1
|
Kocot N, Pękala E, Koczurkiewicz-Adamczyk P, Chłoń-Rzepa G, Łapa A, Wójcik-Pszczoła K. Airway and cardiovascular remodeling in chronic obstructive pulmonary disease (COPD) as a target for transient receptor potential ankyrin 1 (TRPA1) channel modulators. Bioorg Chem 2025; 158:108301. [PMID: 40058223 DOI: 10.1016/j.bioorg.2025.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, which leads to airway remodeling (AR). AR refers to various structural changes occurring in the airway wall, resulting in thickening, and narrowing of the airways. Apart from airways, and lung tissue, pulmonary vasculature also undergoes remodeling. Thus, the pressure in vascular bed is increased, leading to pulmonary hypertension and further right and left ventricle hypertrophy, as well as myocardial fibrosis. Currently, there is lack of effective treatment directly targeting airway and cardiovascular remodeling in the course of COPD. Due to a lot of research showing involvement of transient receptor potential ankyrin 1 (TRPA1) in respiratory disorders, it seems reasonable to consider this ion channel as a molecular target in treatment of remodeling consequences of COPD. The aim of this review is to summarize current knowledge of its role in this case and to identify areas requiring further research. Moreover, we provide few patented structures intended to treat chronic respiratory diseases, which may be worth investigating in the context of airway remodeling.
Collapse
Affiliation(s)
- Natalia Kocot
- Jagiellonian University, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Kraków, Poland; Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Aleksandra Łapa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
2
|
Qi S. Inhibition of FABP4 Ameliorates IL-13-Induced Inflammatory Response and Barrier Dysfunction in Nasal Mucosal Epithelial Cells through the Regulation of Ferroptosis. Cell Biochem Biophys 2025; 83:977-987. [PMID: 39306825 DOI: 10.1007/s12013-024-01530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
This study was conducted to investigate the role and the mechanism of fatty acid-binding protein 4 (FABP4) in allergic rhinitis (AR). To induce AR in vitro, human nasal epithelial cells (hNECs) were treated by interleukin (IL)-13. Real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot were used to detect FABP4 expression. Enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory level while inflammation-related proteins were detected by western blot. Immunofluorescence (IF) assay was used to detect mucin-5AC (MUC5AC) and zonula occludens-1 (ZO-1) level. The expressions of tight junction proteins were detected by western blot. Lipid reactive oxygen species (ROS) was detected using a BODIPY 581/591 C11 kit and iron level was detected by corresponding assay kits. Ferroptosis-related proteins were detected by western blot. With the goal of investigating the mechanism of FABP4 associated with ferroptosis, cells were pretreated by ferroptosis inducer erastin (30 mM) and rescue experiments were implemented. In this work, FABP4 expression was increased in hNECs treated by IL-13. After FABP4 was knocked down, the inflammation, mucus production, barrier dysfunction and ferroptosis induced by IL-13 in hNECs were all repressed. Nevertheless, erastin pre-treatment partially counteracted the protective role of FABP4 depletion against inflammation, mucus production and barrier dysfunction in IL-13-treated hNECs. In summary, FABP4 deficiency ameliorated IL-13-induced inflammatory response and barrier dysfunction in nasal mucosal epithelial cells through the regulation of ferroptosis.
Collapse
Affiliation(s)
- Shanshan Qi
- Department of Allergy, Wuhan No.1 Hospital, Wuhan, 430022, China.
