetically engineered mice. For the behavioral screening, we have been using Image J plugins that we developed for most of the tests in the battery. Our behavioral analysis system with the plugins enables systematic and automated image analysis of behavior. The plugins are freely available on the “Mouse Phenotype Database” website (http://www.mouse-phenotype.org/software.html). Here, we release the source code of the plugins in a Git repository with the aim of promoting their use and expanding their functionality. Methods We published the source code of the Image J plugins for behavioral analysis at Git repository (https://github.com/neuroinformatics). The source code for light/dark transition, elevated plus maze, open filed, T‐maze, and fear conditioning tests was made publicly available in the repository. Conclusions The source code of the plugins for the behavioral tests as well as the pre‐compiled binaries can be freely obtained. The open source code could promote the development and modification of the plugins for additional behavioral indices in these tests and for other behavioral tests. We developed the Image J plugins for behavioral analysis, and the pre‐compiled plugins are freely available on the website of “Mouse Phenotype Database.” Here, we released the source code of the plugins in the Git repository.
![]()
Collapse
Affiliation(s)
- Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoshihiro Okumura
- Neuroinformatics Unit, Integrative Computational Brain Science Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yoko Yamaguchi
- Neuroinformatics Unit, Integrative Computational Brain Science Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|