| |
Collapse
|
3
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell Rep 2024; 43:115045. [PMID: 39661516 DOI: 10.1016/j.celrep.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we investigate the changes in the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identify a specific class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of allergic airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the neuropeptide Y (NPY) receptor Npy1r. A screening of cytokines and neurotrophins reveals that interleukin 1β (IL-1β), IL-13, and brain-derived neurotrophic factor (BDNF) drive part of this reprogramming. IL-13 triggers Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, NPY is released into the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells reveals that a cell-specific knockout of NPY1R in nociceptor neurons in asthmatic mice altered T cell infiltration. Opposite findings are observed in asthmatic mice in which nociceptor neurons are chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits the activity of nociceptor neurons.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
4
|
Zhou X, Zhao X, Dong H, Gao Y. Chrysene contribution to bronchial asthma: Activation of TRPA1 disrupts bronchial epithelial barrier via ERK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117095. [PMID: 39395376 DOI: 10.1016/j.ecoenv.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Elevated polycyclic aromatic hydrocarbon (PAH) levels are associated with exacerbation of asthma. Chrysene is one of the most prevalent unsubstituted PAHs in the environment. Transient receptor potential ankyrin 1 (TRPA1) can be used as a chemoreceptor to detect inhaled stimuli and plays an important role in the occurrence and deterioration of asthma. Whether exposure to a high concentration of chrysene in the environment can activate TRPA1 and contribute to the development of asthma, potentially through the dysfunction of the bronchial epithelial barrier, remains unclear. METHODS A cell-based assay was performed to verify the downregulation of the expression of E-cadherin and tight junction (TJ) proteins by chrysene in bronchial epithelial cells to explore the role of chrysene-mediated TRPA1 activation in the regulation of TJ protein expression through the extracellular signal-regulated protein kinase (ERK) pathway. Animal tests were conducted to determine whether chrysene could enhance airway hyperresponsiveness (AHR) induced by house dust mites (HDMs) and disrupt barrier function, thereby contributing to asthma. RESULTS The cell-based assay revealed that chrysene could disrupt the function of the bronchial epithelial barrier and decrease the expression levels of E-cadherin, zonula occludens-1 (ZO-1), occludin, and claudin-5 through the ERK pathway. Chrysene induced airway epithelial barrier dysfunction primarily through TRPA1 instead of transient receptor potential vanilloid 1. TRPA1 knockdown was able to attenuate chrysene-induced downregulation of TJ protein expression and downregulate ERK activation (p-ERK). Compared with exposure to HDM alone, coexposure to chrysene and HDM resulted in an increased incidence of AHR, disruption of barrier function, and eosinophilic inflammatory responses in a mouse model of asthma. Coexposure to chrysene and HDM increased TRPA1 expression. The animal test verified that the TRPA1 inhibitor HC030031 could suppress chrysene and HDM-induced asthma in mice. CONCLUSIONS Our findings showed that chrysene contributed to the breakdown of the function of the bronchial epithelial barrier through the TRPA1-ERK axis and therefore acted as an adjuvant to contribute to asthma.
Collapse
Affiliation(s)
- Xinjia Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoyu Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Han Dong
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
5
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
6
|
Xiang F, Zhang S, Tang M, Li P, Zhang H, Xiong J, Zhang Q, Li X. Optogenetics Neuromodulation of the Nose. Behav Neurol 2024; 2024:2627406. [PMID: 39165250 PMCID: PMC11335419 DOI: 10.1155/2024/2627406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Recently developed optogenetic technology, which allows high-fidelity control of neuronal activity, has been applied to investigate the neural circuits underlying sensory processing and behavior. The nasal cavity is innervated by the olfactory nerve and trigeminal nerve, which are closely related to common symptoms of rhinitis, such as impairment of smell, itching, and sneezing. The olfactory system has an amazing ability to distinguish thousands of odorant molecules at trace levels. However, there are many issues in olfactory sensing mechanisms that need to be addressed. Optogenetics offers a novel technical approach to solve this dilemma. Therefore, we review the recent advances in olfactory optogenetics to clarify the mechanisms of chemical sensing, which may help identify the mechanism of dysfunction and suggest possible treatments for impaired smell. Additionally, in rhinitis patients, alterations in the other nerve (trigeminal nerve) that innervates the nasal cavity can lead to hyperresponsiveness to various nociceptive stimuli and central sensitization, causing frequent and persistent itching and sneezing. In the last several years, the application of optogenetics in regulating nociceptive receptors, which are distributed in sensory nerve endings, and amino acid receptors, which are distributed in vital brain regions, to alleviate overreaction to nociceptive stimuli, has gained significant attention. Therefore, we focus on the progress in optogenetics and its application in neuromodulation of nociceptive stimuli and discuss the potential clinical translation for treating rhinitis in the future.
Collapse
Affiliation(s)
- Feng Xiang
- TCM DepartmentChongqing University Cancer HospitalChongqing Cancer Hospital, Chongqing, China
| | - Shipeng Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mi Tang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijia Li
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Xiong
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinrong Li
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Cong J, Lv H, Xu Y. The role of nociceptive neurons in allergic rhinitis. Front Immunol 2024; 15:1430760. [PMID: 39185421 PMCID: PMC11341422 DOI: 10.3389/fimmu.2024.1430760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Allergic rhinitis (AR) is a chronic, non-infectious condition affecting the nasal mucosa, primarily mediated mainly by IgE. Recent studies reveal that AR is intricately associated not only with type 2 immunity but also with neuroimmunity. Nociceptive neurons, a subset of primary sensory neurons, are pivotal in detecting external nociceptive stimuli and modulating immune responses. This review examines nociceptive neuron receptors and elucidates how neuropeptides released by these neurons impact the immune system. Additionally, we summarize the role of immune cells and inflammatory mediators on nociceptive neurons. A comprehensive understanding of the dynamic interplay between nociceptive neurons and the immune system augments our understanding of the neuroimmune mechanisms underlying AR, thereby opening novel avenues for AR treatment modalities.
Collapse
Affiliation(s)
- Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
8
|
Yi K, An L, Qi Y, Yang T, Duan Y, Zhao X, Zhang P, Huang X, Su X, Tang Z, Sun D. Docosahexaenoic acid (DHA) promotes recovery from postoperative ileus and the repair of the injured intestinal barrier through mast cell-nerve crosstalk. Int Immunopharmacol 2024; 136:112316. [PMID: 38823183 DOI: 10.1016/j.intimp.2024.112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The objective of this study was to investigate the neuroimmune mechanisms implicated in the enhancement of gastrointestinal function through the administration of oral DHA. Mast cell-deficient mice (KitW-sh) and C57BL/6 mice were used to establish postoperative ileus (POI) models. To further validate our findings, we conducted noncontact coculture experiments involving dorsal root ganglion (DRG) cells, bone marrow-derived mast cells (BMMCs) and T84 cells. Furthermore, the results obtained from investigations conducted on animals and cells were subsequently validated through clinical trials. The administration of oral DHA had ameliorative effects on intestinal barrier injury and postoperative ileus. In a mechanistic manner, the anti-inflammatory effect of DHA was achieved through the activation of transient receptor potential ankyrin 1 (TRPA1) on DRG cells, resulting in the stabilization of mast cells and increasing interleukin 10 (IL-10) secretion in mast cells. Furthermore, the activation of the pro-repair WNT1-inducible signaling protein 1 (WISP-1) signaling pathways by mast cell-derived IL-10 resulted in an enhancement of the intestinal barrier integrity. The current study demonstrated that the neuroimmune interaction between mast cells and nerves played a crucial role in the process of oral DHA improving the intestinal barrier integrity of POI, which further triggered the activation of CREB/WISP-1 signaling in intestinal mucosal cells.
Collapse
Affiliation(s)
- Keqian Yi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Liya An
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Yuxing Qi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Yongqing Duan
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Xiaohu Zhao
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Pengcheng Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Xingzong Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Xianming Su
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Zhiyi Tang
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.
| | - Dali Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China.
| |
Collapse
|
9
|
Wang R, Liang J, Wang Q, Zhang Y, Lu Y, Zhan X, Wang S, Gu Q. m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis. Front Immunol 2024; 15:1344995. [PMID: 39011034 PMCID: PMC11246857 DOI: 10.3389/fimmu.2024.1344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Allergic rhinitis (AR) is a complex disease in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications, such as N6-methyladenosine (m6A) modification of mRNA, play important roles in regulating gene expression in multiple physiological and pathological processes. However, the function of m6A modification in AR and the inflammatory response is poorly understood. Methods We used the ovalbumin (OVA) and aluminum hydroxide to induce an AR mouse model. Nasal symptoms, histopathology, and serum cytokines were examined. We performed combined m6A and RNA sequencing to analyze changes in m6A modification profiles. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and methylated RNA immunoprecipitation sequencing qPCR (MeRIP-qPCR) were used to verify differential methylation of mRNAs and the m6A methylation level. Knockdown or inhibition of Alkbh5 in nasal mucosa of mice was mediated by lentiviral infection or IOX1 treatment. Results We showed that m6A was enriched in a group of genes involved in MAPK signaling pathway. Moreover, we identified a MAPK pathway involving Map3k8, Erk2, and Nfκb1 that may play a role in the disrupted inflammatory response associated with nasal inflammation. The m6A eraser, Alkbh5, was highly expressed in the nasal mucosa of AR model mice. Furthermore, knockdown of Alkbh5 expression by lentiviral infection resulted in high MAPK pathway activity and a significant nasal mucosa inflammatory response. Our findings indicate that ALKBH5-mediated m6A dysregulation likely contributes to a nasal inflammatory response via the MAPK pathway. Conclusion Together, our data show that m6A dysregulation mediated by ALKBH5, is likely to contribute to inflammation of the nasal mucosa via the MAPK signaling pathway, suggesting that ALKBH5 is a potential biomarker for AR treatment.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Jieqiong Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qian Wang
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yingxia Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qinglong Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
10
|
Li J, Wang F, Meng C, Zhu D. Role of TRPV1 and TRPA1 in TSLP production in nasal epithelial cells. Int Immunopharmacol 2024; 131:111916. [PMID: 38522138 DOI: 10.1016/j.intimp.2024.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND TRP protein is sensitive to external temperature changes, but its pathogenic mechanism in the upper airway mucosa is still unclear. OBJECTIVE To investigate the mechanism of TRPV1and TRPA1 in regulating the secretion of inflammatory factors in nasal epithelial cells. METHODS The expression of TRPV1 and TRPA1 in nasal mucosal epithelial cells was investigated using immunofluorescence assays. Epithelial cells were stimulated with TRPV1 and TRPA1 agonists and antagonists, and changes in Ca2+ release and inflammatory factor secretion in epithelial cells were detected. TSLP secretion stimulated with the calcium chelating agent EGTA was evaluated. The transcription factor NFAT was observed by immunofluorescence staining. RESULTS TRPV1 and TRPA1 expression was detected in nasal epithelial cells, and Ca2+ influx was increased after stimulation with agonists. After the activation of TRPV1 and TRPA1, the gene expression of TSLP, IL-25, and IL-33 and the protein expression levels of TSLP and IL-33 were increased, and only TSLP could be inhibited by antagonists and siRNAs. After administration of EGTA, the secretion of TSLP was inhibited significantly, and the expression of the transcription factor NFAT in the nucleus was observed after activation of the TRPV1 and TRPA1 proteins in epithelial cells. CONCLUSION Activation of TRPV1 and TRPA1 on nasal epithelial cells stimulates the generation of TSLP through the Ca2+/NFAT pathway. It also induces upregulation of IL-25 and IL-33 gene expression levels and increased levels of IL-33 protein, leading to the development of airway inflammation.
Collapse
Affiliation(s)
- Jiani Li
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, China.
| |
Collapse
|
11
|
Viegas J, Cardoso EM, Bonneau L, Esteves AF, Ferreira CL, Alves G, Santos-Silva AJ, Vitale M, Arosa FA, Taborda-Barata L. A Novel Bionebulizer Approach to Study the Effects of Natural Mineral Water on a 3D In Vitro Nasal Model from Allergic Rhinitis Patients. Biomedicines 2024; 12:408. [PMID: 38398010 PMCID: PMC10886703 DOI: 10.3390/biomedicines12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sulfurous thermal waters (STWs) are used as a complementary treatment for allergic rhinitis. However, there is scant data on the effects of STW on nasal epithelial cells, and in vitro models are warranted. The main aim of this study was to evaluate the dose and time effects of exposure to 3D nasal inserts (MucilAirTM-HF allergic rhinitis model) with STW or isotonic sodium chloride solution (ISCS) aerosols. Transepithelial electrical resistance (TEER) and histology were assessed before and after nebulizations. Chemokine/cytokine levels in the basal supernatants were assessed by enzyme-linked immunosorbent assay. The results showed that more than four daily nebulizations of four or more minutes compromised the normal epithelial integrity. In contrast, 1 or 2 min of STW or ISCS nebulizations had no toxic effect up to 3 days. No statistically significant changes in release of inflammatory chemokines MCP-1/CCL2 > IL-8/CXCL8 > MIP-1α/CCL3, no meaningful release of "alarmins" (IL-1α, IL-33), nor of anti-inflammatory IL-10 cytokine were observed. We have characterized safe time and dose conditions for aerosol nebulizations using a novel in vitro 3D nasal epithelium model of allergic rhinitis patients. This may be a suitable in vitro setup to mimic in vivo treatments of chronic rhinitis with STW upon triggering an inflammatory stimulus in the future.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Elsa M. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- ESS-IPG-School of Health Sciences, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
| | - Lucile Bonneau
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Ana Filipa Esteves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Catarina L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - António Jorge Santos-Silva
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Unhais da Serra Thermal Spa, Avenida das Termas, 6215-574 Unhais da Serra, Portugal
| | - Marco Vitale
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, 20132 Milan, Italy;
- FoRST—Fondazione per la Ricerca Scientifica Termale, 00198 Rome, Italy
| | - Fernando A. Arosa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Luís Taborda-Barata
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- UBIAir—Clinical & Experimental Lung Centre, University of Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- CACB—Clinical Academic Centre of Beiras, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Department of Immunoallergology, Cova da Beira University Hospital Centre, Alameda Pêro da Covilhã, 6200-251 Covilhã, Portugal
| |
Collapse
|
12
|
Dai L, Liu B, Lin J, Jiang Y, Li Y, Yao Z, Shen S, Jiang Y, Duan Y, Li J. Long-acting anti-inflammatory injectable DEX-Gel with sustained release and self-healing properties regulates T H1/T H2 immune balance for minimally invasive treatment of allergic rhinitis. J Nanobiotechnology 2024; 22:51. [PMID: 38321547 PMCID: PMC10845556 DOI: 10.1186/s12951-024-02306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is a prevalent immune-related allergic disease, and corticosteroid nasal sprays serve as the primary treatment for this patient population. However, their short duration of efficacy and frequent administration pose challenges, leading to drug wastage and potential adverse effects. To overcome these limitations, we devised a novel approach to formulate DEX-Gel by incorporating dexamethasone (DEX) into a blend of Pluronic F127, stearic acid (SA), and polyethylene glycol 400 (PEG400) to achieve sustained-release treatment for AR. RESULTS Following endoscopic injection into the nasal mucosa of AR rats, DEX-Gel exhibited sustained release over a 14-day period. In vivo trials employing various assays, such as flow cytometry (FC), demonstrated that DEX-Gel not only effectively managed allergic symptoms but also significantly downregulated helper T-cells (TH) 2 and TH2-type inflammatory cytokines (e.g., interleukins 4, 5, and 13). Additionally, the TH1/TH2 cell ratio was increased. CONCLUSION This innovative long-acting anti-inflammatory sustained-release therapy addresses the TH1/TH2 immune imbalance, offering a promising and valuable approach for the treatment of AR and other inflammatory nasal diseases.
Collapse
Affiliation(s)
- Li Dai
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yongquan Jiang
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Zhuowei Yao
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Silin Shen
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiming Jiang
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Jiping Li
- Department of Otolaryngology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
13
|
Zhou Y, Chen R, Kong L, Sun Y, Deng J. Neuroimmune communication in allergic rhinitis. Front Neurol 2023; 14:1282130. [PMID: 38178883 PMCID: PMC10764552 DOI: 10.3389/fneur.2023.1282130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence rate of allergic rhinitis (AR) is high worldwide. The inhalation of allergens induces AR, which is an immunoglobulin E-mediated and type 2 inflammation-driven disease. Recently, the role of neuroimmune communication in AR pathogenesis has piqued the interest of the scientific community. Various neuropeptides, such as substance P (SP), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU), released via "axon reflexes" or "central sensitization" exert regulatory effects on immune cells to elicit "neurogenic inflammation," which contributes to nasal hyperresponsiveness (NHR) in AR. Additionally, neuropeptides can be produced in immune cells. The frequent colocalization of immune and neuronal cells at certain anatomical regions promotes the establishment of neuroimmune cell units, such as nerve-mast cells, nerve-type 2 innate lymphoid cells (ILC2s), nerve-eosinophils and nerve-basophils units. Receptors expressed both on immune cells and neurons, such as TRPV1, TRPA1, and Mas-related G protein-coupled receptor X2 (MRGPRX2) mediate AR pathogenesis. This review focused on elucidating the mechanisms underlying neuroimmune communication in AR.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Ru Chen
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Lili Kong
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Yaoyao Sun
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| | - Jing Deng
- Department of Otolaryngology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
- Department of Otolaryngology, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
14
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J, Xie R. Research Progress on TRPA1 in Diseases. J Membr Biol 2023; 256:301-316. [PMID: 37039840 PMCID: PMC10667463 DOI: 10.1007/s00232-023-00277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hongfei Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Junyu Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
15
|
Liu R, Zhang Y, Wang Y, Huang Y, Gao J, Tian X, Ma T, Zhang T. Anti-inflammatory effect of dictamnine on allergic rhinitis via suppression of the LYN kinase-mediated molecular signaling pathway during mast cell activation. Phytother Res 2023; 37:4236-4250. [PMID: 37329155 DOI: 10.1002/ptr.7904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Mast cells (MCs) are important therapeutic targets for allergic diseases. High-affinity immunoglobulin E (IgE) Fc receptors (FcεRI) trigger abnormal activation of MCs. Allergic rhinitis (AR) is an IgE-mediated antigen inhalation reaction that occurs in the nasal mucosa. MC aggravation and dysfunction were observed during the early stages of AR pathogenesis. Herb-derived dictamnine exhibits anti-inflammatory effects. Here, we investigated the pharmacological effects of herb-derived dictamnine on IgE-induced activation of MCs and an ovalbumin (OVA)-induced murine AR model. The results indicated that dictamnine attenuated OVA-induced local allergic reactions and reduced body temperature in OVA-challenged mice with active systemic anaphylaxis. Additionally, dictamnine decreased the frequency of nasal rubbing and sneezing in an OVA-induced murine AR model. Moreover, dictamnine inhibited FcεRI-activated MC activation in a dose-dependent manner without causing cytotoxicity, reduced the activation of the tyrosine kinase LYN in LAD2 cells, and downregulated the phosphorylation of PLCγ1, IP3R, PKC, Erk1/2, and Akt, which are downstream of LYN. In conclusion, dictamnine suppressed the OVA-stimulated murine model of AR and activated IgE-induced MCs via the LYN kinase-mediated molecular signaling pathway, suggesting that dictamnine may be a promising treatment for AR.
Collapse
Affiliation(s)
- Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yonghui Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yuejin Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yihan Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xi Tian
- Department of Nephrology, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Luostarinen S, Hämäläinen M, Pemmari A, Moilanen E. The regulation of TRPA1 expression and function by Th1 and Th2-type inflammation in human A549 lung epithelial cells. Inflamm Res 2023:10.1007/s00011-023-01750-y. [PMID: 37386145 DOI: 10.1007/s00011-023-01750-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Transient Receptor Potential Ankyrin 1 (TRPA1) is a cation channel that mediates pain, itch, cough, and neurogenic inflammation in response to pungent compounds such as acrolein in cigarette smoke. TRPA1 is also activated by endogenous factors and promotes inflammation in asthma models. We have recently shown that TRPA1 is upregulated by inflammatory cytokines in A549 human lung epithelial cells. Here, we explored the effects of Th1 and Th2-type inflammation on TRPA1. METHODS AND RESULTS TRPA1 expression and function was studied in A549 human lung epithelial cells. To induce inflammation, the cells were exposed to a combination of cytokines TNF-α and IL-1β; and to model Th1 or Th2-type responses, IFN-γ or IL-4/IL-13 was added, respectively. TRPA1 expression (measured by RT-PCR and Western blot) and function (assessed by Fluo-3AM intracellular calcium measurement) was enhanced under the influence of TNF-α + IL-1β. IFN-γ further enhanced TRPA1 expression and function, whereas IL-4 and IL-13 suppressed them. The effects of IFN-γ and IL-4 on TRPA1 expression were reversed by the Janus kinase (JAK) inhibitors baricitinib and tofacitinib, and those of IL-4 also by the STAT6 inhibitor AS1517499. The glucocorticoid dexamethasone downregulated TRPA1 expression, whereas the PDE4 inhibitor rolipram had no effect. Under all conditions, TRPA1 blockade was found to reduce the production of LCN2 and CXCL6. CONCLUSIONS TRPA1 expression and function in lung epithelial cells was upregulated under inflammatory conditions. IFN-γ further increased TRPA1 expression while IL-4 and IL-13 suppressed that in a JAK-STAT6 dependent manner which is novel. TRPA1 also modulated the expression of genes relevant to innate immunity and lung disease. We propose that the paradigm of Th1 and Th2 inflammation is a major determinant of TRPA1 expression and function, which should be considered when targeting TRPA1 for pharmacotherapy in inflammatory (lung) disease.
Collapse
Affiliation(s)
- Samu Luostarinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
18
|
Gao X, Mao C, Zheng T, Xu X, Luo X, Zhang S, Liu J, Wang X, Chen X, Dong L. Schistosoma japonicum-derived peptide SJMHE1 ameliorates allergic symptoms and responses in mice with allergic rhinitis. Front Cell Infect Microbiol 2023; 13:1143950. [PMID: 37346033 PMCID: PMC10279851 DOI: 10.3389/fcimb.2023.1143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Helminth derived excretory/secretory molecules have shown efficacy in the treatment of allergic asthma in mice, but their roles in allergic rhinitis (AR) are little known. In this study, we aimed to determine the intervention effect of SJMHE1, a Schistosoma japonicum derived small molecular peptide, on ovalbumin (OVA)-induced AR mice and investigate its possible mechanism. AR was induced in BALB/c mice, following which the mice were treated with phosphate-buffered saline (PBS), OVA323-339 and SJMHE1 respectively. SJMHE1 treatment improved clinical symptoms (rubbing and sneezing), suppressed infiltrates of inflammatory cells and eosinophils in nasal mucosa, modulated the production of type-2 (IL-4 and IL-13) and anti-inflammatory (IL-10) cytokines in the nasal lavage fluids (NLF), spleen, and serum. To investigate the underlying mechanism, fluorescein isothiocyanate (FITC)-labeled SJMHE1 was subcutaneously injected into AR mice, and we found that the FITC-SJMHE1 could accumulate in spleen, but not in nasal mucosa. FITC-SJMHE1 mainly bound to CD19 positive cells (B cells), and the SJMHE1 treatment significantly increased the proportion of regulatory B cells (Bregs) and B10 cells, along with the enhancement of PR domain containing protein 1 (Prdm1) protein levels. SJMHE1 may alleviate AR by upregulating Bregs, and has great potential as a new avenue for the AR treatment.
Collapse
Affiliation(s)
- Xuerong Gao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowei Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinkai Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shan Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
19
|
Nguyen TN, Koga Y, Wakasugi T, Kitamura T, Suzuki H. TRPA1/M8 agonists upregulate ciliary beating through the pannexin-1 channel in the human nasal mucosa. Mol Biol Rep 2023; 50:2085-2093. [PMID: 36539563 PMCID: PMC10011285 DOI: 10.1007/s11033-022-08201-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nasal breathing is important for maintaining physiological respiration. However, airflow in the nasal cavity has an inherent cooling effect and may suppress ciliary beating, an essential frontline defense in the airway. Nasal airflow is thought to be perceived by thermoreceptors for cool temperatures. We herein investigated the effect of the activation of thermosensitive transient receptor potentials (TRPs) for cool/cold temperatures on ciliary beating to search for a compensatory mechanism. METHODS Inferior turbinates were collected from patients with chronic hypertrophic rhinitis. Ex vivo ciliary beat frequency (CBF) and ATP release were measured using a high-speed digital video camera and by luciferin-luciferase assay, respectively. Intracellular Ca2+ ([Ca2+]i) imaging of isolated ciliated cells was performed using Fluo-8. The nasal mucosae were also subjected to fluorescence immunohistochemistry and real-time RT-PCR for TRPA1/TRPM8. RESULTS CBF was significantly increased by adding either cinnamaldehyde (TRPA1 agonist) or l-menthol (TRPM8 agonist). This increase was inhibited by pannexin-1 blockers, carbenoxolone and probenecid. Cinnamaldehyde and l-menthol also increased the ATP release from the nasal mucosa and [Ca2+]i of isolated ciliated cells. Immunohistochemistry detected TRPA1 and TRPM8 on the epithelial surface including the cilia and in the submucosal nasal glands. Existence of these receptors were confirmed at the transcriptional level by real-time RT-PCR. CONCLUSIONS These results indicate the stimulatory effect of the activation of TRPA1/TRPM8 on ciliary beating in the nasal mucosa, which would be advantageous to maintain airway mucosal defense against the fall of temperature under normal nasal breathing. This stimulatory effect is likely to be mediated by pannexin-1.
Collapse
Affiliation(s)
- Thi Nga Nguyen
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
- Faculty of Public Health, Vinh Medical University, Vinh City, Vietnam
| | - Yuma Koga
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Tetsuro Wakasugi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Takuro Kitamura
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
20
|
Yadav M, Chaudhary PP, D’Souza BN, Ratley G, Spathies J, Ganesan S, Zeldin J, Myles IA. Diisocyanates influence models of atopic dermatitis through direct activation of TRPA1. PLoS One 2023; 18:e0282569. [PMID: 36877675 PMCID: PMC9987805 DOI: 10.1371/journal.pone.0282569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/07/2023] Open
Abstract
We recently used EPA databases to identify that isocyanates, most notably toluene diisocyanate (TDI), were the pollutant class with the strongest spatiotemporal and epidemiologic association with atopic dermatitis (AD). Our findings demonstrated that isocyanates like TDI disrupted lipid homeostasis and modeled benefit in commensal bacteria like Roseomonas mucosa through disrupting nitrogen fixation. However, TDI has also been established to activate transient receptor potential ankyrin 1 (TRPA1) in mice and thus could directly contribute to AD through induction of itch, rash, and psychological stress. Using cell culture and mouse models, we now demonstrate that TDI induced skin inflammation in mice as well as calcium influx in human neurons; each of these findings were dependent on TRPA1. Furthermore, TRPA1 blockade synergized with R. mucosa treatment in mice to improve TDI-independent models of AD. Finally, we show that the cellular effects of TRPA1 are related to shifting the balance of the tyrosine metabolites epinephrine and dopamine. This work provides added insight into the potential role, and therapeutic potential, or TRPA1 in the pathogenesis of AD.
Collapse
Affiliation(s)
- Manoj Yadav
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Prem Prashant Chaudhary
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brandon N. D’Souza
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Grace Ratley
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacquelyn Spathies
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sundar Ganesan
- Biological Imaging Section, Research Technology Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jordan Zeldin
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Duan Q, Zhou Y, Yang D. Endoplasmic reticulum stress in airway hyperresponsiveness. Biomed Pharmacother 2022; 149:112904. [PMID: 35367759 DOI: 10.1016/j.biopha.2022.112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/15/2022] Open
Abstract
Airway hyperresponsiveness(AHR) is a major clinical phenomenon in lung diseases (asthma, COPD and pulmonary fibrosis) and not only a high-risk factor for perioperative airway spasm leading to hypoxaemia, haemodynamic instability and even "silent lung", but also a potential risk for increased mortality from underlying diseases (e.g. asthma, COPD). Airway reactivity is closely linked to airway inflammation, remodelling and increased mucus secretion, and endoplasmic reticulum stress is an important mechanism for the development of these pathologies. This review, therefore, focuses on the effects of endoplasmic reticulum stress on the immune cells involved in airway hyperreactivity (epithelial cells, dendritic cells, eosinophils and neutrophils) in inflammation and mucus & sputum secretion; and on the differentiation and remodelling of airway smooth muscle cells and epithelial cells. The aim is to clarify the mechanisms associated with endoplasmic reticulum stress in airway hyperresponsiveness and to find new ideas and methods for the prevention of airway hyperresponsiveness in the perioperative period.
Collapse
Affiliation(s)
- Qirui Duan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Ying Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
22
|
Zou B, Cao C, Fu Y, Pan D, Wang W, Kong L. Berberine Alleviates Gastroesophageal Reflux-Induced Airway Hyperresponsiveness in a Transient Receptor Potential A1-Dependent Manner. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7464147. [PMID: 35586690 PMCID: PMC9110152 DOI: 10.1155/2022/7464147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND To investigate the beneficial effect of berberine on gastroesophageal reflux-induced airway hyperresponsiveness (GERAHR) and explore the underlying mechanism. METHODS Coword cluster analysis and strategic coordinates were used to identify hotspots for GERAHR research, and an online tool (STRING, https://string-db.org/) was used to predict the potential relationships between proteins. Guinea pigs with chemically induced GERAHR received PBS or different berberine-based treatments to evaluate the therapeutic effect of berberine and characterize the underlying mechanism. Airway responsiveness was assessed using a plethysmography system, and protein expression was evaluated by western blotting, immunohistochemical staining, and quantitative PCR analysis. RESULTS Bioinformatics analyses revealed that TRP channels are hotspots of GERAHR research, and TRPA1 is related to the proinflammatory neuropeptide substance P (SP). Berberine, especially at the middle dose tested (MB, 150 mg/kg), significantly improved lung function, suppressed inflammatory cell infiltration, and protected inflammation-driven tissue damage in the lung, trachea, esophagus, and nerve tissues in GERAHR guinea pigs. MB reduced the expression of TRPA1, SP, and tumor necrosis factor-alpha (TNF-α) in evaluated organs and tissues. Meanwhile, the MB-mediated protective effects were attenuated by simultaneous TRPA1 activation. CONCLUSIONS Mechanistically, berberine was found to suppress GERAHR-induced upregulation of TRPA1, SP, and TNF-α in many tissues. Our study has highlighted the potential therapeutic value of berberine for the treatment of GERAHR.
Collapse
Affiliation(s)
- Bo Zou
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Chaofan Cao
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, Liaoning Province, China
| | - Yue Fu
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Dianzhu Pan
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Wei Wang
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Lingfei Kong
- Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|